
An Agent-Based Model of COVID-19

Christopher Wolfram

Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820-7237, USA
christopher@wolfram.com

Many  simple  models  of  disease  spread  assume  a  homogeneous  popula-
tion  (or  population  groups)  with  a  uniform  basic  reproduction  number
(R0).  The  goal  here  is  to  develop  and  analyze  an  agent-based  model  of

disease  that  models:  (1)  variability  of  interaction  rates  between  agents;
and (2) the structure of the in-person contact network.
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Introduction1.

We start by specifying the model and observing its most basic proper-
ties, and then spend considerable time investigating its detailed behav-
ior  in  many  different  scenarios.  By  the  end,  the  conclusions  will
include:

◼ Unsurprisingly, there is a robust critical point as we vary the mean inter-
action  rate,  which  determines  whether  a  large  fraction  of  the  popula-
tion  is  infected,  or  a  small  fraction.  (This  critical  point  corresponds
with when R0 ≈ 1 in models that have a uniform R0.)

◼ The structure of the contact network significantly  affects disease spread
(even after controlling for parameters like graph density).

◼ It is better to have many small meetings than a few large ones.

◼ The  heterogeneity  of  interaction  rates  significantly  affects  disease
spread. In other words, you need to model not just the average amount
of  interaction,  but  the  distribution  of  interaction  rates  from  agent
to agent.

Existing Work1.1

There  are  a  number  of  existing  agent-based  and  network  models  of
disease  spread  [1].  Some  are  simple  [2],  while  others  can  be  very
complex [3–5].

Many  of  the  more  complicated  models  consider  the  parameters
age,  work  status,  preexisting  immunity  and  so  on.  However,  it  is
often unclear what effect these added parameters have. It is clear that
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they have some effect, but which parameters are important, and what
changes  to  the  input  parameters  correspond  with  what  changes  in
outcomes?

The goal of this paper is to introduce and analyze a simple but flexi-
ble  model  of  disease  spread  that  will  allow  us  to  study  the  effects  of
different  modeling  choices.  In  particular,  we  investigate  the  influence
of  distributions.  How  does  the  distribution  of  recovery  times  affect
disease  spread?  What  about  the  distribution  of  interaction  rates  in  a
heterogenous  population?  Or  the  graph  distribution  from  which  the
contact network is sampled? These distributions are often assumed or
only dealt with implicitly. We will make them explicit so we can bet-
ter understand their impact on our model.

Making the Agent-Based Model2.

Outline2.1

We  will  start  with  a  graph  representing  the  contact  network  of  the
population.  Each  vertex  will  represent  an  agent  and  edges  will  con-
nect pairs of agents who might interact. Each agent will be marked as
susceptible,  infected  or  recovered.  Initially,  a  few  agents  will  be
marked as infected, while all others will be marked as susceptible. At
each  step,  every  agent  will  pick  a  random  subset  of  its  neighbors  in
the  contact  network,  and  it  will  “meet”  (interact)  with  them.  If  a
susceptible  agent  meets  an  infected  one,  it  becomes  infected  as  well.
Meetings are considered symmetric, so it does not matter which agent
initiates  the  meeting.  Finally,  infected  agents  will  become  recovered
after  some  period.  We  run  these  steps  repeatedly  until  there  are  no
infected agents left, at which point the disease has run its course.

There  are  many  parameters  here  to  investigate.  For  example,  we
can  look  at  how  the  structure  of  the  contact  network  influences  dis-
ease  spread.  We  can  also  look  at  the  importance  of  the  distribution
determining  the  number  of  meetings  each  agent  initiates,  as  well  as
the  distribution  of  recovery  times.  We  will  start  by  implementing  the
general model, and then we will explore the parameter space.

Implementation2.2

We  start  by  getting  a  social  network  to  work  with.  Later  we  will  use
something  larger  and  more  realistic,  but  for  the  purposes  of  illustra-
tion  we  will  start  with  a  very  small  example  network  of  Florentine
families (Figure 1).

