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The  cellular  automaton  generator  (CAG),  a  random  number  generator
based  on  the  one-dimensional  cellular  automaton  (CA),  is  presented.
Three  procedures  of  secure  implementation  using  the  CAG  are  pro-
posed and discussed. Implementations are very efficient in a wide range
of  hardware  and  software  scenarios.  That  includes  the  advanced
application  of  internet  of  things  (IoT)  and  cyber-physical  systems,
which are both needed for computationally efficient cryptographic prim-
itives.  Furthermore,  the  proposed  primitive  is  inherently  resistant
against  the  side-channel  attack  (SCA),  where  many  currently  available
ciphers,  such  as  the  advanced  encryption  standard  (AES),  require  addi-
tional hardware or software effort to prevent the SCA line of attack. 

Keywords: cellular automata; cryptographic primitive; side-channel 
attack; stream cipher performance  

Introduction1.

Cellular automaton (CA) cryptographic use is limited. One significant
reason  is  performance.  A  survey  of  CA  stream  ciphers  [1]  shows  that
encrypting  one  megabyte  of  data  requires  five  seconds  at  best.  One
exception  is  my  array  generator  (MAG)  [2],  which  is  a  cellular
automaton  generator  (CAG)  predecessor.  It  is  a  one-dimensional  CA.
It  belongs  to  a  class  of  three  complexity  classification  schemes  [3,
p.�12].  That  means  nearly  every  initial  state  evolves  in  a  pseudoran-
dom  or  chaotic  fashion.  There  are  two  major  attributes  that  make
MAG exceptional:

◼ MAG is invariant to the cell size. Both 32-bit and 64-bit cells are investi-
gated,  and  they  show  the  same  behavior.  That  fact  has  a  huge  impact
on performance.

◼ The  MAG  update  rule  is  not  entirely  Boolean,  and  SAT  solvers  tools,
which are generally better than brute force [1], could not be applied. 
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Apart from that, there are many more important reasons for revisit-
ing MAG and for building CAG on MAG foundations: 

◼ MAG  was  the  main  building  block  for  stream  cipher  entry  (eSTREAM
and  ECRYPT  Stream  Cipher  Project  [2]).  That  entry  did  not  progress
to  the  second  round  because  of  the  available  analysis  at  that  time.  On
the  second  round  of  decision  making,  the  analysis  consisted  of  two
attacks  [4,  5].  Other  attacks  [6,  7]  are  variants  of  the  previous  two.
More analyses were published [8] after round two. Those cryptanalyses
contest attacks from [4, 6]. In the same analysis, it was implied that the
second  type  of  attack  [5,  7]  is  avoidable  using  one  minor  alteration
proposed  in  [9].  According  to  published  analysis,  at  least  one  MAG
variant remains secure. 

◼ The  second  reason  for  the  renewed  interest  in  MAG  is  excellent  soft-
ware  performance;  see  testing  published  on  the  eSTREAM  webpage
[10].  For  a  short  set  of  results,  see  Table  1.  It  compares  MAG  with
some well-known stream cipher algorithms.

Primitive Stream (Cycles per Byte) 

MAG-v3 2.20 

TRIVIUM 4.14 

Salsa20 7.64 

RC4 14.52 

AES-CTR 18.51 

Table 1. An extract of eSTREAM software performance table [10].  

◼ Another  reason  is  MAG  compactness.  While  the  advanced  encryption
standard (AES) is widely used in symmetrical encryption, the emergence
of  IoT  (internet  of  things),  with  constrained  computation  power,  limits
AES  usability  in  that  area.  Therefore,  lightweight  symmetrical  encryp-
tion  schemes  are  sought.  The  MAG  hardware  footprint  is  512  bytes  of
memory  for  the  automaton  state,  plus  a  couple  of  variables.  Opera-
tional  cost  is  a  CA  updating  rule  consisting  of  one  conditional  branch-
ing,  a  couple  of  exclusive  or  logical  operations,  one  one’s  complement
and  one  addition  (five  basic  operations).  That  should  match  an  exten-
sive range of IoT hardware with limited capabilities. See Listing A.1 for
details. 

