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This paper deals with the issue of model construction of the self-regen-
eration  and  self-replication  processes  using  movable  cellular  automata
(MCAs).  The  rules  of  cellular  automaton  (CA)  interactions  are  found
according  to  the  concept  of  equilibrium  neighborhood.  The  method  is
implemented by establishing these rules between different types of cellu-
lar  automata  (CAs).  Several  models  for  two-  and  three-dimensional
cases  are  described,  which  depict  both  stable  and  unstable  structures.
As a result, computer models imitating such natural phenomena as self-
replication  and  self-regeneration  are  obtained  and  graphically
presented. 
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Introduction1.

Simulating  bio-like  processes  is  one  of  the  most  relevant  and  promis-
ing  areas  of  research.  The  mechanisms  of  many  bioprocesses  are
unknown  nowadays,  unlike  those  of  physical  phenomena.  Thus,  one
of the tasks that is solved through simulation is the search for answers
to the questions that are still open. These questions include, in partic-
ular,  the  processes  of  self-organization  and  the  evolution  of  living
matter  (origin  of  life);  and  mechanisms  of  synergistic  cooperation  in
the  colonies  of  unicellular  organisms  and  their  organization  in  the
form  of  multicellular  organisms,  accompanied  by  cell  differentiation
(acquisition  of  specific  functions  by  individual  cell  types  within  a
single organism).  

The  first  researcher  of  artificial  life  was  John  von  Neumann;
he  was  studying  the  possibilities  of  implementing  self-replicating
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structures. Von Neumann showed and described [1] the possibility of
constructing a discrete deterministic self-replicating automaton, which
can  be  considered  the  certain  analog  of  the  Turing  machine.  It  was
capable  of  copying  the  contents  of  a  control  program  and  fragments
of the automaton structure. 

The  simplest  cellular  automaton  (CA)  self-replicating  model  is  the
one proposed by Chris Langton [2]. In a Langton machine, a cell can
be  in  one  of  the  eight  possible  states.  The  state  of  the  cell  at  a  subse-
quent  time  is  determined  by  its  state  and  the  states  of  its  four  neigh-
bors  at  the  present  moment.  The  automaton  is  a  signal  strip  located
between two sides. The signal strip carries the information that is nec-
essary to create a copy of the machine, which can be obtained in 151
steps  after  launch.  One  of  the  most  well-known  continuum  models  is
the  reaction-diffusion  model  proposed  by  Alan  Turing  in  1952.  It  is
based  on  differential  equations  for  calculating  the  change  of  the  con-
tinuous parameters of the system depending on time. Various modifi-
cations of this model, including the Gray–Scott model and others, are
used  today  to  simulate  self-replication  processes,  embryogenesis,  and
so on�[3]. 

The  computer  simulation  of  chemical  processes  is  a  separate  area
of  research  on  the  spontaneous  generation  and  evolution  of  bio-like
structures.  It  also  can  lead  to  similar  dynamics  as  those  mentioned
above  (artificial  chemistry)  [4,  5].  In  particular,  the  authors  of  [5]
managed  to  build  a  self-replication  model  of  cell-like  structures  (the
so-called  “Los  Alamos  bugs”)  that  possess  not  only  elementary
metabolism,  but  also  hereditary  genetic  information.  The  model
assumes  the  functional  interdependence  of  the  membrane  and  the
metabolism and also the self-replication of the genetic biopolymer. In
this  case,  researchers  argue  that  the  model  lays  the  foundations  for
the  first  integrated  spatially  distributed  computer  simulation  of  the
entire protocellular life cycle. The method for simulation dynamics of
three-dimensional  dissipative  particles  was  used  as  a  tool  for  con-
structing a fairly simple model of coupled diffusion, self-assembly and
chemical reactions. 

