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The  problem  of  self-replication  initiated  by  John  von  Neumann  has
been investigated by many researchers from different perspectives. As a
part  of  our  earlier  investigation  into  self-replication  through  graph
reproduction,  we  introduced  a  comprehensive  graph  reproduction  sys-
tem and identified a few graph reproduction models that are self-replica-
ble.  This  paper  addresses  the  question  of  whether  a  combination  of
more  than  one  non-self-replicable  graph  reproduction  model  is  self-
replicable  or  not.  A  few  existing  graph  reproduction  models  were
combined  in  two  different  ways  and  tested  for  self-replicability.  Our
study  confirms  that  non-self-replicable  graph  reproduction  models
become  self-replicable  by  combining  themselves  with  other  reproduc-
tion models. 
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Introduction1.

Self-replication,  which  means  that  a  machine  can  make  a  copy  of
itself,  was  introduced  by  the  eminent  mathematician  and  physicist
John von Neumann [1] in late 1940. Self-replication is a fundamental
property of many natural and artificial forms of life that may be physi-
cal,  chemical  and  biological  systems,  whose  application  in  various
fields  has  attracted  computer  scientists,  mathematicians,  physicists
and chemists to study self-replicating structures or machines.

Self-replicating  machines  have  diverse  applications,  ranging  from
the  fabrication  of  nanomachines  to  space  exploration.  They  could  be
useful in atomic-scale manufacturing, in robust electronic systems and
in  understanding  the  origin  of  life  in  a  better  way.  Further,  the  con-
cept  of  self-replication  is  used  to  model  various  complex  biological
and physical systems such as robotics, to analyze turbulence in fluids,
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to study the formation of snowflakes, and to create an artificial form
of life in a computer. 

Based on the models used to study self-replication, the explorations
carried out so far can be classified into four categories as described by
Sipper  in  [2]:  cellular  automata–based  self-replication,  computer  pro-
gram–based  self-replication,  string-based  self-replication  and  mechan-
ical model–based self-replication. In [3], we take a different approach
that  does  not  come  under  any  of  the  above  four  categories.  We
studied and investigated self-replication through the process of repro-
duction. 

Richard  Southwell  and  Chris  Cannings  generated  different  graph
reproduction  models  [4]  that  produce  different  types  of  graphs  from
the  given  initial  graph.  These  models  are  used  to  describe  the  growth
of interactions between individuals within a population. In their mod-
els  [5,  6],  every  vertex  reproduces  a  new  vertex  that  is  connected  to
the existing vertices based on different constraints, thereby generating
eight different models of graph-generating mechanisms. In their mod-
els, edges get eliminated because of the death of vertices. Their models
do not consider the edges as a valid parameter for reproduction. Since
graphs  are  characterized  by  both  vertices  and  edges,  we  observe  that
any  graph  reproduction  system  (GRS)  should  consider  the  edges  as
well as the vertices of the graph. 

From  the  given  graph,  the  Southwell  model  focuses  on  the  gener-
ation  of  different  graphs  through  the  reproduction  process,  and  self-
replication  of  the  given  graph  is  not  its  concern.  With  an  idea  to
investigate the self-replication of graphs through GRS, we proposed a
comprehensive model for a GRS [3] that is self-replicable. In contrast
to the Southwell model, our model considers vertices as well as edges
as valid parameters for the evolution of graphs. All the models devel-
oped  by  Southwell  [4]  are  just  specific  instances  of  our  model.  Fur-
ther,  we  analyzed  some  of  the  existing  reproduction  models  through
our system and identified the models that are self-replicable. We con-
sidered  self-replication  as  an  algorithmic  process  to  investigate  self-
replicability of graphs. This paper addresses the question of whether a
combination of more than one non-self-replicable graph reproduction
model  is  self-replicable  or  not.  Further,  we  investigate  the  composite
of reproduction systems for self-replicability. 

