
Secure and Computationally Efficient
Cryptographic Primitive Based on Cellular
Automaton

Rade Vuckovac

School of Information and Communication Technology
Griffith University
Parklands Drive
Southport, QLD 4222, Australia

The cellular automaton generator (CAG), a random number generator
based on the one-dimensional cellular automaton (CA), is presented.
Three procedures of secure implementation using the CAG are pro-
posed and discussed. Implementations are very efficient in a wide range
of hardware and software scenarios. That includes the advanced
application of internet of things (IoT) and cyber-physical systems,
which are both needed for computationally efficient cryptographic prim-
itives. Furthermore, the proposed primitive is inherently resistant
against the side-channel attack (SCA), where many currently available
ciphers, such as the advanced encryption standard (AES), require addi-
tional hardware or software effort to prevent the SCA line of attack.

Keywords: cellular automata; cryptographic primitive; side-channel
attack; stream cipher performance

Introduction1.

Cellular automaton (CA) cryptographic use is limited. One significant
reason is performance. A survey of CA stream ciphers [1] shows that
encrypting one megabyte of data requires five seconds at best. One
exception is my array generator (MAG) [2], which is a cellular
automaton generator (CAG) predecessor. It is a one-dimensional CA.
It belongs to a class of three complexity classification schemes [3,
p.�12]. That means nearly every initial state evolves in a pseudoran-
dom or chaotic fashion. There are two major attributes that make
MAG exceptional:

◼ MAG is invariant to the cell size. Both 32-bit and 64-bit cells are investi-
gated, and they show the same behavior. That fact has a huge impact
on performance.

◼ The MAG update rule is not entirely Boolean, and SAT solvers tools,
which are generally better than brute force [1], could not be applied.

https://doi.org/10.25088/ComplexSystems.28.4.457

https://doi.org/10.25088/ComplexSystems.28.4.457

Apart from that, there are many more important reasons for revisit-
ing MAG and for building CAG on MAG foundations:

◼ MAG was the main building block for stream cipher entry (eSTREAM
and ECRYPT Stream Cipher Project [2]). That entry did not progress
to the second round because of the available analysis at that time. On
the second round of decision making, the analysis consisted of two
attacks [4, 5]. Other attacks [6, 7] are variants of the previous two.
More analyses were published [8] after round two. Those cryptanalyses
contest attacks from [4, 6]. In the same analysis, it was implied that the
second type of attack [5, 7] is avoidable using one minor alteration
proposed in [9]. According to published analysis, at least one MAG
variant remains secure.

◼ The second reason for the renewed interest in MAG is excellent soft-
ware performance; see testing published on the eSTREAM webpage
[10]. For a short set of results, see Table 1. It compares MAG with
some well-known stream cipher algorithms.

Primitive Stream (Cycles per Byte)

MAG-v3 2.20

TRIVIUM 4.14

Salsa20 7.64

RC4 14.52

AES-CTR 18.51

Table 1. An extract of eSTREAM software performance table [10].

◼ Another reason is MAG compactness. While the advanced encryption
standard (AES) is widely used in symmetrical encryption, the emergence
of IoT (internet of things), with constrained computation power, limits
AES usability in that area. Therefore, lightweight symmetrical encryp-
tion schemes are sought. The MAG hardware footprint is 512 bytes of
memory for the automaton state, plus a couple of variables. Opera-
tional cost is a CA updating rule consisting of one conditional branch-
ing, a couple of exclusive or logical operations, one one’s complement
and one addition (five basic operations). That should match an exten-
sive range of IoT hardware with limited capabilities. See Listing A.1 for
details.

◼ MAG, like other cellular automata (CAs), has inherent resistance
to side-channel attacks (SCA), where AES and many other block
ciphers implementations in that regard are relatively complex [11].
The lightweight cipher designs using S-boxes are affected by SCA as
well [12].

Please note that the predecessor of our cryptographic primitive
CAG, namely MAG, and its design choices for various parameters
were never discussed or published before. Thus, in this paper, these
issues will be addressed as well.

458 R. Vuckovac

Complex Systems, 28 © 2019

The rest of the paper is organized as follows: Section 2 introduces
one-dimensional CAs and then defines the CAG proposition. It also
shows where the CAG improves over MAG, making the CAG propo-
sition even simpler. Appendix A includes C language general imple-
mentation. Section 2 shows three different ways to implement the
proposed CAG securely. Section 3 deals with an analysis of MAG
known attacks and how they might impact the CAG proposal. Sec-
tion 4 discusses the CAG and its potential use in a variety of applica-
tions, SCA and input flexibility.