At each step of the simulation, each agent will pick some subset of
its  neighbors  to  meet  with.  We  need  to  specify  the  distribution  that
determines  how  many  neighbors  each  agent  will  meet  with  at  each
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step. Later we will explore which properties of these distributions are
important, but for now we will somewhat arbitrarily choose an expo-
nential distribution.

Next, we need to model the recovery time. That is, we need to pick
the  distribution  that  determines  the  number  of  steps  an  agent  must
wait  to  be  marked  recovered  after  being  infected.  Many  susceptible-
infectious-recovered  (SIR)  models  implicitly  use  an  exponential  distri-
bution, so we will start with that here.

We will start by marking some initial agents as infected (Figure 2).

We  then  have  agents  randomly  meet  their  neighbors,  marking  sus-
ceptible agents that meet infected ones (Figure 3).
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Figure 1. The social network of Florentine families.
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Figure 2. The  social  network  with  infected  agents  highlighted.  At  the  begin-
ning of the simulation, a few random agents are marked as infected.
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Figure 3. The  social  network  with  initially  infected  agents  marked  in  red,
random meetings between agents marked in purple and newly infected agents
in blue.

Susceptible agents that meet with infected agents will be marked as
infected, and the simulation will continue.

Simple Example2.3

We will start by running a simple example to test this model. First, we
need a contact network to run on. We will look at different graph dis-
tributions  later,  but  we  will  start  by  using  the  Watts–Strogatz  [2]
graph distribution (Figure 4), which is often used to approximate real
social networks.

Figure 4.A  random  graph  sampled  from  the  Watts–Strogatz  graph  distribu-
tion with 1000 vertices and rewiring probability 10%.
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Next, we run a simulation on this network, with an exponential dis-
tribution  with  mean  0.4  modeling  the  number  of  outgoing  meetings
for every agent, an exponential distribution with mean 7 modeling the
recovery time and 10 random agents initially infected. Figure 5 shows
the fraction of agents susceptible, infected and recovered over time, in
a way similar to common visualizations of SIR models [1, 6, 7].
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Figure 5. Fraction of agents susceptible, infected and recovered over time (with
time measured in steps).

At  the  beginning,  almost  all  agents  are  susceptible.  Then,  an
(approximately)  exponentially  increasing  number  of  agents  become
infected,  while  previously  infected  agents  recover.  By  the  end,  there
are a handful of susceptible agents left who were never infected, while
the rest were infected and recovered. This is essentially the output we
would expect from a simple SIR model.

Phase Plots and Basic Properties2.4

We can also visualize the evolution of this simulation as a phase plot
(Figure  6)  with  a  curve  through  three-dimensional  space,  with  axes
for the number susceptible, infected and recovered. However, because
the number of agents remains fixed (S + I +R is constant), we can con-
vey the same information by just picking any two dimensions.

We  can  expand  this  into  a  vector  field  showing  us  where  the  criti-
cal  points  and  attractors  are  (Figure  7).  However,  we  have  to  change
distribution  of  recovery  times  to  be  geometric.  The  problem  with
other  distributions  is  that  this  phase  plot  collapses  some  important
dimensions, like how long the infected agents must wait before recov-
ering. The only distribution where this information is not needed is a
geometric  distribution,  because  a  geometric  distribution  models  the
recovery  time  if  there  is  a  constant  probability  of  recovering  at  each
step, which does not require any hidden state.

Using  a  geometric  distribution  of  recovery  times,  we  get  the  phase
plot shown in Figure 7.
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Figure 6.A phase  plot of  a single simulation.  In the  initial state, all  but a  few
agents  were  susceptible,  while  only  a  few  were  infected  (the  bottom  right).
With each step, the fraction of agents susceptible decreased, while the fraction
infected  increased.  The  infected  agents  eventually  recovered,  ending  the
simulation  with  very  few  agents  susceptible  and  all  others  recovered  (the
bottom left).
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Figure 7.A  phase  plot  showing  the  tendency  toward  all  agents  being  marked
as recovered (the bottom left).

