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This  paper  builds  upon  the  techniques  developed  within  our  previous
investigation  of  the  relativistic  and  gravitational  properties  of  the
Wolfram  Model—a  new  discrete  spacetime  formalism  based  on  hyper-
graph transformation dynamics—in order to study classes of such mod-
els in which causal invariance is explicitly violated, as a consequence of
non-confluence  of  the  underlying  rewriting  system.  We  show  that  the
evolution  of  the  resulting  multiway  system,  which  effectively  contains
all possible branches of evolution history (corresponding to all possible
hypergraph  updating  orders),  is  analogous  to  the  evolution  of  a  linear
superposition  of  pure  quantum  eigenstates;  observers  may  then  impose
“effective”  causal  invariance  by  performing  a  Knuth–Bendix  comple-
tion  operation  on  this  evolution,  thus  collapsing  distinct  multiway
branches  down  to  a  single,  unambiguous  thread  of  time,  in  a  manner
analogous to the processes of decoherence and wavefunction collapse in
conventional  quantum  mechanics  (and  which  we  prove  is  compatible
with  a  multiway  analog  of  the  uncertainty  principle).  By  defining  the
observer mathematically as a discrete hypersurface foliation of the mul-
tiway evolution graph, we demonstrate how this novel interpretation of
quantum  mechanics  follows  from  a  generalized  analog  of  general
relativity  in  the  multiway  causal  graph,  with  the  Fubini–Study  metric
tensor  playing  the  role  of  the  spacetime  metric,  the  quantum  Zeno
effect  playing  the  role  of  gravitational  time  dilation  and  so  on.  We
rigorously justify this correspondence by proving (using various combi-
natorial and order-theoretic techniques) that the geometry of the multi-
way  evolution  graph  converges  to  that  of  complex  projective  Hilbert
space  in  the  continuum  limit,  and  proceed  to  use  this  information  to
derive  the  analog  of  the  Einstein  field  equations  for  the  overall  multi-
way system. Finally, we discuss various consequences of this “multiway
relativity,”  including  the  derivation  of  the  path  integral,  the  derivation
of  particle-like  excitations  and  their  dynamics,  the  proof  of  compati-
bility  with  Bell’s  theorem  and  violation  of  the  CHSH  inequality,  the
derivation  of  the  discrete  Schrödinger  equation  and  the  derivation  of
the  nonrelativistic  propagator.  Connections  to  many  fields  of  mathe-
matics  and  physics—including  mathematical  logic,  abstract  rewriting
theory,  automated  theorem-proving,  universal  algebra,  computational
group  theory,  quantum  information  theory,  projective  geometry,  order
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theory,  lattice  theory,  algorithmic  complexity  theory,  advanced  combi-
natorics, superrelativity, twistor theory and AdS/CFT-correspondence—
are also discussed. 

Introduction1.

In  our  previous  paper  [1],  we  formally  introduced  the  Wolfram
Model [2]—a new discrete spacetime formalism in which space is rep-
resented  by  a  hypergraph,  and  in  which  laws  of  physics  are  modeled
by  transformation  rules  on  set  systems—and  investigated  its  various
relativistic and gravitational properties in the continuum limit, as first
discussed  in  Stephen  Wolfram’s  A  New  Kind  of  Science  (NKS)  [3].
Our  central  result  was  the  proof  that  large  classes  of  such  models,
with transformation rules obeying particular constraints, were mathe-
matically  consistent  with  discrete  forms  of  both  special  and  general
relativity.  An  example  of  such  a  transformation  rule  is  shown  in  Fig-
ure 1, and an example of its evolution is shown in Figures 2 and 3.  

Figure 1. An  example  of  a  possible  replacement  operation  on  a  set  system,
here  visualized  as  a  transformation  rule  between  two  hypergraphs  (which,  in
this  particular  case,  also  happen  to  be  equivalent  to  ordinary  graphs).
Adapted from [2].  

Figure 2. An  example  evolution  of  the  above  transformation  rule,  starting
from  an  initial  (multi)hypergraph  consisting  of  a  single  vertex  with  two  self-
loops. Adapted from [2].  
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Figure 3. The  final  state  of  the  above  Wolfram  Model  evolution.  Adapted
from [2].  

In  particular,  we  introduced  the  notion  of  causal  invariance  (i.e.,
the condition that all causal graphs be isomorphic, independent of the
choice of updating order for the hypergraphs), proved it to be equiva-
lent to a discrete version of general covariance, with changes in updat-
ing  order  corresponding  to  discrete  gauge  transformations,  and  later
used  this  fact  to  deduce  discrete  analogs  of  both  Lorentz  and  local
Lorentz  covariance.  Having  derived  the  physical  consequences  of  dis-
crete  Lorentz  transformations  in  these  models,  we  subsequently
proved  various  results  about  the  growth  rates  of  volumes  of  spatial
balls  in  hypergraphs  and  of  spacetime  cones  in  causal  graphs,  ulti-
mately  concluding  that  both  quantities  are  related  to  discrete  analogs
of  the  Ricci  curvature  tensor  for  (hyper)graphs.  We  used  this  fact  to
prove that the condition that the causal graph should limit to a mani-
fold of fixed  dimensionality is equivalent to the condition that the dis-
crete  Einstein  field  equations  are  satisfied  in  the  causal  graph,  and
therefore  that  general  relativity  must  hold.  We  went  on  to  discuss
some  more  speculative  proposals  regarding  a  general  relativistic  for-
malism  for  hypergraphs  of  varying  local  dimensionality  and  a  few  of
the cosmological consequences that such a formalism would entail. 

The  present  paper  begins  by  briefly  recapping  the  theory  of
abstract  rewriting  systems  and  their  connections  to  the  Wolfram
Model  in  Section  2.1,  before  proceeding  to  introduce  the  Knuth–
Bendix  completion  algorithm  for  “collapsing”  distinct  multiway  evo-
lution  branches  down  to  a  single,  unambiguous  thread  of  time,  thus
obtaining  effective  causal  invariance  from  a  non-confluent  rewriting
system, in Section 2.2. We go on to show in Section 2.3 that the evolu-
tion  of  the  multiway  system  is  mathematically  analogous  to  the  evo-
lution  of  a  linear  superposition  of  pure  quantum  eigenstates,  and
therefore  that  Knuth–Bendix  completion  is  analogous  to  the  process
of  decoherence  and  wavefunction  collapse  that  occurs  during  the  act
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of  measurement  within  standard  quantum  mechanical  formalism
(indeed, we prove that this process is consistent with a multiway ana-
log  of  the  uncertainty  principle).  We  also  discuss  some  mathematical
connections  to  universal  algebra  and  computational  group  theory,  as
well as various implications of this new formalism for quantum infor-
mation theory, in Section 2.4. 

In  Section  3.1  we  introduce  a  new  mathematical  definition  of  a
quantum observer as a discrete hypersurface foliation of the multiway
evolution  graph,  and  proceed  to  outline  how  the  novel  interpretation
of quantum mechanics presented in the previous section therefore fol-
lows  from  a  generalized  variant  of  general  relativity  in  the  multiway
causal  graph,  with  the  Fubini–Study  metric  tensor  playing  the  role  of
the  spacetime  metric.  We  go  on  to  prove  this  correspondence  rigor-
ously  in  Section  3.2,  by  first  proving  that  the  geometry  of  the  multi-
way  evolution  graph  converges  to  that  of  complex  projective  Hilbert
space  in  the  continuum  limit  (using  various  techniques  from  combi-
natorics,  order  theory  and  lattice  theory,  and  by  exploiting  von  Neu-
mann’s  “continuous  geometry”  formalism  for  complex  projective
geometry),  and  then  later  by  explicitly  deriving  the  multiway  variant
of  the  Einstein  field  equations  using  the  methods  of  superrelativity.
Section  3.3  outlines  a  few  geometrical  and  physical  features  of  the
multiway  causal  graph  and  makes  a  conjecture  regarding  its  connec-
tion  to  the  correspondence  space  of  twistor  theory.  Finally,  in  Sec-
tion�3.4  we  discuss  various  consequences  of  “multiway  relativity,”
including  formal  derivations  of  the  path  integral,  the  existence  of
particle-like  excitations,  the  discrete  Schrödinger  equation,  and  the
nonrelativistic  propagator,  as  well  as  a  proof  of  compatibility  with
Bell’s theorem and the violation of the CHSH inequality. 

Operators, Observables and the Uncertainty Principle  2.

A Brief Recap: Abstract Term Rewriting, the Church–Rosser 
Property and Causal Invariance    

2.1

Below,  we  will  give  a  very  terse  recap  of  the  mathematical  formalism
for  hypergraph  transformation  rules  and  abstract  rewriting  systems
and  their  relationship  to  multiway  systems  and  causal  invariance,  as
detailed much more comprehensively in [1, Section 2]. However, here
we  place  a  greater  emphasis  upon  the  logical  and  algebraic  structure
of  rewriting  systems  and  the  relationships  between  the  various
notions of confluence [4–7].  

Definition 1. An  “abstract  rewriting  system”  is  a  set,  denoted  A  (in
which  each  element  of  A  is  known  as  an  “object”  or  an  “element”),
equipped  with  a  binary  relation,  denoted  →,  known  as  the  “rewrite
relation.” 
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Definition 2. →*
 designates the reflexive  transitive closure of →; that is,

it  represents  the  transitive  closure  of  → ⋃ ,  where    is  the  identity
relation. 

Definition 3. An object a ∈ A is said to be “confluent” if: 

∀ b, c ∈ A, such that a →* b and a →* c,
∃ d ∈ A such that b →* d and c →* d.

(1)

Definition 4. An  abstract  rewriting  system  A  is  said  to  be  (globally)
“confluent”  (or  otherwise  to  exhibit  the  “Church–Rosser  property”)
if each of its objects a ∈ A is itself confluent.  

An  illustration  of  a  confluent  object  a  being  rewritten  to  yield
objects  b  and  c,  which  are  subsequently  made  to  converge  back  to
some common object d, is shown in Figure 4. 

Figure 4. An  illustration  of  a  confluent  object  a  being  rewritten  to  yield  dis-
tinct objects b and c; since a is confluent,  b and c must be rewritable to some
common object d, as shown. Image by Kilom691, distributed under a CC BY-
SA 3.0 license.  

Definition 5. An abstract rewriting system A is said to be “locally con-
fluent”  if  objects  that  diverge  after  a  single  rewrite  application  must
converge: 

∀ b, c ∈ A, such that a → b, a → c,
∃ d ∈ A such that b →* d and c →* d.

(2)

Local  confluence  is  a  strictly  weaker  property  than  global  conflu-
ence;  illustrations  of  two  locally  confluent  rewriting  systems  that  are
not  globally  confluent  are  shown  in  Figure  5.  The  first  evades  global
confluence  by  virtue  of  being  cyclic;  the  second  is  acyclic  but  evades
global  confluence  by  virtue  of  the  existence  of  an  infinite  rewrite
sequence. 
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(a) (b)

Figure 5. (a)  A  locally  confluent  rewriting  system,  in  which  the  presence  of  a
cycle  allows  the  system  to  evade  global  confluence.  (b)  A  locally  confluent
and  acyclic  rewriting  system,  in  which  the  presence  of  an  infinite  linear
rewrite  sequence  allows  the  system  to  evade  global  confluence  in  essentially
the  same  way.  Images  by  Jochen  Burghardt,  distributed  under  a  CC  BY-SA
3.0 license.  

Definition 6. An  abstract  rewriting  system  A  is  said  to  be  “semi-
confluent”  if  an  object  obtained  by  a  single  rewrite  application  and
another object obtained by an arbitrary rewrite sequence are required
to converge: 

∀ b, c ∈ A, such that a → b and a →* c,
∃ d ∈ A such that b →* d and c →* d.

(3)

Note that an abstract rewriting system is semi-confluent if and only
if it is globally confluent. 

Definition 7. An  abstract  rewriting  system  A  is  said  to  be  “strongly
confluent”  if,  given  two  objects  that  diverge  after  a  single  rewrite
application,  one  is  required  to  converge  with  either  zero  or  one
rewrite  application,  and  the  other  may  converge  by  an  arbitrary
rewrite sequence: 

∀ b, c ∈ A, such that a → b and a → c,
∃ d ∈ A such that b →* d and c → d or c  d.

(4)

Definition 8. An  abstract  rewriting  system  A  is  said  to  possess  the
“strong  diamond  property”  if  objects  that  diverge  after  a  single
rewrite  application  are  required  to  converge  after  a  single  rewrite
application: 

∀ b, c ∈ A, such that a → b and a → c,
∃ d ∈ A such that b → d and c → d.

(5)

Definition 9. A “hypergraph rewrite rule,” denoted R, for a finite, undi-
rected hypergraph H  (V, E) [8]: 

E ⊆ P(V)\∅, (6)
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is an abstract rewrite rule of the form H1 → H2, in which H1  denotes

a  subhypergraph  of  H,  and  H2  denotes  a  new  subhypergraph  with

identical symmetries and the same number of outgoing edges as H1.   

Definition 10. A  “multiway  system,”  denoted  Gmultiway,  is  a  directed

acyclic  graph,  corresponding  to  the  evolution  history  of  a  (generally
non-confluent)  abstract  rewriting  system,  in  which  each  vertex  corre-
sponds  to  an  object,  and  the  edge  A → B  exists  if  and  only  if  there
exists a rewrite rule application that transforms object A to object B. 

Examples  of  multiway  systems  corresponding  to  (globally)  non-
confluent  and  confluent  substitution  systems  are  shown  in  Figures  6
and  7,  respectively;  in  the  former  case,  we  see  that  distinct  rewriting
paths from the same initial condition yield distinct normal forms (i.e.,
different  eventual  outcomes—results  that  cannot  be  rewritten  fur-
ther),  while  in  the  latter  evolutions  we  see  that  the  same  eventual
result  is  always  obtained,  independent  of  the  choice  of  rewriting
order. 

Figure 6. The multiway system generated by the evolution of a (globally) non-

confluent  string  substitution  system  AB → A, BA → B  starting  with  the  ini-

tial  condition  ABA,  in  which  distinct  normal  forms  are  obtained  for  the  two
possible rewriting paths. Adapted from [3, p. 205].  

Figure 7. The multiway systems generated by the evolution of three (globally)
confluent  string  substitution  systems—the  first  two  evolutions  generated  by

A → B,  and  the  last  two  generated  by  A → B, BB → B  and

AA → BA, AB → BA,  respectively.  Irrespective  of  which  rewriting  path  is

chosen,  the  same  eventual  outcome  (i.e.,  the  same  normal  form)  is  always
reached. Adapted from [3, pp. 507 and 1037].  
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Definition 11. A  “causal  graph,”  denoted  Gcausal,  is  a  directed  acyclic

graph,  corresponding  to  the  causal  structure  of  an  abstract  rewriting
system,  in  which  every  vertex  corresponds  to  a  rewrite  rule  applica-
tion,  and  the  edge  A → B  exists  if  and  only  if  the  rewrite  application
designated by B was only applicable as a consequence of the outcome
of  the  rewrite  application  designated  by  A  (i.e.,  the  input  for  event  B
has a nontrivial overlap with the output for event A). 

Definition 12. A  multiway  system  is  “causal  invariant”  if  the  causal
graphs  corresponding  to  all  possible  evolution  histories  eventually
become isomorphic as directed acyclic graphs.  

Examples  of  causal  graphs  generated  by  (globally)  non-confluent
and  confluent  substitution  systems  are  shown  in  Figures  8  and  9,
respectively. 

Figure 8. The causal graph generated by one possible evolution of a (globally)

non-confluent  string substitution system BB → A, AAB → BAAB; the combi-

natorial  structure  of  the  causal  graph  is  ultimately  dependent  upon  which
branch of the multiway system, and therefore which of the possible rewriting
orders, is followed. Adapted from [3, p. 498].  
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Figure 9. The causal graphs generated by the evolution of two (globally) con-

fluent  string  substitution  systems—A → AA  and  A → AB, B → A,  respec-

tively.  The  combinatorial  structure  of  the  causal  graph  is  invariant  to  the
choice  of  multiway  system  path,  and  therefore  to  the  choice  of  rewriting
order. Adapted from [3, p. 500].  