The  author  of  another  interesting  paper  [6]  considers  the  possibil-
ity  of  simulating  self-replication  in  a  dynamic  chemical  reaction  envi-
ronment.  Hutton  applied  the  transition  rules  determined  in  his  study.
One of the examples is Ralph Hartley’s cell reproduction sequence. In
this challenge, a foreign body is put in the reaction chamber, with the
property  that  when  it  bumps  into  an  atom  it  will  break  all  of  its
bonds  unless  the  atoms  are  of  type  “a,”  thus  requiring  the  cell  con-
tents  to  be  contained  within  a  membrane  of  “a”-types.  This  solution
builds a special “mouth” structure that ingests a particular atom only
if it is not disturbed by the caustic agent. It achieves this by detecting
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if  the  “food”  particle  is  still  bonded  as  intended  or  has  been
unbonded.  The  caustic  agent  may  unbind  the  atom  at  this  point  but
this  will  be  detected  by  the  cell.  After  ingesting  the  necessary  atoms,
the  atom  sequence  is  copied,  the  two  copies  attach  to  the  membrane
and the cell division process starts. Eventually the cells separate com-
pletely  into  two  similar  parts.  It  should  be  noted  that  the  author
applies  the  CA  method  where  the  cells  can  move  around,  which  is
similar  to  the  method  applied  by  us.  However,  the  repeated  replicat-
ing process is possible only with some modification. 

In  [7],  the  authors  constructed  a  hybrid  two-dimensional  CA
model with a hexagonal grid. Their model displayed self-reproduction
in  a  cell-like  shape  with  few  states  in  transition  rules.  To  reduce  the
number of transition rules, they considered not only the state of transi-
tion  rules  but  also  the  concentration  diffusion  in  the  Gray–Scott
model, in which the self-reproduction phenomenon emerges with cer-
tain  parameters.  The  authors  have  developed  a  model  for  the  simula-
tion  of  cellular  self-reproduction  in  a  two-dimensional  CA  and  have
demonstrated  that  the  following  three  functions  can  be  realized:  for-
mation  of  a  border  similar  to  a  cell  membrane,  self-replication  while
maintaining  carrier-containing  information,  and  division  of  the  cell
membrane while maintaining the total structure. 

The Simulation Method  2.

The tools that are used to build models of biological objects and their
dynamics are quite diverse—from describing investigating processes in
terms  of  the  theory  of  differential  equations  and  then  finding  their
numerical  solution,  to  building  imitational  complex  models  that
reflect  the  individual  components  of  the  corresponding  processes  or
systems.  Using  movable  cellular  automata  (MCAs)  as  a  simulating
tool is attractive due to the possibility of creating quite simple models
of rather complex systems.  

It should be noted that the basis of the self-replication process men-
tioned  above  is  also  that  of  self-organization,  which  means  the
absence of a single control center. In contrast to the centralized man-
agement  approach,  each  element  of  self-organizing  systems  acts  by
itself,  interacting  with  only  a  small  number  of  neighboring  elements,
but  this  is  enough  to  streamline  chaotic  structures.  Therefore,  this  is
another  reason  to  choose  the  movable  cellular  automaton  (MCA)
method  as  a  simulation  method.  To  be  more  accurate,  we  chose  for
our  research  the  asynchronous  stochastic  MCA  method  with  the
symbolic  alphabet,  which  corresponds  to  the  states  set  of  the  MCAs.
This  method  is  a  further  development  of  deterministic  synchronous
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automata  [8],  which  are  used  to  simulate  physical-mechanical
processes in solid deformable bodies. 

The  MCA  method  should  be  essentially  considered  as  a  kind  of
hybridization  of  the  automaton  approach  and  the  method  of  molecu-
lar  dynamics  or  discrete  elements.  To  construct  an  elementary  model
of the self-replication process of a cell-like structure, the latter should
be  decomposed  into  separate  constituent  elements.  Each  discrete  ele-
ment is represented by an MCA with an appropriate behavior, which
depends on the type of element and the state of the environment, that
is,  the  state  of  the  neighboring  MCAs.  This  artificial  structure  is  also
called  “animat”  (from  artificial  animal).  The  advantages  of  using
MCA  to  create  animats  is  given  next.  First,  this  method  allows  the
possibility of a fairly flexible  modeling of the arbitrary morphology of
the  artificial  cellular  structure  and  its  organelles  and  also  simplifies
the  simulating  of  composition  and  decomposition  of  individual  frag-
ments.  Second,  it  gives  the  possibility  of  determining  a  wide  range  of
functional properties of these fragments, which form the set of the cor-
responding  parts  of  the  structure  (membranes,  fibers,  cytoskeleton,
cytoplasm, etc.). And finally, the automata approach allows us to real-
ize  the  change  of  complex  molecular  states  more  simply  and  thus
simulate  processes  like  the  blocking  or  activation  of  individual  genes
that initiate certain regulatory mechanisms in cells. 

