An Improved Generalized Enumeration of
Substitution Systems

Kenneth E. Caviness

Camille Morrow

Christen Case

Victoria Kratzke

Physics and Engineering Department
Southern Adventist University
Collegedale, TN 37315
caviness@southern.edu

The enumeration of all sequential substitution system rulesets is modi-
fied to include generalized substitution system rulesets. Unlike its prede-
cessor, the new enumeration is one-to-one: each ruleset is guaranteed to
appear exactly once in the new enumeration, which moreover possesses
an elegant simplicity that allows jumps over increasingly longer unde-
sired subsequences of many types. This process effectively results in an
increased acceleration and greatly improved performance.

Keywords: sequential substitution system; enumeration

I 1. Introduction

Stephen Wolfram’s groundbreaking enumeration of all elementary
cellular automata was introduced as a showcase example in his book
A New Kind of Science (NKS) [1]. The NKS approach is to observe
the behavior of a large set of “simple programs,” noticing characteris-
tics that resemble phenomena in the natural world, perhaps ultimately
providing insights about the real universe. Critical to this method is
the existence of an enumeration, which for our purposes is a well-
defined way of sequentially generating all possible simple programs of
the desired type. Based on initial programs and visualizations devel-
oped by one of us [Caviness| during the 2009 NKS Summer School
program in Pisa [2], a complete enumeration of all rulesets of sequen-
tial substitution systems (SSSs, informally pronounced “sessies”) was
developed [3]. Initial use of that enumeration revealed the unsurpris-
ing result that most SSSs die out (stop changing), and most of those
that do not die out are of simple, repetitive types. The human
researcher must be provided with interesting cases to investigate with-
out the need to hunt through billions of cases that die out or are func-
tionally equivalent to ones previously studied. Therefore, it became

https://doi.org/10.25088/ComplexSystems.29.4.837

838 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

imperative that the program do preliminary testing and only display
those of possible interest. Of particular importance was the existence
in the enumeration of long subsequences of rulesets that could all be
eliminated by the same criteria, suggesting the possibility of not
merely simplifying the researcher’s task but also accelerating the itera-
tion. However, the complicated nature of the ranking/unranking algo-
rithms caused difficulties in this effort. So while further progress on
SSSs was blocked, we turned to laying the initial groundwork for the
treatment of multiway and other substitution systems, developing a
more generalized enumeration. Ironically, we found that not only
does the new generalized substitution system (GSS) enumeration
allow the treatment of cases not included in the SSS enumeration, but
its simple ranking/unranking functions make possible precisely calcu-
lated jumps over subsequences of unwanted cases. This feature makes
it preferable for use even with SSSs. Equally satisfactory is the fact
that the new algorithm never produces the same ruleset from different
indices, eliminating the 25% duplication inherent in the original SSS
enumeration. Adding in non-SSS rulesets turns out not to be a disad-
vantage at all!

2. Substitution Systems and the Old Sequential Substitution
System Enumeration

A SSS consists of a finite-length state string containing characters
from an arbitrary enumerable (finite or countably infinite) alphabet
and a ruleset containing one or more rules. Each rule consists of a pat-
tern to search for, specified by the left-hand side of the rule, and a
replacement string, given by the right-hand side. For example, the rule-
set {"AA">"BA", "AB"->"AA", "B">"AA"} contains three rules,
the first of which replaces occurrences of "AA" in the state string by
"BA". The term sequential refers here to the prescribed substitution
order: the first rule is applied only at the first possible matching loca-
tion in the state string, scanning from left to right. If no match for the
first rule exists, the second rule is tried in the same way, scanning the
state string from left to right, and only if both the first and second
rules fail is the third used, and so on [1]. In the example above, start-
ing with an initial state string "B", applications of the rules succes-
sively produce the following state strings: {"B", "AA", "BA",
"AAA", "BAA", "BBA", "AABA", "BABA", "BAAA", "BBAA",
...}. (In this case, the rules invoked were {3, 1, 3, 1, 1, 3, 1, 2, 1,
1,...}.) Figure 1 is a visual representation of this SSS, showing the evo-
lution of the state string by successive rows of colored squares
(arbitrarily using gray and red to represent "A" and "B", respec-
tively), with the rule applied and the location of each match indicated

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 839

by the inset numbers. The reader can easily confirm that each row is
obtained from the previous row by applying the rule at the place
shown. Each SSS is associated with a well-defined causal network [1].
The SSS causal network shown in Figure 1 is the first two-dimen-
sional network found with an internal hexagonal arrangement of
nodes.

Xy ¢ P — .
Substitution Rules: \ N A\g/
— P

—). V\n,:,:/"
.-»

-

Figure 1. Visual display of ruleset, early steps of evolution and causal network
of a sample SSS.

If no rules apply anywhere in the state string, no further changes
can occur, and the system is said to be dead. Although we set no
bound on the number of rules or string length (except that both be
finite), and even the alphabet used may be countably infinite, the set
of all SSS rulesets is enumerable and an enumeration was developed
as detailed previously [3]. The original SSS enumeration allowed
empty strings in certain positions, to accommodate deletion rules
("something" - "nothing") anywhere, and explicitly added the possi-
bility of a creation rule ("nothing"—"something") at the end of the
ruleset. (This seemed natural since no rule following a creation rule
will ever be executed.) Unfortunately, the attempt to avoid unwanted
cases resulted in an increase in the complexity and in the introduction
of duplicate rulesets, with 25% of the index codes producing dupli-
cates. Worse, in allowing deletion rules anywhere in the ruleset, the

https://doi.org/10.25088/ComplexSystems.29.4.837

840 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

enumeration also allowed creation rules anywhere, rather than only
at the end as was originally planned. It is true that adjacent empty
strings were only allowed at the end of the ruleset, but this turns out
to be a relatively small advantage, when weighed against the enumera-
tion’s complexity.

By moving to the generalized enumeration, we simplify the rank-
ing/unranking functions and the calculation of jumps within the
enumeration. We allow one or at most two adjacent empty strings
anywhere in the ruleset, so adjacent deletion and creation rules are
possible anywhere, for example, {"AA"->"", "">"A"}, but now it is
a simple matter to skip an entire run of unwanted nonfinal creation
rules in one jump. In addition, the new enumeration can without fur-
ther modification represent multiway substitution systems (which
have different criteria than SSSs). The new algorithm is appropriately
called the GSS enumeration, as it can be used for any such system. Its
relative simplicity makes it superior to the previously used enumera-
tion for sequential systems, and therefore the GSS enumeration can be
considered a replacement for that algorithm.