Multiway Evolution and Knuth–Bendix Completion    2.2

One intuitive interpretation of the evolution of a multiway system for
a non-causal invariant system, and therefore one in which distinct evo-
lution branches can yield nonisomorphic causal graphs, is that the sys-
tem  is  evolving  according  to  every  possible  evolution  history  (i.e.,  all
possible  updating  orders),  any  pair  of  which  may  have  observation-
ally  distinct  consequences.  Such  an  interpretation  brings  forth  strong
connotations of the path integral formulation of quantum mechanics,
in  which  the  overall  trajectory  of  a  quantum  system  is  taken  to  be
described  by  a  sum  (or,  more  properly,  a  functional  integral)  over  all
possible trajectories, weighted by their respective amplitudes [9–11]:  

ψ(x, t) 
1

Z

x(0)x

xeiSx,x

ψ0(x(t)), (7)

where  ψ(x, t)  denotes  the  overall  wavefunction,  ψ0(x(t))  denotes  the

wavefunction  in  the  position  representation,  x  denotes  the  integra-

tion  measure  over  all  possible  paths  starting  at  point  x0  x,  Z  is

some arbitrary normalization constant, and S denotes the action:  

Sx, x    dtℒx(t), x (t). (8)
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Although it will not be proved formally until the next section, one of
the  purposes  of  the  present  paper  is  to  demonstrate  that  this  corre-
spondence  is  not  merely  an  analogy;  more  specifically,  although  the
current section will focus primarily on the logical and algebraic struc-
ture  of  multiway  systems,  giving  suggestive  hints  and  making  various
conjectures regarding their connections to standard quantum mechani-
cal  formalism,  the  following  section  will  show  that  the  continuum
limit  of  a  non-causal  invariant  multiway  system  does  indeed  corre-
spond to a quantum mechanical path integral in the usual sense.  

As  established  in  our  previous  paper  [1],  both  special  and  general
relativity depend ultimately upon the causal invariance of the underly-
ing  hypergraph  transformation  rules  in  order  to  hold  globally  across
spacetime, which initially seems to be at odds with our requirement of
non-causal  invariance  in  our  quantum  mechanical  interpretation  of
the  multiway  evolution.  Indeed,  we  conjecture  that  this  apparent
incompatibility may be, at some deeper level, one of the fundamental
sources  of  difficulty  in  the  reconciliation  of  general  relativity  with
quantum  mechanics:  relativistic  evolution  requires  confluence,  while
quantum mechanical evolution requires non-confluence.  The objective
of  the  present  subsection  is  to  describe  a  rather  subtle  technique  for
circumventing  this  apparent  incompatibility,  by  introducing  and
exploiting  appropriately  generalized  versions  of  the  critical  pair
lemma  and  Newman’s  lemma  from  mathematical  logic  [12],  and  the
Knuth–Bendix completion algorithm from universal algebra [13–15]. 

Definition 13. Suppose  that  {x → y, u → v}  corresponds  to  a  pair  of
(possibly identical) rules in some term rewriting system, with all vari-
ables renamed such that no variables are in common between the two
rules.  If  x1  is  a  subterm  of  x  that  is  not  a  variable  (x1  could  poten-

tially be x itself), and if the pair (x1, u) is unifiable, with the most gen-

eral unifier θ, then the pair: 

〈yθ, xθ{x1θ → vθ}〉, (9)

is known as a “critical pair” of that system.

Therefore,  a  critical  pair  arises  in  a  term  rewriting  system  (i.e.,  a
rewriting  system  in  which  all  objects  are  logical  expressions  contain-
ing  nested  subexpressions,  as  in  the  hypergraph  case)  whenever  two
rewrite rules “overlap” in such a way that two distinct objects can be
obtained from a single common object. In a more general sense, criti-
cal pairs correspond to bifurcations in the evolution of a multiway sys-
tem—in  this  general  (non-term  rewriting)  context,  we  shall  refer  to
them as “branch pairs.” For instance, the term rewriting system: 

f(g(x, y), z) → g(x, z), g(x, y) → x, (10)
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is associated with a nontrivial critical pair, namely:  

g(x, z), f(x, z), (11)

since  both  objects  may  be  derived  from  the  common  expression
f(g(x, y), z),  through  the  application  of  a  single  rewrite  rule.  On  the
other hand: 

f(x, x), f(x, x) (12)

is  a  trivial  critical  pair  for  the  system  consisting  of  the  single  rule
f(x, y) → x,  since  this  rule  can  be  applied  to  the  common  expression

ff(x, x), x to yield f(x, x) in two distinct ways.  

Definition 14. A critical pair 〈x, y〉 of a term rewriting system A is said
to  be  “convergent”  if  there  exists  some  z ∈ A  such  that  x →* z  and
y →* z.  

The  “critical  pair  lemma”  is  then  the  (more-or-less  tautological)
statement that a term rewriting system A is locally (weakly) confluent
if  and  only  if  all  of  its  critical  pairs  are  convergent.  In  other  words,
one  is  able  to  determine  algorithmically  whether  a  given  system  is
locally  confluent,  simply  by  computing  all  of  its  critical  pairs  and
testing  whether  or  not  they  converge  (although  such  a  procedure  is,
unsurprisingly given the undecidability of the word problem, not guar-
anteed to terminate in general). In the general case of a multiway evo-
lution,  we  can  say  that  a  necessary  condition  of  causal  invariance  is
that all branch pairs generated by the multiway system eventually con-
verge  to  some  common  successor  state,  such  that  no  “disconnected”
branches  of  the  multiway  graph  are  allowed  to  exist.  Any  apparently
(locally) disconnected multiway branches may be interpreted as corre-
sponding  to  a  distinct  superselection  sector  in  projective  Hilbert
space, as will be made implicitly clear by our future derivations. 

Definition 15. An  object  a ∈ A  is  a  “normal  form”  if  there  does  not
exist any b ∈ A such that a → b.  

More  informally,  and  as  briefly  mentioned  earlier,  a  normal  form
is any object that cannot be rewritten further. For instance, for a term
rewriting  system  consisting  of  a  single  rule  f(x, y) → x,  the  single  ele-

ment 4 would constitute a normal form of the object ff4, 2, f3, 1,

since there exists the following rewrite sequence: 

ff4, 2, f3, 1 → f4, 2 → 4, (13)

and  as  the  rule  does  not  apply  to  the  single  element  4,  the  resultant
object can be rewritten no further.  

Definition 16. An  object  a ∈ A  is  said  to  be  “weakly  normalizing”  if
there  exists  a  finite  rewrite  sequence  such  that  a →* b,  where  b  is  a
normal form. 
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Definition 17. An  object  a ∈ A  is  said  to  be  “strongly  normalizing”  if
every  finite  rewrite  sequence  a →* …  eventually  terminates  at  some
normal form. 

Definition 18. A term rewriting system A is said to be “weakly normal-
izing”  or  “strongly  normalizing”  if  each  of  its  constituent  objects  is
itself weakly normalizing or strongly normalizing, respectively.  

For  instance,  the  example  presented  above  corresponds  to  a
strongly  normalizing  system,  since  the  length  of  an  object  strictly
decreases  with  every  application  of  the  rule  f(x, y) → x,  thus  guaran-
teeing  that  there  cannot  exist  any  infinite  rewrite  sequences.  On  the
other hand, the system: 

f(x, y) → x, f(x, x) → f3, x, (14)

is  only  weakly  normalizing  (since  only  objects  that  contain  no  f3, 3

are  guaranteed  to  be  strongly  normalizing),  and  finally  the  system
consisting  of  the  single  rule  f(x, y) → f(y, x)  is  neither  weakly  nor
strongly  normalizing,  since  every  rewrite  sequence  is  infinite,  for
example:  

f1, 2 → f2, 1 → f1, 2 → f2, 1 → …. (15)

“Newman’s  lemma,”  otherwise  known  as  the  “diamond  lemma,”
states  that  if  a  term  rewriting  system  A  is  strongly  normalizing  and
locally (weakly) confluent,  then it is also (globally) confluent.  In fact,
the  full  claim  is  slightly  stronger:  a  strongly  normalizing  abstract
rewriting system is (globally) confluent  if and only if it is locally con-
fluent.  For  the  more  general  case  of  an  arbitrary  multiway  evolution,
Newman’s lemma and the critical pair lemma together imply that, for
a  multiway  system  in  which  every  branch  eventually  terminates,  the
convergence  of  all  branch  pairs  is  not  only  a  necessary  condition  for
causal invariance, but also a sufficient one. 

Together,  Newman’s  lemma  and  the  critical  pair  lemma  indicate
that,  if  one  is  able  to  force  all  critical  pairs  to  converge  within  some
strongly  normalizing  rewriting  system,  without  sacrificing  the  strong
normalization  property  in  the  process,  then  doing  so  will  force  the
resulting  system  to  be  (globally)  confluent;  this  idea  forms  the
abstract  basis  of  the  so-called  “Knuth–Bendix  completion”  algorithm
from  universal  algebra.  The  essential  underlying  concept  of  Knuth–
Bendix completion is to compute the unresolved (i.e., non-convergent)
critical pairs of the rewrite system 〈x, y〉 and then to add pairs of new
rewrite rules of the form {x → y, y → x}, thereby imposing an effective
equivalence  relation  between  the  two  elements  of  the  critical  pair,  in
such a way as to force the critical pair to converge after a single step.
The critical pair lemma guarantees that, so long as this process termi-
nates,  the  resulting  system  will  be  locally  confluent,  and  Newman’s

548 J. Gorard

Complex Systems, 29 © 2020



lemma  guarantees  that,  so  long  as  the  process  also  preserves  the
strong  normalization  property,  the  system  must  accordingly  be  glob-
ally confluent. 

Speaking  more  formally,  given  some  set  of  equivalences  between
objects,  denoted  E  (where  each  equivalence  of  the  form  x  y  can  be
thought of as corresponding to a pair of rewrite rules {x → y, y → x}),
Knuth–Bendix  completion  is  a  semi-decision  procedure  for  con-
structing  a  confluent  and  strongly  normalizing  term  rewriting  system
R  that  shares  the  same  “deductive  closure”  as  E,  in  the  following
sense [16–18]:

Definition 19. Given  a  set  of  equivalences  E,  viewed  as  being  a  binary
relation  between  objects,  the  “rewrite  closure”  of  E,  denoted  →E,  is

the smallest rewrite relation that contains E. 

Definition 20. Given a set of equivalences E, the “deductive closure” of
E,  denoted  ↔E

* ,  is  the  equivalence  closure  of  →E,  that  is,  the  smallest

equivalence relation that contains →E.  

As such, in the context of (for instance) a theorem-proving system,
one  may  think  of  the  deductive  closure  of  E  as  being  the  set  of  all
equivalences  that  can  be  derived  as  valid  theorems  by  applying  the
equivalences  from  E  in  any  order.  A  more  general  definition  can  be
constructed  for  the  non-equational  case,  that  is,  for  sets  of
(potentially asymmetrical) rewrite relations: 

Definition 21. Given  a  set  of  rewrite  rules  R,  viewed  as  a  binary  rela-
tion,  the  “rewrite  closure”  of  R,  denoted  →R,  is  the  smallest  rewrite

relation that contains R. 

Definition 22. Given  a  set  of  rewrite  rules  R,  viewed  as  a  binary  rela-
tion,  the  “converse  closure”  of  R,  denoted  ←R,  is  the  converse  rela-

tion of →R, that is: 

given( →R ) ⊆ X⨯Y,

( ←R )  {(y, x) ∈ Y⨯X : (x, y) ∈ ( →R )}.
(16)

Definition 23. Given  a  set  of  rewrite  rules  R,  viewed  as  a  binary  rela-
tion,  the  “deductive  closure”  of  R,  denoted  →R

* ◦ ←R
* ,  is  the  relation

formed  by  the  composition  of  the  reflexive  transitive  closures  of  →R

and ←R, denoted →R
*

 and ←R
* , respectively.  

Thus,  in  a  similar  way  to  that  described  above,  one  can  think  of
the deductive closure of R as being the set of all equivalences that can
be  derived  as  valid  theorems  by  applying  the  rewrite  rules  from R
(systematically,  from  left  to  right),  until  the  two  sides  of  the  equiva-
lence are literally equal. 
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For instance, if E is a set of equivalences corresponding to the stan-
dard identity, inverse and associativity axioms from group theory: 

E  1 · x  x, x-1 · x  1, (x · y) · z  x · (y · z), (17)

then the following group-theoretic theorem:  

a-1 · a · b ↔E
* b, (18)

is an element of the deductive closure of E, due to the existence of the
following finite deduction chain:  

a-1 · a · b ↔E
* a-1 · a · b ↔E

* 1 · b ↔E
* b. (19)

On  the  other  hand,  if  one  instead  considers  R,  the  corresponding  set
of (asymmetrical) rewrite rules:  

R  1 · x → x, x-1 · x → 1, (x · y) · z → x · (y · z), (20)

then although the following theorem:  

a-1 · a · b →R
* ◦ ←R

* b · 1, (21)

is an element of the deductive closure of R, due to the existence of the
following finite rewrite chain:  

a-1 · a · b →R
* 1 · b →R

* b ←R
* b · 1, (22)

the analog of our original theorem:  

a-1 · a · b →R
* ◦ ←R

* b, (23)

is no longer such an element, since the asymmetry of the rewrite rules
in R prevents one from applying a right-to-left variant of the rule:  

(x · y) · z → x · (y · z), (24)

as  required.  A  graphical  depiction  of  how  the  Knuth–Bendix  comple-
tion  procedure  can  reduce  the  computational  complexity  of  deter-
mining  whether  two  expressions  x  and  y  are  equivalent,  by  first
expanding  the  rewrite  relation  to  allow  for  the  existence  of  unique
normal  forms  for  x  and  y,  and  then  testing  whether  both  expressions
x and y reduce to a common normal form, is shown in Figure�10.  

Therefore,  a  generalized  multiway  version  of  the  Knuth–Bendix
completion procedure allows one to start from some multiway system
that  is  terminating  (such  that  every  branch  eventually  reaches  some
normal  form  after  a  finite  number  of  steps),  but  whose  evolution  is
not  causal  invariant,  and  from  it  to  produce  a  new  multiway  evolu-
tion with the same deductive closure as the old one (i.e., in which the
set  of  all  equivalences  between  multiway  states,  when  effectively
“modded out” by the updating rules, is strictly preserved), but which
is  nevertheless  causal  invariant.  In  practice,  this  is  actualized  by
adding  new  effective  updating  rules  that  force  branch  pairs  resulting

550 J. Gorard

Complex Systems, 29 © 2020



from the bifurcation of the multiway evolution to reconverge, thereby
collapsing  distinct  branches  of  the  multiway  system  back  to  a  single
effective  evolution  history.  Our  conjecture,  which  we  formalize  and
prove in the following, is that this procedure is formally equivalent to
wavefunction  collapse  in  quantum  mechanics  (although  the  complete
derivation  of  this  apparent  collapse  from  the  multiway  analog  of
quantum  decoherence  will  not  be  presented  until  the  following
section). 

Figure 10. A graphical representation of the Knuth–Bendix completion proce-
dure for proving an equational theorem; proving that x ↔* y is computation-
ally  difficult,  since  it  generally  requires  performing  a  heuristic  search  (shown
in red) before a correct proof can be found (shown in green), whereas proving
that x and y reduce to the same normal form, denoted x  y , is computa-
tionally  easy  (shown  in  gray).  The  Knuth–Bendix  completion  procedure  has
the effect of expanding the rewrite relation → so as to necessitate the existence
of  unique  normal  forms  for  x  and  y.  Image  by  Jochen  Burghardt,  distributed
under a CC BY-SA 4.0 license.  