Cellular Automaton Generator 2.

The CAG is a one-dimensional CA. The concept of the CA was first
discovered in the 1940s by Ulam and von Neumann. The CA is used
as a modeling tool in various scientific fields: computer and complex-
ity science, mathematics, physics and biology. Wolfram was the first
to propose the use of the CA (rule 30) [13] in cryptography [14].

Figure 1 showing Wolfram’s rule 30 is used to explain the general
working of a one-dimensional CA. This particular example uses cells
with two possible states (black and white). The one-dimensional CA
initial state is a row. In the example, it is the binary string (row 1):

0 000000 000000 001000 000000 000000

Row 2 is derived from row 1 and so on, with final row 16:

1 101111 001101 001011 111001 111111

Rules to determine an update of the cell are shown as eight cases.
Each case shows one combination of three cells on the top and the
derivative cell on the bottom. A new cell looks at the three cells from
the row above (positioned above right, immediately above and above
left). Depending on the configuration, one of the cases is applied. For
example, a cell from row 2, column 14 is derived by case 8; a cell
from row 2, column 15 is derived by case 7; a cell from row 2, col-
umn 16 is derived by case 6, and so on. Edge cells do not have above
left or above right cells to choose a case. In that situation, the first or
the last cell from the previous column is used for the ruling. For exam-
ple, the left-edge cell from row 16, column 1 looks at cells from row
15, columns 31, 1, 2 and uses case 7 to create the cell. The right-edge
cell from row 16, column 31 uses the cells from row 15, columns 30,
31, 1 for lookup and case 4 for cell determination. Derived rows
(rows 2, 3, …) are outputs of the CA.

If a random stream of bits is required, column 16 could be used:

1 101110 011000 101…

Secure and Computationally Efficient Cryptographic Primitive Based on CA 459

https://doi.org/10.25088/ComplexSystems.28.4.457

https://doi.org/10.25088/ComplexSystems.28.4.457

A stream generated in this fashion passes many randomness statistical
tests, and it is used as a random number generator in the Wolfram
Language.

Figure 1. Rule 30 one-dimensional CA example.

The CAG is also a one-dimensional CA, but it differs from the
example in the following ways:

◼ Cells are multi-bit words (32 or 64 bits in size).

◼ The update of CAG cells is serial, left to right, because the rule needs
the outcome of the previous cell update (carry).

◼ The CAG rule also appears to be invariant to cell size because it shows
the same random behavior for 32- and 64-bit size cells.

The CAG CA is governed by the CA rule and the state of neighbor-
ing cells. A row of cells, in a CAG case array of elements, is updated
from left to right. One evolution cycle is when all elements in the
array are updated. The next generation is another evolution cycle,
and so on. The original and modified parameters are shown in
Table�2.

MAG CAG

a  127 a  128

b  32 b  32

c calculated c  987 654321

d  0x11 111111 (HEX) d  010 101… (binary)

e  1.5a e  4a

Table 2. MAG/CAG parameters.

460 R. Vuckovac

Complex Systems, 28 © 2019

CAG parameters definitions:

◼ The number of cells is a  128. That choice forces 2128 possible execu-
tion paths during one evolution cycle and assumes at least 128-bit–level
security if the stream is used as a basis for the cipher.

◼ The cell size is b  32 bits. The CAG CA rule appears to be invariant
concerning the cell size. b  64 bits is used and tested for randomness
[15] and there is no change, although the performance doubles because
the same generating cost produces double the stream.

◼ Instead of taking the carry value from the array element in the original
version, it is initialized as c  987 654321 (decimal). The value of
987 654321 was chosen, and there is no special meaning behind this
choice.

◼ The constant d is now initialized as d  01 010101… (32 bits binary).
Again there is nothing special in the constant value. In MAG, d was
described as an arbitrary value (which it is). Related to this, an initial-
ization attack [4, 6] where d  0 was proposed. It eliminates any
adding procedure, which simplifies the whole process significantly. The
analysis [8] showed that any nonzero value of d is sufficient to prevent
initialization attacks.

◼ In a modified version, the mixing period e is four evolutions
e  4 *a  512. It assures proper mixing because the original one and a
half evolutions occasionally produced biases in the first couple of gener-
ated rows. The same could be observed in the rule 30 case (Figure 1),
where the first several rows still retain some patterns.

◼ The seed f is any binary string equal to or smaller than a row of cells
fsize ≤ a * b and f  k + s + … , meaning that the key k, the salt s and …

(IV, pepper and so on) are concatenated to form seed f .