◼ MAG,  like  other  cellular  automata  (CAs),  has  inherent  resistance
to  side-channel  attacks  (SCA),  where  AES  and  many  other  block
ciphers  implementations  in  that  regard  are  relatively  complex  [11].
The  lightweight  cipher  designs  using  S-boxes  are  affected  by  SCA  as
well [12]. 

Please  note  that  the  predecessor  of  our  cryptographic  primitive
CAG,  namely  MAG,  and  its  design  choices  for  various  parameters
were  never  discussed  or  published  before.  Thus,  in  this  paper,  these
issues will be addressed as well. 
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The  rest  of  the  paper  is  organized  as  follows:  Section  2  introduces
one-dimensional  CAs  and  then  defines  the  CAG  proposition.  It  also
shows where the CAG improves over MAG, making the CAG propo-
sition  even  simpler.  Appendix  A  includes  C  language  general  imple-
mentation.  Section  2  shows  three  different  ways  to  implement  the
proposed  CAG  securely.  Section  3  deals  with  an  analysis  of  MAG
known  attacks  and  how  they  might  impact  the  CAG  proposal.  Sec-
tion 4 discusses the CAG and its potential use in a variety of applica-
tions, SCA and input flexibility. 

Cellular Automaton Generator   2.

The  CAG  is  a  one-dimensional  CA.  The  concept  of  the  CA  was  first
discovered  in  the  1940s  by  Ulam  and  von  Neumann.  The  CA  is  used
as a modeling tool in various scientific fields: computer and complex-
ity  science,  mathematics,  physics  and  biology.  Wolfram  was  the  first
to propose the use of the CA (rule 30) [13] in cryptography [14]. 

Figure  1  showing  Wolfram’s  rule  30  is  used  to  explain  the  general
working  of  a  one-dimensional  CA.  This  particular  example  uses  cells
with  two  possible  states  (black  and  white).  The  one-dimensional  CA
initial state is a row. In the example, it is the binary string (row 1): 

0 000000 000000 001000 000000 000000

Row 2 is derived from row 1 and so on, with final row 16: 

1 101111 001101 001011 111001 111111

Rules  to  determine  an  update  of  the  cell  are  shown  as  eight  cases.
Each  case  shows  one  combination  of  three  cells  on  the  top  and  the
derivative cell on the bottom. A new cell looks at the three cells from
the  row  above  (positioned  above  right,  immediately  above  and  above
left). Depending on the configuration, one of the cases is applied. For
example,  a  cell  from  row  2,  column  14  is  derived  by  case  8;  a  cell
from  row  2,  column  15  is  derived  by  case  7;  a  cell  from  row  2,  col-
umn 16 is derived by case 6, and so on. Edge cells do not have above
left or above right cells to choose a case. In that situation, the first or
the last cell from the previous column is used for the ruling. For exam-
ple,  the  left-edge  cell  from  row  16,  column  1  looks  at  cells  from  row
15, columns 31, 1, 2 and uses case 7 to create the cell. The right-edge
cell from row 16, column 31 uses the cells from row 15, columns 30,
31,  1  for  lookup  and  case  4  for  cell  determination.  Derived  rows
(rows 2, 3, …) are outputs of the CA.  

If a random stream of bits is required, column 16 could be used: 

1 101110 011000 101…
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A stream generated in this fashion passes many randomness statistical
tests,  and  it  is  used  as  a  random  number  generator  in  the  Wolfram
Language.  

Figure 1. Rule 30 one-dimensional CA example.  

The  CAG  is  also  a  one-dimensional  CA,  but  it  differs  from  the
example in the following ways:  

◼ Cells are multi-bit words (32 or 64 bits in size). 

◼ The  update  of  CAG  cells  is  serial,  left  to  right,  because  the  rule  needs
the outcome of the previous cell update (carry). 

◼ The CAG rule also appears to be invariant to cell size because it shows
the same random behavior for 32- and 64-bit size cells. 