3. Motivation and Construction of the Generalized Substitution
System Enumeration Algorithm

The GSS enumeration is based on a quinary (base-5) code specifying
how the ruleset should be constructed by repeatedly modifying a
single ruleset containing a single character "A". It is a consistent, logi-
cal extension of the enumeration of all lists of all strings, which is
itself an extension of the universal string enumeration, using ternary
and binary codes, respectively. It is instructive to briefly review these
simpler cases.

To construct any string in the universal string enumeration from its
index, one starts by writing the index in binary form. The initial 1 bit
is the signal to start the string with a single character "A", and any
additional bits are taken as instructions to do one of the following:

= 0:append an "A" to the string
= 1: increment the final character of the string

Thus the string is lengthened by each O bit to the index code, while
the final character is changed to the next one in the (arbitrary) alpha-
bet by each 1 bit. For example, the bits of the binary number 101011
are interpreted as the instructions given in Table 1, resulting in the
string "ABC".

Any string can be formed in this way: the process describes a bijec-
tive mapping of the positive integers onto the set of all strings.
Table 2 gives the first few strings in enumeration order, together with

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 841

their indices in decimal and binary form. It should be noted that any
alphabet can be used for the characters actually making up the
strings; here "ABC..." is used merely for convenience. It is quite con-
ceivable to use the current complete Unicode character listing, even
extending it as new characters may someday be added. Any such
changes would automatically be used by our enumeration algorithm,
which therefore is truly a universal list of strings, not merely of cur-
rently compiled languages but of all future human writing systems!

bit meaning result
1 |start with "A" "A"
0 | appendan"A" "AA"
1 | increment final character | "AB"
0 | appendan"A" "ABA"
1 | increment final character | "ABB"
1 | increment final character | "ABC"

Table 1. Example of string construction from a binary code.

1 2 3 4 S 6 7 8 9 10
1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010,
A AA B AAA AB BA C AAAA AAB ABA

Table 2. The beginning of the universal list of all strings of all letters, charac-
ters and symbols, together with their indices. The initial 1 in the binary code
represents the original "A"; subsequent bits specify modifications
(0|1 - append | increment).

Interestingly, the initial 1 bit can be thought of as adding 2%~1 to
the binary instruction code given by subsequent digits, where w is the
total “weight” of the string (formed by adding the character weights:
"A">1, "B"-2, "C"-3, etc.) and 2%~ is simply the number of
strings of weight less than w that precede all the strings of weight w,
plus 1. For example, as shown in Table 2, there are 2° = 1 strings of
weight 1, 21 = 2 strings of weight 2 and 22 = 4 strings of weight 3.
This pattern continues: the weight of each string is the length of its
binary index code, so there are 2%~ strings of weight w. The number
of strings of weight less than w is therefore 20+21+...+
2w=2 = 2w=1 _ 1 the sum of a finite geometric series. We further note
that within each string weight class, larger characters appear later
than equivalent weight runs of smaller characters as the weight shifts
toward the beginning of the string. For example, "AAA" appears
before "C". The reader is invited to experiment with online interac-
tive demonstrations of this algorithm [4, 5].

https://doi.org/10.25088/ComplexSystems.29.4.837

842 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

An enumeration of all lists of strings can be obtained by again start-
ing with a single "A", treating the indices as base-3 numbers, letting
the three ternary digits encode the following instructions:

= 0: end this string and start a new string with an "A"
= 1:append an "A" to the last string
= 2:increment the last character of the last string

Then add the ternary code to the number of smaller weight string
lists, plus 1, so as to start the enumeration with index 1 rather than 0.
The interested reader is directed to [3] or [5] for details, but again
lower-weight string lists appear before higher-weight ones, and within
each weight class the weight is initially spread out (as w separate "A"
strings) and is gradually compacted and shifted toward the beginning
of the string.
In substitution systems, it is necessary to allow empty strings (for
creation or deletion rules) and even at times two adjacent empty
strings, if a deletion rule is immediately followed by a creation rule,
such as in {"A"->"", "">"A"}, for example. This motivates the use of
base-5 codes for the GSS enumeration, with the following quinary
digit meanings:
= 0: end this string, insert two empty strings and start a new string with
an "A"

» 1: end this string, insert one empty string and start a new string with
an "A"

= 2: end this string and start a new string with an "A"

= 3:end this character and start a new character (as an "A")
= 4: increment this character

One minor adjustment must be considered: there are two possible
rulesets of weight 1: {""—>"A"} and {"A"-""}. To guarantee that all
substitution system rulesets appear in the enumeration, simply select
one of these, indicating the choice by a 0 or 1 bit, before adding the
base-5 digits, giving full instructions for the construction for all
weight w rulesets by the 2(5”"1) codes of the form b,¢,q3...4,,.

The number of rulesets of weight less than w is
_ cw-1 w _
2(59) 2 2(51) 44 2502 = 2L (029)
(1-5) 10
and the offset to add to the quinary code to give a unique index, start-
ing with 1, for each ruleset of weight w is

(5% = 5) (5% = 5)
R
10 10

2)

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 843

Clearly, the useful features of the string enumeration also have their
counterparts in the GSS enumeration. Each quinary digit adds one to
the weight of the ruleset (defined as the sum of the weights of its
strings), so the length of the code string is by construction determined
by the weight of the ruleset. Using the proper offset for each weight
class ensures that small-weight rulesets appear before larger-weight
ones, and that each ruleset is associated with a unique index. The enu-
meration includes all rulesets constructible on a finite or countably
infinite alphabet, and small characters and short strings appear early
in the list—a significant advantage, as we will see. Figure 2 gives
Wolfram Language code for the GSS rank and unrank functions, and
Table 3 shows the first 75 rulesets in the GSS enumeration together
with their indices. The ordering by ruleset weight (defined as the sum
of the weights of the strings in the ruleset) is clearly apparent, as is the
pattern of the weight being initially as spread out as possible—single
character "A" strings separated by two empty strings (the maximum
allowed) and gradually being compacted and moved toward the begin-
ning of the ruleset. Still, many rulesets appear that are not needed for
SSSs, notably cases of nonfinal creation rules (and even ""—"" rules),
but as we will show in Section 5, the underlying simplicity and coher-
ence of enumeration allow such cases to be jumped over with little
loss of time. The most important feature is that the enumeration does
not leave anything out, and any “extras” can be managed efficiently.