The  paper  is  organized  as  follows.  Section  2  proposes  a  generic
model  of  GRS  and  discusses  the  graph  self-replication  system  (GSS)
[3].  Section  3  analyzes  some  of  the  existing  reproduction  models  for
self-replicability.  Section  4  proposes  two  different  composite  graph
reproduction  systems  (GRSs)  and  investigates  the  self-replicability  of
the composite model, a combination of more than one of Southwell’s
models.  This  section  proves  that  certain  composite  models  are  self-
replicable  even  though  individual  models  may  not  be  self-replicable.
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Section  5  concludes  with  the  description  of  future  enhancements  for
our model. 

Graph Reproduction System2.

We present a GRS that has the ability to produce copies of the graph
given  as  an  input  to  the  system.  Though  biological  organisms  are  the
most  familiar  examples  of  a  self-replication  system,  this  paper
explores the self-replication system with graphs as the basic unit. This
artificial  GSS  is  motivated  by  the  desire  to  understand  the  funda-
mental  information  processing  principles  and  algorithms  involved  in
self-replication,  independent  of  their  physical  realization.  A  better
theoretical  understanding  of  the  GRS  could  be  useful  in  a  number  of
ways, from a computational as well as an engineering perspective.

As mentioned earlier, the main aim is to study the feasibility of any
graph-generating  system  becoming  a  self-replication  system.  For  this
purpose,  one  should  have  a  generating  mechanism  through  which
graphs get generated from the given graph through some well-defined
process. 

In that sense, we consider a GRS that generates graphs through the
process of evolution/reproduction over discrete time step t. This paper
assumes  asexual  reproduction  with  a  single  parent,  in  the  sense  that
offspring are born with the parent’s strategy (potential) and link up to
the  surroundings  in  a  similar  way  to  their  parent.  This  will  simulate
the  natural  process  of  children  inheriting  the  parent’s  genes  and  get-
ting connected to the environment like their parents. 

In our view, any asexual reproduction system in the social environ-
ment should not omit the following items. 

◼ Offspring  are  born  based  on  the  parent’s  strategy  (potential)  and  get
connected to the environment like their parent. 

◼ Individual  organisms  lose  their  reproductive  potential  over  a  period  of
time due to various reasons. That is, individual organisms may become
infertile. 

◼ Infertile organisms may gain fertility due to some medical treatment. 

◼ Organisms lose their connectivity with other organisms over a period of
time. 

◼ Individual organisms die due to the aging process. 

◼ As  a  social  constraint,  organisms  might  not  produce  more  offspring,
though  they  are  capable.  In  other  words,  there  may  be  a  cap  on  the
number of offspring that can be reproduced by an organism; for exam-
ple, organisms are allowed to reproduce only once during their lifetime. 
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Considering all these items,  we propose a graph-generating mecha-
nism  called  a  graph  reproduction  system  (GRS),  starting  from  an  ini-
tial  graph.  As  made  clear,  our  main  goal  is  to  check  the  potential  of
this  GRS  to  become  a  GSS,  thereby  possessing  the  ability  to  generate
copies of the initial graph. 

Definition 1. A graph reproduction system (GRS),

ρ  RA, RI, CA, LCA, DA,

where RA is the reproduction axiom—the set of rules with which the
vertices of a graph reproduce. 

RI  is  the  reproductive  index—a  positive  integer,  the  maximum
number of offspring that can be produced by an organism throughout
its life. 

CA  is  the  connectivity  axiom—the  set  of  rules  with  which  the  off-
spring  are  connected  to  their  parent  and  the  other  members  of  the
society. 

LCA  is  the  loss  of  connectivity  axiom—the  set  of  rules  by  which
the connectivity between different vertices of the graph is lost. 

DA is the dying axiom—the set of rules by which the vertices die. 

Definition 2. Language  generated  by  a  GRS:  Let  ρ  be  any  GRS.  Let  G

be any graph. ρG is the set of graphs reproduced by G; that is, ρG

 Ui1
∞

 ρiG, where ρiG is the graph produced in the ith generation. 

Note:  The  initial  graph  G  is  not  included  in  ρG,  just  to  observe

whether ρG produces G or not. 