The CAG CA is governed by the CA rule and the state of neighbor-
ing cells. A row of cells, in a CAG case array of elements, is updated
from  left  to  right.  One  evolution  cycle  is  when  all  elements  in  the
array  are  updated.  The  next  generation  is  another  evolution  cycle,
and  so  on.  The  original  and  modified  parameters  are  shown  in
Table�2. 

MAG CAG 

a  127 a  128 

b  32 b  32 

c calculated c  987 654321 

d  0x11 111111 (HEX) d  010 101… (binary) 

e  1.5a e  4a 

Table 2. MAG/CAG parameters.  
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CAG parameters definitions:  

◼ The number of cells is a  128. That choice forces 2128  possible execu-
tion paths during one evolution cycle and assumes at least 128-bit–level
security if the stream is used as a basis for the cipher. 

◼ The  cell  size  is  b  32  bits.  The  CAG  CA  rule  appears  to  be  invariant
concerning  the  cell  size.  b  64  bits  is  used  and  tested  for  randomness
[15] and there is no change, although the performance doubles because
the same generating cost produces double the stream.

◼ Instead of taking the carry value from the array element in the original
version,  it  is  initialized  as  c  987 654321  (decimal).  The  value  of
987 654321  was  chosen,  and  there  is  no  special  meaning  behind  this
choice.

◼ The  constant  d  is  now  initialized  as  d  01 010101…  (32  bits  binary).
Again  there  is  nothing  special  in  the  constant  value.  In  MAG,  d  was
described  as  an  arbitrary  value  (which  it  is).  Related  to  this,  an  initial-
ization  attack  [4,  6]  where  d  0  was  proposed.  It  eliminates  any
adding procedure, which simplifies the whole process significantly. The
analysis [8] showed that any nonzero value of d is sufficient to prevent
initialization attacks. 

◼ In  a  modified  version,  the  mixing  period  e  is  four  evolutions
e  4 *a  512. It assures proper mixing because the original one and a
half evolutions occasionally produced biases in the first couple of gener-
ated  rows.  The  same  could  be  observed  in  the  rule  30  case  (Figure  1),
where the first several rows still retain some patterns. 

◼ The  seed  f  is  any  binary  string  equal  to  or  smaller  than  a  row  of  cells
fsize ≤ a * b and f  k + s + … , meaning that the key k, the salt s and …

(IV, pepper and so on) are concatenated to form seed f . 

CAG operation is divided into initialization and update. 

CAG  initialization:  Originally,  the  array  of  128  elements,  32  bits
wide is initialized to 0. The seed f  is repeatedly concatenated until the
resulting  concatenation  is  equal  to  or  greater  than  the  array  in  size.
The  MAG  array’s  first  127  elements  are  the  initial  row,  and  remain-
ing  elements  become  the  carry  c.  For  example,  if  the  seed  is  f  seed
and  the  array  is  10  cells  (one  byte  each),  the  resulting  initial  array
will be: 

seedseedse

In  the  CAG  modified  version,  the  seed  f  is  copied  to  the  zero  initial-
ized  array  and  the  carry  is  given  as  an  initial  value  c  987654 321.
The pattern, with f  seed and array of 10 bytes, looks like:  

seed000 000

CAG update: When initialized, the rows are created by updating cells
from left to right. The edge cases (Ai  happens to be on the array end)
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are handled as rule 30 edge-cell cases. The rule elements are shown in
Figure 2. The cell update consists of three steps:  

◼ The first step is to create a new state of carry c′: 

c′ 
 c⊕Ai+1,  if Ai+2 > Ai+3 

c⊕Ai+1, otherwise.
(1)

Carry  c′  is  updated  by  ⊕  (exclusive  or)  with  previous  value  of  c  and
one  state  of  the  first  element  to  the  right  Ai+1,  depending  on  the  rela-

tion between the other two cells on the right (Ai+2, Ai+3). The states of

Ai+1 are current value (Ai+1) or its one complement (Ai+1). In one evolu-

tion  cycle  (whole  array  is  updated),  each  cell  is  changed  once  and  the
carry is calculated for every cell transformation. Note that the first cell
update uses the initial value of carry c  987 654321.  