T 05 (7oA
2 s {"A"-"1)

R T O TR TR O

4 0,15 {"" - "A","" 5 "A"}

5025 {""->"A","A" ")

6 035 {""-"AA")

7 0,45 {"" > "B"}

8 1,05 ["A" ot AT

9 DIy [TA" S, AL 0

10 1,25 {"A" - "A"}

11 1535 {"AA" > ""}

12 1,45 ("B" > ")

13 0,005 {"" > "A", """ o "UUMAT S ot A
14 0,015 {"" > "A", "" 5 "M AN S MU NAY S
15 0,025 {"" - "A","" 5 "M AN 5 "AYY

16 0,035 {"" > "A","" 5 "M TAAY 5 MY

17 0,045 {"" > "A","" > "" "B" > ""}

Table 3. (continues)

https://doi.org/10.25088/ComplexSystems.29.4.837

844 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

18 0,105
19 0,115
20 0,125
21 0,135
22 0,145
23 0,205
24 0,215
25 0,225
26 0,235
27 0,245
28 0,305
29 0,315
30 0,325
31 0,335
32 0,345
33 0,405

" "A", " "A", R ", "A" - " "}
T AT AT AT
R R N
T MAT, MY S MAAY)

d "B"}
T AT AT S T S AT
T AT AT S AT S
T AT AT S AT
T MAT, TAAT S)
" "A", "B" - " "}
T TAAT, T AN
T MAAT, M S A"
T TAAT, AT S)
" "AAA")
N
" "B", R ", "A" - " "}
34 0,415 {"" - "B","" 5 "A")
35 0,425 ("' 5 "B","A" 5 "")

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
36 0,435 {"" - "BA")
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

nn nAn nn
B

)

{

{

{

)

{

37 0,445 ("" > "C")
38 1,005
39 1,015
40 1,025
41 1,035
42 1,045
43 1,105
44 1,115
45 1,125
46 1,135
47 1,14
48 1,205
49 1,215
50 1,225
51 1,235
52 1,245
53 1,305
54 1,315

"A" - " ", " "A", R ", "A" - " "}
R N
AT S T AT AT S
A" S ML AR

"A" - " “, " "B"}

AT S TUTAT S AT
Y
A" S MTAT S AT

AT 5 T TAAT S)

"A" - " ", "B" - " "}

AT S TAT, TS A S
AT 5 TAT, S AT

A" S TAT AT S)

"A" 5 "AA")

"A" 5 "B")

TAA" 5 MU, S AN

TAA" 5 MU AT S)

Table 3. (continues)

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 845

56 1,335
57 1,345

{"AAA" > ""}
("AB" - 7]
58 1,40 {"B" - "","" > "A"}
59 1,415 {"B"->"","A" > ""}
60 1,425 {"B" - "A"}
61 1,435 {"BA" > ""}
62 1,445 {"C" > ""}
63 020005 {"" - "A", "M o MUUTAT S Mo AN
T MUMAY S)
64 020015 {"" > "A", "M MUUTAT S TN S AN N AT
65 020025 {"" o "A", MM o MU TAT S NN WAN AN oy
66 0,0035 {"" > "A", "M o MU MAT S NS TAAY

Table 3. The beginning of the universal list of all substitution system rulesets,
using the GSS enumeration.

fromGeneralizedRank][i_Integer /; i > 0] := Module[

{n, j, bit, quinaryDigits, numberOfEOS, chopPos, ans, strings, ruleset},
n = Floor[Log[5, 10i-5]];
j=i-(5"+5)/10;
{bit, j} = QuotientRemainder[j, 5"];
quinaryDigits = IntegerDigits[j, 5, n-1];
ans = Switch[bit, 0, {{}, {1}}, 1, {{1}}];
Scan[Switch[H,

0, ans = Join[ans, {{}, {}, {1},

1, ans = Join[ans, {{}, {1}}],

2, AppendTo[ans, {1}],

3, AppendTo[ans[-11, 1],

4, ans[-11[-1] ++

1 &, quinaryDigits];

strings = StringJoin @@@ (FromCharacterWeights /@ ans);
Iff0ddQ[Length[strings]], strings = AppendTo[strings, ""]];
Rule @@@ Partition[strings, 2, 2]];

toGeneralizedRank[rs_List] := Module[{rl, wl, w, bit, quincode = ""},
rl = Flatten[List @@@ rs];
If[Last[rl] == "", rl = Most[rl]]; (+ drop ultimate empty string, if needed *)
wl = ToCharacterWeights /@ rl;
(= to lists of lists of numbers "A"—>1, etc., but ""—{}, not 0 %)
wl=wl /. 0 {};
w = Total[Flatten[wl]]; (+ weight of this rule set %)

Figure 2. (continues)

https://doi.org/10.25088/ComplexSystems.29.4.837

846 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

While[wl # {{1}} && wl = {{}, {1}},
Which[
wl[-1][-11 > 1, quincode = "4" <> quincode; wl[-1][-1]--,
wl[-1][-1] == 1 && Length[wl[-1]] > 1,
quincode = "3" <> quincode; wl[-1] = Most[wl[-1]],
Length[wl] = 3 && wl[-3 ;;] == {{}, {}, {1}}, quincode = "0" <>quincode;
wl = Drop[wl, -3],
Length[wl] > 2 && wl[-2 ;;] == {{}, {1}},
quincode = "1" <> quincode; wl = Drop[wl, -2],
wl[-1] == {1}, quincode = "2" <> quincode; wl = Drop[wl, -1]
1
Switch[wl, {{}, {1}}, bit =0, {{1}}, bit = 1];
FromDigits[bit <> quincode, 5]+ (5" +5)/10];

Figure 2. The GSS rank and unrank functions.

I 4. The Reduced Enumeration Substitution System Algorithm

The GSS enumeration includes all rulesets for general substitution sys-
tems. It can be used equally well for the treatment of SSSs, particu-
larly when implemented with long jumps to bypass runs of
consecutive rulesets that can be omitted in the study of SSSs. Several
long-jump criteria for SSSs will be considered in Section 5. Of course,
the same can be done for other types of substitution systems as well,
although the criteria will differ. But one simplification worth consider-
ing first is removing the initial binary code used to distinguish
between rulesets starting with a creation rule (""—"something") and
those that do not. Particularly for the SSS enumeration, where the
only rulesets needing consideration are those without creation rules or
with one creation rule as the final rule in the ruleset, eliminating in
advance all initial creation rules could be advantageous, halving the
number of cases to consider. This can be done almost trivially by
dropping the initial bit of the quinary code and using the instructions
to operate on the initial ruleset {"A"—""} in all cases. The only addi-
tional modification needed is to change the offset for weight class w
rulesets to (5"”1 + 3)/4, calculated as one more than the number of
rulesets of weight less than w.