Since  the  vertices  and  edges  are  the  only  two  parameters  of  a
graph,  the  preceding  5-tuple  GRS  represents  a  comprehensive  model
of any GRS, in the sense that the system includes the birth and death
of vertices along with the birth and death of edges. Any graph-generat-
ing  reproducing  mechanism  will  be  a  specific  instance  of  our  GRS.
The  generating  reproducing  system  will  differ  only  in  the  description
of axioms. 

Definition 3. A  GRS  ρ  is  said  to  be  a  graph  self-replication  system
(GSS) of order k if there exists at least one graph G, and a k ≥ 1 such

that  ρkG ⋂ G ≠ Φ.  If  for  any  k,  ρkG  has  disconnected  compo-

nents, the individual components of ρkG will be considered as sepa-

rate graphs for the computation of ρkG ⋂ G. 

Representation of Southwell’s Models through Our Model 3.

Southwell and Cannings explored different graph reproducing models
[4] that produce different types of graphs from the given initial graph.
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In  their  models,  every  vertex  reproduces  a  new  vertex  that  is  con-
nected  to  the  existing  vertices  based  on  different  constraints,  thereby
generating  eight  different  models  of  graph  generating  mechanism.  In
their  models,  edges  get  eliminated  because  of  the  death  of  vertices.
These  models  concentrate  on  the  evolution  of  different  types  of
graphs, and self-replication of the given graph is not the authors’ con-
cern.  The  models  proposed  in  [4]  are  the  specific  instances  of  our
GRS.  The  eight  models  proposed  in  [4]  are  represented  through  our
GRS as 

ρi  RAi, RIi, CAi, LCAi, DAi,

where i  0, 1, 2, 3, 4, 5, 6, 7.

In  all  the  eight  models,  the  axioms  except  the  connectivity  axiom
remain  the  same.  They  differ  only  in  the  connectivity  aspect,  which
means the models can be differentiated with respect to the connectiv-
ity axiom only. 

The components in the given 5-tuple are described as follows:

◼ RAi: All vertices produce an offspring vertex one at a time, ∀ i. 

◼ RIi  1∀ i, which means all the vertices produce only one offspring ver-

tex throughout their lifetime. 

◼ LCAi  Φ (empty set) ∀ i. 

◼ DAi:  Q,  a  positive  integer,  which  means  that  every  vertex  of  degree

greater than Q will die. 
The connectivity axioms are described as follows:

◼ CA0:  No  offspring  are  connected  among  themselves  and  no  offspring

are connected to their parents. 

◼ CA1: Offspring are connected to their parent’s neighbors. 

◼ CA2: Offspring are connected to their parents. 

◼ CA3: Offspring are connected to their parents and their parent’s neigh-

bors. 

◼ CA4:  Offspring  are  connected  to  the  offspring  of  their  parent’s  neigh-

bors. 

◼ CA5: Offspring are connected to their parent’s neighbors and their par-

ent’s neighbor’s offspring. 

◼ CA6: Offspring are connected to their parents and the offspring of their

parent’s neighbors. 

◼ CA7:  Offspring  are  connected  to  their  parents,  their  parent’s  neighbors

and the offspring of their parent’s neighbors. 

The  GRS  ρi  corresponds  to  the  ith  model  (i  0, 1, 2, 3, 4, 5, 6, 7)

described in [4]. 
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Apart from the respective descriptions of CAi, 

ρi  RAi, 1, CAi, Φ, Q

conveys  that  RAi  is  the  same  for  all  models,  RIi  is  1,  LCAi  is  empty,

and DAi  Q. 

Of the eight models, ρ0, ρ4, ρ6  are found to be self-replication sys-

tems, and the models ρ1, ρ2, ρ3, ρ5, ρ7 are not self-replicable [3]. 

Composite Graph Reproduction System 4.

As mentioned earlier, we observe that all the models of Southwell and
Cannings differ only in the connectivity axiom, and all the other com-
ponents of the reproduction models remain the same. We also observe
that  combining  two  or  more  of  the  Southwell  models  results  in
another Southwell model.

For example, consider the path graph with two vertices. 

If  we  perform  ρ2  and  ρ4  (one  after  the  other  without  any  specific

order), we get the following graph. 

The preceding graph is obtained by applying ρ6 to G. 