Figure 2. CAG cell update rule.  

◼ The second step is the actual change of element Ai to Ai
′: 

Ai
′  Ai ⊕ c′. (2)

◼ The third step is updating the current c′  value for the next cell transfor-
mation: 

c′  c′ + d. (3)

Knowledge  of  the  array  state  renders  the  CAG  algorithm  crypto-
graphically unsound. For securing the stream from CAG, three strate-
gies for concealing the CA state are proposed and discussed. 

Reducing Output (cag-v1)    2.1

One  of  the  concealing  methods  was  already  used  by  Wolfram  on
his  CA  rule  30  [16,  Section  10.10].  For  example,  column  16  from
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Figure 1

1 101110 011000 101…

is  transformed  by  taking  bits  1, 3, 5, 7, 9, …  and  producing  a
secure stream  

10101000….

A  similar  approach  was  used  in  the  MAG  eSTREAM  proposal.  A
small  change  in  operation  is  added  to  achieve  a  secure  stream  prop-
erty. Instead of copying every updated cell to the stream, only the first
byte of the cell is added to the secure stream s (now array of bytes).  

For  example,  Figure  3  shows  updated  cells  as  a  stream  of  bytes
where each pixel represents a byte and four bytes are an updated cell.
To  make  a  secure  stream,  every  fifth  byte  (every  fifth  pixel  from  left
to right) is taken and fed to the secure stream. That is bytes: 

1, 5, 9, 13, 17, … .

Consequently  b1b5b9…  bytes  create  a  secure  stream.  This  approach

was found insecure, and details are shown in Section 3.  
Again the small change in pattern avoids weaknesses from the pre-

vious design. If the series of bytes taken is changed to: from first cell,
first  byte;  second  cell,  second  byte;  third  cell,  third  byte;  fourth  cell,
fourth byte; fifth cell, first byte… 

1, 6, 11, 16, 17, 22, 27, 32 ... .

The  stream  of  bytes  b1b6b11b16b17b22b27b32…  from  Figure  3  will

form a secure stream.  

Figure 3. CAG evolution history; one pixel is one byte (256 grayscales).   
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Combining Streams (cag-v2)   2.2

One  way  of  making  a  stream  secure  is  to  combine  two  or  more
streams.  For  example,  linear-feedback  shift  register  (LFSR)  outputs
were combined to make a shrinking generator (planned to be used as
a  stream  cipher  [17]).  The  shrinking  generator  uses  two  streams:  one
is the source, and the other is used to decide which bits of the source
stream are output.  

In the CAG case, the idea is to apply exclusive or between two gen-
erated streams (stream α and β) to produce secure stream s: 

si  αi ⊕ βi. (4)

One implementation attempt at the combined MAG approach was
published  in  [15].  It  includes  source  code.  The  easiest  way  to  imple-
ment  combined  CAG  is  to  initialize  streams  separately.  Table  3
contains  initial  parameters.  The  seed  f  for  each  stream  now  includes
corresponding  IV.  For  example,  the  seed  for  α  is  fα  k + s + IV,

where  k  is  the  key,  s  is  the  salt,  IV  is  the  initialization  vector  from
Table 3, and + is the concatenation of strings. 

CAG Stream Stream IV 

α stream 1234567890/3

β stream 9876543210/3

γ stream ... 

Table 3. Combined stream parameters.  