The reduced enumeration substitution system (RSS) algorithm,
which includes all SSS cases we might be interested in, with the excep-
tion of rulesets containing a single creation rule, {""—"something"},
is shown in Figure 3, and the beginning of the list generated is shown
in Table 4. Long jumps over nonfinal creation rules will still be
needed, in addition to skipping over runs of omittable rulesets of
other types. It should be noted, however, that this strategy will also
remove singleton creation rules such as {""—>"A"}, which would not
be excluded from the SSS case by other considerations. But in fact all

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems

847

such SSS cases very closely resemble each other and can be treated
separately if desired.

5
0s

15
25

3s
4s
005
015
025
03;
045
105
115
125
135
145
205
215
22,
23,
244
305
315
32,
33;
345
405
415
42,
435
44,
0005
0015
0025
35 0035

O 0 NI O »i AW N =

—_ =
_ O

W W W W W NN NN DNDDNDNND R R R =R === =
A WD =R O V0 NN D WD RO V0 0NN W N

nAn nn
- "

n " nn
A"t

n n nn
A"t

nn N "A"}
nAu S " n}

nAn N nAn}
nAAn N nn}

an 5" n}
nAn o n,
nAn S n’
nAn S ",
nAn o n,
nAn S n’
nAn S ",
nAn o n,
nAn S n’
nAn S ",

nAN nn
A" s "t

LN "A", e _oom u’ nAn S n}
LN "A", LN ||AI|}
we "A", I|All 5" u}

nn N nAAn}
nn N nBu}

nAu - nn, LULINEN ||Au}
nAu BN nn’ uAn S u}

nAu N "A"}
nAAu S " n}
nBu N " ||}

nAn N "A", LLINEN nn, I|A|| S ||}

AT S AT, AT S)
A" S "AA")

"A" 5 "B")

TAAT S TS AT
TAAT S T TAT S)
"AA" S "A")
TAAA" 5 ")
"AB" - "'}

"B" - " ", " "A"}
"B ML AT S)
"B" 5 "A")

"BA" - "")

" C " N nn }
nAn S n’
nAn S ",
nAn o n,
nAn S n’

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
["A" 5 "AT, T AT
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

LN "A", LN
we "A", LULINEN
LN "A", LN
LN "A", LN

AT S S AT
AT S AT S
"A" 5 "A")
"AA" S ")

Table 4. (continues)

https://doi.org/10.25088/ComplexSystems.29.4.837

848 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

36 0045
37 0105
38 0115
39 0125
40 013;
41 0145
420205
43 0215
44 0225
45 023;
46 0245
47 0305
48 0315

"A" g "", " "A", R ", "B" - ""}
TAT MU AN AT A
AT S MU AT AT AT
AT S ML AT AT AT
AT S T AN TAAY

"A" - " ", " "A", " "B"}

AT S ML AT AT S AT
AT S MU AT AT S AT
AT S ML AT AT S AT

AT S T AT TAAT S

A" MU MAY B S)

AT S MU AR, TS AT
AT S TS AR, T S AT

49 0325 {"A" - """ 5 TAAT, AT S)

50 0335 {"A" - "', "' 5 "AAA")

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
51 0345 {"A" "', "" - "AB")
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

)

52 0405 {"A" o " Ut MBS MU UAT S)
53 0415 {"A"->"","" 5 "B","" 5 "A"]

54 0425 {"A"->"","" 5 "B","A" > ""}

55 0435 {"A" > "","" - "BA")

56 0445 {"A" > "","" 5 "C"}

57 1005 {"A" o "U,UAT S T S AT S AT S
58 1015 {"A" - "","A" ST S AT M S "AYY

59 1025 {"A" o "U,MAT ST S AT AN S Y

60 1035 {"A" - "","A" 5 "', "" 5 "AA"Y

61 1045 {"A" - "","A" 5 "', "" 5 "B

62 1105 {"A" > "","A" 5 " UAT S S mAYY

63 1115 {"A" 5 "","A" 5 "","A" 5 """, "A" 5 "")

64 1125 {"A" > "","A" 5 """, "A" 5 "A"}

65 1135 {"A" > "","A" 5 """ AAN S Y

66 1145 {"A" > """, "A" > "" "B" 5" n}

Table 4. The beginning of the RSS enumeration.

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 849

fromReducedRank[i_Integer /; i > 0] := Module[{n, j, quinaryDigits,
numberOfEQOS, chopPos, extra, ans = {{1}}, strings, ruleset},
n = Floor[Log[5, 4i-3]];
j=i-(5"+3)/4;
quinaryDigits = IntegerDigits[j, 5, n];
(* the base-5 code for this ruleset will contain n digits,
the ruleset weight is n+1 *)
Scan[Switch[#t,
0, ans = Join[ans, {{}, {}, {1}}],
1, ans = Join[ans, {{}, {1}}],
2, AppendTolans, {1}],
3, AppendTol[ans[-1], 1],
4, ans[-1][-1] ++
1&, quinaryDigits];
strings = StringJoin @@@ (FromCharacterWeights /@ ans);
IffoddQ[Length[strings]], strings = AppendTo[strings, ""11;
Rule @@@ Partition[strings, 2, 2]];
toReducedRank[rs_List] := Module[(rl, wl, w, code =""},
rl = Flatten[List @@@ rs];
If[Last[rl] == "", rl = Most[rl]];
(* drop ultimate empty string, if needed *)
wl = ToCharacterWeights /@ rl; (to lists of lists of numbers "A"->1,
etc., but ""-{}, not 0 %)
wl=wl /. 0
w = Total[Flatten[wl]]; (» weight of this rule set *)
While[wl # {{1}},
Which[
wll-1I[-11 > 1, code = "4" <>code; wl[-1I[-1]--,
wl[-1][-1] == 1 && Length[wl[-1]] > 1,
code = "3"<>code; wl[-1] = Most[wl[-1]],
Length[wl] > 3 && wll-3 ;I == {{}, {3, {1}},
code = "0" <>code; wl = Drop[wl, -3],
Length[wl] > 2 && wl[-2 ;] == {{}, {1},
code ="1"<>code; wl = Drop[wl, -2],
wl[-1] == {1}, code = "2" <> code; wl = Drop[wl, -1]
1i;
(FromDigits[code, 5]+ (5"~ +3) [4)
(* add number of smaller weight rulesets)];

Figure 3. The RSS rank and unrank functions.