That  is,  the  effect  of  applying  ρ2  after  ρ4  on  G  (or  ρ4  after  ρ2  on

G)  is  equivalent  to  the  application  of  ρ6  over  G.  We  know  ρ2  is  not

self-replicable  and  ρ4  is  self-replicable.  When  we  combine  ρ2  (a  non-

self-replicable  system)  with  ρ4  (a  self-replicable  system),  we  get  ρ6,

which is a self-replicable system. 
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In  a  similar  way,  ρ3  is  obtained  by  combining  ρ1  and  ρ2;  ρ5  is

obtained  by  combining  ρ1  and  ρ4;  ρ6  is  obtained  by  combining  ρ2
and  ρ4;  ρ7  is  obtained  by  combining  ρ1,  ρ2  and  ρ4.  All  the  other

models such as ρ0, ρ1, ρ2, ρ4  cannot be expressed as the combination

of other�ρi. 

In  other  words,  considering  the  path  graph  G,  a  combination  of  a
non-self-replicable reproduction model with a self-replicable reproduc-
tion  model  gives  rise  to  a  self-replicable  reproduction  model.  Thus,
we get a new insight: a combination of two reproduction models may
become  self-replicable  whether  the  individual  models  are  self-replica-
ble or not. 

This  motivated  us  to  explore  the  combination  of  reproduction
models  (composite  models)  for  self-replicability.  In  this  section,  we
propose two different composite GRSs and investigate the self-replica-
bility of the composite model obtained by the combination of various
of Southwell and Cannings’s models. We define two composite GRSs,
wherein combination of GRSs happens in two different ways. 

We combine two GRSs ρi  and ρj  such that ρi  is applied first and then ρj.

We call this a “system composite of ρi and ρj,” written as ρi ⊕ ρj. 

1.

We combine two GRSs ρi  and ρj  such that components of ρi  and ρj  are

combined and applied as a single GRS. We call this a “component com-
posite of ρi and ρj,” written as ρi ⊗ ρj. 

2.

System-Composite Graph Reproduction System4.1

Definition 4. Let 

ρi  RAi, 1, CAi, LCAi, DAi

and

ρj  RAj, 1, CAj, LCAj, DAj

be any two GRSs. We define the system composite of ρi  and ρj  as the

GRS  where  ρi  is  applied  first  and  then  ρj  (or  ρj  is  applied  first  and

then ρi). 

The  system  composite  of  ρi  and  ρj,  denoted  as  ρi ⊕ ρj  (or  ρi⊕ j),  is

defined as: 

ρi ⊕ ρj 

RAi ⋁RAj, RIi ⋁RIj, CAi ⋁CAj, LCAi ⋁ LCAj, DAi ⋁DAj,

where each component is interpreted as follows. 

◼ RAi ⋁ RAj: RAi or RAj 
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◼ RIi ⋁ RIj: RIi or RIj 

◼ CAi ⋁ CAj: CAi or CAj 

◼ LCAi ⋁ LCAj: LCAi or LCAj 

◼ DAi ⋁DAj: DAi or DAj 

Here  we  have  used  the  notation  “⋁”,  just  to  represent  “OR”  in
logic theory. 

Definition 5. Let ρi ⊕ ρj  be  any  system-composite  GRS. ρi ⊕ ρjG  is

the set of graphs reproduced by G, called a language generated by the

GRS, that is, ρi ⊕ ρjG  ⋃k1
∞ ρi⊕ j

k G, where ρi⊕ j
k

 is defined as the

Cartesian product of ρi
1, ρj

1 with itself k times. 

That is, ρi⊕ j
k  ρi

1, ρj
1⨯ρi

1, ρj
1⨯… k times: 

ρi⊕ j
1 G  ρi

1, ρj
1G  ρi

1G, ρj
1G

ρi
1G  means  that  ρi  is  applied  to  G  only  once  and  the  offspring  get

connected as per CAi. We put the superscript 1 in ρi
1, to indicate that

ρi is applied to G only once.

In  other  words,  the  language  generated  by  the  system-composite

GRS ρi⊕ jG is obtained as follows. 

In  the  first  iteration,  we  apply  ρi  and  ρj  over  G  only  once  and  obtain

ρi
1G and ρj

1G. 

