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We propose a max-plus equation that includes Conway’s Game of Life
(GoL)  as  a  special  case.  There  are  some  special  solutions  to  the  equa-
tion that include and unify solutions to GoL. Moreover, the multivalue
extension of GoL is derived from the equation, and the behavior of solu-
tions is discussed. 
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Introduction1.

Conway’s  Game  of  Life  (GoL)  is  a  binary  cellular  automaton  (CA)
and  expresses  a  kind  of  population  ecology  [1,  2].  It  is  an  evolution
game using a two-dimensional orthogonal grid of cells where each cell
has  one  of  two  states,  alive  or  dead.  The  evolution  rule  for  the  dis-
crete generation is defined as follows.

Birth:  If  there  are  just  three  live  cells  in  the  Moore  neighborhood  of  a
dead cell, the dead cell changes to a live cell at the next generation. 

1.

Survival: If there are two or three live cells in the Moore neighborhood
of a live cell, it is alive at the next generation. 

2.

Death: Otherwise, the cell is dead at the next generation. 3.

Let us assume values of two states, 1 for alive and 0 for dead. If uij
n

denotes the value at the (i, j) cell of the generation n, the above evolu-
tion rule can be transcribed into the evolution equation, 

uij
n+1 

 1  uij
n, sij

n  0, 3, 1, 2 or 1, 3 

 0  otherwise,
(1)

where

sij
n  ui-1j-1

n + uij-1
n + ui+1j-1

n + ui-1j
n + ui+1j

n + ui-1j+1
n + uij+1

n + ui+1j+1
n .
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Specific  solutions  to  GoL  have  been  extensively  searched  and  listed.
There  are  various  types  of  evolution  of  solutions  and  they  are  analo-
gous to activities of life.

In  this  paper,  we  propose  an  extended  model  of  GoL  using  the
max-plus  operation.  The  max-plus  operation  is  based  on  max-plus
algebra,  which  is  a  commutative  semiring  defined  by  addition  “max”
and  multiplication  “+”  [3].  It  is  used  for  the  description  of  discrete
event systems and utilized to analyze the dynamics with max-plus lin-
ear system theory based on the Perron–Frobenius theory [4]. It is also
obtained  by  ultradiscretizing  the  difference  equations  through  the
limiting procedure, 

lim
ε→+0

ε logeA/ε + eB/ε  maxA, B. (2)

Tokihiro  et.  al.  found  that  the  binary  CA  called  a  “box  and  ball
system”  is  obtained  by  ultradiscretizing  the  discrete  soliton  equation
through the above limit and showed that the solutions to the box and
ball  system  giving  soliton  interactions  among  groups  of  balls  can  be
derived  by  the  same  limit  of  multi-soliton  solutions  to  the  discrete
equation [5, 6].

In  the  above  context,  we  can  consider  that  max-plus  expression
proposes a novel viewpoint and mathematical tools to pure digital sys-
tems  like  CA.  We  propose  a  max-plus  equation  with  a  continuous
dependent variable in which GoL is embedded as a special case. There
exist real-valued exact solutions to the equation and they include and
unify solutions to GoL. Contents of this paper are as follows. In Sec-
tion 2, the max-plus equation extended from GoL is proposed. In Sec-
tion  3,  special  solutions  to  the  max-plus  equation  and  their  relations
to solutions to GoL are shown. In Section 4, we show the multivalue
CA obtained from the max-plus equation and discuss the behavior of
solutions. In Section 5, we give concluding remarks. 

Definition of MaxLife2.

Let us consider the following evolution equation using operators max,
+ and - :

uij
n+1  Fuij

n, sij
n, (3)

where i and j are integer space coordinates, n is integer time, sij
n
 is the

sum of eight u’s in the Moore neighborhood,

sij
n  ui-1j-1

n + uij-1
n + ui+1j-1

n + ui-1j
n + ui+1j

n + ui-1j+1
n + uij+1

n + ui+1j+1
n ,
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and F(u, s) is defined by

F(u, s)max0, u + s - 2 -max0, u + s - 3

-max0, s - 3 +max0, s - 4.

If  0 ≤ u ≤ 1,  we  can  easily  show  0 ≤ F(u, s) ≤ 1.  Figure  1  shows  the

graphs of F0, s, F0.5, s and F1, s.