CAG operation is divided into initialization and update.

CAG initialization: Originally, the array of 128 elements, 32 bits
wide is initialized to 0. The seed f is repeatedly concatenated until the
resulting concatenation is equal to or greater than the array in size.
The MAG array’s first 127 elements are the initial row, and remain-
ing elements become the carry c. For example, if the seed is f  seed
and the array is 10 cells (one byte each), the resulting initial array
will be:

seedseedse

In the CAG modified version, the seed f is copied to the zero initial-
ized array and the carry is given as an initial value c  987654 321.
The pattern, with f  seed and array of 10 bytes, looks like:

seed000 000

CAG update: When initialized, the rows are created by updating cells
from left to right. The edge cases (Ai happens to be on the array end)

Secure and Computationally Efficient Cryptographic Primitive Based on CA 461

https://doi.org/10.25088/ComplexSystems.28.4.457

https://doi.org/10.25088/ComplexSystems.28.4.457

are handled as rule 30 edge-cell cases. The rule elements are shown in
Figure 2. The cell update consists of three steps:

◼ The first step is to create a new state of carry c′:

c′ 
 c⊕Ai+1, if Ai+2 > Ai+3

c⊕Ai+1, otherwise.
(1)

Carry c′ is updated by ⊕ (exclusive or) with previous value of c and
one state of the first element to the right Ai+1, depending on the rela-

tion between the other two cells on the right (Ai+2, Ai+3). The states of

Ai+1 are current value (Ai+1) or its one complement (Ai+1). In one evolu-

tion cycle (whole array is updated), each cell is changed once and the
carry is calculated for every cell transformation. Note that the first cell
update uses the initial value of carry c  987 654321.

Figure 2. CAG cell update rule.

◼ The second step is the actual change of element Ai to Ai
′:

Ai
′  Ai ⊕ c′. (2)

◼ The third step is updating the current c′ value for the next cell transfor-
mation:

c′  c′ + d. (3)

Knowledge of the array state renders the CAG algorithm crypto-
graphically unsound. For securing the stream from CAG, three strate-
gies for concealing the CA state are proposed and discussed.

Reducing Output (cag-v1) 2.1

One of the concealing methods was already used by Wolfram on
his CA rule 30 [16, Section 10.10]. For example, column 16 from

462 R. Vuckovac

Complex Systems, 28 © 2019

Figure 1

1 101110 011000 101…

is transformed by taking bits 1, 3, 5, 7, 9, … and producing a
secure stream

10101000….

A similar approach was used in the MAG eSTREAM proposal. A
small change in operation is added to achieve a secure stream prop-
erty. Instead of copying every updated cell to the stream, only the first
byte of the cell is added to the secure stream s (now array of bytes).

For example, Figure 3 shows updated cells as a stream of bytes
where each pixel represents a byte and four bytes are an updated cell.
To make a secure stream, every fifth byte (every fifth pixel from left
to right) is taken and fed to the secure stream. That is bytes:

1, 5, 9, 13, 17, … .

Consequently b1b5b9… bytes create a secure stream. This approach

was found insecure, and details are shown in Section 3.
Again the small change in pattern avoids weaknesses from the pre-

vious design. If the series of bytes taken is changed to: from first cell,
first byte; second cell, second byte; third cell, third byte; fourth cell,
fourth byte; fifth cell, first byte…

1, 6, 11, 16, 17, 22, 27, 32

The stream of bytes b1b6b11b16b17b22b27b32… from Figure 3 will

form a secure stream.

Figure 3. CAG evolution history; one pixel is one byte (256 grayscales).

Secure and Computationally Efficient Cryptographic Primitive Based on CA 463

https://doi.org/10.25088/ComplexSystems.28.4.457

https://doi.org/10.25088/ComplexSystems.28.4.457

Combining Streams (cag-v2) 2.2

One way of making a stream secure is to combine two or more
streams. For example, linear-feedback shift register (LFSR) outputs
were combined to make a shrinking generator (planned to be used as
a stream cipher [17]). The shrinking generator uses two streams: one
is the source, and the other is used to decide which bits of the source
stream are output.

In the CAG case, the idea is to apply exclusive or between two gen-
erated streams (stream α and β) to produce secure stream s:

si  αi ⊕ βi. (4)

One implementation attempt at the combined MAG approach was
published in [15]. It includes source code. The easiest way to imple-
ment combined CAG is to initialize streams separately. Table 3
contains initial parameters. The seed f for each stream now includes
corresponding IV. For example, the seed for α is fα  k + s + IV,

where k is the key, s is the salt, IV is the initialization vector from
Table 3, and + is the concatenation of strings.