Stream Masking (cag-v3)   2.3

The idea with masking is to combine (xor) CAG output with a secret
string. The original idea was to use a key as the secret string, but Bern-
stein  and  Lange  noted  that  the  same  attacks  [5,  7]  apply  for  that
proposal  as  well.  Alternatively,  the  secret  could  be  sourced  from  the
execution  path  history.  The  branching  from  the  previous  evolution
can generate string m. In the case of a 128-element array, there is 128
branching in one evolution cycle, making a 128-bit string m. Bits of m
are determined by branching; the if branch will concatenate 0 and the
else  branch  1  to  the  mask  m.  From  m  the  four  32-bit  element  mask
array M is created:

M  [B1; B2; B3; B4]. (5)

The  secure  stream  s  is  now  obtained  by  exclusive  or  result  from
CAG output cells (A) and mask array of four elements (M): 

si  Ai%a ⊕Bi%4. (6)

The new mask M is calculated for every evolution cycle and is used as
a mask for the next cycle.  
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Cellular Automaton Generator Analysis   3.

cag-v1:  The  eSTREAM  proposal  to  strengthen  the  CA  MAG  was  to
output just the first byte from every updated cell. It did not work. The
CA  can  continue  updating  on  just  that  part  of  the  cell  without  infor-
mation from the hidden part:   

◼ Since  the  first  bytes  of  Ai%a  and  Ai%a
′

 are  known,  the  first  byte  of  c′  is

known as well because: 

Ai%a
′  Ai%a ⊕ c′. (7)

◼ Knowing  the  first  byte  of  c,  predicting  the  next  unknown  value  of  the
carry c′  takes guessing the branching outcome. That guess is even easier
because of knowledge of the first byte, which is compared. 

This  kind  of  attack  is  detailed  in  [5,  7].  For  avoiding  this  line  of
attack,  Fare  proposed  two  amendments  in  [9].  The  idea  was  to  alter-
nate extraction points because the original idea did not hide the evolu-
tion  of  the  first-byte  cell.  Table  4  shows  various  extraction  patterns
for  the  proposed  MAG  secure  stream.  The  first  amendment  (second
row,  Table  4)  is  broken  as  well.  The  one  gap  between  exposed  bytes
of the cell did not prevent the same attack, although the guessing cost
was  increased  [8].  The  second  amendment  (third  row,  Table  4)  does
have three gaps between visible bytes and is still resisting analysis. 

Series of Bytes Used in the Stream Status 

1, 5, 9, 13, 17, … ⨯ 

1, 2, 7, 8, 9, 10, 15, 16… ⨯ 

1, 6, 11, 16, 17, 22, 27, 32… ✓

Table 4. CAG secure stream extraction patterns.  

cag-v2: The result from exclusive or of two CAG streams is secure
stream  s.  The  relevant  relations  of  knowns  and  unknowns  are  shown
below.  Stream  s  is  known  and  streams  α  and  β  and  carry  c  are
unknown: 

row-wise: si  αi ⊕ βi; si+1  αi+1 ⊕ βi+1; …

evolution-wise: cα i
′ ⊕ cβ i

′  si ⊕ si
′.

Both relations are used to attack CAG Section 2.1 [5, 7]. For strength-
ening  the  two-stream  variant,  additional  streams  could  be  included.
The  combination  of  three  CAG  streams  producing  a  secure  stream
might look like:  

si  αi ⊕ βi ⊕ γi. (8)
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cag-v3: The relations with known s only are shown below concern-
ing the CAG attacks [5, 7]: 

row-wise: si ⊕ si+4  Ai ⊕Bi ⊕Ai+4 ⊕Bi  Ai ⊕Ai+4

evolution-wise: ci
′  si ⊕ si

′  Ai ⊕Bi ⊕Ai
′ ⊕Bi

′.

Cellular Automaton Generator Advantages    4.

In  this  section,  a  few  vital  CAG  features  are  discussed.  One  feature
is  applicability  concerning  various  hardware  platforms.  There  is  also
CAG  resistance  to  the  SCA  and  CAG  flexibility  to  inputs  other  than
a key.  

Cellular Automaton Generator Implementation and 

Performance  

4.1

Three CAG cipher variants are presented:  

◼ cag-v1 from Section 2.1 is the simplest. For producing one byte, a set of
operations  from  Table  5  is  needed  plus  an  overhead  of  extracting  the
byte  from  the  cell  A′

 and  array  navigation.  The  array  containing  CAG
cells is only 512 bytes in size and with the mentioned set of operations,
lowers the entry hardware requirements bar significantly. That includes
a  wide  array  of  IoT  implementations.  The  cag-v1  performance,  the
same efficiency as mag-v1, is very comparable with AES; see Table 6. 