We can see that there is an attractor at 0, 0, suggesting that with

these parameters, everyone will become infected (because nobody sus-
ceptible will be left). Later we will see how the parameters of our sim-
ulation affect this phase plot.

Exploring the Parameter Space3.

There is a huge parameter space for this model, so we will not be able
to go through everything. There is the structure of the underlying con-
tact  network.  There  is  the  distribution  of  recovery  times.  There  are
the  distributions  that  determine  the  number  of  meetings  that  take
place (as well as the distribution of those distributions). And so on.
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For  practical  purposes,  there  are  two  outputs  for  any  simulation
that seem important: the total fraction of agents who are infected and
the peak fraction of agents who are infected at any given time (the lat-
ter of which is important for “flatten the curve” strategies).

We  will  experiment  with  the  input  parameters  to  try  to  see  their
relationship  to  these  two  outputs,  and  to  simulate  mitigation
strategies.

Critical Points3.1

We  start  by  investigating  the  dynamics  of  the  total  infected  and  peak
infected  variables.  We  might  guess  that  one  of  the  most  important
variables is the mean number of meetings per agent per step, which is
closely  related  to  R0.  We  can  control  this  by  altering  the  distribution

of meeting counts. For now, we will give every agent the same distri-
bution and only change the mean, simulating a homogeneous popula-
tion (Figure 8).
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Figure 8. (continues)
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Figure 8. The number of agents susceptible (orange), infected (blue) and recov-
ered  (green)  over  time  for  different  mean  meeting  counts  per  agent  per  step
(labeled above each plot).

We  can  see  that  as  the  number  of  meetings  increases,  it  passes  a
critical  point  that  determines  whether  almost  everyone  gets  infected
or  almost  nobody.  We  can  see  this  critical  point  especially  well  when
plotting  the  peak  and  total  infection  rates  as  a  function  of  the  mean
number of meetings (Figure 9).
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Figure 9. Peak  and  total  infection  rates  as  a  function  of  the  mean  meeting
count. There is a critical point around 0.2 where the total infection jumps up
to nearly 100%.

We can clearly see the critical point around 0.2. Interestingly, while
the  total  infection  rate  jumps  almost  immediately  to  100%,  the  peak
infection  rate  is  much  more  gradual.  This  suggests  that  incremental
progress  in  reducing  interaction  can  have  an  effect  on  the  peak  infec-
tion rate, while the total infection rate requires more radical interven-
tion (the former of which is essentially the flatten the curve strategy).

We can also visualize this transition with phase plots (Figure 10).
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Figure 10. Phase plots similar to Figure 7 with different mean meeting rates.
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Here  we  see  that  when  there  is  limited  interaction,  there  is  an
attractor along the bottom edge (where nobody is infected), but as the
number  of  meetings  goes  up,  that  attractor  is  pushed  to  the  bottom-
left  corner  (where  nobody  is  infected  or  susceptible).  We  can  see  that
there is a small leftward push for any mean meeting rate, but that the
downward  push  (the  recovery  rate)  is  so  fast  that  the  number  of
infected goes to 0 before there can be leftward drift. As the number of
meetings  goes  up,  each  vector  gets  more  “lift,”  which  allows  it  to
travel farther to the left.

Contact Networks3.2

So far we have been using the same Watts–Strogatz graph for our con-
tact  network.  We  could,  however,  run  this  model  on  any  graph.
Watts–Strogatz  is  often  used  to  simulate  social  networks  because  it
generates  small-world  networks,  but  there  are  other  graph  distribu-
tions  that  simulate  various  other  aspects  of  social  or  contact  net-
works.  More  generally,  we  do  not  know  yet  whether  the  structure  of
the contact network matters at all, so we will start by examining that
question.

Figure 11 shows a few graphs that we should try.

Watts–Strogatz

Grid

Grid3D Barabasi–Albert
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DelaunayTriangulation Random

Figure 11.Graph  types  on  which  we  will  run  simulations  in  order  to  see  the
importance of the structure of the contact network.