CAG Stream Stream IV

α stream 1234567890/3

β stream 9876543210/3

γ stream ...

Table 3. Combined stream parameters.

Stream Masking (cag-v3) 2.3

The idea with masking is to combine (xor) CAG output with a secret
string. The original idea was to use a key as the secret string, but Bern-
stein and Lange noted that the same attacks [5, 7] apply for that
proposal as well. Alternatively, the secret could be sourced from the
execution path history. The branching from the previous evolution
can generate string m. In the case of a 128-element array, there is 128
branching in one evolution cycle, making a 128-bit string m. Bits of m
are determined by branching; the if branch will concatenate 0 and the
else branch 1 to the mask m. From m the four 32-bit element mask
array M is created:

M  [B1; B2; B3; B4]. (5)

The secure stream s is now obtained by exclusive or result from
CAG output cells (A) and mask array of four elements (M):

si  Ai%a ⊕Bi%4. (6)

The new mask M is calculated for every evolution cycle and is used as
a mask for the next cycle.

464 R. Vuckovac

Complex Systems, 28 © 2019

Cellular Automaton Generator Analysis 3.

cag-v1: The eSTREAM proposal to strengthen the CA MAG was to
output just the first byte from every updated cell. It did not work. The
CA can continue updating on just that part of the cell without infor-
mation from the hidden part:

◼ Since the first bytes of Ai%a and Ai%a
′

 are known, the first byte of c′ is

known as well because:

Ai%a
′  Ai%a ⊕ c′. (7)

◼ Knowing the first byte of c, predicting the next unknown value of the
carry c′ takes guessing the branching outcome. That guess is even easier
because of knowledge of the first byte, which is compared.

This kind of attack is detailed in [5, 7]. For avoiding this line of
attack, Fare proposed two amendments in [9]. The idea was to alter-
nate extraction points because the original idea did not hide the evolu-
tion of the first-byte cell. Table 4 shows various extraction patterns
for the proposed MAG secure stream. The first amendment (second
row, Table 4) is broken as well. The one gap between exposed bytes
of the cell did not prevent the same attack, although the guessing cost
was increased [8]. The second amendment (third row, Table 4) does
have three gaps between visible bytes and is still resisting analysis.

Series of Bytes Used in the Stream Status

1, 5, 9, 13, 17, … ⨯

1, 2, 7, 8, 9, 10, 15, 16… ⨯

1, 6, 11, 16, 17, 22, 27, 32… ✓

Table 4. CAG secure stream extraction patterns.

cag-v2: The result from exclusive or of two CAG streams is secure
stream s. The relevant relations of knowns and unknowns are shown
below. Stream s is known and streams α and β and carry c are
unknown:

row-wise: si  αi ⊕ βi; si+1  αi+1 ⊕ βi+1; …

evolution-wise: cα i
′ ⊕ cβ i

′  si ⊕ si
′.

Both relations are used to attack CAG Section 2.1 [5, 7]. For strength-
ening the two-stream variant, additional streams could be included.
The combination of three CAG streams producing a secure stream
might look like:

si  αi ⊕ βi ⊕ γi. (8)

Secure and Computationally Efficient Cryptographic Primitive Based on CA 465

https://doi.org/10.25088/ComplexSystems.28.4.457

https://doi.org/10.25088/ComplexSystems.28.4.457

cag-v3: The relations with known s only are shown below concern-
ing the CAG attacks [5, 7]:

row-wise: si ⊕ si+4  Ai ⊕Bi ⊕Ai+4 ⊕Bi  Ai ⊕Ai+4

evolution-wise: ci
′  si ⊕ si

′  Ai ⊕Bi ⊕Ai
′ ⊕Bi

′.

Cellular Automaton Generator Advantages 4.

In this section, a few vital CAG features are discussed. One feature
is applicability concerning various hardware platforms. There is also
CAG resistance to the SCA and CAG flexibility to inputs other than
a key.

Cellular Automaton Generator Implementation and

Performance

4.1

Three CAG cipher variants are presented:

◼ cag-v1 from Section 2.1 is the simplest. For producing one byte, a set of
operations from Table 5 is needed plus an overhead of extracting the
byte from the cell A′

 and array navigation. The array containing CAG
cells is only 512 bytes in size and with the mentioned set of operations,
lowers the entry hardware requirements bar significantly. That includes
a wide array of IoT implementations. The cag-v1 performance, the
same efficiency as mag-v1, is very comparable with AES; see Table 6.