Rather  excitingly,  it  is  a  standard  consequence  of  term  rewriting
theory  that,  although  Knuth–Bendix  completion  always  preserves
deductive  closure,  applying  it  can  have  the  effect  of  allowing  new
states  of  the  multiway  system  to  become  reachable,  which  were  not
previously  obtainable  using  the  non-causal  invariant  rule  set;  essen-
tially,  this  occurs  because  the  new  rules  that  get  added  as  a  result  of
imposing  equivalences  between  branch  pairs  can  have  slightly  greater
generality  than  the  original  set  of  updating  rules.  An  immediate
corollary of our conjecture is that these new states should correspond
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to  quantum  interference  effects  between  neighboring  branches  of  the
multiway  system,  which  we  shall  see  explicitly  in  the  forthcoming
section. 

Wavefunction Collapse and the Uncertainty Principle    2.3

As  alluded  to  earlier,  we  can  begin  by  thinking  of  states  existing  on
distinct  branches  of  the  multiway  system  as  corresponding  to
orthonormal  eigenstates  of  the  universe,  with  the  overall  evolution  of
the  multiway  system  thereby  corresponding  to  the  evolution  of  some
linear  superposition  of  these  eigenstates,  that  is,  to  the  unitary  evolu-
tion  of  a  wavefunction.  This  is  more  than  merely  an  analogy;  as  we
shall  prove  rigorously  in  the  following  section,  the  geometry  of  the
global multiway system converges to the geometry of a (complex) pro-
jective  Hilbert  space  in  the  limit  of  an  infinite  number  of  updating
events,  thus  allowing  us  to  consider  a  “branchlike  hypersurface”  of
states in the multiway system (i.e., a collection of multiway states that
can  be  considered  simultaneous  with  respect  to  some  universal  time
function, analogous to a spacelike hypersurface in the relativistic case,
and  as  defined  formally  later)  as  being  an  element  of  that  projective
Hilbert space. More precisely, such a hypersurface may be considered
to  be  a  linear  superposition  of  the  basis  eigenstates  of  the  multiway
system�[19]:  

ψ 〉  
i

ci ϕi 〉,
(25)

where  the  ci  are  probability  amplitudes  corresponding  to  each  eigen-

state ϕi 〉 (in the multiway case, these amplitudes are concretely speci-

fied  by  a  sum  of  the  incoming  path  weights  for  the  associated  vertex
in  the  multiway  graph,  where  these  path  weights  are  computed  using
the  discrete  multiway  norm,  as  defined  below).  By  assumption,  these
eigenstates form an orthonormal basis for the Hilbert space:  

∀ i, j, ϕiϕj  δij, (26)

where  δij  denotes  the  standard  Kronecker  delta  function,  thus  allow-

ing  us  to  interpret  the  hypersurface  state  ϕ 〉  as  being  a  normalized
wavefunction for some generic quantum system:  

〈ψ ψ〉  
i

ci
2  1.

(27)

Knuth–Bendix  completion  therefore  allows  one  to  “collapse”  the
evolution  of  the  multiway  system,  in  such  a  way  as  to  exhibit  only  a
single  global  thread  of  effective  evolution  history;  this  is  concretely
achieved  by  constructing  equivalence  classes  between  distinct
branches of the multiway system through the addition of new update
rules  that  effectively  impose  equivalences  between  unresolved  branch
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pairs.  If  we  interpret  the  set  { ϕi 〉}—the  set  of  possible  resolution

states achievable via Knuth–Bendix completion—as being the eigenba-

sis  of  some  observable  operator,  denoted  Q

,  applied  to  the  multiway

system,  then  we  can  interpret  the  completion  procedure  as  being  a

measurement of the observable corresponding to Q

. Completion (i.e.,

observation)  thus  causes  the  wavefunction  to  “collapse”  to  a  single
eigenstate [20–22]: 

ψ 〉 → ϕk 〉, for some k ∈ ℕ, (28)

where the a priori probability of collapsing ψ 〉 to eigenstate ϕk 〉 is

given by the multiway Born rule for evolution path weights:  

Pk  ψϕk2  ck2; (29)

it  is  meaningful  to  say  that  the  wavefunction  has  “collapsed,”
because, a posteriori:  

ci  δik, (30)

since,  post-completion,  there  exists  only  a  single  effective  branch  of
multiway evolution.  

A  rigorous  mathematical  explanation  for  why  the  act  of  observa-
tion should cause the multiway system to undergo a completion proce-
dure  is  detailed  in  the  next  section  (which  first  requires  providing  a
formal  mathematical  definition  of  a  multiway  observer);  however,  an
ad hoc intuitive explanation can be given presently in terms of coarse-
graining  procedures  in  statistical  mechanics.  Specifically,  in  classical
statistical  mechanics,  the  number  of  microstates  for  a  given  system  is
generally  uncountably  infinite,  since  the  positions  and  momenta  of
particles generically take values in the real numbers xi, pi ∈ . There-

fore,  in  order  to  be  able  to  define  quantities  such  as  Ω,  namely  the
number  of  microstates  that  are  consistent  with  a  given  macrostate,
within Boltzmann’s entropy formula [23]: 

S  kB log(Ω), (31)

it  is  first  necessary  to  “coarse-grain”  these  microstates,  essentially  by
grouping  them  together  into  equivalence  classes,  thereby  obtaining  a
countable  set  of  states  (modulo  equivalence).  In  order  to  define  such
an  equivalence  class,  one  defines  two  particles  i  and  j  as  being  in
“equivalent”  (which,  in  this  particular  case,  means  “observationally
indistinguishable”)  states  if  their  respective  positions  and  momenta
are sufficiently nearby in value, that is:  

∃ δx, δp ∈ ,
such that xi - xj < δx and pi - pj < δp. (32)

If every vertex in a multiway evolution graph corresponds to a dis-
tinct microstate of the universe, and if the branch pair 〈x, y〉 is found
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and  forced  to  converge  (by  adding  the  pair  of  update  rules
{x → y, y → x} via the Knuth–Bendix algorithm), then this completion
step  effectively  corresponds  to  the  definition  of  an  equivalence  rela-
tion  between  microstates  x  and  y.  Consequently,  by  analogy,  each
such branch pair completion step may be viewed as an enforcement of
the statement that the microstates x and y are indistinguishable to any
sufficiently  macroscopic  observer,  as  a  result  of  that  observer’s  natu-
rally  induced  coarse-graining.  The  statement  of  correctness  of  the
Knuth–Bendix algorithm can therefore be interpreted as the statement
that,  at  least  in  certain  cases,  it  is  possible,  given  sufficient  coarse-
graining,  to  make  the  evolution  of  a  quantum  mechanical  system
appear  macroscopically  classical  (i.e.,  causal  invariant)  to  such
observers. 

In  order  to  understand  intuitively  why  a  macroscopic  observer
should  cause  such  a  completion  procedure  to  occur,  we  must  first
cease  to  view  the  observer  as  an  abstract  entity  independent  of  the
multiway evolution, and instead view them as an extended and persis-
tent  structure  embedded  within  the  multiway  system  itself.  This  leads
to  the  following,  somewhat  philosophical,  interpretation  of  what  it
means  to  be  an  observer  in  the  context  of  a  multiway  evolution,
which we shall make mathematically precise in the next section: 

Definition 24. An “observer” is any persistent structure within a multi-
way system that perceives a single, definitive evolution history.  

Loosely  speaking,  therefore,  we  can  think  of  the  observer  as  being
any entity in the multiway system that “thinks” a definite  sequence of
events  occurred:  within  their  own  internal  representation  of  the
world, the history of the universe must appear to be causal invariant.
In  order  to  be  able  to  form  such  a  coherent  representation,  the
observer  must  themself  have  undergone  a  sufficient  level  of  coarse-
graining/branch pair completion to have their own internal representa-
tion  be  at  least  subjectively  causal  invariant  (i.e.,  they  must  have
undergone  some  form  of  Knuth–Bendix  procedure,  so  as  to  ensure
that  at  least  all  of  their  own  local  branch  pairs  converge,  from  their
own subjective point of view). 

If  we  now  assume  that  the  observer  is  sufficiently  large  that  their
internal  hypergraph  structure  constitutes  a  statistically  representative
sample  of  the  hypergraph  structure  of  the  rest  of  the  universe,  then
the  minimal  set  of  branch  pair  completion  rules  (and  hence,  coarse-
grained  microstate  equivalences)  that  would  be  required  to  make  the
observer themself be causal invariant will also cause the remainder of
the universe to be causal invariant, at least from the vantage point of
that  particular  observer.  Therefore,  the  only  requirements  that  an
observer must fulfill  in order to necessitate collapsing the evolution of
the  multiway  system  (and  hence,  the  universal  wavefunction)  are  to
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be  sufficiently  macroscopic  and  to  possess  a  causal  invariant  internal
representation  of  the  world.  For  the  remainder  of  this  subsection,  we
will  show  how  such  an  interpretation  immediately  results  in  the
Wolfram Model satisfying a multiway form of the uncertainty princi-
ple.  The  formal  proof  of  correctness  of  this  interpretation  is  given  in
the next section. 

In  order  to  derive  the  multiway  uncertainty  principle,  we  begin  by
formally  introducing  the  notion  of  commutation  for  rewrite  relations
in abstract rewriting systems [24]: 

Definition 25. If  R1  A, →1   and  R2  A, →2   denote  a  pair  of

abstract rewriting systems, sharing the same object set A but with dif-
ferent  rewrite  relations  →1  and  →2,  then  R1  and  R2  are  said  to

“commute” if: 

∀ x, x →1
* y and x →2

* z⟹∃ w,

such that y →2
* w and z →1

* w.
(33)

We can see immediately that an abstract rewriting system R is con-
fluent if and only if it commutes with itself; a far less obvious observa-
tion  was  first  made  by  Hindley  and  Rosen  [25,  26],  who  formulated
the so-called “commutative union theorem,” which states that if 

∀ i ∈ I, Ri  A, →i (34)

denotes  an  indexed  family  of  abstract  rewriting  systems,  such  that  Ri

commutes with Rj for all i, j ∈ I, then their union:  


i∈I

Ri  A, 
i∈I

→i, (35)

is  always  confluent.  Moreover,  the  so-called  “commutativity  lemma”
gives  a  nontrivial  sufficient  condition  for  the  commutativity  of  sys-
tems R1 and R2, namely:  

∀ x, x →1 y and x →2 z⟹∃ w,

such that (y  w or y →2 w) and z →1
* w,

(36)

which  is  directly  related  to  the  statement  that  strong  confluence  is  a
sufficient condition for (global) confluence.  

An immediate general consequence of these results is that if the evo-
lution  of  a  multiway  system  is  not  causal  invariant,  then  there  will
exist  pairs  of  updating  events  that  do  not  commute;  the  outcome  of
the evolution of a hypergraph (in the Wolfram Model case) will there-
fore  depend  upon  the  precise  time  ordering  of  the  applications  of
these  events,  since  the  two  distinct  branches  of  the  multiway  system
corresponding  to  the  two  distinct  possible  timelike  orderings  of  these
events  will  not,  in  general,  reconverge  on  some  common  state.  Given
our  interpretation  of  the  multiway  system  as  a  discrete  analog  of
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(complex) projective Hilbert space, we may interpret rewrite relations

as being linear operators A

 acting upon this space [27–29]:

A


 
i

eiA

i, (37)

for  basis  vectors  ei,  and  with  each  component  operator  A

i  yielding  a

corresponding eigenvalue ai when applied to the wavefunction ψ:  

A

iψ  aiψ, (38)

where  this  wavefunction  corresponds  to  a  particular  “branchlike
hypersurface”  in  the  multiway  system,  and  the  associated  eigenvalue
corresponds to the sum of path weights for a particular state or collec-
tion of states in some neighboring hypersurface (corresponding to the
subsequent  evolution  step).  Interpreting  this  rewrite  relation  as  corre-
sponding to some observable quantity A, it therefore follows that:  

A


ψ  aψ, (39)

for some eigenvalue a, which itself corresponds to the measured value

of A; this fact follows immediately from the linearity of A

:  

A


ψ  
i

eiA

i ψ  

i

eiA

iψ  

i

(eiaiψ). (40)

For a pair of such rewrite relations, A


 and B

, associated to observ-

able quantities A and B, we can define  their commutator as being the
distance  in  the  neighboring  branchlike  hypersurface  (with  respect  to
the  multiway  norm,  defined  in  the  next  section)  between  the  state

obtained  by  applying  first  A


 and  then  B

,  and  the  state  obtained  by

applying first B

 and then A


: 

A

, B


  A


B

-B


A

; (41)

by linearity of A

 and B


, it follows that their commutator is itself a lin-

ear operator on our Hilbert space:  

A

, B


ψ  A


B


ψ -B

A


ψ. (42)

The  commutator  thus  effectively  quantifies  the  precision  with  which
observables A and B can be measured simultaneously. More precisely,
if  ψ  is  considered  an  eigenfunction  of  both  A  and  B,  yielding  respec-
tive  eigenvalues  a  and  b,  then  the  statement  that  the  rewrite  relations

associated to A

 and B


 commute, which we can now express as:  

A

, B


ψ  0, (43)
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implies that quantities A and B can be measured simultaneously with
infinite precision, since, by linearity:  

A

, B


  A


B


ψ -B

A


ψ  abψ - b(aψ)  0, (44)

corresponding to the statement that the timelike ordering of commuta-
tive  updating  events  (and  hence,  the  time  ordering  of  measurements
on observables A and B) does not matter—irrespective of which quan-
tity is measured first,  observations of A will always yield a and obser-
vations  of  B  will  always  yield  b.  Conversely,  if  the  rewrite  relations
are non-commuting, which we can express as:  

A

, B


ψ ≠0, (45)

then, as already established, the timelike ordering of the non-commu-
tative  updating  events  will  have  a  macroscopic  effect  on  the  ultimate
outcomes  of  those  events  in  the  multiway  system,  and  hence  the  time
ordering  of  the  measurement  operations  will  affect  the  outcomes  of
the  two  observations.  In  other  words,  measurements  made  of  non-
commuting  observables  necessarily  take  place  on  distinct  branches  of
multiway  evolution  history  [30].  This  consequently  places  a  limit  on
the  precision  with  which  observables  A  and  B  can  be  simultaneously
prepared and measured:  

ΔAΔB ≠
A, B

2
. (46)

If  one  now  assumes  the  unit  distance  on  branchlike  hypersurfaces  to
be  given  by  iℏ  (as  will  be  justified  formally  in  the  next  section),  then
this corresponds precisely to the statement of the uncertainty principle
for rewrite relations on multiway systems:  

A

, B


  iℏ. (47)

In particular, this allows us to interpret all pairs of single-step updat-

ing events A

 and B


 that do not commute as abstract rewriting systems

as  being  canonically  conjugate,  and  therefore  we  may  consider  the
associated  observables  A  and  B  to  be  Fourier  transform  duals  of  one
another.  