We  start  with  Watts–Strogatz  for  the  reasons  mentioned  above.
Next, we look at the Barabási–Albert graph distribution [8], which is
also  often  used  to  simulate  social  networks.  The  tradeoff  between
Watts–Strogatz  and  Barabási–Albert  is  that  Watts–Strogatz  has  more
realistic  clustering  and  an  unrealistic  degree  distribution.  (Barabási–
Albert  has  a  power  law  degree  distribution  [8],  which  could  be  good
for modeling how there are a few people who have contact with many
different  people,  like  cashiers,  while  most  people  interact  with  a
smaller consistent set.)

Next we use a grid graph because it is analogous to how many sim-
ple  spatial  SIR  models  work.  It  is  also  not  a  small-world  network,
which might yield different results. Grid3D is interesting because it is
structurally similar to the grid graph but it has a higher graph dimen-
sion. We also use the Delaunay triangulation of random points to gen-
erate a less-structured planar graph.

Finally, Figure 12 (left) shows a random graph with approximately
the same density as the small-world networks.

The  results  are  shown  in  Figure  12  (right).  The  planar  networks
saw  much  slower  growth.  The  random  network  and  the  Barabási–
Albert  network  were  very  similar  and  showed  very  fast  growth.
Watts–Strogatz gave an intermediate result. 

This  ordering  seems  to  roughly  coincide  with  the  graph  dimension
(which  models  how  many  vertices  are  covered  by  a  ball  of  a  given
radius).
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Figure 12. (left) Peak and total infection rates as a function of the mean meet-
ing  rate  for  different  graphs.  (right)  While  the  critical  point  at  0.2  stays  the
same, the behavior for higher interaction rates is significantly  different for dif-
ferent graphs.

The main conclusion here is that even if the number of meetings is
held  the  same,  agents  with  a  larger  number  of  neighbors  who  they
could  potentially  meet  cause  faster  spread,  demonstrating  one  way  in
which  the  structure  of  the  contact  network  is  important  independent
of the amount of interaction.

(It  should  also  be  noted  that  this  is  not  just  because  there  are
“wasted  meetings”  where  the  number  of  meetings  is  greater  than  the
number of neighbors. Empirically, this is a rare occurrence even for a
high mean number of meetings per agent per step.)

We  can  also  try  generating  several  graphs  from  the  same  distribu-
tion  but  with  different  densities.  Figure  13  shows  the  peak  and  total
infection  rates  as  a  function  of  the  mean  meeting  rate  on  graphs
sampled  from  the  Watts–Strogatz  graph  distribution  with  increasing
density.
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Figure 13. The  (left)  peak  and  (right)  total  infection  rates  as  a  function  of  the
mean  meeting  rate  on  graphs  of  increasing  density.  The  lower  curves  corre-
spond  with  sparser  graphs,  while  the  higher  curves  correspond  with  denser
graphs.

98 C. Wolfram

Complex Systems, 29 © 2020



We can see that the very sparse graphs have softer curves and slow
spread,  while  the  denser  networks  show  faster  spread.  We  still  have
not  changed  the  mean  interaction  rate,  so  this  again  shows  that  the
structure of the contact network matters.

Joined Networks3.2.1

While social networks are generally considered to be small-world, it is
unclear  if  this  is  also  true  of  in-person  contact  networks.  People  who
are  geographically  close  likely  have  more  in-person  contact  than  peo-
ple who are not. Somebody who lives thousands of miles away might
be  a  friend,  but  they  are  many  steps  away  on  the  network  of  person-
to-person  contact.  It  is  not  immediately  clear  what  this  contact  net-
work  should  look  like,  but  we  will  attempt  to  make  something  that
might approximate it.

We start by making a “supergraph” (Figure 14) made up of smaller
clusters. Each cluster will be a small-world network, modeling a local
community, which could be like a town or city, while the network of
clusters  will  be  some  planar  graph  representing  the  connectivity
between these geographic entities.

Figure 14.An example of a “supergraph” with 10 communities, each contain-
ing 100 vertices and with five edges connecting adjacent communities. 