CAG Single Cell Update

c′
 c⊕A(i+1), if A(i+2) > A(i+3)

 c⊕A(i+1), otherwise

Ai
′Ai ⊕ c′

c′ c′ + d

Table 5. The operations needed for a one-step cell update.

Crypto Primitive Stream (Cycles per Byte)

RC4 14.52

AES-CTR 18.51

MAG-v1 20.43

Table 6. An extract of eSTREAM software performance table [10].

◼ cag-v2 from Section 2.2 is a little bit more complex. On the other hand,
efficiency is improved. By roughly doubling effort, output increases
four times. That is four bytes per two CA steps compared to one byte

466 R. Vuckovac

Complex Systems, 28 © 2019

per one CA step (Section 2.1). There are other ways to improve perfor-
mance. One way relies on the fact that combining streams could be cre-
ated in parallel. By that technique, performance is four bytes per one
CA step (two steps in parallel). This technique also enables adding
streams if needed without affecting performance. Another efficiency
approach could be increasing the size of the CA cell from 32 to 64 bits,
producing eight bytes per step. For details, see Table 7.

◼ cag-v3 from Section 2.3 is a notch more complex than previous vari-
ants. Developing a mask for each evolution step is the reason. This
approach also improves performance concerning cag-v1. That improve-
ment does not need parallelism. Although cag-v3 is relatively more
complex, it is still significantly simpler than AES from a hardware and
software point of view, delivering better performance. Table 1 shows
mag-v3 (the same as cag-v3) 64-bit implementation versus AES and
other primitives. Table 7 shows performances between various CAG
variants, where one step from Table 5 produces 1 to 8 bytes toward a
secure stream, depending on the variant used.

MAG Variants Performance

cag-v1 1 byte/1 step

cag-v2 2 bytes/1 step

cag-v2 parallel 4 bytes/1 step

cag-v2 parallel 64 bit 8 bytes/1 step

cag-v3 4 bytes/1 step

cag-v3 64 bit 8 bytes/1 step

Table 7. Various performance details.

Side Channel Resistance4.2

When discussing the SCA on AES, the quite often-cited work [18] can-
not be avoided. There is an assertion mentioned in the abstract that
attacks come from an AES design flaw rather than AES implementa-
tion. Furthermore, this report is also a call for research into functions
with constant-time execution. The CAG as CA appears to have the
rule that runs in constant time, but some attention is still needed.
When implementing the CAG in SCA-resistant mode, the algorithm
branching structure should be addressed. There are two issues:

◼ The first one is to compare secret cells in constant time. By comparing
operations, some properties of the CAG cells could be determined. For
example, comparing the equal cells byte by byte will take the longest
time to execute. The solution is to use constant-time comparison func-
tions. Some examples can be found in [19]. Note that the solutions are
not entirely portable; therefore, finished program assemblies for particu-
lar hardware should be checked for correctness in any case.

Secure and Computationally Efficient Cryptographic Primitive Based on CA 467

https://doi.org/10.25088/ComplexSystems.28.4.457

https://doi.org/10.25088/ComplexSystems.28.4.457

◼ The second CAG issue is branched execution times. For example, CAG
timing for each branch differs; consequently, the mask parity of cag-v3
in Section 2 could be easily determined. The solution is equal execution
time for each branch. That is accomplished by introducing two pre-
calculated intermediate variables v and w before branching. The update
of CAG carry with v and w has equal execution of branches:

v  Ai+1 (9)

w  Ai+1
(10)

c′ 
 c⊕ v, if Ai+2 > Ai+3

 c⊕w, otherwise.
(11)

Input Flexibility 4.3

Generally, there is a requirement of an initialization vector (IV) in
symmetrical encryption. For example, AES CBC (AES in cipher block
chaining) needs a unique 128-bit IV for every message processing. If
more than a 128-bit IV is needed for some reason, the key derivation
function (KDF) is required to deliver a properly sized key and IV.

In that respect, the CAG allows an additional 480 bytes for the
nonce, salt, pepper and … if needed. It can be used for resisting vari-
ous repeat attacks, for example. That can be accomplished without
using KDF, as is the case with AES.

Conclusion5.

The cellular automaton generator (CAG) offers an entirely new cryp-
tographic primitive. It has a straightforward and compact implementa-
tion. It also provides side-channel attack (SCA) resistance, which is
very important for hardware that is not physically secured, such as
internet of things (IoT). Variant cag-v1 also benefits from the fact
that its predecessor mag-v1 had relatively in-depth analysis and
remains secure [8].