One  additional  elegant  byproduct  of  this  correspondence  between
updating  events  on  multiway  graphs  and  linear  operators  on  projec-
tive Hilbert spaces is that it immediately renders many deep results of
quantum  field  theory,  such  as  the  operator-state  correspondence  in
the context of conformal field  theory, exceptionally easy to prove. For
instance,  the  formal  statement  of  operator-state  correspondence  is
that  there  exists  a  bijective  mapping  between  operators,  designated
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ϕz, z, and states, designated ϕ 〉, of the form:

ϕ 〉  lim
z,z→0

ϕz, z 0 〉, (48)

where  0   denotes  the  vacuum  state,  assumed  to  be  invariant  under

the action of SL2, ℤ. In our generalized multiway context, this corre-

sponds to the rather elementary statement that any state x in the multi-
way system can be constructed using an “ex-nihilo” updating event of
the form:  

∅ → x. (49)

Some Mathematical and Computational Considerations    2.4

In  the  context  of  universal  algebra  and  computational  group  theory,
the  Knuth–Bendix  completion  algorithm  used  within  the  collapse  of
the multiway system wavefunction may be thought of as being a semi-
decision  procedure  for  solving  the  word  problem  for  a  specified  alge-
bra.  More  specifically,  if  M  〈X R〉  denotes  some  finitely  presented
monoid, with a finite  generator set X and a finite  relation set X, then
the  free  monoid  generated  by  X,  denoted  X*,  may  be  interpreted  as
the  set  of  all  words  in  X.  The  elements  of  M  will  now  correspond  to
equivalence  classes  of  X*

 under  an  equivalence  relation  generated  by
R, and for each such class {w1, w2, …} there will exist some canonical

representative  word  for  that  class,  which  we  can  denote  wk.  This

canonical  word  may  be  considered  to  be  a  normal  form  with  respect
to  the  term  rewriting  system  associated  to  M,  since  the  canonical  ele-
ment  is  presumed  to  be  minimal  with  respect  to  some  well-ordering
relation, denoted <, satisfying the property of translation-invariance:

∀ A, B, X, Y ∈ X*, A < B⟹XAY < XBY. (50)

Therefore, since a confluent  term rewriting system allows one to com-
pute the unique normal form for each word x ∈ X*, it also allows one
to solve the word problem over M.  

Once recast in this purely algebraic form, we can see that Buchberg-
er’s algorithm [31, 32] for determining properties of ideals in polyno-
mial rings (and their associated algebraic varieties) is ultimately just a
particular  specialized  instantiation  of  the  Knuth–Bendix  algorithm.
More precisely, given a polynomial ring [33]: 

R  K[x1, … , xn], (51)

over  some  field  K,  the  ideal  generated  by  F,  where  F  denotes  some
finite set of polynomials in R:  

F  f1, … , fk, (52)
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corresponds  to  the  set  of  linear  combinations  of  elements  in  F,  with
coefficients given by elements of R:  

f1, … , fk  
i1

k

gifi : g1, …gk ∈ K[x1, … , xn] . (53)

The  individual  monomials,  which  are  themselves  products  of  the
form:  

M  x1
a1⋯ xn

an , (54)

for  some  non-negative  integers  ai,  and  which  appear  naturally  in  the

construction of the polynomials in R:  

c1M1 + ⋯ + cmMm, where ci ∈ K and ci ≠ 0, (55)

then  have  a  total  order  defined  upon  them,  which  we  can  denote <.
This total order is required to be compatible with multiplication, such
that:  

∀ M, N, P monomials, M ≤ N ⟺ MP ≤ NP, (56)

and:  

∀ M, P monomials, M ≤ MP, (57)

thus  yielding  the  translation-invariance  property  mentioned  earlier.
Buchberger’s observation was then effectively that, given some ideal I
in  a  polynomial  ring,  the  so-called  “Gröbner  basis,”  denoted  G,
which is the generating set of I with the property that the ideal gener-
ated by the leading terms of polynomials in I is equal to the ideal gen-
erated  by  the  leading  terms  in  G  (with  respect  to  the  aforementioned
monomial order relation), can be computed by a procedure analogous
to Knuth–Bendix completion.  

This  dual  interpretation  of  the  Knuth–Bendix  procedure  as  a  sys-
tematic  method  both  for  collapsing  the  multiway  wavefunction  and
for  solving  the  word  problem  for  an  arbitrary  finitely  presented
monoid has significant computational implications regarding the inter-
pretation  of  quantum  information  in  multiway  systems;  more  specifi-
cally,  it  is  indicative  of  a  fundamental  equivalence  between  the
collapse of a multiway evolution corresponding to a quantum compu-
tation,  and  the  solution  to  the  word  problem  for  the  monoid  of
unitary automorphisms of Hilbert space that constitutes the transition
function  for  a  three-tape  quantum  Turing  machine.  This  has  several
profound  implications  for  the  relative  computational  power  of
classical  Turing  machines,  quantum  Turing  machines  and  nondeter-
ministic Turing machines, an example of which we will outline in the
following. 

A classical Turing machine, defined  in terms of a partial transition
function, is an entirely deterministic abstract machine [34]: 
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Definition 26. A one-tape “classical Turing machine,” denoted: 

M  Q, Γ, b, Σ, δ, q0, F, (58)

is a 7-tuple, consisting of a finite,  nonempty set of states (denoted Q),
a  finite,  nonempty  alphabet  (denoted  Γ),  a  blank  symbol  (denoted

b ∈ Γ),  a  set  of  input  symbols  (denoted Σ ⊆ Γ\b),  an  initial  state

(denoted  q0 ∈ Q),  a  set  of  final  states  (denoted  F ⊆ Q),  and  a  partial

function known as the “transition function,” denoted:  

δ : Q\F⨯Γ → Q⨯Γ⨯ {L, R}, (59)

where {L, R} designates the set of possible shift directions for the tape
head  (with  elements  corresponding  to  left  shift  and  right  shift,
respectively).    

On  the  other  hand,  a  nondeterministic  Turing  machine,  by  replac-
ing this partial function with a partial relation (or multivalued partial
function), allows instead for nondeterministic evolution [35]: 

Definition 27. A  one-tape  “nondeterministic  Turing  machine”  consists
of the same 7-tuple as a classical Turing machine, but with the partial
transition function now replaced with a partial transition relation: 

δ ⊆ Q\F⨯F⨯Q⨯Γ⨯L, S, R, (60)

with  an  expanded  set  of  shift  directions  L, S, R,  now  also  allowing

for no movement of the tape head.   

Finally,  a  quantum  Turing  machine,  rather  than  evolving  along  a
single trajectory in a nondeterministic fashion, like a nondeterministic
Turing  machine,  instead  evolves  a  linear  superposition  of  all  possible
trajectories [36–38]: 

Definition 28. A  three-tape  “quantum  Turing  machine”  (one  tape  for
input, one for intermediate results and one for output—necessarily dis-
tinct  in  order  to  preserve  unitarity  of  evolution)  also  consists  of  the
same  7-tuple  as  a  classical  Turing  machine,  but  with  the  set  of  states
Q  now  replaced  by  a  Hilbert  space,  the  alphabet  Γ  replaced  by
another  (potentially  distinct)  Hilbert  space,  the  blank  symbol  b ∈ Γ

replaced  by  a  zero  vector,  the  input  symbols  Σ ⊆ Γ\b  taken  to  be  a

discrete  set  (as  in  the  classical  case),  the  initial  state  q0 ∈ Q  replaced

by either an initial pure or mixed quantum state, the set of final  states
F ⊆ Q replaced by a subspace of the original Hilbert space Q, and the
transition function replaced with a transition monoid of the form: 

δ : Σ⨯Q⊗ Γ → Σ⨯Q⊗ Γ⨯ {L, R}, (61)

that is, some collection of unitary matrices corresponding to automor-
phisms of the underlying Hilbert space Q.    
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Therefore, if we interpret distinct branches of the multiway system
as  enacting  computations,  then  we  obtain  the  following,  exceedingly
clear  picture  of  the  relationship  among  these  three  formal  notions  of
computation:  a  classical  Turing  machine  is  effectively  evolving  along
a  single  definite  path  in  the  multiway  system  (using  some  determinis-
tic  rule  to  select  which  branch  to  follow),  a  nondeterministic  Turing
machine is also evolving along a single path (but now using a nondeter
ministic rule to select the sequence of successive branches), and a quan-
tum  Turing  machine  corresponds  to  the  entire  multiway  evolution
itself (i.e., to the superposition of all possible paths). 

This  leads  to  an  immediate  and  potentially  testable  prediction  of
our  interpretation  of  quantum  mechanics:  namely  that  following
appropriate  coarse-graining  (i.e.,  following  the  application  of  a
Knuth–Bendix  completion),  the  class  of  problems  that  can  be  solved
efficiently  by  quantum  computers  should  be  identical  to  the  class  of
problems  that  can  be  solved  efficiently  by  classical  computers.  More
precisely,  we  predict  in  this  appropriately  coarse-grained  case  that
P  BQP, where P and BQP denote the complexity classes of polyno-
mial  time  and  bounded  error  quantum  polynomial  time,  respectively.
Of  course,  this  prediction  presumes  that  the  computational  complex-
ity of the completion procedure itself is negligible, which clearly is not
true  for  multiway  systems  with  sufficiently  high  rates  of  branch  pair
divergence;  thus  the  prediction  only  holds  for  rules  that  are  suffi-
ciently  “close”  to  causal  invariance,  in  some  suitably  defined  sense.
The precise statement follows from the aforementioned interpretation
because,  although  global  multiway  evolution  in  principle  allows  for
potentially exponential (or even super-exponential) speedup over clas-
sical  computations  that  make  use  of  only  a  single  branch,  the  act  of
measurement  collapses  the  multiway  system  down  to  only  a  single
branch  of  evolution  history  from  the  perspective  of  the  observer.  In
other  words,  in  order  to  maintain  a  causal  invariant  representation,
the  observer  must  perform  a  sufficient  level  of  coarse-graining  to
ensure  that  any  apparent  advantage  obtained  through  the  use  of  a
quantum  computer  over  a  classical  one  is  effectively  lost.  This  state-
ment  can  be  proved  rigorously  by  applying  the  algebraic  form  of  the
Knuth–Bendix  completion  procedure  to  the  finitely  presented  transi-
tion monoid of a quantum Turing machine, thereby reducing it to the
partial  transition  function  of  a  classical  Turing  machine,  and  there-
fore  also  reducing  its  set  of  final  states  to  those  that  could  have  been
generated  in  approximately  the  same  number  of  evolution  steps  by
using only a classical Turing machine. These computational complex-
ity-theoretic consequences of our interpretation will be explored more
fully in a future publication. 
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Branchlike Foliations and Multiway Relativity  3.

Branchial Geometry and Multiway Invariance    3.1

One  feature  that  is  common  to  both  multiway  graphs  and  causal
graphs  is  that  their  edges  may  be  thought  of  as  representing  timelike
separations,  albeit  in  the  multiway  case  those  edges  are  updating
events  connecting  timelike-separated  global  states  of  the  universe,
while  in  the  causal  case  those  edges  are  causal  relations  connecting
timelike-separated  updating  events.  However,  one  direct  implication
of  this  combinatorial  correspondence  is  that,  in  much  the  same  way
as  one  is  able  to  construct  foliations  of  the  causal  graph  into  time-
ordered  sequences  of  discrete  spacelike  hypersurfaces  (by  effectively
changing  the  order  in  which  updating  events  get  applied),  one  is  also
able  to  construct  foliations  of  the  multiway  graph  into  time-ordered
sequences of discrete “branchlike” hypersurfaces (by effectively chang-
ing the order in which branch pairs diverge). Given the theory of mea-
surement  developed  in  the  previous  section,  a  particular  choice  of
branchial  hypersurface  may  be  interpreted  as  corresponding  to  a  par-
ticular choice of microstates that the observer is assuming to be equiv-
alent—a statement that we will be able to make precise momentarily.  

As in the purely causal case described in [1], we can formalize this
notion  of  “branchlike  separation”  by  constructing  a  layered  graph
embedding of the multiway graph into the discrete “multiway lattice”

ℤ1, n, for some (generically very large) n, and thus labeling the global
multiway states by: 

q  (t, y), (62)

where t ∈ ℤ is the usual discrete time coordinate from the causal case,
and:  

y  (y1, … , yn) ∈ ℤn, (63)

are  discrete  “branchial”  coordinates  (i.e.,  the  multiway  analog  of  a
spatial  coordinate  system).  One  subsequently  induces  a  geometry  on
the embedded multiway graph in the standard way:  

Definition 29. The discrete “multiway norm” is given by: 

|| (t, y) ||  || y ||2 - t2, (64)

or, in more explicit form:  

|| (t, y) ||  y1
2 + ⋯ + yn

2 - t2. (65)

Definition 30. Global  multiway  states  q  (t, y)  are  classified  as
“timelike,” “entanglementlike” or “branchlike” based upon their dis-
crete multiway norm: 
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q ~

timelike, if || (t, y) || < 0,

entanglementlike, if || (t, y) ||  0,

branchlike, if || (t, y) || > 0.

(66)

Definition 31. Pairs  of  global  multiway  states  q  (t1, y1),  r  (t2, y2)

can  be  classified  as  “timelike-separated,”  “entanglementlike-
separated” or “branchlike-separated,” accordingly: 

(q, r) ~

timelike-separated,
if((t1, y1) - (t2, y2)) ~ timelike,

entanglementlike-separated,
if((t1, y1) - (t2, y2)) ~ entanglementlike,

branchlike-separated,
if((t1, y1) - (t2, y2)) ~ branchlike.

(67)

Our justification  for referring to the intermediate form of multiway
state  separation  as  being  “entanglementlike”  is  quite  simply  that
when  a  global  state  A  in  the  multiway  system  diverges  to  yield  a

branch  pair  B, C,  one  can  think  of  the  states  B  and  C  as  being

“entangled”  in  the  sense  that,  though  they  may  not  be  causally  con-
nected,  they  are  nevertheless  now  correlated  by  virtue  of  their
multiway descendence from the common ancestor state A. The entan-
glement  rate  defined  by  the  combinatorial  structure  of  the  multiway
graph  therefore  determines  which  particular  collections  of  multiway
states  are,  in  principle,  able  to  influence  which  other  collections  of
multiway states; by this token, the analog of a light cone in the causal
graph  is  an  “entanglement  cone”  in  the  multiway  graph,  which,  by
probing  the  entanglement  structure  of  the  multiway  system,  allows
one effectively to determine the maximum theoretical rate of entangle-
ment  between  global  multiway  states.  Denoting  the  embedded  multi-

way  graph  by  ℳ, g,  with  some  metric  g  defined  by  the  multiway

norm  (the  precise  details  of  how  to  define  an  appropriate  metric  on
an  arbitrary  multiway  system  are  given  in  the  following  subsection),
we consequently have (c.f. [39]): 

Definition 32. A global state x “evolutionarily precedes” global state y,
denoted x ≪ y, if there exists a future-directed (i.e., monotonic down-
ward)  evolutionary  (i.e.,  timelike)  path  through  the  multiway  graph
connecting x and y. 

Definition 33. A  global  state  x  “strictly  entanglementwise  precedes”
global  state  y,  denoted  x < y,  if  there  exists  a  future-directed  (i.e.,
monotonic  downard)  entanglement  (i.e.,  non-branchlike)  path
through the multiway graph connecting x and y. 
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Definition 34. A  global  state  x  “entanglementwise  precedes”  global
state y, denoted x ≺ y, if either x strictly entanglementwise precedes y,
or x  y. 