1.

In  the  second  generation,  we  apply  ρi  and  ρj  once,  to  all  the  graphs

obtained  in  the  first  iteration.  That  is,  we  obtain  ρi
1ρi

1G,  ρj
1ρi

1G,

ρi
1ρj

1G, ρj
1ρj

1G. 

2.

In the third iteration, we apply ρi and ρj once, to all the graphs obtained

in the second iteration. Similarly we obtain the other iterations. 

3.

Thus, 

ρi⊕ j
1 G  ρi

1G, ρj
1G

ρi⊕ j
2 G  ρi

1ρi
1G, ρj

1ρi
1G, ρi

1ρj
1G, ρj

1ρj
1G

ρi⊕ j
3 G  ρi

1ρi
1ρi

1G, ρi
1ρi

1ρj
1G, ρi

1ρj
1ρi

1G, ρi
1ρj

1ρj
1G,

ρj
1ρi

1ρi
1G, ρj

1ρi
1ρj

1G, ρj
1ρj

1ρi
1G, ρj

1ρj
1ρj

1G
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Here is the tree diagram for the language generation of ρi⊕ j: 

We  illustrate  the  system-composite  GRS  with  the  reproduction
models of Southwell. 

Illustration for the System-Composite Graph Reproduction 

System ρ2⊕ρ4

4.1.1

Let G be a path graph with two vertices. 

In  generation  1,  we  obtain  ρ2
1G, ρ4

1G.  ρ2
1G  means  that  ρ2  is

applied to G only once, the offspring are born, and offspring get con-

nected to the other vertices based on CA2. Similarly ρ4
1G is obtained

by using CA4. 

In generation 2, we obtain 

ρ2
1ρ2

1G, ρ4
1ρ2

1G, ρ2
1ρ4

1G, ρ4
1ρ4

1G.

These can be clearly observed from the following figure:
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Note: ρi ⊕ ρi is just ρi itself. 

Lemma 1. The system-composite operation is not associative but com-
mutative. 

Proof.  Since,  ρi⊕ j
k  ρi

1, ρj
1⨯ρi

1, ρj
1⨯… k  times,  we  conclude  that

the system-composite operation is commutative. 
The system-composite operation is not associative. That is, for i, j,

k  ρi ⊕ ρj ⊕ ρk ≠ ρi ⊕ ρj ⊕ ρk,  as  a  Cartesian  product  is  not  associa-

tive. □ 

Now  we  apply  the  system-composite  operation  on  Southwell’s
model to test whether the ⊕ operation induces self-replicability. 

Self-Replicability of the System-Composite Graph Reproduction 

System
4.1.2

Definition 6. A  system-composite  GRS  ρi ⊕ ρj  is  self-replicable  if  there

exists  at  least  one  graph  G  and  a  k ≥ 1  such  that

ρi ⊕ ρj
k
G ⋂ G ≠ ϕ. 

If for any k, ρi ⊕ ρj
k
G has disconnected components, the individ-

ual  components  of  ρi ⊕ ρj
k
G  will  be  considered  as  separate  graphs

for the computation of ρi ⊕ ρj
k
G ⋂ G. 

Theorem 1. ρi ⊕ ρj,  for  i ≠ j,  is  a  graph  self-replication  system  (GSS),

whenever either ρi or ρj is a GSS. 

Proof.  Hypothesis:  Without  loss  of  generality,  assume  ρi  is  a  GSS.

Claim: ρi ⊕ ρj, for i ≠ j, is a GSS. 

Consider any graph G. Graphs that get generated in the first itera-
tion of ρi ⊕ ρj are

ρi ⊕ ρj
1
G  ρi

1G, ρj
1G.

Graphs that get generated in the first iteration of ρi are

ρi
1G  ρi

1G.

Graphs that get generated in the second iteration of ρi ⊕ ρj are

ρi ⊕ ρj
2
G  ρi

1ρi
1G, ρj

1ρi
1G, ρi

1ρj
1G, ρj

1ρj
1G.