CAG Single Cell Update

c′
 c⊕A(i+1), if A(i+2) > A(i+3) 

 c⊕A(i+1), otherwise 

Ai
′Ai ⊕ c′

c′ c′ + d

Table 5. The operations needed for a one-step cell update.  

Crypto Primitive Stream (Cycles per Byte) 

RC4 14.52 

AES-CTR 18.51 

MAG-v1 20.43 

Table 6. An extract of eSTREAM software performance table [10].  

◼ cag-v2 from Section 2.2 is a little bit more complex. On the other hand,
efficiency  is  improved.  By  roughly  doubling  effort,  output  increases
four  times.  That  is  four  bytes  per  two  CA  steps  compared  to  one  byte
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per one CA step (Section 2.1). There are other ways to improve perfor-
mance. One way relies on the fact that combining streams could be cre-
ated  in  parallel.  By  that  technique,  performance  is  four  bytes  per  one
CA  step  (two  steps  in  parallel).  This  technique  also  enables  adding
streams  if  needed  without  affecting  performance.  Another  efficiency
approach could be increasing the size of the CA cell from 32 to 64 bits,
producing eight bytes per step. For details, see Table 7. 

◼ cag-v3  from  Section  2.3  is  a  notch  more  complex  than  previous  vari-
ants.  Developing  a  mask  for  each  evolution  step  is  the  reason.  This
approach also improves performance concerning cag-v1. That improve-
ment  does  not  need  parallelism.  Although  cag-v3  is  relatively  more
complex,  it  is  still  significantly  simpler  than  AES  from  a  hardware  and
software  point  of  view,  delivering  better  performance.  Table  1  shows
mag-v3  (the  same  as  cag-v3)  64-bit  implementation  versus  AES  and
other  primitives.  Table  7  shows  performances  between  various  CAG
variants,  where  one  step  from  Table  5  produces  1  to  8  bytes  toward  a
secure stream, depending on the variant used. 

MAG Variants Performance 

cag-v1 1 byte/1 step

cag-v2 2 bytes/1 step

cag-v2 parallel 4 bytes/1 step

cag-v2 parallel 64 bit 8 bytes/1 step

cag-v3 4 bytes/1 step

cag-v3 64 bit 8 bytes/1 step

Table 7. Various performance details.  

Side Channel Resistance4.2

When discussing the SCA on AES, the quite often-cited work [18] can-
not  be  avoided.  There  is  an  assertion  mentioned  in  the  abstract  that
attacks  come  from  an  AES  design  flaw  rather  than  AES  implementa-
tion. Furthermore, this report is also a call for research into functions
with  constant-time  execution.  The  CAG  as  CA  appears  to  have  the
rule  that  runs  in  constant  time,  but  some  attention  is  still  needed.
When  implementing  the  CAG  in  SCA-resistant  mode,  the  algorithm
branching structure should be addressed. There are two issues:  

◼ The  first  one  is  to  compare  secret  cells  in  constant  time.  By  comparing
operations,  some  properties  of  the  CAG  cells  could  be  determined.  For
example,  comparing  the  equal  cells  byte  by  byte  will  take  the  longest
time  to  execute.  The  solution  is  to  use  constant-time  comparison  func-
tions. Some examples can be found in [19]. Note that the solutions are
not entirely portable; therefore, finished program assemblies for particu-
lar hardware should be checked for correctness in any case. 
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◼ The second CAG issue is branched execution times. For example, CAG
timing for each branch differs; consequently, the mask parity of cag-v3
in Section 2 could be easily determined. The solution is equal execution
time  for  each  branch.  That  is  accomplished  by  introducing  two  pre-
calculated intermediate variables v and w before branching. The update
of CAG carry with v and w has equal execution of branches: 

v  Ai+1 (9)

w  Ai+1
(10)

c′ 
 c⊕ v,  if Ai+2 > Ai+3 

 c⊕w, otherwise. 
(11)