Appendix

Cellular Automaton Generator Implementation DetailsA.

Implementation is written in C language and source code is in
Listing�1.

468 R. Vuckovac

Complex Systems, 28 © 2019

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>

void stir(uint32_t * array, uint32_t updates, int init)
{

const uint32_t mixer = 1431655765; //010101...
uint32_t carry = 987654321;
int a = 128; //array size
uint32_t i;
for(i = 0; i < updates; i++)
{

if(array[(i+2)%a]>array[(i+3)%a])
carry ^= array[(i+1)%a];

else
carry ^= ~array[(i+1)%a];

array[i%a] ^= carry;
carry += mixer;

if(init == 1)
fwrite(&array[i%a] , sizeof (array[i]) ,1 , stdout);

}
}

int main(int argc, char **argv)
{

uint32_t bytesfour;
uint32_t skip = 512;
uint32_t array[128] = {0};

size_t length = strlen (argv[2]) ;

bytesfour = atoi(argv[1]);
memcpy(array, argv[2], length);

stir(array, skip, 0);
stir(array, bytesfour, 1);

return 0;
}

Listing 1. cag.c.

Let us assume that the above file is compiled to cag. The execution
command might look like:

cag 1024 entropy0 > entropy0.raw

Secure and Computationally Efficient Cryptographic Primitive Based on CA 469

https://doi.org/10.25088/ComplexSystems.28.4.457

https://doi.org/10.25088/ComplexSystems.28.4.457

where the first argument, 1024, represents how many cells are sent to
the standard output (4096 bytes). The second argument is the seed
entropy0 and > entropy0.raw redirects standard output to the file.

Figures A.1 and A.2 show graphical representations of the outputs
when input differs by one bit only. The seeds are strings “entropy0”
and “entropy1,” respectively. Every pixel is one byte shown in 8-bit
grayscale.

Figure A.1. Seed entropy0, (argv[2]).

Figure A.2. Seed entropy1, (argv[2]).

470 R. Vuckovac

Complex Systems, 28 © 2019

Cellular Automaton Generator Statistical Properties B.

Standard Randomness Tests B.1

MAG output streams were tested for patterns in every stage of devel-
opment (several gigabytes of data), and no patterns were found. Sys-
tematic (recorded) pattern testing was performed on 500 megabytes
of output data and no weaknesses were found. All testing details can
be found in [20]. The 50Tests folder includes test data and corre-
sponding test results divided into 50 subfolders (01, 02, 03…). Each
sample from each folder was independently seeded. The 50Tests
folder includes source code, executable and seeds used to produce test
data (RNGSource folder). It also includes randomness test tools (Ent,
Diehard and CRYPT-X’98 in the TestTools folder).

Test suites used for randomness testing of MAG:

◼ Diehard [21]: The Diehard battery of tests includes: birthday spacings,
overlapping permutations, ranks of matrices, count the 1s, parking lot
test, minimum distance test, random spheres test, the squeeze test, over-
lapping sums test, runs test and the craps test. The result of each test is
a p value, which should be between 0 and 1. The testing of MAG
returned a couple of p values close to zero or one with two first decimal
places being 00 or 99, which is expected due to the volume of testing.
Even a failure, p 0 or 1 to six or more places, is within expectation for
50 tests. Please visit [20] for details.

◼ ENT [22]: The ENT results for the same Diehard-tested samples are a
pass (please see https://www.fourmilab.ch/random/README and [20]
for details). Typical ENT tests results for MAG look like:

Entropy  7.999984 bits per byte.

Optimum compression would reduce the size of this 11 466000-byte
file by 0 percent.

Chi square distribution for 11 466000 samples is 256.70, and ran-
domly would exceed this value 50.00 percent of the time.

Arithmetic mean value of data bytes is 127.5070 (127.5  random).

Monte Carlo value for pi is 3.141592883 (error 0.00 percent).

Serial correlation coefficient is -0.000415 (totally uncorrelated  0.0).

◼ CRYPT-X’98 [23]: CRYPT-X’98 tests the same data (as in the Diehard
and ENT cases). The software is developed by QUT Information Secu-
rity Research Centre and Centre in Statistical Science and Industrial
Mathematics. The test used for MAG is the Stream Cipher Test option.
This option has the following tests: frequency, binary derivative,
change point, subblock, runs, sequence complexity and linear complex-
ity. The results are interpreted. For example:

Secure and Computationally Efficient Cryptographic Primitive Based on CA 471

https://doi.org/10.25088/ComplexSystems.28.4.457

https://www.fourmilab.ch/random/README
https://doi.org/10.25088/ComplexSystems.28.4.457

Input file: E:\50Tests \21 \binout.32

Total bits: 91 728000
Number of ones (x): 45 860 357
Expected ones (mean): 45 864000.0
Proportion of ones: 0.5000

Significance probability (p): 0.4468

Interpretation. Frequency test:

-44.68% of bit streams of length 91 728 000 will have a number of
ones further from the mean of 45 864 000.0 for the hypothesized distri-
bution than this sample.