The Example of Simulation  3.

First  we  consider  the  two-dimensional  model  with  hexagonal  neigh-
borhood  scheme.  The  determination  of  the  automata  interactions
rules is the main problem in constructing a model of an arbitrary phe-
nomenon  or  system  using  the  CA  method.  In  our  case,  to  simulate  a
self-regenerating  structure,  we  propose  to  form  two  different  types  of
MCAs  and  establish  equilibrium  neighborhood  rules  between  them.
These  rules  presuppose  the  existence  of  desirable  particular  types  of
MCAs  as  neighbors  of  specific  types  of  MCAs.  In  such  cases,  the
potential  of  the  MCA  is  minimal,  and  the  structure  they  constitute  is
robust.  If  the  MCAs  are  not  in  positions  with  their  equilibrium  envi-
ronment,  then  the  structure  is  unstable,  and  therefore  it  can  be
arranged  to  move  to  equilibrium.  There  are  two  possible  options:
either  the  MCAs  drift  toward  the  potential  decrease,  and  thus  a  self-
assembly  process  is  implemented,  or  the  MCAs  initiate  the  formation
(synthesis) of the equilibrium environment, and thus the self-regenera-
tion  process  is  realized.  The  combination  of  these  two  options  also
can be considered.  

As an example, we can consider the equilibrium interaction of two
types  of  MCAs,  one  of  which  (S1)  must  be  surrounded  by  six  other
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MCAs (S2) in an equilibrium state. However, for the S2 type of MCA,

there  must  be  three  equilibrium  neighbors,  one  S1  and  two  S2.  These

equilibrium  neighborhood  rules  can  be  expressed  in  tabular  form  as
shown in Table 1. 

Number of Neighbors Type of Cells S1 S2

6 S1 - 6

3 S2 1 2

Table 1. Equilibrium neighborhood rules for MCAs.  

The  essence  of  the  MCA  interaction  algorithm,  which  leads  to  the
arbitrary  alignment  of  structures  and  their  self-regenerative  stability,
is as follows. Each type (state) of an MCA Si is associated with certain

sets of types Ωi  Sj, Sk, … , Sm; the presence of that in related rela-

tions is most preferable. In terms of physical analogies, it can be said
that a fragment of the structure consisting of Si  with the environment

Ωi  has  the  minimum  value  of  a  certain  potential  energy  Umin.  Any

other  configurations  are  a  deviation  from  the  specified  equilibrium
neighborhood  and  the  structure  energy  increases.  Thus,  it  is  possible
to realize the self-building process of structures with a criterion of the
minimum  of  potential  energy.  Energy  will  be  estimated  by  counting

the number of mismatches Mr
i
 surrounded by Si: 

Ui  
r1

Ni

Mr
i ,

Ni  maxNeq, Nex,

Mr
i 

 0,  if sr ∈ Ωr
i◦Ωr+1

i  Ωr
i - Sr, 

 1,  if sr ∉ Ωr
i .

Here  Neq  is  the  number  of  Si  connected  neighbors  in  the  equilibrium

state, Nex  is the number of existing connected neighbors, and Sr  is the

selected neighbor. If Sr  is detected in the environment Ω, it is removed

from this set, in order not to be taken into account in the next step of
the inconsistency calculation cycle.  