Input Flexibility  4.3

Generally,  there  is  a  requirement  of  an  initialization  vector  (IV)  in
symmetrical encryption. For example, AES CBC (AES in cipher block
chaining)  needs  a  unique  128-bit  IV  for  every  message  processing.  If
more than a 128-bit IV is needed for some reason, the key derivation
function (KDF) is required to deliver a properly sized key and IV.  

In  that  respect,  the  CAG  allows  an  additional  480  bytes  for  the
nonce, salt, pepper and … if needed. It can be used for resisting vari-
ous  repeat  attacks,  for  example.  That  can  be  accomplished  without
using KDF, as is the case with AES. 

Conclusion5.

The  cellular  automaton  generator  (CAG)  offers  an  entirely  new  cryp-
tographic primitive. It has a straightforward and compact implementa-
tion.  It  also  provides  side-channel  attack  (SCA)  resistance,  which  is
very  important  for  hardware  that  is  not  physically  secured,  such  as
internet  of  things  (IoT).  Variant  cag-v1  also  benefits  from  the  fact
that  its  predecessor  mag-v1  had  relatively  in-depth  analysis  and
remains secure [8].  

Appendix

Cellular Automaton Generator Implementation DetailsA.

Implementation  is  written  in  C  language  and  source  code  is  in
Listing�1. 
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#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>

void stir(uint32_t * array, uint32_t updates, int init)
{

const uint32_t mixer = 1431655765; //010101...
uint32_t carry = 987654321;
int a = 128; //array size
uint32_t i;
for(i = 0; i < updates; i++)
{

if(array[(i+2)%a]>array[(i+3)%a])
carry ^= array[(i+1)%a];

else
carry ^= ~array[(i+1)%a];

array[i%a] ^= carry;
carry += mixer;

if(init == 1)
fwrite(&array[i%a] , sizeof (array[i]) ,1 , stdout );

}
}

int main(int argc, char **argv)
{

uint32_t bytesfour;
uint32_t skip = 512;
uint32_t array[128] = {0};

size_t length = strlen (argv[2]) ;

bytesfour = atoi(argv[1]);
memcpy(array, argv[2], length);

stir(array, skip, 0);
stir(array, bytesfour, 1);

return 0;
}

Listing 1. cag.c.

Let us assume that the above file is compiled to cag. The execution
command might look like: 

cag 1024 entropy0 > entropy0.raw
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where the first argument, 1024, represents how many cells are sent to
the  standard  output  (4096  bytes).  The  second  argument  is  the  seed
entropy0 and > entropy0.raw redirects standard output to the file.  

Figures A.1 and A.2 show graphical representations of the outputs
when  input  differs  by  one  bit  only.  The  seeds  are  strings  “entropy0”
and  “entropy1,”  respectively.  Every  pixel  is  one  byte  shown  in  8-bit
grayscale. 

Figure A.1. Seed entropy0, (argv[2]).  

Figure A.2. Seed entropy1, (argv[2]).
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Cellular Automaton Generator Statistical Properties   B.

Standard Randomness Tests  B.1

MAG output streams were tested for patterns in every stage of devel-
opment  (several  gigabytes  of  data),  and  no  patterns  were  found.  Sys-
tematic  (recorded)  pattern  testing  was  performed  on  500  megabytes
of  output  data  and  no  weaknesses  were  found.  All  testing  details  can
be  found  in  [20].  The  50Tests  folder  includes  test  data  and  corre-
sponding  test  results  divided  into  50  subfolders  (01,  02,  03…).  Each
sample  from  each  folder  was  independently  seeded.  The  50Tests
folder includes source code, executable and seeds used to produce test
data (RNGSource folder). It also includes randomness test tools (Ent,
Diehard and CRYPT-X’98 in the TestTools folder).  