5. Criteria for Skipping Sequential Substitution System Rulesets
and Long-Jump Calculations

Even the RSS enumeration includes many rulesets that we can discard
immediately. For example, {"A"->"", ""S>"A" ""o"" TATS"MY
(#7 in the RSS list, quinary code 005) would be eliminated for several
reasons: it includes an identity rule (where a string is replaced by
itself) and several pairs of conflicting rules (e.g., where different rules

https://doi.org/10.25088/ComplexSystems.29.4.837

850 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

have the same left-hand side, thereby giving conflicting instructions).
Such problems, as explained in detail in the following, guarantee that
the SSS generated by this ruleset will be identical to that of a simpler
one that has already appeared earlier in the enumeration. Omitting
such cases before any more time is invested greatly speeds up any
treatment of SSSs. Even more significantly, due to the nature of the
enumeration algorithm, cases that would be skipped for the same rea-
son occur consecutively, allowing us to jump past all similar cases
without any testing at all. In this section we consider four of the most
productive criteria for these “long jumps” and how the jump size can
be calculated.

| 5.1 Conflicting Rules

A pair of conflicting rules occurs when two rules in the ruleset have
the same left-hand side, or more generally, when the left-hand side of
one rule is a substring of the left-hand side of a later rule. For
example, consider the ruleset {"ABA"—-"AAB", "ABA"->"", "A"—>
"ABA"} (# 158 448 842 380 in the RSS list, quinary code =
3432334234312 343;).

Substitution Rules:

. -

Figure 4. Visualization of the ruleset {"ABA"-"AAB", "ABA"-"",
||A||_)"ABA"}'

A conflicting rule situation ensures that some rule in the set will
never be used. In this case, whenever there is an "ABA" to be found,
the first rule will be executed. The second rule will never be invoked,
since it is only considered if the first rule fails. Therefore, the ruleset is
functionally equivalent to a simpler ruleset that appears earlier in the
enumeration: {"ABA"—>"AAB", "A"->"ABA"} (# 253 518 005 in the
RSS list, quinary code = 343233422 343;).

Every conflicting rules case identified is actually one of a run of
rulesets in the enumeration having the same problem. Rather than
testing each of these rulesets separately, to accelerate the enumeration
we can jump directly to the last ruleset in the run of those sharing the
particular problem, or to the first that does not (i.e., the resolution of
the problem), either using knowledge of the enumeration or by per-
forming an operation on the quinary code.

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 851

It is helpful to consider the first ruleset in the run of rulesets shar-
ing the problem. For this, we need to look at where the conflicting
rule is located in the ruleset. A shortcut to finding the quinary code
digit that caused the conflict is to add up the combined weight of the
remaining characters in the ruleset after the problem. In the example
above, the conflicting (second) rule is "ABA"—"", but the actual prob-
lem is due to the left-hand side of this rule, "ABA". The remaining
weight after the problem is 5, found by adding the weights of all sub-
sequent strings in the ruleset: "", "A", "ABA" (0 + 1 + 1 + 2 + 1).
The quinary code for our example above is 3432334234312 343,
and changing the rightmost five digits to 0 will result in a quinary
code of the first problem ruleset in the run, the first one to start with
{"ABA"->"AAB", "ABA"-...}, followed by some distribution of
strings having weight 5. Here the first problem ruleset has the quinary
code of 3432334234300000;, which translates to {"ABA"-
TAAB", "ABA" ", MU TA N M WA A
"A S S"A) (# 158 448 841 407 in the RSS list). Operating
directly on the quinary code, we have truncated the final five digits
and then appended five 0s. Mathematically this can be accomplished
for remaining weight w by dividing the base-5 number by 5%, discard-
ing any remainder, then multiplying by 5%, effectively replacing the
last w digits by Os. Reminder: to generate the quinary code, subtract
(5%=1+3) /4 from the actual RSS index and then write the result as a
base-5 number, where w is the weight of the ruleset, found by adding
up the weights of all the characters in all the strings, or from the
indexi: w = IntegerPart[log5(4i - 3)] + 1.

Once the first conflicting ruleset that shares the problem is known,
the first ruleset that does not share the problem can be easily found,
again by replacing the last w digits: the first by a 4 and the rest by Os.
Mathematically, this means adding 4(5”"1) to the RSS enumeration
index of the first problem that occurs. In this example, the first ruleset
without the problem would be {"ABA"—-"AAB", "ABB"->"", "">
WA, U A A A i (158 448 843
907 in the RSS list, quinary code 3432 334234 340 0005). The reason
this resolution ruleset no longer contains the problematic conflicting
rule is because the 4 incremented the last character of the string
being constructed, changing the second "ABA" string to "ABB".
Appending Os to the quinary code completes the desired weight, giv-
ing the first ruleset after the run of problematic cases.

One exception to this process is when the conflicting rules situation
involves an empty string, that is, a creation rule. An empty string in
the left-hand side of any rule except the last one will automatically
conflict with any rule that follows it. The only way to avoid this

https://doi.org/10.25088/ComplexSystems.29.4.837

852 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

situation is to have no further rules, achieved by shifting the weight of
any subsequent rules into the right-hand side of the (now final) cre-
ation rule. There are two possible cases: (0) If the creation rule was
created by a 0 in the quinary code, in the resolution code the 0
becomes a 1 and all later digits are changed to 3, effectively making
the ""> "" + weight-w rule sequence into ""—>"AAA...A", with w
"A" characters. (1) If the creation rule was created by a 1, the right-
hand side is not empty (and not a problem), but any additional rules’
weight must be appended to it as a string of "A" characters. Find the
combined weight w of any rules following the creation rule (past its
right-hand side), and replace the last w quinary code digits by 3s.