Consider  the  initial  value  problem  for  equation  (3)  and  assume

n  0  is  an  initial  time.  If  we  set  the  initial  data  uij
0

 to  satisfy

0 ≤ uij
0 ≤ 1  for  any  i  and  j,  then  any  uij

n
 (n > 0)  also  since

0 ≤ F(u, s) ≤ 1. Moreover, if we assume uij
n
 at a certain n for any i and

j takes either of the values 0 or 1, sij
n
 is one of the nine integer values

from  0  to  8.  Then  the  value  of  the  right-hand  side  of  equation  (3)  is

also 0 or 1 considering the graphs of F0, s and F1, s. Therefore, the

value  of  solution  uij
n

 to  equation  (3)  can  be  closed  in  the  binary  set

0, 1 if the initial data uij
0
 is. Then the evolution equation (3) becomes

equivalent  to  equation  (1)  considering  the  profiles  of  F0, s  and

F1, s.  Thus  equation  (3)  includes  the  rule  of  GoL  as  a  special  case.

We  call  the  evolution  system  defined  by  equation  (2)  “MaxLife”  in
this  meaning  and  discuss  the  behavior  of  its  real-valued  solutions

closed  in  the  range  of  0, 1,  relating  them  to  binary  solutions  closed

in the range of 0, 1, which are also solutions to GoL. 

Figure 1. Graphs of F(u, s).
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Special Solutions to MaxLife3.

In  this  section,  we  show  the  special  solutions  to  MaxLife.  Since  it  is
difficult  to  solve  equation  (3)  in  a  systematic  way,  we  assume  dimen-
sions,  symmetry  and  period  of  solutions  within  the  background
u  0.  The  solutions  shown  in  this  section  are  confined  at  most  to  a
4⨯4  region  and  are  static,  periodic  or  moving  stably.  They  reduce  to
binary  solutions  to  GoL  in  a  special  case  and  most  solutions  unify
two or more solutions to GoL.

Static Solution Confined in a 2⨯2 Region (Block)3.1

The first example is a static solution confined in a 2⨯2 region,

…000000…

…00cd00…

…00ab00…

…000000…

,

where a, b, c and d are all real constants from 0 to 1. The region out-
side the one shown is u  0. Substituting the static 2⨯2 solution into
equation (3), we obtain

amax0, a + b + c + d - 2 -max0, a + b + c + d - 3

-max0, b + c + d - 3 +max0, b + c + d - 4.

Since a, b, c, d ∈ 0, 1, the equation reduces to

a  max0, a + b + c + d - 2 -max0, a + b + c + d - 3.

The  right-hand  side  is  symmetric  about  constants  and  the  following
condition is obtained considering other equations:

a  b  c  d, a  max0, 4a - 2 -max0, 4a - 3.

Solving this condition, we have

a  b  c  d  0 or
2

3
or 1.

These  values  give  a  trivial  solution  (a  0),  a  noninteger  solution

(a  2  3) and a binary solution to GoL called a “block” (a  1).

Blinker Type of Solution3.2

Solutions  from  this  subsection  are  shown  schematically  as  figures
without  proof.  The  four  colored  cells  shown  in  Figure  2  are  used  to
denote  the  values  of  u  where  a  is  any  constant  from  0  to  1.  The
“blinker” type of solution is shown in Figure 3. This solution is peri-
odic  with  period  2.  The  double  arrow  “↔”  means  that  at  the  next
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time step a left state will change to right or a right state will change to
left.  Since  the  blinker  of  GoL  is  obtained  in  the  case  of  a  0  and  1,
the  solution  in  Figure  3  includes  two  configurations  of  blinkers
rotated 90 degrees to each other as shown in Figure�4. 

Figure 2. Four colored cells denoting the values of u.  

Figure 3. Blinker type of solution.  

Figure 4. Blinker of GoL.  

Clock Type of Solution3.3

The examples shown in Figure 5 are five types of solutions giving the
“clock”  and  another  of  GoL  in  a  special  case.  All  solutions  give  a
clock  for  a  0.  For  a  1,  a  static  solution  of  GoL  or  another  clock
rotated  by  90  degrees  is  given.  The  solutions  of  GoL  described  here
are  shown  in  Figure  6.  Note  that  the  clock  is  periodic  with  period  2
and the other solutions are all static.
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Figure 5. Solutions to equation (3) with period 2 giving a clock for a  0. For
a  1, they give (a)–(d) a static solution or (e) a clock rotated by 90 degrees.

Figure 6. Solutions to GoL included in Figure 5.