Next,  we  implement  a  certain  analog  of  the  gradient  descent  algo-
rithm  to  search  for  configurations  with  a  minimum  of  potential
energy. In this case, we use the operations of local perturbations (pi): 

◼ p1, adding a random neighbor of arbitrary type

◼ p2, deleting a randomly selected neighbor
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◼ p3, changing the type of randomly selected neighbor

◼ p4, establishing connection with a random MCA, located within the cir-

cumference of R

◼ p5, breaking of connection with randomly selected MCAs

◼ p6, exchanging one of the connections with a randomly selected MCA

Applying  these  perturbation  operations  to  some  MCA  Si,  we

estimate the new potential energy Ui
t+1

 of the structure. If this poten-

tial  (the  total  number  of  inconsistencies)  is  less  than  the  potential  of
the previous structure Ui

t, then a perturbation in the form of a corre-

sponding  modification  (mutation)  remains  in  the  structure.  Other-

wise,  when  Ui
t+1 > Ui

t
 there  is  a  rollback,  and  the  modification  is  not

accepted. 
It  should  be  noted  that  MCAs  are  also  subject  to  rules;  as  a  result

of that they strive to be uniformly distributed relative to their nearest
neighbors, with whom they have strong ties. These rules are described
by the interaction formula: 

F 
 f1,  if d < 2 * r, 

 f2,  if d > 2 * r + δmax.
(1)

Here  r  is  the  radius  of  the  MCA;  d  xi - xj
2
+ yi - yj

2
  is  the

distance  between  centers  of  MCAs  with  coordinates  (xi, yi)  and

xj, yj;  and  f1  is  an  operation  that  corresponds  with  the  repulsion  of

two MCAs when they overlap. This simulates the incompressibility of
the medium. Each MCA has a radius r corresponding to it, and when
approaching  a  distance  shorter  than  2 *r,  the  MCAs  must  be  pushed
away. f2  is an operation that attracts two MCAs. It simulates the con-

densed  state  of  the  medium  and  prevents  the  appearance  of  voids.
When the distance between centers of MCAs is more than 2 *r + δmax,

they  should  be  attracted;  here  δmax > 0  is  the  maximum  possible  dis-

tance  between  two  MCAs.  The  following  pseudocode  shows  the
essence of repulsion and attraction operations.  

Repulsion: 

d =sqrt ((xi - xj)^2 + (yi - yj)^2)
delta = (ri + rj) - d
if delta>0 then 

   cos(alpha) = (xi - xj)/d
   sin(alpha) = (yi - yj)/d
   xi = xi + delta*rj/(ri + rj)*cos(alpha)
   yi = yi + delta*rj/(ri + rj)*sin(alpha)
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 xj = xj delta*ri/(ri + rj)*cos(alpha)
   yj = yj delta*ri/(ri + rj)*sin(alpha)
endif

Attraction: 

d = sqrt((xi - xj)^2 + (yi - yj)^2)
delta = d - (ri + rj + deltamax) 
if delta>0 then 

   cos(alpha) = (xi - xj)/d
   sin(alpha) = (yi - yj)/d
   xi = xi - delta*rj/(ri + rj)*cos(alpha)
   yi = yi - delta*rj/(ri + rj)*sin(alpha)
   xj = xj + delta*ri/(ri + rj)*cos(alpha)
   yj = yj + delta*ri/(ri + rj*sin(alpha)
endif

Demonstration of the structure stability formed on the principles of
equilibrium neighborhood by the MCA method is shown in Figure 1.
The  deviations  lead  to  a  nonequilibrium  state.  At  the  next  moments
of time there is an arbitrary comeback to the state of equilibrium and
the  initial  structure  is  restored.  That  is,  there  is  a  process  of  self-
regeneration. 

Figure 1. Schematic  demonstration  of  the  stability  of  a  structure  formed  on
the principles of equilibrium neighborhood described in Table 1.  

Let us consider some other examples of structures with equilibrium
neighborhooding.The rules described in Table 2 lead to the absolutely
random formation of a chaotic structure. Moreover, it is stable, since
there  are  no  conflicts  and  inconsistencies  from  the  point  of  view  of
the equilibrium neighborhood. 

The result of random construction of the structure is shown in Fig-
ure 2. Due to the rules that any type of element can be surrounded by
any combination of existing types, there will be growth on the bound
of the structure and previously created fragments will not be changed. 
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Number of Neighbors Type of Cells S1 S2 S3

6 S1 6 6 6

6 S2 6 6 6

6 S3 6 6 6

Table 2. Equilibrium  neighborhood  rules  for  MCAs.  The  colors  of  the  circles
correspond  to  the  colors  of  the  table  cells  marking  the  appropriate  type  of
automaton.  