For  our  purposes,  we  will  use  Watts–Strogatz  for  the  clusters
(communities)  and  the  Delaunay  triangulation  of  random  points  for
the  large-scale  structure  (the  contact  between  communities).  We  can
vary  how  many  edges  connect  adjacent  clusters  to  change  how  inter-
connected the communities are.
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We  can  now  run  simulations  on  these  graphs  (Figure  15)  just  like
before,  except  we  will  force  all  the  initially  infected  to  start  in  one
cluster (so the disease is forced to spread from cluster to cluster).
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Figure 15. The  (left)  peak  and  (right)  total  infection  rates  as  a  function  of  the
mean  meeting  rate  for  10  runs  with  different  numbers  of  edges  connecting
adjacent clusters.

In  both  of  these  cases,  we  see  that  when  clusters  are  only  weakly
connected, the disease unsurprisingly spreads slower. In particular, we
see that the total fraction infected does not transition as quickly from
close  to  0%  to  close  to  100%,  but  instead  ramps  up  slowly.  We  get
this  because  while  disease  spreads  quickly  inside  the  small-world
clusters,  it  does  not  spread  as  fast  on  the  large-scale  planar  graph,
meaning that not all clusters get infected. As the clusters become more
interconnected, however, it limits the curve we get with a giant small-
world network. Interestingly, however, the curve we get when clusters
are  only  weakly  connected  seems  different  from  the  curve  we  get  on
planar  networks  of  this  type,  suggesting  that  there  is  modeling  value
by simulating interactions within the clusters.

In  other  words,  reducing  interaction  between  communities  can  be
more effective than reducing interaction within communities.

Interaction Rates3.3

Many  interventions  (like  social  distancing)  involve  changing  the
frequency or size of meetings, so we should look at how the distribu-
tion  of  interaction  rates  (meeting  counts)  changes  the  peak  and  total
infection rates.

We  have  already  looked  at  what  happens  when  we  change
the  mean  meeting  count  (there  is  a  critical  point  where  the  disease
switches  from  dying  out  to  infecting  everyone).  However,  so  far  we
have  only  used  exponential  distributions  to  model  the  number  of
meetings  per  agent.  We  begin  by  trying  different  distributions
(Figure 16).

The Pareto distribution produced similar results to the exponential
distribution.  Otherwise,  the  higher  the  standard  deviation,  the  softer
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the  curve,  and  the  earlier  the  critical  point.  In  other  words,  it  is  on
average  worse  to  have  some  agents  meeting  lots  of  people  and  others
meeting  nobody  than  it  is  to  have  every  agent  meeting  an  average
number  of  people.  That  is,  it  is  better  to  have  many  small  meetings
than a few large ones.
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Figure 16. The  (left)  peak  and  (right)  total  infection  rates  as  a  function  of  the
mean meeting rate for different distributions of meeting rates.

So  far  every  agent  has  been  the  same,  with  the  same  distribution
determining  how  many  meetings  they  initiate.  However,  we  could
also  model  a  heterogeneous  population  by  giving  different  agents  dif-
ferent distributions of meetings per step.

We  will  simulate  homogeneous  and  heterogenous  populations.  In
the  homogeneous  population,  every  agent  has  a  normal  distribution
that  determines  the  number  of  meetings  they  will  make  at  each  step.
In contrast, every agent in the heterogenous population makes a con-
stant number of meetings at each step, but that constant number is dif-
ferent  between  agents  and  modeled  by  the  same  normal  distribution
as in the homogeneous population. In other words, the mean and vari-
ance of the number of meetings per agent per step are the same, but in
the  homogeneous  population  we  sample  at  each  step  and  in  the  het-
erogenous one we only sample once (Figure 17).

Interestingly,  these  produce  slightly  different  results,  with  the  het-
erogenous  population  generally  seeing  slower  disease  spread.  In  the
heterogenous  population  there  might  be  a  few  small  neighborhoods
where the local interaction rate is below the critical point, while in the
homogeneous  population  all  agents  are  uniformly  on  one  side  of  the
critical point or the other. More generally, this shows that we cannot
assume that a homogeneous population will behave the same as a het-
erogenous one. 
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Figure 17. The  (left)  peak  and  (right)  total  infection  rate  as  a  function  of  the
mean  meeting  rate  for  homogeneous  populations,  in  which  every  agent  has
the same distribution of meetings per step, and for heterogenous populations,
in which every agent has a random fixed number of meetings per step.