Toad Type of Solution3.4

The  next  group  of  solutions  include  a  “toad”  of  GoL  for  a  0.  Fig-
ure 7 shows the solutions and Figure 8 shows a toad of Gol.
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Figure 7. Solutions to equation (3) with period 2 giving a toad for a  0. For
a  1,  they  give  (a)–(g)  a  static  solution,  (h)–(i)  a  clock,  and  (j)–(n)  another
configuration of a toad.
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Figure 8. Toad of GoL.  

Glider Type of Solution3.5

There  are  solutions  giving  a  moving  pattern  of  GoL.  One  of  the  sim-
plest  solutions  is  called  a  “glider,”  shown  in  Figure  9.  Figure  10
shows the real-valued solution and it coincides with that of Figure 9 if
a  1 and gives another glider of a different time phase if a  0.

Figure 9. Glider of GoL.  

Figure 10. Solution to equation (3) giving a glider with a different time phase
for a  0 and 1.

More General Solution3.6

There are other variations of solutions obtained by rotating or reflect-
ing  those  described  in  Sections  3.3  and  3.4.  We  can  derive  a  general
solution unifying all such solutions. Assume a periodic and symmetric
solution  with  period  2  and  with  a  point  symmetry  confined  in  a  4⨯4
region as shown here:
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0 0 0 0 0 0

0 0 u20
0 u10

0 0 0

0 u31
0 u21

0 u11
0 u01

0 0

0 u01
0 u11

0 u21
0 u31

0 0

0 0 u10
0 u20

0 0 0

0 0 0 0 0 0

↔

0 0 0 0 0 0

0 0 u20
1 u10

1 0 0

0 u31
1 u21

1 u11
1 u01

1 0

0 u01
1 u11

1 u21
1 u31

1 0

0 0 u10
1 u20

1 0 0

0 0 0 0 0 0

Since  periodicity  and  point  symmetry  are  assumed,  only  the  boxed
variables need to be determined. Then the general solution is given by
20 parameters ai (1 ≤ i ≤ 20) as follows: 

u11
0  a1 +a3 +a5 +a8 +a9 +a12 +a17 +a18 +a19 +a20,

u21
0  a1 +a4 +a6 +a7 +a10 +a11 +a17 +a18 +a19 +a20,

u01
0  a2 +a4 +a7 +a8 +a10 +a12 +a13 +a15 +a16 +a20,

u10
0  a2 +a4 +a5 +a6 +a9 +a11 +a13 +a14 +a16 +a17,

u20
0  a2 +a3 +a5 +a6 +a10 +a12 +a13 +a14 +a15 +a18,

u31
0  a2 +a3 +a7 +a8 +a9 +a11 +a14 +a15 +a16 +a19,

u11
1  a1 +a3 +a5 +a8 +a9 +a12 +a13 +a14 +a15 +a16,

u21
1  a1 +a4 +a6 +a7 +a10 +a11 +a13 +a14 +a15 +a16,

u01
1  a2 +a4 +a7 +a8 +a9 +a11 +a16 +a17 +a19 +a20,

u10
1  a2 +a4 +a5 +a6 +a10 +a12 +a13 +a17 +a18 +a20,

u20
1  a2 +a3 +a5 +a6 +a9 +a11 +a14 +a17 +a18 +a19,

u31
1  a2 +a3 +a7 +a8 +a10 +a12 +a15 +a18 +a19 +a20,

(4)

where 0 ≤ ai ≤ 1 for any i and a1 + a2 +⋯ + a20  1. If we set ai  1

and  aj  0  (j ≠ i),  one  of  the  solutions  reported  in  Sections  3.3  and

3.4  or  its  reflection  or  rotation  is  obtained.  Note  that  20  parameters
are redundant, and we can reduce them to six through the transforma-
tion of parameters, though equation (4) is convenient to give a special
solution.  Figure  11  shows  examples  of  solutions  obtained  by  equa-
tion�(4).  Figure  11  (a),  (b)  and  (c)  show  solutions  for  a13  0.25,  0.5

and  0.75,  respectively,  where  other  ai  are  randomly  given.  We  can

observe that the toad solution to GoL emerges as a13 approaches 1.
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Figure 11. Examples of solutions obtained by equation (4).  

MaxLife as a Multivalue Cellular Automaton4.