- This sample satisfies the frequency test.

Summary: all 50 samples pass all Stream Cipher CRYPT-X’98 tests.

Nonstandard Randomness Tests B.2

The CAG was examined for the avalanche effect [24] property. It is a
requirement for the block ciphers and hash functions. This property is
akin to the butterfly effect. Flipping one bit of a key or a hash input
should flip at least half of the bits in the resulting ciphertext or hash.
This property is apparent in the CAG; Figure B.1 illustrates that. Pre-
decessor MAG [2] shows similar results when the input seed is varied
by just one bit. The distributions of ones and zeros in the produced
stream are significantly different. The Diehard test [21] shows p val-
ues differences in Figure B.2.

(a) (b)

Figure B.1. Two CAG evolutions where initial state differs by just one bit. The
seeds (strings (a) bits01 and (b) bits02) are the first six top-left pixels (bytes);
the sixth pixel on the right image is just one gray shade darker (not visible)
than the corresponding pixel on the left. The whole initial state is the seed
plus the white region on the top (the top 512 pixels of the image). Even very
low entropy produces a quite complex outcome. It also shows elements of
chaos behavior, where a small initial change produces different outcomes.

472 R. Vuckovac

Complex Systems, 28 © 2019

Figure B.2. The distribution of the 1s (for bit ranges 1–8, 2–9, 3–10, 4–11…)
for streams initialized by 32-bit unsigned integers 1, 2 (0…0001, 0…0010).

References

[1] J. S. Testa, “Investigations of Cellular Automata-Based Stream
Ciphers,” Ph.D. thesis, Computer Science (GCCIS), Rochester Institute
of Technology, Rochester, NY, 2008. scholarworks.rit.edu/theses/129.

[2] R. Vuckovac, “MAG: My Array Generator (A New Strategy for Ran-
dom Number Generation),” Report 2005/014, ECRYPT eStream Pro-
ject, 2005. www.ecrypt.eu.org/stream/ciphers/mag/mag.pdf.

[3] A. Ilachinski, Cellular Automata: A Discrete Universe, River Edge, NJ:
World Scientific, 2001.

[4] L. Simpson and M. Henricksen, “Improved Cryptanalysis of MAG,” in
Australasian Conference on Information Security and Privacy (ACISP
2006), Melbourne, Australia (L. M. Batten and R. Safavi-Naini, eds.),
Berlin, Heidelberg: Springer-Verlag, 2006 pp. 64–75.
doi:10.1007/11780656_6.

[5] S. Kunzli and W. Meier, “Distinguishing Attack on MAG,” Report
2005/053, ECRYPT eStream Cipher Project, 2005.
www.ecrypt.eu.org/stream/papersdir/053.pdf.

[6] E. Dawson and M. Henricksen, “Ensuring Fast Implementations of Sym-
metric Ciphers on the Intel Pentium 4 and Beyond,” in Australasian
Conference on Information Security and Privacy (ACISP 2006), Mel-
bourne, Australia (L. M. Batten and R. Safavi-Naini, eds.), Berlin, Hei-
delberg: Springer-Verlag, 2006. doi:10.1007/11780656_5.

[7] S. Fischer, S. Vaudenay and W. Meier, “Analysis of Lightweight Stream
Ciphers,” Ph.D. thesis, School of Computer and Communication Sci-
ences, EPFL, Lausanne, Sweden, Security and Cryptography Labora-
tory, 2008. doi:10.5075/epfl-thesis-4040.

[8] A. Mirzaei, M. D. Alian and M. M. Hashemi, “Distinguishing Attack
on a Modified Version of MAG Stream Cipher,” in 6th International
ISC Conference on Information Security and Cryptology (ISCISC ’09),
Isfahan University of Technology, Isfahan, Iran, 2009.
hdakhilalian.iut.ac.ir/sites/dakhilalian.iut.ac.ir/files/u32/c26.pdf.