Definition 35. The  “evolutionary  future”  and  “evolutionary  past”  of  a
global  state  x,  denoted  I+(x)  and  I-(x),  are  defined  as  the  sets  of
global  states  that  x  evolutionarily  precedes,  and  that  evolutionarily
precede x, respectively: 

I+(x)  y ∈ ℳ : x ≪ y, I-(x){y ∈ M : y ≪ x}. (68)

Definition 36. The  “entanglement  future”  and  “entanglement  past”  of
a  global  state  x,  denoted  J+(x)  and  J-(x),  are  defined  as  the  sets  of
global states that x entanglementwise precedes, and that entanglement-
wise precede x, respectively: 

J+(x)  y ∈ ℳ : x ≺ y, J-(x)  y ∈ ℳ : y ≺ x. (69)

By analogy to the purely relativistic case, we can see that I+(x) des-
ignates  the  interior  of  the  future  entanglement  cone  of  x,  while  J+(x)
designates  the  entire  future  entanglement  cone,  including  the  cone
boundary itself. As expected, the definition  of evolutionary and entan-
glement  future  and  past  can  be  extended  to  sets  of  global  states
S ⊂ ℳ in the usual way: 

I±S  
s∈S

I±(x), J±S  
x∈S

J±(x).
(70)

This  new  formalism  allows  us  to  define  precisely  what  kind  of
mathematical  structure  the  previously  introduced  “branchlike  hyper-
surfaces” actually are—namely, they correspond to the multiway ana-
log  of  discrete  Cauchy  surfaces  in  a  causal  graph.  The  statement  that
the multiway graph can be foliated into a non-intersecting set of such
hypersurfaces, that is, the analog of strong hyperbolicity for multiway
graphs,  is  conjectured  to  be  related  to  the  unitarity  of  evolution  in
quantum  mechanics.  As  discussed  in  the  previous  section,  since  each
branch  pair  in  the  multiway  graph  can  effectively  be  thought  of  as
denoting  a  pair  of  possible  outcomes  for  a  measurement  operation
being applied to some global state (where the state being measured is
the common ancestor of the branch pair, and the measurement opera-
tion corresponds to the rewrite relation being applied), it follows that
possible foliations of the multiway graph correspond to different pos-
sible  orderings  in  the  application  of  measurement  events,  with  each
such  ordering  corresponding  to  a  possible  observer  (or,  more  cor-
rectly,  to  a  global  equivalence  class  of  observers  with  the  same
sequence of measurement choices). Finally, this allows us to provide a
formal mathematical definition  for what it means to be an observer in
a multiway system: 
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Definition 37. An  “observer”  in  a  multiway  system  is  any  ordered
sequence  of  non-intersecting  branchlike  hypersurfaces  Σt  that  covers

the entire multiway graph, with the ordering defined  by some univer-
sal time function:

t : ℳ → ℤ, such that t ≠ 0 everywhere, (71)

such  that  the  branchlike  hypersurfaces  are  the  level  sets  of  this  func-
tion, satisfying:  

∀ t ∈ ℤ, Σt1
p ∈ ℳ : t(p)  t1,

and Σt1
⋂ Σt2

 ∅ ⟺ t1 ≠ t2.
(72)

Therefore, the analog of a Lorentz transformation in the multiway
case  is  any  parameterized  change  of  observer,  with  the  notion  of
causal  invariance  (and  hence,  Lorentz  covariance)  now  replaced  with
the analogous notion of “multiway invariance”: 

Definition 38. A  multiway  system  is  “multiway  invariant”  if  the  order-
ing  of  timelike-separated  measurement  events  in  the  multiway  graph
is  preserved  under  parameterized  changes  of  the  observer  (i.e.,  under
distinct choices of branchlike hypersurface foliation), even though the
ordering of branchlike-separated measurement events is not.  

Enforcing  the  constraint  of  multiway  invariance  also  finally  gives
us  a  mathematically  rigorous  justification  for  our  previously  outlined
interpretation of quantum measurement in terms of branch pair com-
pletions applied to the multiway evolution (although a more geometri-
cal  version  of  the  same  argument,  in  terms  of  the  trajectories  of
geodesics  in  projective  Hilbert  space,  is  also  given  explicitly  below).
Specifically,  each  branchlike  hypersurface  can  be  thought  of  as  desig-
nating  an  equivalence  class  between  branchlike-separated  multiway
states (which are themselves elements of branch pairs, and assumed to
be  observationally  indistinguishable  by  a  macroscopic  observer),  and
therefore  a  multiway-invariant  system  can  be  obtained  by  forcing  all
branch  pairs  on  each  such  hypersurface  to  be  convergent,  for
instance,  by  adding  completion  rules.  In  much  the  same  way  as  dis-
crete  forms  of  special  and  general  relativity  can  be  derived  from  the
principle  of  causal  invariance,  our  central  conjecture  in  this  paper  is
that  discrete  forms  of  quantum  mechanics  and  quantum  field  theory
can  be  derived  from  the  principle  of  multiway  invariance.  Since
Newman’s  lemma  guarantees  that  critical  pair  convergence  implies
confluence  for terminating rewriting systems, it follows that multiway
invariance  implies  causal  invariance  for  any  non-infinite  multiway
evolution. 

However, there is still one key mathematical subtlety that we have
glossed  over,  but  which  we  must  now  return  to  in  order  to  complete
this  proof.  Namely,  both  the  multiway  graph  and  the  causal  graph
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are, at some level, approximations to a more fundamental object—the
“multiway  causal  graph”—which  contains  edges  corresponding  to
causal relations between all updating events, not only for a single evo-
lution history (as defined  by a single multiway branch), but across all
possible  evolution  histories.  Therefore,  we  can  see  that  the  structure
of the multiway graph corresponds to the coarse, large-scale structure
of  the  multiway  causal  graph  (with  the  fine  details  of  individual
causal  relations  removed),  whereas  the  structure  of  a  purely  relativis-
tic  causal  graph  is  given  by  the  fine  structure  of  a  single  “bundle”  of
edges in the multiway causal graph—as we will see later, this is conjec-
tured to be deeply related to the concept of twistor correspondence in
twistor theory. Therefore, the true multiway norm is actually the dis-
crete  norm  defined  over  the  entire  multiway  causal  graph,  to  which
the  multiway  norm  described  earlier  is  only  a  coarse  approximation.
But  a  key  difficulty  immediately  presents  itself,  since  there  are  now
three  distinct  types  of  separation  between  multiway  causal  vertices:
spacelike  separation,  timelike  separation  and  branchlike  separation.
To  distinguish  between  the  two  separation  distances  in  the  causal
graph,  we  simply  denote  timelike  distances  with  negative  numbers
and  spacelike  distances  with  positive  ones,  but  now  branchlike  dis-
tances  necessitate  a  new  numerical  direction  in  order  to  differentiate
them  from  spacelike  distances,  so  (without  loss  of  generality)  we
choose to use imaginary numbers. 

The  rigorous  justification  for  choosing  imaginary  numbers  for
denoting branchlike distances comes from Sylvester’s “law of inertia”
for  quadratic  forms  [40];  if  A  is  a  symmetric  matrix  defining  some
quadratic form, then, for every invertible matrix S such that: 

D  SAS�
(73)

is diagonal, the number of negative (respectively, positive) elements of
D is always the same. In other words, for a real quadratic form Q in
n variables, expressed in diagonal form:  

Q(x1, x2, … , xn)  
i1

n

aixi
2, ai ∈ 0, 1, -1, (74)

the  number  of  coefficients  of  Q  of  a  given  sign  remains  invariant
under  changes  of  basis;  geometrically,  this  implies  that  the  dimension
of the subspace on which the form Q is positive definite  (respectively,
negative  definite)  is  always  the  same.  A  generalization  of  this  theo-
rem,  due  to  Ikramov  [41],  extends  to  any  normal  matrices  A  and  B
satisfying the property that:  

B  SAS*, (75)

for  some  nonsingular  complex  matrix  S,  and  states  that  A  and  B  are
congruent  if  and  only  if  the  number  of  eigenvalues  on  each  open  ray

566 J. Gorard

Complex Systems, 29 © 2020



in ℂ is the same for each. This result immediately implies that in order
to maintain adequate discrimination among branchlike, spacelike and
timelike separation across all possible observers, the metric tensor for
the  multiway  causal  graph  must  have  eigenvalues  with  at  least  three
distinct  signs,  hence  necessitating  the  use  of  complex  numbers.  This
has implications for the proof that branchlike hypersurfaces converge
to complex projective Hilbert spaces in the limit of infinitely large mul-
tiway  graphs,  which  we  present  in  Section  3.2.  In  particular,  the
“projectivity’  of  the  projective  Hilbert  space  (i.e.,  the  invariance  of
quantum  states  under  rescaling  by  an  arbitrary  complex  number)
effectively  arises  from  the  additional  redundant  degree  of  freedom
introduced by allowing for both positive and negative imaginary num-
bers, when only one such sign is strictly required.  

As  such,  we  can  see  that  the  true  multiway  norm  for  a  multiway
causal  graph  embedded  in  the  discrete  “multiway-Minkowski  lattice”

ℤ1,n,m, for n, m ∈ ℕ, with global events labeled by: 

p  (t, x, y), (76)

for discrete spatial and branchial coordinates x and y:  

x  (x1, … , xn) ∈ Zn, y  (y1, … , ym) ∈ Zm, (77)

can now be defined:  

Definition 39. The discrete “multiway-Minkowski norm” is given by: 

|| (t, x, y) ||  || x ||2 + i || y ||2 - 1 + it2, (78)

or, in more explicit form:  

|| (t, x, y) ||  x1
2 + ⋯ + xn

2 + iy1
2 + ⋯ + ym

2  - 1 + it2. (79)

This  yields  an  associated  classification  of  global  events  and  their
separations: 

Definition 40. Global  events  p  (t, x, y)  are  classified  as  “timelike,”
“lightlike,”  “entanglementlike,”  “spacelike”  or  “branchlike,”  based
upon their discrete multiway-Minkowski norm: 

p ~

timelike, if ℜ( || (t, x, y) ||) < 0
and ℑ( || (t, x, y) ||) < 0,

lightlike, if ℜ( || (t, x, y) ||)  0,

entanglementlike, if ℑ( || (t, x, y) ||)  0,

spacelike, if ℜ( || (t, x, y) ||) > 0,

branchlike, if ℑ( || (t, x, y) ||) > 0.

(80)

Definition 41. Pairs  of  global  events  p  (t1, x1, y1),  q  (t2, x2, y2)

can  be  classified  as  “timelike-separated,”  “lightlike-separated,”
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“entanglementlike-separated,” “spacelike-separated” and “branchlike-
separated,” respectively:

(p, q) ~

timelike-separated,
if((t1, x1, y1) - (t2, x2, y2)) ~ timelike,

lightlike-separated,
if((t1, x1, y1) - (t2, x2, y2)) ~ lightlike,

entanglementlike-separated,
if((t1, x1, y1) - (t2, x2, y2)) ~ entanglementlike,

spacelike-separated,
if((t1, x1, y1) - (t2, x2, y2)) ~ spacelike,

branchlike-separated,
if((t1, x1, y1) - (t2, x2, y2)) ~ branchlike.

(81)

Note that there is no mutual exclusivity among lightlike-separated,
entanglementlike-separated,  spacelike-separated  and  branchlike-sepa-
rated  updating  events;  in  particular,  spacelike  separation  is,  in
general,  a  special  case  of  branchlike  separation,  since  the  application
of  a  pair  of  purely  spacelike-separated  updating  events  will  usually
yield  a  branch  pair  in  the  multiway  graph  (although  this  branch  pair
is  always  guaranteed  to  converge  if  the  system  is  causal  invariant,
since  causal  invariance  is  a  strictly  necessary  condition  for  multiway
invariance). This seemingly rather trivial observation has the welcome
consequence  of  immediately  implying  the  de  Broglie  hypothesis  (i.e.,
wave-particle  duality)  [42]  within  our  formalism,  for  the  following
reason:  while,  as  we  have  seen  previously,  a  geodesic  bundle  in  the
causal  graph  can  be  interpreted  as  the  collective  trajectory  of  a  set  of
test  particles,  a  geodesic  bundle  in  the  multiway  causal  graph  can  be
interpreted as the evolution of a wave packet (as will be demonstrated
formally  below).  Therefore,  the  lack  of  mutual  exclusivity  between
separation  types  makes  it  impossible  for  an  observer  in  the  multiway
causal graph to determine whether a particular geodesic bundle corre-
sponds to the evolution of a collection of test particles, a wave packet,
or both (since the geodesics themselves will appear to be purely space-
like  separated,  purely  branchlike  separated,  or  some  combination  of
the two, depending upon the observer’s particular choice of multiway
causal foliation). Thus, we see that wave-particle duality is�just a spe-
cific  consequence  of  the  general  principle  of  multiway  relativity—a
concept that we define and explore more fully below. 

Complex Projective Hilbert Space and Multiway Relativity    3.2

Our principal goal for this subsection is to prove rigorously the claim
upon  which  many  of  our  previous  arguments  have  implicitly  relied:
namely  that,  in  the  continuum  limit  of  an  infinitely  large  multiway
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system,  the  branchlike  hypersurfaces  embedded  within  a  particular
foliation  of  the  multiway  graph  correspond  to  complex  projective
Hilbert  spaces  [43].  Subsequently,  we  show  how  a  theory  of
“multiway relativity” can be derived as a consequence of the principle
of multiway invariance, in much the same way as special and general
relativity  can  be  derived  from  the  principle  of  causal  invariance,  with
the  natural  metric  on  projective  Hilbert  space  (namely,  the  Fubini–
Study  metric  [44,  45])  taking  the  role  of  the  standard  spacetime  met-
ric tensor from general relativity. We thus demonstrate how all of the
quantum  mechanical  principles  discussed  in  this  paper  may  be
deduced  from  the  mathematical  analog  of  general  relativity  in  multi-
way causal space and discuss some of the salient geometrical features
of this space. 

The  first  step  in  the  proof  of  the  limit  of  branchlike  hypersurfaces
to  complex  projective  Hilbert  spaces  is  noting  that  the  natural
(combinatorial  metric)  distance  between  a  pair  of  vertices  in  such  a
hypersurface is indirectly a measure of their branch pair ancestry dis-
tance;  if  they  are  both  elements  of  the  same  branch  pair  (i.e.,  if  both
follow directly from a common state via a single updating event), then
they  are  separated  by  a  distance  of  one,  and  otherwise  they  are  sepa-
rated by the number of levels back in the multiway hierarchy that one
must traverse in order to find their common ancestor state. Disconnec-
tions in a branchial hypersurface therefore indicate a lack of common
ancestry  between  states  (which  generally  only  happens  if  there  was
more  than  one  initial  condition  for  the  system,  or  if  the  hypersurface
grew faster than the maximum rate of entanglement). In other words,
branchlike separation is, as one would intuitively expect, a measure of
the  degree  of  entanglement  between  pairs  of  global  multiway  states.
Clearly, this distance is related to the edit distance (or Levenshtein dis-
tance [46]) metric on strings, but with a single “edit” here defined  as
a pair of replacement operations (one corresponding to a traversal up
a branch pair, and the other corresponding to a traversal down). This
can  ultimately  be  formalized  as  a  measure  of  algorithmic  complexity
[47],  in  terms  of  the  minimum  number  of  replacement  operations
required  to  derive  the  two  states  from  some  common  ancestor  state;
as  such,  the  natural  distance  on  branchlike  hypersurfaces  is  equiva-
lent,  at  least  up  to  some  multiplicative  constant,  to  the  information
distance metric from algorithmic complexity: 

Definition 42. The  “information  distance”  between  two  states  x  and  y,
denoted ID(x, y), is defined by: 

ID(x, y)  min{p : p(x)  y ⋀ p(y)  x}, (82)

where  p  designates  a  finite  program  for  some  fixed  universal  Turing
machine, accepting x and y as finite input states.    
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In our particular case, the instruction set of this Turing machine is
assumed to correspond to the set of rewrite relations for the multiway
system. The information distance metric can easily be seen to be a nat-
ural  extension  of  the  Kolmogorov  algorithmic  complexity  measure
[48], since [49]: 

ID(x, y)  E(x, y) +Olog(max{K(x y), K(y x)}), (83)

where:  

E(x, y)  max{K(x y), K(y x)}, (84)

and  K( · ·)  the  standard  Kolmogorov  complexity.  The  distance  func-
tion  defined  by  E(x, y)  therefore  satisfies  all  of  the  necessary  axioms
of a metric on the space of states, up to the following additive term in
the metric inequalities [50]:  

Olog(max{K(x y), K(y x})). (85)

As discussed at length in our previous paper, the natural generaliza-
tion of the notion of a volume measure on a Riemannian manifold to
arbitrary  metric-measure  spaces  (including  both  graphs  and  hyper-
graphs  as  special  cases)  is  that  of  a  probability  measure,  defined  on
some common probability space. The standard continuum limit of the
discrete  information  distance  metric  for  a  statistical  manifold  (i.e.,  a
Riemannian  manifold  whose  points  are  all  probability  measures)
corresponds  to  the  so-called  “Fisher  information  metric,”  that  is,  the
canonical method of quantifying information distance between proba-
bility measures [51, 52]: 

Definition 43. The  “Fisher  information  metric”  tensor,  for  a  statistical
manifold with coordinates: 

θ  (θ1, θ2, … , θn), (86)

is given by:  

gjk(θ)  
X

∂ log(p(x, θ))

∂θj

∂ log(p(x, θ))

∂θk

p(x, θ) dx, (87)

for local coordinate axes j and k, where the integral is evaluated over
all points x ∈ X, with X denoting some (either discrete or continuous)
random variable, and p(x) corresponding to some probability distribu-
tion that has been normalized as a function of θ:  


X
p(x, θ)dx  1. (88)

Fisher information distance can also be expressed in a pure matrix
form as: 

[I(θ)]j,k  
∂ log(p(x, θ))

∂θj

∂ log(p(x, θ))

∂θk

θ ; (89)
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however, its correspondence with the previous (discrete) case of infor-
mation distance is made manifest by rewriting the metric tensor in the
alternative form:  

gjk(θ)  
X

∂2 i(x, θ)

∂θj∂θk

p(x, θ)dx  
∂2 i(x, θ)

∂θj∂θk

, (90)

where i(x, θ) denotes the standard entropy (i.e., self-information) con-
tribution from classical information theory: 

i(x, θ)  - log(p(x, θ)). (91)

It  is  also  a  well-known  result  that,  if  one  extends  from  the  case  of
Riemannian  manifolds  to  the  case  of  the  complex  projective  Hilbert

space ℂn, defined by the space of all complex lines in ℂn+1: 

ℂn 

Z  [Z0, Z1, … , Zn] ∈ ℂn+1\0  Z ~ cZ : c ∈ ℂ*,
(92)

that  is,  the  quotient  of  ℂn+1\0  by  the  diagonal  group  action  of  the

multiplicative group:

ℂ*  ℂ\0, (93)

corresponding  to  the  equivalence  relation  of  all  complex  multiples  of
points, then the Fisher information metric itself extends to become the
so-called “Fubini–Study metric,” that is, the natural Kähler metric on
projective Hilbert spaces. 