Figure 2. Schematic  demonstration  of  the  stability  of  a  structure  formed  on
the  principles  of  equilibrium  neighborhood  described  in  Table  2.  The  colors
of the circles correspond to the colors of the table cells marking the appropri-
ate type of automaton. 

Tables  3  and  4  describe  the  formation  of  the  infinite  periodic
structure. 

Number of Neighbors Type of Cells S1 S2 S3

6 S1 1 4 1

6 S2 2 2 2

6 S3 1 4 1

Table 3. Equilibrium neighborhood rules for MCAs.  

Number of Neighbors Type of Cells S1 S2 S3

6 S1 2 4 -

6 S2 2 2 2

6 S3 - 4 2

Table 4. Equilibrium neighborhood rules for MCAs.  
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The  result  of  construction  of  the  periodic  structure  is  shown  in
Figures 3 and 4. 

Figure 3. Schematic  demonstration  of  the  stability  of  a  structure  formed  on
the  principles  of  equilibrium  neighborhood  described  in  Table  3.  The  colors
of the circles correspond to the colors of the table cells marking the appropri-
ate type of automaton. 

Figure 4. Schematic  demonstration  of  the  stability  of  a  structure  formed  on
the  principles  of  equilibrium  neighborhood  described  in  Table  4.  The  colors
of the circles correspond to the colors of the table cells marking the appropri-
ate type of automaton. 

By  experimenting  with  the  rules  of  the  equilibrium  state,  you  can
also get examples in which there is no mutual support. We can detect
this from the equilibrium neighborhood matrix (Table 5). In this case,
during the self-constructing of the structure, inconsistencies (conflicts)
occur.  For  example,  in  Figure  5,  gray  circles  show  the  positions
where  the  addition  of  the  environment  of  some  elements  immediately
leads  to  contradictions  in  the  equilibrium  neighborhood  for  other
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neighboring  elements.  Moreover,  in  this  case  of  movable  cells,  in
order  to  minimize  the  potential  of  deviations  from  the  equilibrium
state,  the  algorithm  will  constantly  create  intermediate  nodes  that
destroy the geometry of the structure and lead to its unstable stochas-
tic infinite growth. 

Number of Neighbors Type of Cells S1 S2 S3

6 S1 1 2 3

6 S2 2 2 2

6 S3 3 2 1

Table 5. Equilibrium neighborhood rules for MCAs.  

Figure 5. Schematic  demonstration  of  the  instability  of  the  structure  formed
on  the  principles  of  the  equilibrium  neighborhood  described  in  Table  5.  The
colors of the circles correspond to colors of the table cells marking the appro-
priate type of automaton.  

In the case of classical frame structure of CAs, it would be possible
to  organize  the  existence  of  a  specific  cell  that  would  mark  inconsis-
tencies in the structure (marked in gray, for example), but in the case
of  MCAs  according  to  the  algorithm  the  connections  will  be  con-
stantly  under  construction  and  destroyed.  These  examples  are  similar
to  the  destruction  of  structures  during  the  deformation  of  crystals.
The  algorithm  can  also  be  modified  by  implementing  the  feedback
between  the  behavior  of  the  structure  and  the  interaction  rules.  For
example,  if  conflict  situations  are  detected  in  the  structure,  the  algo-
rithm  will  change  (mutate)  the  rules.  As  a  result,  the  algorithm  will
arbitrarily  seek  the  rules  for  building  consistent  structures  based  on
harmonious, mutually balanced elements. 
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The Example of Self-Replicating Structure  4.

Rules of the MCA interactions can be supplemented by the possibility
of  activation  of  different  subsets  that  describe  transitions  from  one
type to another, depending on some continuous parameters (analog of
supplying  nutrients).  In  this  way,  an  arbitrary  periodic  dynamic  will
be  realized,  of  which  self-replicating  is  the  partial  case.  In  addition,
the  algorithm  of  the  method  can  be  supplemented  by  the  mechanism
of  random  addition  of  new  types  of  MCAs  to  a  modeled  cell-like
structure  (analog  of  mutations),  which  can  lead  to  increased  stability
of  its  dynamics,  or  vice  versa—counteract  replication.  Finally,  by
creating  the  conditions  for  natural  selection,  it  is  possible  to  organize
the evolution of the studied self-replicating cell-like objects.  