Graphs that get generated in the second iteration of ρi are 

ρi
2G  ρi

1ρi
1G, ρj

1ρi
1G, ρi

1ρj
1G, ρj

1ρj
1G.

Thus, we observe that all the graphs that get generated in the kth itera-

tion of ρiG are present in the kth iteration of ρi ⊕ ρjG. 
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Thus, ρi
kG ⊆ ρi ⊕ ρj

k
G for all k. 

⇒ ρiG ⊆ ρi ⊕ ρjG.

By  hypothesis,  ρi  is  self-replicable.  Hence  ρi ⊕ ρj  is  self-replicable  to

complete the proof. □ 

Theorem 2. Let  ρi  and  ρj  be  any  two  non-self-replication  systems.

Then ρi ⊕ ρj for i ≠ j is a GSS except when i  1, j  5. 

Proof. We know that ρi for i  1, 2, 3, 5, 7 are not self-replicable. Let

i, j ∈ 1, 2, 3, 5, 7. 

Part I : Without loss of generality, we prove that ρi ⊕ ρj is self-repli-

cable for any two specific values of i and j except when i  1, j  5. 
Let  i  2,  j  5.  Consider  the  path  graph  G  with  two  vertices.  In

generation 1, we obtain ρ2G, ρ5G. 

Since  all  vertices  in  ρ2G,  ρ5G  are  of  degree  2,  by  the  dying

axiom  no  vertices  will  die  for  any  Q > 1.  Now  in  generation  2  we
obtain

ρ2ρ2G, ρ5ρ2G, ρ2ρ5G, ρ5ρ5G.

Consider  ρ2  ρ5G,  which  is  obtained  by  applying  ρ2  to  ρ5G

obtained in generation 1. 

In  ρ2  ρ5G,  there  are  two  vertices  of  degree  3.  By  the  dying

axiom, for Q ≥ 2 those two vertices of degree 3 will die and the edges
incident  to  those  vertices  will  be  removed.  So  we  obtain  a  graph  as
shown following, that is, a path graph with two vertices and two iso-
lated vertices. 
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Hence  as  G ∈ [ρ2⊕5]
2G,  ρ2 ⊕ ρ5  is  a  GSS  though  ρ2,  ρ5  are  not

self-replicative. 
Analogously,  we  can  prove  ρi ⊕ ρj,  i ≠ j  are  GSSs  for  any  i,

j ∈ 1, 2, 3, 5, 7 except when i  1, j  5. 

Part  II:  We  prove  that  ρ1 ⊕ ρ5  is  not  a  GSS.  Let  G  be  any  graph.

Graphs that get generated in the first iteration are 

[ρ1 ⊕ ρ5]
1G  ρ1G, ρ5G.

Since ρ1, ρ5  are not GSSs, G will not be in the language generated by

ρ1G, ρ5G.

Graphs that get generated in the second iteration are 

[ρ1 ⊕ ρ5]
2G  ρ1ρ1G, ρ5ρ1G, ρ1ρ5G, ρ5ρ5G.

Since ρ1, ρ5  are not GSSs, G will not be in the language generated

by ρ1ρ1G, ρ5ρ5G. 

Now,  we  check  whether  G  belongs  to  the  language  generated  by

ρ5ρ1G, ρ1ρ5G. 

Consider ρ5ρ1G. 

Assume,  without  loss  of  generality,  G  has  a  vertex  v  of  degree

k ≥ 1. In ρ1G, this vertex v produces an offspring vertex, say v1, and

using  the  CA1  axiom,  v1  is  connected  to  neighbors  of  v,  as  offspring

vertices are connected to parent neighbors in the CA1 axiom. 

So,  applying  ρ1  to  G,  the  degree  of  vertex  v  will  become  2k,  and

the degree of vertex v1 will become�k. 

In ρ5G, using the  CA5  axiom, offspring vertices  are connected to

the parent’s neighbors and the parent’s neighbor’s offspring. 

Now, applying ρ5  to ρ1G, the degree of vertex v will become 3k,

the degree of v1  will become 2k, and the degree of v11  (offspring ver-

tex  of  v1)  will  also  become  2k.  So,  we  have  three  vertices  v,  v1,  v11

with  degrees  3k,  2k,  2k,  respectively.  For  applying  the  dying  axiom,
we have to choose a value for Q. 