Definition 44. The  “Fubini–Study  metric”  on  the  complex  projective
Hilbert space ℂn, in terms of the homogeneous coordinates (i.e., the
standard  coordinate  notation  for  projective  varieties  in  algebraic
geometry): 

Z  [Z0, … , Zn], (94)

is defined by the line element:  

ds2 
Z

2
dZ

2
- Z · dZZ · dZ

Z
4

, (95)

or, in a more explicit form:  

ds2 
ZαZ

α
dZβdZ

β
-Z

α
ZβdZαdZ

β

ZαZ
α


2

. (96)

It is worth noting at this point that, in the context of conventional
formalism,  the  Fubini–Study  metric  is  the  natural  metric  induced  by
the  geometrization  of  quantum  mechanics;  when  defined  in  terms  of
pure states of the form [53, 54]: 
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ψ 〉  
k0

n

Zk ek 〉  [Z0 :Z1 : ⋯ :Zn], (97)

where  { ek 〉}  designates  any  orthonormal  basis  set  for  the  Hilbert

space, the metric line element can be written in the following compact
infinitesimal form:  

ds2 
〈δψ δψ〉

〈ψ ψ〉
-

〈δψ ψ〉〈ψ δψ〉

〈ψ ψ〉2
. (98)

The  Fubini–Study  metric  is  correspondingly used  in  the  quantifica-
tion  of  state  entanglement  and  other  key  properties;  when  considered
in  terms  of  mixed  states,  with  associated  density  matrices  ρ1  and  ρ2,

the  Fubini–Study  metric  is  easily  shown  to  be  equivalent  to  the  so-
called “quantum Bures metric,” DB [55, 56]: 

DN(ρ1, ρ2)
2  21 - F(ρ1, ρ2) , (99)

with the fidelity function F given by:  

F(ρ1, ρ2)  Tr ρ1 ρ2 ρ1

2

, (100)

at least up to a multiplicative constant.  

Having shown that the natural discrete metric on branchlike hyper-
surfaces  converges  to  the  Fisher  information  metric  in  the  continuum
limit,  and  that  the  Fisher  information  metric  itself  extends  to  the
Fubini–Study  metric  for  complex  projective  Hilbert  spaces,  all  that
remains is to show why branchlike hypersurfaces should yield projec-
tive Hilbert spaces in the continuum limit, as opposed to regular non-
projective  ones  (i.e.,  ones  equipped  with  the  standard  flat  metric).  As
already  alluded  to  in  the  previous  section,  the  origin  of  the  complex
values  in  the  multiway  state  vectors  lies  in  the  three  distinct  separa-
tion types in the multiway causal graph, and the origin of the projec-
tivity of the associated Hilbert space arises from the additional degree
of freedom introduced by having four distinct eigenvalue signs thanks
to the use of arbitrary complex numbers. We can make this statement
mathematically precise by considering the formal analogy between the
entanglement  structure  of  a  multiway  graph  and  the  conformally
invariant  (i.e.,  causal)  structure  of  a  causal  graph;  the  combinatorial
structures  of  both  causal  graphs  and  multiway  graphs  are,  crucially,
invariant under the conformal transformation: 

g  Ω2g, (101)

for some conformal scaling factor Ω. In the case of a multiway graph,

572 J. Gorard

Complex Systems, 29 © 2020



such a conformal rescaling is equivalent to modding out by the action
of the multiplicative group ℂ*, which completes the proof.  

This  idea  that  complex  projective  Hilbert  spaces  might  be  repre-
sentable  as  the  limiting  case  of  some  purely  combinatorial  structure,
such  as  a  branchlike  hypersurface,  is  not  entirely  without  precedent.
For instance, at least superficially,  it might appear to be related to the
standard  use  of  so-called  combinatorial  “Steiner  systems”  as  a  finite
model for projective planes [57–59]: 

Definition 45. A  “Steiner  system,”  denoted  St, k, v,  is  a  set  X  con-

sisting  of  v  points,  together  with  a  collection  of  subsets  of  X  known
as  “blocks,”  with  each  block  being  of  size  k,  and  with  the  constraint
that  any  set  of  t  distinct  points  in  X  is  contained  in  exactly  one
such�block.  

The total number of blocks b is therefore given by: 

b 
vr

k
, (102)

with the constraint that v ≤ b, and the number of blocks containing a
given point r is given by:  

r 

v - 1

t - 1

k - 1

t - 1

, (103)

with the constraint that k ≤ r. Then, in the particular case in which:  

v  n2 + n + 1, k  n + 1, t  2, (104)

and where all of the blocks are interpreted as lines, the Steiner system
yields a discrete model for the finite  projective plane, as shown in Fig-
ure  11  for  the  case  of  the  Fano  plane  (i.e.,  the  finite  projective  plane
of order 2) [60].  

Figure 11. The  Fano  plane  represented  using  the  Steiner  system  S2, 3, 7

(historically  known  as  a  Steiner  triple  system,  since  k  3  t + 1);  the  seven
blocks  correspond  to  the  seven  lines  of  the  plane,  each  of  which  contains
exactly  three  points,  and  with  the  property  that  every  pair  of  points  lies  on
exactly one line.  
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However,  while  a  Steiner  system  may  be  considered  to  be  an
“incidence-geometric”  combinatorial  model  of  a  projective  space,  in
which  vertices  correspond  directly  to  points  and  edges  correspond
directly  to  lines,  in  such  a  way  as  to  reflect  the  incidence  structure  of
the  projective  plane,  branchlike  hypersurfaces  constitute  something
more  akin  to  a  lattice-theoretic  model  for  projective  Hilbert  space.
The  key  distinction  between  the  two  approaches  is  that  incidence
geometry captures the relative locations of objects in projective space,
whereas  lattice  theory  captures  their  relative  containment.  More  pre-
cisely, if we consider an order-theoretic lattice (i.e., a partially ordered
set in which every pair of elements has a unique supremum known as
a  “join,”  denoted  ⋁,  and  a  unique  infimum  known  as  a  “meet,”
denoted ⋀) [61], then we can introduce the following self-duality con-

dition on pairs of elements a, b [62]: 

∀ x, a ≤ b⟹a ⋁ x ⋀ b  (a ⋁ x) ⋀ b, (105)

which may be thought of as being a weakened form of the distributiv-
ity  condition,  known  as  “modularity.”  A  “modular  lattice”  is  then  a
lattice  in  which  every  pair  of  elements  satisfies  the  modularity  condi-
tion, an example of which is shown in Figure 12.  

Figure 12. The Hasse diagram for a modular lattice in which the partial order
may be represented as the intersection of two total orders (i.e., the lattice has
order dimension 2).  

It  is  known  that  a  lattice  is  modular  if  and  only  if  the  “diamond
isomorphism  theorem”  (the  lattice-theoretic  equivalent  of  the  second
isomorphism  theorem)  holds  for  each  pair  of  elements;  namely,  if  ϕ

and  ψ  denote  order-preserving  maps  on  the  intervals  a ⋀ b, b  and

a, a ⋁ b, for some pair of elements a, b, of the form: 
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ϕ : a ⋀ b, b → a, a ⋁ b, ψ : a, a ⋁ b → a ⋀ b, b, (106)

defined by:  

ϕ(x)  x ⋁ a, ψ(y)  y ⋀ b, (107)

then  the  diamond  isomorphism  theorem  is  said  to  hold  for  the  pair

a, b  if  and  only  if ϕ  and ψ  are  isomorphisms  of  these  intervals.  In

particular, the order-preserving composition:  

ψϕ : a ⋀ b, b → a ⋀ b, b, (108)

will always satisfy the inequality:  

ψ(ϕ(x))  (x ⋁ a) ⋀ b ≥ x, (109)

with equality if and only if the pair a, b is modular; by the property

that  the  dual  of  a  modular  lattice  is  always  modular,  the  reverse
composition:  

ϕψ : a, a ⋁ b → a, a ⋁ b, (110)

is also an identity map, proving that ϕ and ψ must themselves be iso-
morphisms. An example of the satisfaction and failure of the diamond
isomorphism  theorem  for  modular  and  non-modular  pairs,  respec-
tively, is shown in Figure 13.  

(a) (b)

Figure 13. (a)  We  see  the  diamond  isomorphism  theorem  being  satisfied  for

the  modular  pair  a, b,  since  the  maps  ϕ : a ⋀ b → a, a ⋁ b  and

ψ : a, a ⋁ b → a ⋀ b, b  indicated  by  the  green  arrows  are  both  bijective  and
order-preserving,  and  hence  isomorphisms.  (b)  We  see  the  failure  of  the

diamond isomorphism theorem for the non-modular pair a, b, since the map

between  (x ⋁ a) ⋀ b  and  x ⋁ b  is  no  longer  invertible  for  some  x,  as  shown  by
the orange line.  

Thus,  since  a  multiway  evolution  graph  may  be  considered  to  be
the Hasse diagram for a partially ordered set of global states (with the
partial  order  defined  by  the  observer’s  universal  time  function),

Some Quantum Mechanical Properties of the Wolfram Model 575

https://doi.org/10.25088/ComplexSystems.29.2.537

https://doi.org/10.25088/ComplexSystems.29.2.537


we  see  that  the  diamond  isomorphism  theorem  illustrates  explicitly
the  correspondence  between  modular  pairs  in  the  multiway  lattice
and  branch  pairs  that  converge  in  a  single  step  within  the  multiway
evolution.  Therefore,  the  modularity  condition  for  lattices  is  equiva-
lent  to  the  strong  diamond  property  for  rewriting  systems,  and  hence
modularity  of  the  multiway  lattice  constitutes  a  provably  sufficient
condition for causal invariance. The significance  of this observation is
that  modularity  is  also  one  of  the  foundational  properties  of  classical
projective  geometry;  in  our  context,  perspectives  correspond  to  iso-
morphisms between intervals, and projections correspond to join-pre-
serving maps. This can also be seen as a consequence of the diamond
isomorphism  theorem,  which  allows  one  to  interpret  the  modularity

condition in terms of projections onto the sublattice given by a, b. 

These  results  provide  the  mathematical  justification  for  the  inter-
pretation  of  the  limiting  structure  of  the  multiway  graph  as  being  a
complex  projective  space,  thanks  to  the  framework  of  “continuous
geometry” developed by von Neumann [63], which weakens the stan-
dard  axioms  for  complex  projective  geometry  given  by  Menger  and
Birkhoff [64, 65] in terms of lattices of linear subspaces of the projec-
tive  space.  More  specifically,  any  lattice  satisfying  the  properties  of
modularity,  completeness,  continuity,  complementarity  and  irre-
ducibility may be interpreted as a continuous geometry, and therefore
as  a  lattice-theoretic  model  of  complex  projective  space.  In  this  con-
text,  completeness  refers  to  the  lattice-theoretic  property  that  all
subsets of the lattice should possess both a join and a meet; continuity
refers  to  the  following  associativity  property  of  the  join  and  meet
operations: 

⋀
α∈A

aα ⋁ b  ⋀
α∈A

aα ⋁ b, (111)

and:  

⋁
α∈A

aα ⋀ b  ⋁
α∈A

aα ⋀ b, (112)

for some directed set (i.e., a join semilattice) A, and where the indices
are  defined  such  that  aα < aβ  when  α < β;  complementarity  refers  to

the statement that every element a possesses a (not necessarily unique)
complement b:  

∀ a, ∃ b, such that a ⋀ b  0anda ⋁ b  1, (113)

where  0  and  1  denote  the  minimal  and  maximal  elements  of  the  lat-
tice, respectively; and finally,  irreducibility refers to the condition that
the  only  two  elements  possessing  unique  complements  are  0  and  1
themselves.  
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With  the  geometry  of  the  multiway  space  thus  established,  the
remainder  of  this  paper  will  be  dedicated  to  our  central  conjecture:
that  the  mathematical  formalisms  of  quantum  mechanics  and  quan-
tum  field  theory  can  ultimately  be  derived  as  the  analogs  of  special
and  general  relativity  for  multiway  graphs,  with  branchlike  hypersur-
faces taking the role of spacelike hypersurfaces, and the Fubini–Study
metric tensor taking the place of the standard (Riemannian) spacetime
metric  tensor.  More  concretely,  our  conjecture  can  be  phrased  as  the
statement that, in much the same way as general relativity places con-
straints  on  the  trajectories  of  geodesic  bundles  in  the  causal  graph,
geometrical  quantum  mechanics  places  constraints  on  the  trajectories
of  geodesic  bundles  (corresponding  to  collections  of  pure  quantum
states)  in  the  multiway  graph.  The  geometrical  intuition  behind  this
claim  is  that  the  multiway  analogs  of  the  Ricci  and  Weyl  curvature
tensors enforce conditions on the volumes and shapes of wave packets
(i.e.,  multiway  geodesic  bundles),  respectively,  in  much  the  same  way
as they do for causal geodesic bundles in the purely relativistic�case. 

Such  a  formulation  of  geometrical  quantum  mechanics  has  previ-
ously  been  considered  by  Leifer  [66]  in  the  context  of  developing  the
theory  of  “superrelativity,”  in  which  the  geodesic  motion  of  pure
states  corresponds  to  deformations  of  the  “polarization  ellipsoid”
(i.e.,  the  superrelativistic  terminology  for  our  notion  of  a  wave
packet), given by transformations from the pure state coset: 

SU(n)

SU1 ⊗ n - 1
, (114)

otherwise known as Goldstone modes, or alternatively to unitary rota-
tions  of  the  ellipsoid,  given  by  transformations  from  the  pure  state
isotropy group:  

U1 ⊗Un - 1, (115)

otherwise  known  as  Higgs  modes.  With  pure  states  interpreted,  as

before, as being rays in the projective Hilbert space ℂn-1:  

ψ 〉  A exp(iα)
a0

n-1

ψα a, x 〉, (116)

there consequently exists a natural choice of local coordinates π(n)
i

 for

the ℂn-1
 chart atlas:  

Ub  { ψ 〉  
a0

n-1

ψa a, x 〉 : ψb ≠ 0 , (117)
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which, in the particular case of b  0, becomes:  

π(0)
i 

ψi

ψ0
, (118)

for 1 ≤ i ≤ n - 1. In this specific instance, the Fubini–Study metric ten-
sor on ℂn

 may be written in the following form:  

gik*  2ℏ

1 + ∑
s1

n-1
πs2 δik - πi*πk

1 + ∑
s1

n-1
πs2

2
. (119)

From  here,  one  is  also  able  to  account  for  the  modulus  of  the  wave-
function  by  effectively  imposing  a  mild  breaking  of  the  projective
symmetry,  thus  obtaining  an  appropriately  generalized  variant  of
Fubini–Study metric tensor:  

Gik*  2ℏR2

R2 + ∑
s1

n-1
πs2 δik - πi*πk

R2 + ∑
s1

n-1
πs2

2
, (120)

with R corresponding to the radius of the “density sphere”:  


a1

n-1

ψa2  R2, (121)

from which the rays in the ordinary Hilbert space ℂn
 have been stereo-

graphically projected. Our central conjecture, just as that of superrela-
tivity,  is  that  this  tensor  plays  the  same  role  in  geometric  quantum
mechanics as the Einstein curvature tensor plays in general relativity.  