Let  us  consider  an  example  of  the  elementary  self-replicative
dynamics  of  some  CA  structure.  The  rules  of  equilibrium  neighbor-
hood  of  elements  describing  the  self-replicating  process  are  repre-
sented in Table�6. 

Number of Neighbors Type of Cells S1 S2 S3 S4 S5 S6

6 S1 - 6 - - - -

3 S2 1 2 1 1 1 1

4 S3 - 2 - 2 - -

6 S4 - 3 2 1 - -

5 S5 - 2 - - 1 2

6 S6 - 4 - - 2 -

Table 6. The rules of equilibrium neighborhood describing the self-replicating
process.  

Here for a type S2 it is possible to see the peculiar ambiguity in sets

of  equilibrium  neighborhoods.  This  suggests  that  any  combination  of
three  neighbors  that  corresponds  to  the  possible  variations  from
Table  6  is  in  equilibrium.  For  example,  there  may  be  different  neigh-
bors  for  S2:  either  one  S1  and  two  S2;  or  one  S3  and  two  S2;  or  one

S1, one S3 and one S4, and so on. 

The stages of the process of self-replication of the CA structure are
depicted in Figure 6. 

This  process  is  accompanied  by  the  transitions  of  the  MCA  from
one  type  to  another,  in  particular:  S1 → S4 → S6 → S1.  Such  transi-

tions  simulate  the  growth  phases  and  the  division  of  cell-like  objects.
Immediately  after  changing  the  type  of  the  corresponding  MCA,  the
structure will be in a nonequilibrium state, which will initiate the pro-
cess of going to equilibrium, during which the spatial organization of
the neighborhood is rebuilt and a new MCA appears (self-generated).
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You  can  observe  the  similarity  of  this  process  with  Desmidium  algae
division (Figure 7). 

Figure 6. Demonstration of the self-replication process. The colors of the cir-
cles  correspond  to  the  color  of  the  cells  in  Table  6  marking  the  appropriate
type of automaton.  

Figure 7. Desmidium algae division. The source of the image is
www.microscopy-uk.org.uk.  

The Example of Self-Replicating Structure in 

Three-Dimensional Space
5.

By  modifying  the  interaction  functions,  we  can  describe  a  similar
model for the case of three-dimensional space. As an example, we can
consider  the  equilibrium  interaction  of  two  types  of  MCAs,  one  of
which (S1-type) must be surrounded by eight other MCAs (S2-type) in

an  equilibrium  state  (cubic  neighborhooding).  For  the  S2-type  MCA

there  must  be  four  equilibrium  neighbors,  one  S1-type  and  three  S2-

type.  In  parallel,  let  us  consider  a  similar  structure  in  which  the
automaton (S1-type) must be surrounded by 12 other MCAs (S2-type)

in  an  equilibrium  state  (icosahedral  neighborhooding).  These
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equilibrium  neighborhood  rules  are  expressed  in  tabular  form  in
Tables 7�and�8.  

The  rules  of  the  equilibrium  neighborhood  of  elements  describing
the  self-replicating  process  in  three  dimensions  are  represented  in
Tables 9 and 10.

Number of Neighbors Type of Cells S1 S2

8 S1 - 8

4 S2 1 3

Table 7. Equilibrium  neighborhood  rules  for  MCAs  in  three-dimensional
space in the case of cubic neighborhooding.  

Number of Neighbors Type of Cells S1 S2

8 S1 - 12

6 S2 1 5

Table 8. Equilibrium  neighborhood  rules  for  MCAs  in  three-dimensional
space in the case of icosahedral neighborhooding.  

Number of Neighbors Type of Cells S1 S2 S3 S4 S5 S6

8 S1 - 8 - - - -

4 S2 1 3 1 1 1 1

6 S3 - 2 2 2 - -

9 S4 - 4 4 1 - -

6 S5 - 2 - - 2 2

8 S6 - 4 - - 4 -

Table 9. The  rules  of  the  equilibrium  neighborhood  describing  the  self-
replicating  process  in  three-dimensional  space  in  the  case  of  cubic  neighbor-
hooding.  