Ruleset Quinary Code
Problem {"ABA" - "AAB", "ABA" - "", "A" - "ABA"} 3432334234312 3435
Resolution |[{"ABA" - "AAB", "ABB" ->"", ...} 34323342343400005
Problem {"A" - "BC", "AB" - "C"} 24 3442342445
Resolution |[{"A" - "BC", "B" - "", ...} 24 3442400005
Problem {"BC" - "A", "BC" - "B", "A" - "B"} 434422434424 2245
Resolution [{"BC" - "A", "BD" > "", ...} 434422 4344400005
Problem |{"A" - "B", "" 5 "C", "" - "A", "B" — "AB"] |24144124 2345
Resolution [{"A" - "B", "" > " CAAAAAA "} 241443333335
Problem |{"A" = "B", "" = "CB", "" - "A", "B" - "AB"} |2414434124234;
Resolution |{"A" - "B", "" - " CB AAAAAA ") 2414434333 3335
Problem {"A" - "B", "" > "" "B" > "AB"} 24042345
Resolution |{"A" - "B", "" - "AAAAA"} 24133335

Table 5. Conflicting rule examples of two types.

It may be noted that the normal resolution process of the first type
described above (replacing the final w quinary digits by 4 followed by
0s) usually creates a new conflicting rules situation of the second type,
which, in turn, will be resolved in the next step.

I 5.2 Identity Rule

An identity rule occurs when the left-hand side of a rule is identical to
the right-hand side of that same rule. A ruleset containing an identity
rule and at least one other rule can be discarded, whether or not the
identity rule is ever executed. For example, consider the ruleset {"A"—
"CC", "B"->"B", "C">"A"} (# 5 178 059 904 in RSS list, quinary
code = 24434424242 442;). If the second rule is never executed, the
behavior of the ruleset is equivalent to a simpler, previously consid-
ered one, without the identity rule: {"A"->"CC", "C"—>"A"} (# 8 284
904, quinary code = 2443442442;). On the other hand, if the

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 853

identity rule is executed once, the enumeration will go into an infinite
loop of "B"-"B" and any later rules will never be executed
afterwards.

Substitution Rules:

_)

H- N

9

Figure 5. Visualization of the ruleset {"A"-"CC", "B">"B", "C"->"A"}.

Again, this ruleset is part of a subsequence in the enumeration, all
starting the same way and including the same identity rule. To be able
to jump over them all, we must first identify where in the ruleset the
problem occurs. This is done by looking at the left-hand and right-
hand side of each rule and checking whether they are identical. Then
we identify which quinary code digit caused the problem and zero out
the quinary code after the problem digit to form the first ruleset with
this problem. In the example above, the identity rule is followed by
the strings "C" and "A", having combined weight 3 + 1 = 4, so it
was the fifth digit from the last in the quinary code
24434424242 442 that created the "B" in the right-hand side of the
identity rule "B"-"B". Changing the last four digits to 0 gives
244344242400005, which corresponds to the ruleset {"A"—-"CC",
TR BT, Mo AT A A (g5 178
059 532 in the RSS list), the first in our run sharing the same initial
rules up to and including this particular identity rule problem.

The process of finding the resolution follows a similar method.
Once the identity rule is found and identified, change the digit of the
quinary code directly after the one that caused the identity problem to
a 3 (an append instruction, which changes the current string by
adding an "A" to it) and then zero out the remaining digits. In our
example, we would change the quinary code 24434 424242442 to
24434424243 0005, which corresponds to the ruleset {"A"— "CC",
"B BAY, Mot TANSI LA AN (] 27
669 282 in the RSS list). Again, starting with quinary code
24344242400005, all rulesets in the enumeration, up to but not
including the resolution 2434 4242430005, share the same first rule

and the identity rule, a situation that allows a long jump over this
entire subsequence of the enumeration.

https://doi.org/10.25088/ComplexSystems.29.4.837

854 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

The mathematical algorithm for this process is: truncate the last w
digits of the quinary code (dividing by 5% and taking the integer part),
then multiply by 5%, and finally add 3(5%~!), where w is the weight of
the strings after the identity rule.

The exception to this algorithm is when the identity rule involves
two empty strings: finding the resolution in this case involves a pro-
cess slightly different from the one described above. The quinary digit
that created a ""—"" identity rule is necessarily a 0, and the first rule-
set in the problem run can still be found by zeroing out the remaining
quinary digits. But to find the resolution, we change the problem digit
itself to a 1 (an instruction that creates only one empty string and
then starts a new string with an "A" without creating the problematic
second empty string), and then fill the remaining digits by 0s. Mathe-

matically, if w is the weight of the strings after a ""—>"" identity rule,
we truncate the last w digits, multiply by 5%, and finally add 1(5“"1).

nn

Note, however that a nonfinal ""—"" identity rule, such as shown
in the last example in Table 6, is also a conflicting rules situation,
whose resolution takes us farther in the RSS enumeration than the
identity rule resolution shown. Here the conflicting rules resolution
occurs at quinary code 2413333 {"A">"B", "">"AAAAA"}.

Ruleset Quinary Code
Problem |{"C" - "A", "A" - "A", "B" » "BC"} 442222 424 3445
Resolution |{"C" - "A", "A" > "AA", ..} 442223000 0005
Problem {"B" - "AB", "ABA" -» "ABA", "A" - "BA"} [4234234323432243;s
Resolution [{"B" - "AB", " ABA " - "ABAA", ...} 42 342 343234330005
Problem |{"BC" - "BC", "A" - "B", "B" - "AC"} 43442 4344224 242 344,
Resolution [{"BC" - "BCA", ...} 434424344300 0000005
Problem {"A" - "B", """ >"" "B" - "AB"} 24042345
Resolution [{"A" - "B", "" - "A", ...} 24100005

Table 6. Identity rule examples of two types.

| 5.3 Initial Substring Rule

Substring rules occur when the left-hand side of a rule contains a sub-
string of the right-hand side of the same rule. Our concern here is
when the substring rule is the first in the ruleset and is not the only
rule in the ruleset. For example, consider the ruleset {"A"—>"BAC",
"B"->"C", "C"->"B"} (# 128 230 799 521 in the RSS list, quinary
code = 2433442424 424424;). If the first rule is ever executed, it
will go into an infinite loop, exhibiting behavior equivalent to the sim-
pler ruleset {"A"—->"BAC"}: rules 2 and 3 will never be executed

again. Each invocation of rule 1 replaces the first "A" in the state
string by "BAC": "A", "BAC", "BBACC", "BBBACCC" and so on.

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 855

On the other hand, if the state string has no "A", rule 1 is never
invoked, and the behavior depends only on rules 2 and 3. A simple
example of this situation starts with the initial string "B": "B", "C",
"B","C", ...