Note that the natural connection on the space ℂn-1, namely: 

Γkl
i  -2

δk
i πl* + δl

iπk*

R2 + ∑
s1

n-1
πs2

,
(122)

now defines  an intrinsic gauge potential on multiway space, which we
may  interpret  (in  the  case  of  a  Wolfram  Model  hypergraph  substitu-
tion  system)  as  defining  a  fiber  bundle  over  each  spatial  hypergraph.
Concretely,  for  each  vertex  in  a  spatial  hypergraph,  there  are  many
possible orientations in which a hypergraph replacement rule could be
applied  to  that  vertex  (in  general,  there  will  be  one  such  orientation
for each hyperedge incident to the vertex), and we may interpret each
such  orientation  as  corresponding  to  a  particular  choice  coordinate
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basis  (i.e.,  some  local  section  of  a  fiber  bundle),  which  will  subse-
quently  place  constraints  on  the  set  of  possible  orientations  for  other
purely  spacelike-separated  rule  applications.  Thus,  we  can  interpret
the  hypergraph  itself  as  corresponding  to  some  base  space,  with  each
vertex  corresponding  to  a  fiber,  such  that  local  gauge  invariance  in
the multiway evolution therefore follows as an inevitable consequence
of causal invariance of the underlying replacement rules.  

Interpretations of Multiway Invariance and the Multiway
Causal Graph    

3.3

In  much  the  same  way  as  c  can  be  thought  of  as  being  the  effective
separation  between  updating  events  yielded  by  distinct  causal  edges
(since  elementary  light  cones  in  the  causal  graph  determine  the  maxi-
mum  effective  rate  of  information  propagation),  so  too  can  ℏ  be
thought  of  as  being  the  effective  separation  between  global  states
yielded by distinct multiway edges (since the elementary entanglement
cones in the multiway graph determine the maximum effective rate of
entanglement  between  global  states,  and  therefore  Planck’s  constant
may  be  interpreted  as  being  a  measure  of  this  maximum  theoretical
rate  of  quantum  entanglement).  This  interpretation  formally  justifies
our  previous  assumption  that  pairs  of  single  non-commuting  update

events A

, B


 may be considered to be canonically conjugate:  

A

, B


  iℏ, (123)

since each such pair of single-step events corresponds to a branch pair
in  the  multiway  graph,  and  therefore  designates  the  effective  distance
between  pairs  of  adjacent  points  in  a  branchlike  hypersurface.  It  also

explains  the  appearance  of  an  angle  quantity  eiSx,x


 in  the  path  inte-

gral formula:  

ψ(x, t) 
1

Z
 

x(0)x
xeiSx,x


ψ0(x(t)), (124)

since  we  can  now  see  that  this  quantity  designates  the  dispersion
angle  of  geodesic  bundles  propagating  through  the  multiway  graph;
as  this  angle  is  trivially  related  to  the  density  of  causal  edges  (via  the
density  of  updating  events)  in  the  multiway  causal  graph,  we  can
deduce that it must consequently have units of energy, thus endowing
the  elementary  distance  in  the  multiway  graph,  that  is,  Planck’s  con-
stant,  with  units  of  action  (as  required),  and  hence  finally  justifying
(at least dimensionally) our interpretation of the multiway graph as a
path integral in the first place.  

The  interpretation  of  ℏ  as  corresponding  to  a  maximum  rate  of
entanglement  between  quantum  states,  and  therefore  as  constituting
some kind of fundamental “quantum speed limit” on the evolution of
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these  states,  is  also  a  natural  feature  of  the  standard  formalism  of
quantum  mechanics.  One  can  formally  prove  the  existence  of  such  a
limit using the methods of Margolus and Levitin [67], by considering
the expansion of some initial state ψ0 〉 in the energy eigenbasis: 

ψ0 〉  
n

cn En 〉,
(125)

with  the  solution  to  the  time-dependent  Schrödinger  equation

(assuming a constant Hamiltonian H

) at time t thus being given by:  

ψt 〉  
n

cn exp - i
Ent

ℏ
En 〉. (126)

The “overlap” between the initial and final  states is therefore given by
a time-dependent function S(t) of the form:  

S(t)  ψ0ψt  
n

cn2 exp - i
Ent

ℏ
. (127)

Consider now the real part of S(t):  

ReS(t)  
n

cn2 cos
Ent

ℏ
, (128)

which, using the trigonometric inequality:  

∀ x ≥ 0, cos(x) ≥ 1 -
2

π
x + sin(x), (129)

may be rewritten in the form:  


n

cn2cos
Ent

ℏ
≥ 

n

cn2 1 -
2

π

Ent

ℏ
+ sin

Ent

ℏ
, (130)

where:  


n

cn
2 1 -

2

π

Ent

ℏ
+ sin

Ent

ℏ


1 -
2

π

〈H


〉

ℏ
t +

2

π
ImS(t),

(131)

assuming  throughout  that  the  average  energy  is  non-negative,  that  is,

H


 ≥ 0.  If  the  initial  and  final  states  are  orthogonal,  then  by  defini-

tion  S(t)  0,  and  therefore  also  ReS(t)  ImS(t)  0,  allowing  us

to  rearrange  equation  ((130))  to  yield  a  minimum  evolution  time
between the two orthogonal states:  
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t ≥
π

2

ℏ

〈H


〉
, (132)

which  is,  elsewhere  in  the  literature,  referred  to  as  the  “Margolus–
Levitin  bound”  [68].  We  note  with  satisfaction  that  our  aforemen-
tioned  result,  namely  the  fact  that  the  minimum  evolution  time
between  orthonormal  eigenstates  (i.e.,  distinct  global  states)  in  the
multiway  graph  is  restricted  by  the  maximum  entanglement  rate  ℏ  in
multiway  space,  is  therefore  provably  consistent  with  the  Margolus–
Levitin bound.  

If  one  attempts  to  approach  the  maximum  rate  of  entanglement,
effectively  by  constructing  an  arbitrarily  steep  foliation  of  the  multi-
way graph, one would expect the perceived evolution of global states
in the multiway system to proceed more slowly, by analogy to the phe-
nomenon  of  relativistic  time  dilation  (and,  more  directly,  as  a  conse-
quence of the geometry of multiway space). This, too, is an effect that
one  observes  within  standard  quantum  mechanical  formalism  [69];
consider  now  an  interpretation  of  the  quantity  S(t)  as  the  “survival
probability” of the initial state ψ0 〉 [70]: 

S(t)  〈ψ0 exp - i
H

t

ℏ
ψ0 〉

2

, (133)

after time t, when the system has evolved to state ψt 〉:  

ψt 〉  exp - i
H

t

ℏ
ψ0 〉. (134)

For sufficiently small values of t, one is able to perform a power series
expansion:  

exp - i
H

t

ℏ
≈ I


- i

H

t

ℏ
-

1

2

H
 2
t2

ℏ2
+… , (135)

such that the survival probability now becomes:  

S(t) ≈ 1 -
ΔH



2
t2

ℏ2
, (136)

where we have introduced the quantity:  

ΔH



2

 〈ψ0 H
 2

ψ0 〉 - ψ0H


ψ0 〉2. (137)

Suppose now that the system is allowed to evolve over a finite  time

interval  0, t,  but  where  this  interval  is  punctuated  by  measurement

operations (which we can idealize as being instantaneous projections)
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applied  periodically  at  times t / n, 2t  n,  and  so  on,  for  some n ∈ ℕ.

Assuming  that  the  state  ψ0 〉  is  an  eigenstate  of  the  measurement

operator, this implies that the survival time now takes the form: 

S(t) ≈ 1 -
ΔH



2

ℏ2

t

n

2
n

→ 1, (138)

in the limit as n → ∞. The convergence to unity of the survival proba-
bility  of  the  initial  state  indicates  that  the  evolution  of  the  quantum
system  slows  down  as  the  rate  of  application  of  measurement  opera-
tions  increases:  this  phenomenon  is  known  as  the  “quantum  Zeno
effect” and plays the role of relativistic time dilation in our discussion
of  multiway  foliations  and  branchlike  hypersurfaces.  It  is  the  Zeno
effect  that  effectively  prevents  the  maximum  entanglement  rate  from
ever being physically exceeded.  

One  consequence  of  this  idea  is  that  singularities  in  the  multiway
causal graph correspond to pure quantum eigenstates that remain iso-
lated from the remainder of the multiway system and do not undergo
evolution in time (these states, in turn, correspond to normal forms of
the underlying abstract rewriting system). As described in more detail
in  [2],  when  these  singularities  are  physical  (i.e.,  intrinsic  geometrical
features of the underlying multiway space), they can be thought of as
corresponding to qubits, whereas when they are purely coordinate sin-
gularities,  they  can  be  thought  of  as  corresponding  to  measurement
outcomes. Therefore, the act of performing a measurement consists of
an  observer  constructing  a  particular  multiway  coordinate  frame  that
places  a  coordinate  singularity  around  a  particular  eigenstate  (the
apparent  convergence  of  multiway  geodesics  due  to  “gravitational”
lensing that results from the presence of such a coordinate singularity
thus causes the resolution of multiway branch pairs, as per the Knuth–
Bendix  completion  algorithm  described  earlier).  This  construction  is
analogous  to  the  appearance  of  a  coordinate  singularity  at

r  rs  2GM  c2r in the Schwarzschild coordinate frame (t, r, θ, ϕ): 

g  1 -
2GM

c2r
dt2 -

dr2

1 -
2GM

c2r


- r2dθ2 - r2sin2(θ) dϕ2, (139)

which  is  provably  not  a  physical  feature  of  the  underlying  spacetime,
since  it  disappears  for  alternative  coordinate  frames,  such  as  in  the
Gullstrand–Painlevé coordinates (tr, r, θ, ϕ) [71–73]:  

g  1 -
2GM

c2r
dtr

2 - 2
2GM

c2r

dtrdr - dr
2 - r2dθ2 - r2sin2(θ)dϕ2,

(140)
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with the new time coordinate defined by:  

tr  t - a(r), (141)

where:  

a(r)  -

2GM

c2r

1 -
2GM

c2r

dr  2M -2y + log
y + 1

y - 1
,

(142)

and:  

y 
c2r

2GM
. (143)

Note that the maximum rate of quantum entanglement in the multi-
way  graph,  as  measured  by  ℏ,  is,  in  general,  much  higher  than  the
speed  of  light  in  the  purely  relativistic  causal  graph;  however,  one
implication  of  the  geometry  of  the  multiway  causal  graph  is  that  this
will  cease  to  be  the  case  in  the  presence  of  a  sufficiently  high  density
of  causal  edges,  as  is  the  case  in  the  vicinity  of  a  black  hole.  For  this
reason, we can think of a black hole in the multiway causal graph as
being  characterized  by  the  presence  of  two  distinct  horizons:  a
“standard” event horizon, corresponding to regular causal disconnec-
tion,  and  an  “entanglement”  event  horizon,  corresponding  to  multi-
way  disconnection,  and  which  lies  strictly  on  the  exterior  of  the
causal  event  horizon  in  multiway  space.  Therefore,  from  the  point  of
view  of  an  external  observer  embedded  within  a  particular  foliation
of the multiway causal graph, and who is watching an infalling object
to the black hole, the object will appear to “freeze” (due to quantum
Zeno  effects)  at  the  entanglement  horizon  and  will  never  appear  to
approach the true causal event horizon. Since Hawking radiation [74]
(which, in this model, occurs as a consequence of branch pairs in the
multiway  graph  that  are  unable  to  converge  due  to  the  presence  of  a
multiway  disconnection)  is  emitted  from  the  entanglement  horizon
and not the causal event horizon, any particles that get radiated from
the  black  hole  can  be  perfectly  correlated  with  the  information  con-
tent  of  the  infalling  object,  without  any  apparent  or  actual  violation
of  causal  invariance  (since  no  information  ever  crossed  a  spacetime/
causal event horizon). The Wolfram Model therefore presents a possi-
ble  resolution  to  the  black  hole  information  paradox  that  is  formally
rather  similar  to  the  standard  resolutions  implied  by  the  holographic
principle [75] and the AdS/CFT duality [76] (involving stretched hori-
zons,  complementarity,  firewalls,  etc.  [77–80]),  which  we  intend  to
explore more fully in a future publication. 
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Indeed,  the  multiway  causal  graph  allows  one  to  construct  a  toy
model of holography by considering “walling off” a bundle of causal
edges  that  corresponds  to  a  particular  branch  of  multiway  evolution,
such that all causal edges within the boundary of the wall correspond
to edges in the (purely relativistic) causal graph, while all causal edges
intersecting  the  boundary  of  the  wall  correspond  to  edges  in  the
(purely  quantum  mechanical)  multiway  graph.  In  so  doing,  one
obtains a duality between the bulk gravitational theory on the interior
of the wall (with edges designating causal relations between events in
spacetime), and the boundary quantum mechanical theory on the sur-
face  of  the  wall  (with  edges  designating  causal  relations  between
events  in  “branchtime”),  just  as  in  AdS/CFT.  One  question  raised  by
this  analysis  that  we  have  yet  to  address,  however,  is  the  precise
nature  of  the  multiway  causal  graph  (and  its  continuum  limit)  when
considered as an abstract mathematical structure. 

Our  conjecture  here  (which  we  make  no  attempt  to  prove  in  the
context of the present paper) is that the limiting structure of the multi-
way  causal  graph  is,  in  fact,  some  generalization  of  the  correspon-
dence  space  of  twistor  theory.  The  standard  twistor  correspondence,
at  least  in  Penrose’s  original  formulation  [81,  82],  designates  a  natu-
ral isomorphism between sheaf cohomology classes on a real hypersur-

face  of  ℂ3
 (i.e.,  twistor  space),  and  massless  Yang–Mills  fields  on

Minkowski space, of the form: 

Gr1, 2ℂ4

 

(ℂ)3 Gr2ℂ4

≅

SLℂ4  SLℂ2

 

SLℂ4  SLℂ3 SLℂ4  SLℂ2⨯SLℂ2

,

(144)

where  the  twistor  space  is  the  Grassmannian  of  lines  in  complexified

Minkowski  space  ℂ3  Gr1ℂ4,  the  massless  Yang–Mills  fields cor-

respond  to  the  Grassmannian  of  planes  in  the  same  space  Gr2ℂ4,

and the correspondence space is therefore given by the Grassmannian

of  lines  in  planes  in  complexified  Minkowski  space  Gr1,2ℂ4.  This

correspondence space encodes both the quantum mechanical structure
of  the  Yang–Mills  fields  and  the  geometrical  structure  of  the  back-
ground spacetime, in a manner that is directly analogous to the multi-
way  causal  graph,  whose  causal  edges  between  branchlike-separated
updating  events  encode  the  quantum  mechanical  structure  of  the
multiway  evolution,  and  whose  causal  edges  between  spacelike-
separated updating events encode the relativistic structure of the pure
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(spacetime) causal graph. The natural generalization of this correspon-

dence  space  would  be  a  quotient  group  of  the  form G  P1 ⋂ P2,

with a generalized twistor correspondence of the form [83]:  

G  P1 ⋂ P2

 

G  P1 G  P2,

(145)

for  some  semisimple  Lie  group  G  and  a  pair  of  parabolic  subgroups

P1, P2.  