Secure and Computationally Efficient Cryptographic Primitive Based on CA 473

https://doi.org/10.25088/ComplexSystems.28.4.457

https://scholarworks.rit.edu/theses/129
https://www.ecrypt.eu.org/stream/ciphers/mag/mag.pdf
https://doi.org/10.1007/11780656_6
https://www.ecrypt.eu.org/stream/papersdir/053.pdf
https://dx.doi.org/10.1007/11780656_5
https://dx.doi.org/10.5075/epfl-thesis-4040
http://dakhilalian.iut.ac.ir/sites/dakhilalian.iut.ac.ir/files/u32/c26.pdf
https://doi.org/10.25088/ComplexSystems.28.4.457

[9] R. Vuckovac, “MAG Alternating Methods Notes,” Report 2005/068,
2005, ECRYPT eStream Cipher Project, 2005.
www.ecrypt.eu.org/stream/papersdir/068.pdf.

[10] eSTREAM: the ECRYPT Stream Cipher Project, “Latest Performance
Figures (AMD Athlon 64 X2 4200+ 2.20GHz).” (Oct 30, 2019)
www.ecrypt.eu.org/stream/perf/#results.

[11] T. Arcieri. “Cream: The Scary SSL Attack You’ve Probably Never
Heard Of,” Tony Arcieri (blog). (Oct 30, 2019). tonyarcieri.com/cream-
the-scary-ssl-attack-youve-probably-never-heard-of.

[12] A. Heuser, S. Picek, S. Guilley and N. Mentens, “Lightweight Ciphers
and Their Side-Channel Resilience,” IEEE Transactions on Computers,
99, 2017 pp. 1–1. doi:10.1109/TC.2017.2757921.

[13] S. Wolfram, “Computation Theory of Cellular Automata,” Communi-
cations in Mathematical Physics, 96(1), 1984 pp. 15–57.
doi:10.1007/BF01217347.

[14] S. Wolfram, “Cryptography with Cellular Automata,” in Advances in
Cryptology CRYPTO ’85 Proceedings (H. C. Williams, ed.) Berlin, Hei-
delberg: Springer, 1985 pp. 429–432. doi:10.1007/3-540-39799-X_32.

[15] R. Vuckovac, “A New Kind of Complexity,” arxiv.org/abs/1309.0296.

[16] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[17] D. Coppersmith, H. Krawczyk and Y. Mansour, “The Shrinking Genera-
tor,” in Advances in Cryptology CRYPTO ’93 (D. R. Stinson, ed.),
Berlin, Heidelberg: Springer, 1994 pp. 22–39.
doi:10.1007/3-540-48329-2_3.

[18] D. J. Bernstein. “Cache-Timing Attacks on AES.” (Oct 30, 2019)
cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[19] J.-P. Aumasson, A. Perrin, vixentael and MicheleCicciottiWork.
“Cryptocoding.” (Oct 30, 2019) github.com/veorq/cryptocoding.

[20] R. Vuckovac. “RadeVuckovac/MAG-Statistics.” (Oct 30, 2019)
github.com/RadeVuckovac/MAG-Statistics.

[21] G. Marsaglia, “The Marsaglia Random Number CDROM, Including
the Diehard Battery of Tests of Randomness,” Tallahassee, FL: Florida
State University, 1995.

[22] J. Walker, “ENT: A Pseudorandom Number Sequence Test Program.”
(Oct 30, 2019) www.fourmilab.ch/random.

[23] E. Dawson, A. Clark, H. Gustafson and L. May “CRYPT-X ’98, (Java
Version) User Manual,” Queensland University of Technology, 1999.

[24] H. Feistel, “Cryptography and Computer Privacy,” Scientific American,
228(5), 1973 pp. 15–23.
www.apprendre-en-ligne.net/crypto/bibliotheque/feistel.

474 R. Vuckovac

Complex Systems, 28 © 2019

https://www.ecrypt.eu.org/stream/papersdir/068.pdf
http://www.ecrypt.eu.org/stream/perf/#results
https://tonyarcieri.com/cream-the-scary-ssl-attack-youve-probably-never-heard-of
https://tonyarcieri.com/cream-the-scary-ssl-attack-youve-probably-never-heard-of
https://dx.doi.org/10.1109/TC.2017.2757921
https://doi.org/10.1007/BF01217347
https://doi.org/10.1007/3-540-39799-X_32
https://arxiv.org/abs/1309.0296
https://doi.org/10.1007/3-540-48329-2_3
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://github.com/veorq/cryptocoding
https://github.com/RadeVuckovac/MAG-Statistics
http://www.fourmilab.ch/random/
http://www.apprendre-en-ligne.net/crypto/bibliotheque/feistel/