Which behavior occurs depends on the initial state string. But in
any case, a substring rule in the first position in the ruleset reduces to
one of two cases considered earlier in the enumeration, and so is effec-
tively a duplication that can be discarded. To jump over the whole
run of such cases, we first identify where the problem occurs in the
ruleset. In this example, the problem occurs at the character "A" on
the right-hand side of the first rule ({"A"-"BAC", "B"->"C",
"C"->"B"}). The quinary code that triggered the problem is the third
digit, highlighted for easy reference: 2433 442 424 424 424.

To find the first ruleset where this particular initial substring rule
occurs, we zero out the remaining digits after the highlighted problem
digit. In this example, the quinary code of 2433 442424424424, is

changed to 2430000 000000 0005, which corresponds to the ruleset

{IIAII n BA" " ll nn llAll nnoonn llAll n lI nn IIAII nnoon Il_>llAll’
n ll_)ll Il, llAH nn nn llAH " ll_)ll ll, IIAII nn nn IIAII n Il_)ll ll’
lIAll nn nn IIAII, " ll_)ll ll, llAn nn nn llAll’ n Il_)ll ll’ IIAII " ll}

The number of digits to zero out can be found from the weight
of the post-problem (sub)string(s) in the ruleset (here:
"chnUB,C"CY"B 3 4+24+34+34+2 =13).

To Sklp over to the first ruleset without this conflict, we change the
next quinary code digit to a 4 and zero out all digits after it. In this
case, the new quinary code will be 2434 000000 000 O()O5 This gives

us the new ruleset Of {IIAII " BB " n lv nn IIAII nn nn "All n ll
nn llAvl nnoonn llAvl n II nn HAII nnoonn HAH n n nn "All nn
n lv "A", n |v_>l| Il, len nn n n "A", " ||_> n II, HAII nn n ll IIAH}

(# 128 234 863 282 in the RSS list). While this is similar to the con-
flicting rules situation, the quinary patterns are different enough to
consider it separately. Note particularly that in the reduced SSS
enumeration, the first rule of the ruleset cannot start with an empty
string, eliminating a large class of initial substring rule cases and
obviating the need for separate treatment of them. Note, however,
that these cases are included in the GSS enumeration: the last example
in Table 7 is of this type. Resolution is achieved by replacing the ini-
tial problem (binary digit 0) by a 1 and zeroing out the remaining
quinary digits.

Note: a substring rule not in the initial position of the ruleset does
not necessarily reduce to a simpler case. Example: {"AC"->""
"AB"->"AA", "A"-"BAC", "B"->"AA"} (#19928943753 645,
quinary code: 3441342 322433442423;). Rule 3 is a substring rule,

but its execution does not cause an infinite loop, since rule 1, which

https://doi.org/10.25088/ComplexSystems.29.4.837

856 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

has precedence, can also “use up” the character "A", rather than
allowing rule 3 to repeat indefinitely. Starting with an initial state
string of "A" would allow all four rules to be executed according to a
complicated, nonrepeating pattern, yielding, successively, the state
strings ("A", "BAC", "B", "AA", "BACA", "BA", "BBAC", "BB",
"AAB", "AAA", "BACAA", "BAA", "BBACA", "BBA", "BBBAC",
"BBB", "AABB", "AAAB", "AAAA", ...]. Unlike initial substring
rule cases, rulesets with non-initial substring rules should be tested
individually for possible interesting behavior.

Ruleset Quinary Code
Problem [{"A" - "BAC", "B" - "C", "C" - "B"} (2433442424424 4245
Resolution [{"A" - "BB", ...} 2434000000 0000005
Problem {"AB" -» "ABC", "C" - "A"} 3423434424425
Resolution [{"AB" - " AC", ...} 342344000 0005
Problem {""->"B", "B" - "AB"} N/A (GSS: 0424 2345)
Resolution [{"A" ->"", ...} N/A (GSS : 10000005s)

Table 7. Initial substring rule examples.

I 5.4 Renamed Ruleset

If the characters used in the strings of the ruleset are permuted or
replaced by other characters, the SSS will look the same, up to a per-
mutation of colors, and the causal network will be identical. For
example, the SSSs and causal networks generated by {"B"-"A",
"A"S"B"), {"A"S"C", "C">"A"), .., {(“I"S"U", "U"S"I"), ... are
all visually indistinguishable from those of {"A"-"B", "B">"A"},
except for choice of colors to represent the different characters. For
simplicity, we take as the canonical form for all such “duplicates” the
first of them to appear in the enumeration (the one having the small-
est RSS index), and any ruleset not in canonical form can be dis-
carded. Verifying whether a ruleset is in canonical form can be done
directly, without generating the SSS, as follows:

Examine the characters of all the strings of the ruleset in order, one
character at a time. The first character must be "A" (else renaming
could make it so, resulting in a lower-index ruleset), the first charac-
ter that is not an "A" must be a "B", and the first that is not "A" or
"B" must be "C", and so forth. As soon as an offending
(nonconsecutive) character is found, take the total weight of all fur-
ther characters and replace that number of quinary code digits by a 4.
This gives the quinary code of the last ruleset having a too-large char-
acter at the problem position and the same pre-problem (sub)strings,
so this is the last ruleset that can safely be discarded in a long jump.
(The resolution ruleset is the next in the enumeration, found by incre-
menting the RSS index by 1.)

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 857

In Table 8, the first example is already in canonical form, since the
first character is "A", the first non-"A" is a "B", and there are no
non-"A" or "B" characters to consider. In the second example, the
initial "B" is the problem character, the remaining weight after the
problem character is 4 (1 + 1 + 2), so the quinary code of the last prob-
lematic ruleset having this weight and a problematic character in the
first position ({"F"—-""}) is found by replacing the last four digits by
4. The third example starts out well with an "A", but the second char-
acter is "D" rather than the canonical "B". Replacing the last five dig-
its (4 +1) by 4 gives the quinary code of the pre-resolution ruleset,
{"A">"I"}. In the fourth example, the post-problem weight is also
five (1+2+2+0), again caused by having a "D" without a preceding
"C". In the last example, all characters were allowed until the "E",
and there is only one digit replaced by a 4.