Bell’s Theorem, Particles and Consequences of Multiway 

Relativity    

3.4

As was pointed out by Wolfram in [3], one can imagine the analog of
an elementary particle in a network or hypergraph as being any persis-
tent  localized  structure  exhibiting  certain  graph-theoretic  properties
that  get  preserved  by  the  updating  rules  (these  properties  may,  in
turn,  be  interpreted  as  conserved  physical  quantities  such  as  electric
charge).  Wolfram  went  on  to  propose  an  illustrative  example  of  such
a  conservation  scheme,  and  therefore  a  toy  model  of  how  elementary
particles  might  work  in  network-based  spacetimes,  by  considering
updating  rules  that  preserve  graph  planarity;  any  local  non-planar
structures  will  then  behave  like  persistent,  particle-like  excitations.
The  first  purpose  of  this  subsection  is  to  present  a  formal  version  of
this  argument,  and  then  to  illustrate  how  it  may  be  generalized  to
yield a combinatorial analog of Noether’s theorem.  

We  begin  by  considering  a  fundamental  result  in  graph  theory,
known as “Kuratowski’s theorem” [84, 85], which states that a graph
is planar (i.e., can be embedded in the plane without any crossings of
edges)  if  and  only  if  it  does  not  contain  a  subgraph  that  is  a  subdivi-
sion  of  K5  (the  complete  graph  on  five  vertices)  or  K3,3  (the  “utility

graph,” or bipartite complete graph on 3 + 3 vertices). 

Definition 46. A  “subdivision”  of  an  undirected  graph  G  (V, E)  is  a
new  undirected  graph  H  (W, F)  resulting  from  the  subdivision  of
edges in G. 

Definition 47. A  “subdivision”  of  an  edge  e ∈ E,  where  the  endpoints
of e are given by u, v ∈ V, is defined by the introduction of a new ver-
tex w ∈ W and the replacement of e by a new pair of edges f1, f2 ∈ F,

whose endpoints are given by u, w ∈ W and w, v ∈ W, respectively.  

In  the  particular  case  of  a  trivalent  spatial  graph,  this  implies  that
any non-planarity in the graph must be associated with a finite  set of
isolable  non-planar  “tangles,”  each  of  which  is  a  subdivision  of  K3,3,

as shown in Figure 14. 
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(a) (b)

Figure 14. (a)  A  trivalent  spatial  graph  containing  an  irreducible  crossing  of
edges. (b) An illustration of how this irreducible crossing is ultimately due to
the  presence  of  a  non-planar  “tangle”;  this  is  a  subdivision  of  K3, 3.  Adapted

from [3, p. 527].  

However, we view this planarity example as being no more than a
toy  model,  on  the  basis  that  Kuratowski’s  theorem  is  excessively
restrictive: it only allows one to consider the existence of two possible
values  for  locally  conserved  quantities  in  the  graph,  associated  with
the  two  different  types  of  elementary  particle  (i.e.,  corresponding  to
K5 and K3, 3). As a first  step toward generalizing the basic idea behind

Kuratowski’s  theorem,  we  next  examine  a  stronger  variant  known  as
“Wagner’s  theorem”  [86],  which  states  that  a  graph  is  planar  if  and
only if its set of minors does not contain either K5 or K3, 3. 

Definition 48. A  “minor”  of  an  undirected  graph  G  (V, E)  is  a  new
undirected  graph  H  (W, F)  resulting  from  the  deletion  of  edges
from  E,  the  deletion  of  vertices  from  V  and  the  contraction  of  edges
in G. 

Definition 49. A  “contraction”  of  an  edge  e ∈ E,  where  the  endpoints
of e are given by u, v ∈ V, is defined by the deletion of e and the merg-
ing of u, v ∈ V into a new, single vertex w ∈ W where the set of edges
incident to w corresponds to the set of edges incident to either u or v.  

This  is  a  more  general  statement  than  that  of  Kuratowski,  in  the
sense  that  every  graph  subdivision  may  be  converted  into  a  minor  of
the same type, but not every graph minor may be converted into a sub-
division of the same type. 

In the context of modern combinatorics, Wagner’s theorem is con-
ventionally  viewed  as  being  a  special  case  of  the  vastly  more  general
“Robertson–Seymour  theorem”  [87,  88],  which  states  formally  that
the set of all undirected graphs, when partially ordered by the relation-
ship  of  taking  graph  minors,  forms  a  well-quasi-ordering.  A  more
intuitive  formulation  of  the  same  statement  is  that  every  family  of
graphs that is closed under the operation of taking graph minors may
be  uniquely  characterized  by  some  finite  set  of  “forbidden  minors,”
which may be thought of as being akin to a set of topological obstruc-
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tions.  Indeed,  the  Robertson–Seymour  theorem  can  be  interpreted  as
corresponding to a generalization of Kuratowski’s embedding obstruc-
tions  of K5  and  K3,3  to  higher  genus  surfaces  (i.e.,  in  topological

terms,  for  every  integer  n ≥ 0,  there  exists  a  finite  set  of  graphs  (n),
with  the  property  that  a  graph  G  can  be  embedded  on  a  surface  of
genus n if and only if G does not contain any of the graphs in (n) as
a  minor).  In  this  regard,  Wagner’s  theorem  concerns  specifically  the
family of planar graphs (which is, trivially, closed under the operation
of  taking  graph  minors),  in  which  case  the  set  of  forbidden  minor

obstructions corresponds to K5, K3, 3. 

As  the  Robertson–Seymour  theorem  allows  us  to  define  a  con-
served  graph  quantity  (taking  a  range  of  possible  values,  each  of
which  corresponds  to  a  distinct  forbidden  minor,  and  hence  to  a  dis-
tinct  persistent,  localized,  particle-like  excitation  in  the  graph)  associ-
ated  to  each  family  of  graphs  that  is  closed  under  the  operation  of
taking  minors,  we  propose  that  such  graph  families  may  be  thought
of as corresponding to differentiable symmetries of the action defined
by the multiway evolution. In this way, the Robertson–Seymour theo-
rem may be interpreted as being a combinatorial analog of Noether’s
theorem  [89],  in  which  differentiable  symmetries  of  the  action  are
bijectively associated with conservation laws. 

In [3] Wolfram proposed that a pair of such particles could be con-
nected by long-range edges in the spatial graph that, in the continuum
limit,  did  not  correspond  to  the  usual  3 + 1-dimensional  spacetime
structure (thus creating a rather explicit example of a quantum entan-
glement  phenomenon).  This  was  a  welcome  observation,  since  it
allowed the model to violate the CHSH inequality [90]: 

Ea, b -Ea, b′ +Ea′, b +Ea′, b′ ≤ 2, (146)

and  therefore  maintain  consistency  with  Bell’s  theorem  [91],  without
ever violating the underlying determinism of the model, since the two
particles  could  remain  causally  connected  in  a  nonlocal  fashion,  but
without  deviating  from  macroscopic  causal  invariance  in  the  contin-
uum  limit.  In  equation  (146),  a, a′  and  b, b′  denote  the  pairs  of
possible  settings  for  two  hypothetical  detectors  A  and  B,  and  the

terms Ea, b, Ea, b′, Ea′, b and Ea′, b′ denote the quantum corre-

lations  of  the  pairs  of  particles,  that  is,  the  statistical  averages  of

A(a) ·Bb, A(a) ·Bb′, A(a′) ·Bb and A(a′) ·Bb′, for some hypothet-

ical  measurement  operation,  with  the  discrete  set  of  possible  out-

comes in both cases being +1, -1.  

However,  our  new  interpretation  of  quantum  mechanics  in  multi-
way Wolfram Model systems gives us another, more subtle, means of
ensuring  compatibility  with  Bell’s  theorem,  as  a  consequence  of  the

Some Quantum Mechanical Properties of the Wolfram Model 587

https://doi.org/10.25088/ComplexSystems.29.2.537

https://doi.org/10.25088/ComplexSystems.29.2.537


structure of the multiway causal graph. As the multiway causal graph
allows for the existence of causal connections not only between updat-
ing  events  on  the  same  branch  of  evolution  history,  but  also  between
updating events on distinct branches of evolution history, one immedi-
ately  obtains  an  explicitly  nonlocal  theory  of  multiway  evolution;
more  precisely,  one  indirectly  extends  the  notion  of  causal  locality
beyond  mere  spatial  locality,  since  pairs  of  events  that  are  branchlike
local will not, in general, also be spacelike local. Consequently, one is
able to prove violation of the CHSH inequality in much the same way
as  one  does  for  other  standard  deterministic  and  nonlocal  interpreta-
tions  of  quantum  mechanics,  such  as  the  de  Broglie–Bohm  or  causal
interpretation [92, 93]. 

To  determine  the  effective  dynamics  of  these  particle-like  excita-
tions,  we  consider  making  a  small  perturbation  to  a  localized  region
of  a  spatial  hypergraph  and  then  examining  how  that  perturbation
spreads through the rest of the multiway system. Recall that the sums
of incoming path weights for vertices in the multiway graph, as com-
puted  using  the  discrete  multiway  norm,  allow  one  to  define  discrete
amplitudes  for  each  multiway  path;  since  each  multiway  edge  corre-
sponds to a (local) updating event involving a certain collection of ver-
tices  in  the  spatial  hypergraph,  it  is  therefore  possible  to  associate
each  such  spatial  vertex  with  a  scalar  quantity  corresponding  to  the
sum  of  relevant  (incoming)  multiway  path  weights.  The  propagation
of the initial hypergraph perturbation throughout the multiway graph
is therefore described by a diffusion equation for this scalar quantity,
with  a  discrete  Laplacian  operator  taking  the  place  of  the  regular
(continuous) Laplacian [94, 95]: 

Definition 50. If  G  (V, E)  is  a  (hyper)graph,  and  ϕ :V → R  is  a  func-
tion taking values in a ring R, then the “discrete Laplacian” acting on
ϕ, denoted Δ, is given by: 

∀ v ∈ V, (Δϕ)(v)  
w∈V:d(w,v)1

[ϕ(v) - ϕ(w)],
(147)

where  d(w, v)  denotes  the  natural  combinatorial  metric  on  the
(hyper)graph, i.e. the graph distance between vertices w and v.    

Δ is thus related to a local averaging operator M for the quantity ϕ

over neighboring vertices in the hypergraph: 

∀ v ∈ V, (Mϕ)(v) 
1

deg(v)


w:d(w,v)1

ϕ(w). (148)

For  our  hypergraph  perturbation  case,  ϕ  denotes  the  natural  “sum  of
path  weights”  quantity,  with  the  ring  R  simply  corresponding  to  the
natural numbers ℕ.  

588 J. Gorard

Complex Systems, 29 © 2020



However,  we  have  yet  to  consider  the  (potentially  constructive  or
destructive)  effects  of  other  hypergraph  perturbations  on  the  particu-
lar perturbation of interest; the effect of these rival perturbations may
be  described  by  an  additional  potential  function  defined  over  the
hypergraph,  denoted  P :V → R,  or  equivalently  by  a  multiplicative
operator acting diagonally on our quantity ϕ: 

(Pϕ)(v)  P(v)ϕ(v). (149)

The  combined  effects  of  all  perturbations  is  therefore  given  by  the
operator sum: 

H  Δ + P, (150)

which  has  the  form  of  the  discrete  Schrödinger  operator,  that  is,  the
discrete analog of the regular (continuous) Schrödinger operator:  

D  -
ℏ2

2m
∇2+V(r, t), (151)

as it appears in the time-dependent Schrödinger equation:  

iℏ
∂

∂ t
ψ(r, t) 

-ℏ2

2m
∇2+V(r, t) ψ(r, t). (152)

Our  diffusion  equation  assumes  the  form  of  a  Schrödinger  equation
rather  than  a  regular  heat  equation  because  of  the  presence  of  imagi-
nary branchlike distances in the discrete multiway metric.  

By  viewing  our  hypergraph  perturbation  as  an  elementary  impulse
in  the  quantity  ϕ,  we  see  that  the  response  to  this  impulse  will
be �given  by  the  Green’s  function  [96],  denoted  G,  of  the  discrete
Schrödinger operator H: 

G(v, w; λ)  δv
1

H - λ
δw, (153)

which we have here written in the resolvent formalism [97]:  

Rz; A  A - zI-1, (154)

for  a  given  operator  A,  and  where  δ  denotes  a  Kronecker  delta  func-
tion defined over the hypergraph:  

δv(w)  δvw 
1, if v  w,

0, otherwise.
(155)

For  a  given  vertex  w ∈ V  and  a  complex  number  λ ∈ ℂ,  this  Green’s
function  may  be  considered  to  be  a  function  of  v  that  is  the  unique
solution to the equation:  

(H - λ)G(v, w; λ)  δw(v). (156)
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Our central conjecture here (which we intend to explore more fully in
a  subsequent  publication)  is  therefore  that,  in  the  continuum  limit,
this  discrete  Green’s  function  is  related  to  the  standard  propagator
from  nonrelativistic  quantum  mechanics,  that  is,  the  kernel  of  the
Schrödinger  operator  that  corresponds  physically  to  the  transition
amplitude between state x at time t and state x′ at time t′ [98]:  

K(x, t; x′, t′)  〈xU

(t, t′)x′〉, (157)

since  the  discrete  Green’s  function  will,  in  this  limit,  converge  to  the
standard  Green’s  function  for  the  time-dependent  Schrödinger  equa-
tion:  

G(x, t; x′, t′) 
1

iℏ
Θ(t - t′)K(x, t; x′, t′), (158)

that is itself the solution to the equation:  

iℏ
∂

∂ t
-H


x G(x, t; x′, t′)  δ(x - x′)δ(t - t′), (159)

where  H

x  denotes  a  Hamiltonian  operator  in  x  position  coordinates,

δ(x)  is  the  Dirac  delta  function,  Θ(t)  is  the  Heaviside  step  function,

and  U

(t, t′)  is  the  unitary  time  evolution  operator  for  the  system

between times t and t′.  
It is worth noting that this propagator is nonrelativistic as a conse-

quence of our choice to perform this analysis with respect to the multi-
way  evolution  graph  (which  is  purely  quantum  mechanical)  as
opposed  to  the  full  multiway  causal  graph  (which  also  incorporates
relativistic  effects).  The  extension  of  these  methods  to  the  multiway
causal graph, and therefore a more complete derivation of the mathe-
matical apparatus of quantum field  theory, will be outlined in a forth-
coming paper. 

Concluding Remarks  4.

The  present  paper  has  indicated  the  potential  relevance  of  the
Wolfram  Model  in  addressing  a  variety  of  open  questions  related  to
the  foundations  of  quantum  mechanics  and  has  presented  possible
approaches for deriving many further aspects of the mathematical for-
malism  of  quantum  information  theory  and  quantum  field  theory
from  discrete  hypergraph  dynamics.  Many  directions  for  future
research  arise  out  of  the  present  paper,  ranging  from  a  more  system-
atic investigation of the physical implications of multiway relativity to
more rigorous mathematical exploration of the limiting structures and
geometry  of  the  multiway  evolution  and  causal  graphs,  to  greater
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elucidation of the implications of the Wolfram Model for holography,
black  hole  information  and  the  AdS/CFT  correspondence.  We  intend
to  address  several  of  these  questions  (particularly  with  regard  to
computability-theoretic  and  information-theoretic  aspects  of  the  for-
malism)  in  future  publications,  to  be  released  throughout  the  remain-
ing  course  of  the  Wolfram  Physics  Project,  but  our  hope  is  also  that
these directions may sow the seeds for novel and exciting research pro-
grams in their own right.  
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