Case 1: Q  k. The vertices of degree Q > k will die. So, the vertex
v will die, since the degree of v is greater than k, and edges incident to

v  will  be  removed.  Now,  the  graph  G  will  have  isolated  vertices,  as

v1, v11 are connected to v. 
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Note:  If  we  choose  Q  as  any  value  less  than  k,  G  will  still  have
only isolated vertices. 

Case 2: Q  2k. The vertices of degree Q > 2k will die. So the ver-
tex  v  will  die,  since  the  degree  of  v  is > 2k,  and  edges  incident  to  v

will  be  removed.  Now  the  graph  G  will  have  isolated  vertices,  as  v1,

v11 are connected to v. 
Note:  If  we  choose  Q  as  any  value  between  k  and  2k,  G  will  still

have only isolated vertices. 
Case 3: Q ≥ 3k: The vertices of degree Q > 3k will die. So the ver-

tex v of degree 3k will remain, and in this generation this graph does
not contain any vertex of degree k. 

Now  we  observe  the  following:  there  are  only  two  possibilities  for
a vertex v of degree k in a graph G. 

The  degree  of  the  vertex  becomes  zero  if  the  value  of  Q > k,  when  the
dying  axiom  is  applied.  This  vertex  will  have  degree  0  in  all  the  subse-
quent generations due to the CA axioms of ρ1 and ρ5. 

1.

If the value of Q is chosen such that the vertex v will not die, then the
degree of vertex v increases to 6k, 9k, …. 

2.

That  is,  a  vertex  v  (of  the  graph  G)  with  degree  k  in  generation  0
will not have degree k in any of the subsequent generations. 

The phenomenon can be observed for one vertex v of G. Extending
this  phenomenon  to  all  vertices  of  G,  we  conclude  that  the  original
graph G cannot be obtained in any of the subsequent generations.

Hence  G ∉ [ρ1 ⊕ ρ5]
kG,  for  k ≥ 1.  That  is,  G  does  not  belong  to

the language generated by ρ1 ⊕ ρ5. Thus, ρ1 ⊕ ρ5 is not a GSS. □ 

We  summarize  the  self-replicability  of  the  system  composite  of
reproduction models of Southwell in the following table. 

Component-Composite Graph Reproduction System4.2

Definition 7. Let 

ρi  RAi, RIi, CAi, LCAi, DAi
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and 

ρj  RAj, RIj, CAj, LCAj, DAj

be any two GRSs. 

We  define  the  component-composite  GRS  of  ρi  and  ρj  as  the  GRS

whose components are the combination of the respective components
of ρi and ρj. The component composite of ρi and ρj, denoted as ρi ⊗ ρj

(also written as ρi⊗j), is defined as:

ρi ⊗ ρj  RAi ⋀RAj, minRIi, RIj,

CAi ⋀CAj, LCAi ⋀ LCAj, maxDAi, DAj,

where:

◼ RAi ⋀ RAj: RAi and RAj

◼ minRIi, RIj:  indicates  the  reproduction  index  that  is  acceptable  to

both ρi and ρj

◼ CAi ⋀ CAj: CAi and CAj

◼ LCAi ⋀ LCAj: LCAi and LCAj

◼ maxDAi, DAj:  indicates  the  dying  axiom  that  is  acceptable  to  both  ρi

and ρj

Here we have used the notation “⋀”, just to represent “And” in logic
theory. 

In the component composite of ρi  and ρj, respective components of

ρi  and  ρj  get  combined.  The  connectivity  axiom  of  ρi ⊗ ρj  will  be  a

combination of both CAi  and CAj. If CAi: Offspring are connected to

the  parent’s  neighbors  and  CAj:  Offspring  are  connected  to  the  par-

ents, CAi ⋀CAj  means that the offspring are connected to the parents

and  the  parent’s  neighbors.  If  for  example,  RAi  is  2  (say),  RAj  is  1

(say),  then  the  reproduction  index  of  ρi ⊗ ρj  is  taken  as  the

minRIi, RIj just to have the reproduction index that is acceptable to

both  ρi  and  ρj.  Similarly,  the  dying  axiom  of  ρi ⊗ ρj  is  taken  as  the

maxDAi, DAj.  All  the  vertices  with  degree  greater  than  or  equal  to

DAi will die in ρi and all the vertices with degree greater than or equal

to DAj  will die in ρj. maxDAi, DAj is the dying axiom index accept-

able to both ρi and ρj. 