Number of Neighbors Type of Cells S1 S2 S3 S4 S5 S6

12 S1 - 12 - - - -

6 S2 1 5 2 1 2 1

8 S3 - 2 4 2 - -

12 S4 - 6 5 1 - -

5 S5 - 2 - - 2 1

11 S6 - 6 - - 5 -

Table 10. The rules of the equilibrium neighborhood describing the self-repli-
cating process in three-dimensional space in the case of icosahedral neighbor-
hooding.  
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The  stages  of  the  process  of  self-replication  of  the  CA  structures
are depicted in Figures 8 and 9. 

Figure 8. Demonstration  of  the  self-replication  process  in  three-dimensional
space  in  the  case  of  cubic  neighborhooding.  The  colors  of  the  circles
correspond  to  the  colors  of  the  table  cells  marking  the  appropriate  type  of
automaton.  

Figure 9. Demonstration  of  the  self-replication  process  in  three-dimensional
space  in  the  case  of  icosahedral  neighborhooding.  The  colors  of  the  circles
correspond  to  the  colors  of  the  table  cells  marking  the  appropriate  type  of
automaton.  
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Conclusion6.

In  this  paper  the  problem  of  the  construction  of  a  model  of  the  self-
replication  process  was  considered.  The  paper  gave  an  overview  of
available techniques used for the problem and outlined the arguments
in  favor  of  a  cellular  automaton  (CA)  method.  The  basic  approach
and  general  methodology  for  the  development  of  models  using  mov-
able cellular automata (MCAs) was examined. The method was imple-
mented  by  establishing  the  rules  of  equilibrium  neighborhood
between different types of cellular automata (CAs).  

Computer models simulating certain natural phenomena (self-regen-
eration  and  self-replication)  were  obtained.  Results  of  calculations
were  graphically  presented.  It  should  be  noted  that  the  models  are
qualitative, not quantitative, and allow you to demonstrate the funda-
mental  possibility  of  the  movable  cellular  automaton  (MCA)  method
for such modeling. The novelty of the research consists in the use of a
substantially  new  approach  to  modeling.  By  changing  the  rules  of
equilibrium  neighborhood  (see  Tables  7  and  9),  it  is  possible  to  form
various  stable  structures  with  arbitrary  morphology,  examples  of
which are shown in Figure 10. Moreover, it should be noted that the
rules  of  the  neighborhood  may  be  asymmetric;  that  is,  some  MCAs

can establish a connection of the neighborhood with the kth, whereas

kth may not perceive them as its neighbor. Nevertheless, the structures
will be stable, because the balance is not disturbed. 

These structures are analogs of natural elementary microorganisms
like  radiolaria  or  diatoms  (Figure  11).  Simulation  of  such  complex
structures, as well as the study of their stability, evolution and so on,
is the subject of our further research. 

Number of Neighbors Type of Cells S1 S2 S3 S4 S5 S6 S7

4 S1 1 1 2 - - - -

3 S2 1 - - 2 - - -

4 S3 2 - - - - 2 -

3 S4 - 1 - - 2 - -

3 S5 - - - 1 - - 2

3 S6 - - 1 - - - 2

3 S7 - - - - 1 1 2

Table 11. The rules of equilibrium neighborhood for diatom-like structure.  
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Number of Neighbors Type of Cells S1 S2 S3 S4 S5

5 S1 - 5 - - -

6 S2 1 2 2 - 1

7 S3 - 2 - 1 4

6 S4 - - 1 - 5

5 S5 - 1 1 1 2

Table 12. The rules of equilibrium neighborhood for radiolaria-like structure.

Figure 10. Examples  of  structures  with  arbitrary  morphology,  formed  on  the
principles of MCA equilibrium neighborhood. The colors of the circles corre-
spond  to  the  cell  colors  in  Tables  7  and  9  marking  the  appropriate  type  of
automaton.  

Figure 11. Elementary  microorganisms:  diatom  and  radiolaria.  The  source  of
the image is www.microscopy-uk.org.uk.  
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