Test suites used for randomness testing of MAG: 

◼ Diehard  [21]:  The  Diehard  battery  of  tests  includes:  birthday  spacings,
overlapping  permutations,  ranks  of  matrices,  count  the  1s,  parking  lot
test, minimum distance test, random spheres test, the squeeze test, over-
lapping sums test, runs test and the craps test. The result of each test is
a  p  value,  which  should  be  between  0  and  1.  The  testing  of  MAG
returned a couple of p values close to zero or one with two first decimal
places  being  00  or  99,  which  is  expected  due  to  the  volume  of  testing.
Even a failure, p 0 or 1 to six or more places, is within expectation for
50 tests. Please visit [20] for details. 

◼ ENT  [22]:  The  ENT  results  for  the  same  Diehard-tested  samples  are  a
pass  (please  see  https://www.fourmilab.ch/random/README  and  [20]
for details). Typical ENT tests results for MAG look like: 

Entropy  7.999984 bits per byte. 

Optimum  compression  would  reduce  the  size  of  this  11 466000-byte
file by 0 percent. 

Chi  square  distribution  for  11 466000  samples  is  256.70,  and  ran-
domly would exceed this value 50.00 percent of the time. 

Arithmetic mean value of data bytes is 127.5070 (127.5  random). 

Monte Carlo value for pi is 3.141592883 (error 0.00 percent). 

Serial correlation coefficient is -0.000415  (totally uncorrelated  0.0). 

◼ CRYPT-X’98 [23]: CRYPT-X’98 tests the same data (as in the Diehard
and  ENT  cases).  The  software  is  developed  by  QUT  Information  Secu-
rity  Research  Centre  and  Centre  in  Statistical  Science  and  Industrial
Mathematics. The test used for MAG is the Stream Cipher Test option.
This  option  has  the  following  tests:  frequency,  binary  derivative,
change point, subblock, runs, sequence complexity and linear complex-
ity. The results are interpreted. For example: 
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Input file: E:\50Tests \21 \binout.32 

Total bits: 91 728000
Number of ones (x): 45 860 357
Expected ones (mean): 45 864000.0
Proportion of ones: 0.5000

Significance probability (p): 0.4468 

Interpretation. Frequency test: 

-44.68%  of  bit  streams  of  length  91 728 000  will  have  a  number  of
ones further from the mean of 45 864 000.0 for the hypothesized distri-
bution than this sample. 

- This sample satisfies the frequency test. 

Summary: all 50 samples pass all Stream Cipher CRYPT-X’98 tests. 

Nonstandard Randomness Tests  B.2

The CAG was examined for the avalanche effect [24] property. It is a
requirement for the block ciphers and hash functions. This property is
akin  to  the  butterfly  effect.  Flipping  one  bit  of  a  key  or  a  hash  input
should flip at least half of the bits in the resulting ciphertext or hash.
This property is apparent in the CAG; Figure B.1 illustrates that. Pre-
decessor MAG [2] shows similar results when the input seed is varied
by  just  one  bit.  The  distributions  of  ones  and  zeros  in  the  produced
stream  are  significantly  different.  The  Diehard  test  [21]  shows  p  val-
ues differences in Figure B.2.  

(a) (b)

Figure B.1. Two CAG evolutions where initial state differs by just one bit. The
seeds (strings (a) bits01 and (b) bits02) are the first six top-left pixels (bytes);
the  sixth  pixel  on  the  right  image  is  just  one  gray  shade  darker  (not  visible)
than  the  corresponding  pixel  on  the  left.  The  whole  initial  state  is  the  seed
plus the white region on the top (the top 512 pixels of the image). Even very
low  entropy  produces  a  quite  complex  outcome.  It  also  shows  elements  of
chaos behavior, where a small initial change produces different outcomes.
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Figure B.2. The  distribution  of  the  1s  (for  bit  ranges  1–8,  2–9,  3–10,  4–11…)
for streams initialized by 32-bit unsigned integers 1, 2 (0…0001, 0…0010).  
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