Recovery Times3.4

So far we have been using a geometric distribution for recovery times
because  it  makes  it  possible  to  generate  phase  plots.  However,  actual
recovery times are probably modeled by something else (for example,
many SIR models implicitly use an exponential distribution).

We can also modify the recovery time distribution to simulate quar-
antines because a recovered agent no longer infects its neighbors, and
so  a  quarantined  agent  behaves  like  a  recovered  one  in  our  model.
However,  this  trick  only  works  when  looking  at  the  total  fraction  of
the  population  infected  because  the  peak  infection  rate  will  be  mis-
leading  since  all  of  the  “infected”  agents  who  are  in  quarantine  will
be marked as recovered.

First,  we  will  try  different  geometric  distributions  with  different
means (Figure 18).

We  can  see  that  as  the  mean  recovery  time  gets  shorter,  the  peak
fraction  of  agents  infected  decreases  (which  is  not  surprising  because
we  are  just  reducing  the  mean  time  that  each  agent  spends  infected).
We also see that the critical point between nobody being infected and
the  whole  population  being  infected  is  shifted  right.  In  other  words,
quarantines  increase  the  amount  of  interaction  required  for  the  dis-
ease to spread.

Next,  we  will  look  at  the  effect  of  choosing  different  distributions
by  running  simulations  with  a  list  of  plausible  distributions,  all  with
the same mean value (Figure 19).
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Figure 18. The  (left)  peak  and  (right)  total  infection  rates  as  a  function  of  the
mean  meeting  rate  for  different  recovery  time  distributions.  In  this  case,  we
look at recovery times modeled by geometric distributions with means of 3, 7
and 14 steps.
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Figure 19. The  (left)  peak  and  (right)  total  infection  rates  as  a  function  of  the
mean meeting rate for different distributions with the same mean.

Here  we  see  that  the  total  fraction  infected  is  not  significantly
affected  by  the  distribution  of  recovery  times.  The  peak  fraction
infected,  however,  is  affected  by  the  distribution  of  recovery  times,
and the fixed  and normal distributions lead to a higher peak. Interest-
ingly,  the  normal  distribution  with  a  higher  standard  deviation  leads
to a lower peak than the one with a lower standard deviation.
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Conclusions4.

The main purpose of this project was to develop this model and inves-
tigate its properties. As with many agent-based models, its behavior is
complicated  and  the  relationship  between  the  inputs  and  outputs  is
often hard to model. For computational details see [9]. Below is a par-
tial list of findings:

◼ There  is  a  critical  point  in  the  amount  of  interaction  that  determines
whether everybody gets sick or nobody does. This corresponds approxi-
mately to R0 ≈ 1.

◼ The  structure  of  the  contact  network  matters.  Even  with  the  same
number of vertices, edges and other settings, different contact networks
produce  different  results.  Barabási–Albert  had  very  fast  spread,  Watts–
Strogatz  had  intermediate  spread,  and  the  “supergraph,”  which  was  a
planar  graph  made  up  of  Watts–Strogatz  clusters,  had  slow  spread
when the clusters were only weakly connected.

◼ Reducing  interaction  between  communities  increases  the  uncertainty  in
the outcome, but flattens  the curve and reduces the average total infec-
tion rate.

◼ It is better to have many small meetings than a few large ones.

◼ Changing  the  recovery  time  (which  is  equivalent  to  having  quarantines
in  this  model)  changes  the  position  of  the  critical  point  between  every-
body getting infected and nobody getting infected.

◼ The heterogeneity of the agents is important, and the distribution deter-
mining  how  much  individual  agents  interact  changes  the  outcomes.
That  is,  the  mean  rate  of  interaction  is  not  enough  to  model  disease
spread, and the distribution of interaction rates is needed.
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