Language generated by the GRS ρi ⊗ ρj 

ρi ⊗ ρjG  
k1

∞
ρi ⊗ ρj

k
G,

where ρi ⊗ ρj
k
 is the graph produced in the kth generation.
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Note: ρi ⊗ ρi  ρi itself. 

In  the  component-composite  GRS,  the  composition  (or  combina-
tion)  occurs  at  the  component  level  whereas  in  the  system-composite
GRS,  the  composition  (or  combination)  occurs  at  the  system  level.
Only for this reason, we apply the system ρi first and then apply ρj (or

ρj first and then ρi) in the computation of ρi ⊕ ρj. 

Illustration for the Component-Composite Graph Reproduction 

System ρ2⊗ρ4

4.2.1

In generation 1, we obtain (ρ2 ⊗ ρ4)
1G. The connectivity axiom of

ρ2 ⊗ ρ4  will  be  a  combination  of  both  CA2  and  CA4,  which  is  CA6.

ρ2  is  applied  to  G  once,  the  offspring  are  born,  and  the  offspring  get

connected to the other vertices based on CA2. Now apply ρ4  to ρ2G

component-wise  by  using  CA4.  Then  we  get  a  graph  obtained  by

applying CA6. This can be clearly observed from the following figure.

Now  we  apply  the  component-composite  operation  on  the  South-
well model to test whether the ⊗ operation induces self-replicability. 

Self-Replicability of Component-Composite Graph Reproduction 

System
4.2.2

As observed already, all Southwell models differ only in the connectiv-
ity  axiom,  and  all  the  other  components  of  the  reproduction  models
remain the same.

As mentioned already, 

CA1 ⋀CA2  CA3, CA2 ⋀CA4  CA6, CA1 ⋀CA5  CA6.

ρ2 ⊗ ρ4  RA, 1, CA2CA4, Φ, Q  RA, 1, CA6, Φ, Q.

That is, ρ2 ρ4  ρ6. 
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Based on this, we construct the composition table for the operation
“⋀” among the CAi as follows. 

Theorem 3. Here  is  the  composition  table  for  the  operation  ⊗  among
the eight Southwell GRSs’ ρi, i  0, 1, 2, 3, 4, 5, 6, 7.

Proof. The proof of the theorem is obvious. □ 

From the composition table given in Theorem 3, we observe that

◼ ρi ⊗ ρj, for i  0, j  2, 3, 4, 6 is self-replicable. 

◼ ρi ⊗ ρj, for i  1, j  2, 3 is self-replicable. 

◼ ρi ⊗ ρj, for i  2, j  3, 4 is self-replicable. 

◼ ρi ⊗ ρj, for i  4, j  6 is self-replicable. 

The other combinations are not self-replicable. 

Conclusion 5.

In this paper, we have investigated the self-replicability of the compos-
ite graph reproduction system (GRS) viz., system-composite GRS and
the component-composite GRS. We introduced two types of compos-
ite  graph  reproduction  systems  (GRSs).  A  study  may  be  initiated  to
explore  the  possibility  of  other  types  of  composite  GRSs  that  may  be
self-replicable.
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Our study has revealed that the composite GRS may be self-replica-
tive  even  though  the  individual  GRSs  are  not  self-replicative.  Though
this  paper  focused  only  on  Southwell’s  GRSs  [4–6],  this  study  can  be
extended  to  any  type  of  GRS.  An  intensive  generalized  study  of  the
composite GRS may lead to a characterization of a GRS for self-repli-
cability. 

We can attempt an algorithm to identify whether the given GRS is
a  composite  GRS,  obtained  by  the  combination  of  more  than  one
GRS, and to compute the individual GRS if it is a composite GRS. 
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