The  range  of  u  in  equation  (3)  can  be  closed  to  the  finite  set

0, 1 N, 2 N, … , N - 1 N, 1  for  a  positive  integer  N.  Then

equation  (3)  becomes  an  (N + 1)-value  CA.  The  case  N  1  is  the
original GoL. Figure 12 shows an example of evolution for 2-, 3- and
10-value  cases  (N  1,  2,  9)  with  periodic  boundary  conditions  from
random  initial  data.  Since  it  is  difficult  to  evaluate  the  behavior  of  a
general  solution  quantitatively,  we  describe  our  observation  from
numerical computation as shown in Figure 12. Solution of the 2-value
case  (GoL)  tends  to  change  drastically  as  time  proceeds  and  often
results in a steady state with separated static and periodic patterns. In
contrast  to  the  2-value  case,  solution  of  the  3-or-more-value  case
rarely results in a steady state and continues to evolve with connected
nonzero domains interacting with one another.

There  are  various  basic  static  or  periodic  solutions  confined  in  a
finite region for the multivalue case. Some of them can be obtained by
choosing  the  parameters  of  solutions  reported  in  Section  3.  For

example, if a is set to 1  2 for the solutions shown in Figures 3, 5, 7

and  10,  they  become  solutions  for  the  3-value  case,  and  if  1  3,  the

4-value case. Moreover, if the dimensions of the region for u ≠ 0 and
the period are assumed, all solutions can be searched numerically. For
example,  there  are  40  static  solutions  and  23  periodic  solutions  with
period  2  for  the  3-value  case  within  a  4⨯4  nonzero  region.  Solutions
to  GoL  are  included  in  them,  and  13  of  40  static  solutions  and  3  of
23 periodic solutions are constructed only from 0 and 1. The number
of  steady  basic  solutions  for  the  3-value  case  is  much  larger  than  the
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2-value  case,  and  it  suggests  the  persistence  of  evolution  of  the
nonzero area for the multivalue case as shown in Figure 12. 

Figure 12. Evolution  from  random  initial  data  for  equation  (3)  as  a
multivalue�CA.

Concluding Remarks5.

We proposed the max-plus equation (3) as the difference equation on
a  real-valued  state  variable.  It  includes  the  Game  of  Life  (GoL)  as  a
special  case  if  the  state  value  is  restricted  to  0  and  1.  It  has  special
solutions  including  a  free  parameter  and  they  unify  the  solutions  to
GoL by special choice of parameter. Though various solutions to GoL
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have  been  reported  independently,  their  relations  are  suggested
through  this  unification.  Among  such  solutions,  we  obtained  a  solu-
tion  (equation  (4))  including  many  parameters  unifying  various  solu-
tions  to  GoL.  However,  a  systematic  way  to  derive  general  solutions
has  not  been  found  yet.  One  future  problem  is  to  propose  a  way  to
solve equation (3) as we solve differential equations.

The max-plus equation can be obtained from a difference equation
using an exponential type of transformation of variables with a limit-
ing parameter. Consider the following difference equation, 

Uij
n+1  C

1 + δ2Uij
nSij

n1 + δ4Sij
n

1 + δ3Uij
nSij

n1 + δ3Sij
n
, (5)

where

Sij
n  Ui-1j-1

n Uij-1
n Ui+1j-1

n Ui-1j
n Ui+1j

n Ui-1j+1
n Uij+1

n Ui+1j+1
n ,

and

C 
1 + δ3

2

1 + δ21 + δ4
.

If we use the transformation including a parameter ε, 

Uij
n  euij

nε, Sij
n  esij

nε, δ  e-1/ε,

equation  (3)  is  obtained  from  equation  (5)  by  the  limit  ε → +0.  Note
that the limiting procedure in equation (2) is used in the derivation.

An  example  of  the  evolution  of  the  solution  to  equation  (5)  is

shown  in  Figure  13  for  ε  0.1.  The  background  value  is

U  e0/ε  1,  and  randomly  chosen  cells  are  set  to  U  e1/ε  for  the
initial  data.  The  initial  data  changes  drastically  at  n  1;  some  pat-
terns survive and evolve from n  2 to 16, and they merge and extend
to the whole area from n  32 to 128. This extended pattern evolves
until at least n  10000 and the range of U  is always preserved from

about 1 to e1/ε. Though some stable static patterns confined in a finite
area  are  found  numerically,  exact  solutions  giving  static,  periodic  or
moving patterns have not yet been found. It is another future problem
to  find  exact  solutions  and  to  discuss  the  relation  between  solutions
to equation (3) and to equation (5). 
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Figure 13. Examples  of  the  evolution  of  the  solution  to  equation  (5)  for
ε  0.1.
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