Ruleset Quinary Code
Problem {"A" - "B", "B" - "A"} 242425
Pre-resolution | N/A (already in canonical form) N/A
Problem {"B" -> "A", "A" - "B"} 42224;
Pre-resolution |{"F" - ""} 44444
Problem {"A" - "D", "D" - "A"} 244424 4425
Pre-resolution |{"A" - "I"} 244444 444
Problem {"AB" - "D", "A" > "B", "B" - ""} |34244422424;
Pre-resolution | {"AB" - "I"} 34244444 444
Problem {"A" - "ABA", "C" - "ABEA"} 23432442 343 444435
Pre-resolution |{"A " - "ABA", "C" - "ABF"} 23432442343 44444;

Table 8. Renamed ruleset examples.

In all these cases, the resolution ruleset is the next one in the enu-
meration, but it is more convenient to add 1 to the RSS index rather
than operate on the quinary code.

Important note: Although the renamed ruleset may actually have a
greater weight than the original version, this jump is safe and will
allow us to skip all but one version of each ruleset (up to a permuta-
tion of the characters themselves). For example, {"A"—"BB"} (# 526,
quinary code = 2434, weight: 1+2+2 = §) is canonical but comes
later in the enumeration than {"B"->"AA"} (# 145, quinary code =
423, weight: 2+ 1+ 1 = 4). It is true that we may have to wait until
later in the enumeration to find some interesting case, since the renam-
ing process preserves ruleset length, not ruleset weight. But the advan-
tage of being able to jump over huge intervals is too good to be
missed, and we can always later find the lowest-weight representative
of any interesting case if desired.

https://doi.org/10.25088/ComplexSystems.29.4.837

858 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

I 6. Performance Comparisons

Implementing any one of the long-jump criteria considered above
results in significant increase in the speed of the iteration, in some
cases spectacular acceleration. The following table rates the computa-
tional savings for these tests, listing what fraction of the enumeration
still had to be performed: the ratio of the number of cases still requir-
ing treatment to the enumeration index n. Small numbers are better
here, indicating a larger fraction of the cases skipped over. We see
that long jumps triggered by conflicting rules cases are particularly
effective at accelerating the enumeration.

n | Conflicting |Identity | Substring | Renamed
103 0.349 0.655 0.881 0.827
100 0.036 0.376 0.910 0.779

Table 9. Performance comparison for four long-jump tests.

As one of us (Case) repeatedly pointed out, almost all long jumps
of all types are followed by a long sequence of conflicting rules cases
of the second type, with conflicts due to empty strings at various
places in the ruleset. Table 10 shows the great increase in perfor-
mance obtained by implementing a conflicting rules check and long
jump (of the creation rule type) after each long jump of other types,
making the iteration loop far faster than the default O(n) for three of
the cases investigated. This is not unexpected, since the average jump
size increases as the iteration advances to larger quinary code lengths.
The last column implements all four tests together, always making the
longest jump possible.

n Conflicting |Identity |Substring | Renamed All

103 0.289 0.349 |0.872 0.423 0.153 ~ 10!
10¢ 0.0286 0.0383 {0.902 0.0866 [0.00971 ~ 107
10° 0.00244 0.00343 {0.732 0.0336 [0.000641 ~ 1073
1012 |IN/A N/A N/A N/A 0.000110 ~ 10

Table 10. Performance comparison, including an additional second type of
conflicting rules jump.

One surprise is that testing for initial substring cases only saves
approximately 10% of the work no matter how far we go in the enu-
meration, but the other tests, particularly the conflicting rules test,
become more and more productive. Figure 6 is a log-log plot of the

Complex Systems, 29 © 2020

An Improved Generalized Enumeration of Substitution Systems 859

performance ratio 7 versus enumeration index #, providing a visualiza-
tion of the initial results shown in Table 10.

he o— —o
—@— substring
0.100 }
renamed
identity
0.010 ¢ —— conflicting
== all
0.001
n

104 105 10° 107 108 10°
Figure 6. Performance comparison of long-jump tests, showing logarithmically
decreasing “work to be done” ratio for higher enumeration indices.

Continued looping through the RSS enumeration, implementing
all four tests, extends the trend line shown for the “all” case, which
appears as a relatively straight line on the log-log plot. The best-
fit trend line is In 7= 0.38827 —0.35551 Inn, with a correlation
coefficient of 0.9976. Assuming a relatively constant time per case
considered, r can be taken as proportional to t/n. Substituting
r=kt/ninto Inr = a—m Inn yields

ln(kt/n)=a—mlnn:>lnk+lnt—lnn=a—mlnn:>lnt:
(a—ln k)+(1—m) lnn=t= (e”/k)n(l‘m) = Kn(l=m

indicating that the time ¢ needed to reach index # in the enumeration
is approximately proportional to 717 ~ 5(1-0.35551) & ;0.6 3 signifi-
cant improvement over the default O(#) behavior.

I 7. Conclusion

The new generalized enumeration for substitution system (GSS),
derived in Section 3, has been shown to allow spectacular acceleration
due to long-jump tests, a benefit that far more than offsets the inclu-
sion of rules of type ""—"", which had been explicitly excluded in the
previous enumeration. We used the automatic grouping of similar
rulesets in the same weight class together in runs to permit long jumps
over the unwanted “nothing-to-nothing” cases and then extended

that effort to four tests particularly useful for the efficient treatment

https://doi.org/10.25088/ComplexSystems.29.4.837

860 K. E. Caviness, C. Morrow, C. Case and V. Kratzke

of sequential substitution systems. The actual implementation was
done for the reduced enumeration substitution system, derived in Sec-
tion 4, but the techniques described admit of simple generalization to
the GSS enumeration as well. Three of the tests considered allow pro-
gressively larger jumps for higher indices, with performance improve-
ment of roughly 10 times every 3 orders of magnitude. This translates
into an average "acceleration" in the enumeration loop such that

calculation time to treat all cases up to index # is of O(n0‘6). While

not the hoped-for O(ln n), this still represents a huge acceleration

over the previous O(n), a most satisfactory result permitted by the reg-
ularity and mathematical predictability of the new enumeration.

I Acknowledgments

The authors acknowledge the generous support of the Academic
Research Committee of Southern Adventist University for funding
this project, thank Breanna Bowden-Green, Kelsey Dobbs, Sean
Bryant and Amy Beard for previous work on the SSS project, and
thank Charles Sarr, Jonathan Ziesmer and Lewis Caviness for helpful
suggestions in the present work.

I References

[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002. pp. 1-22, 82-94, 433-503.

[2] K. E. Caviness, “Causal Networks of Sequential Substitution Systems:
Views of Highly Non-local Systems,” poster session and lecture at Area
della Ricerca CNR-Pisa, 2009.

[3] K. E. Caviness, “Indexing Strings and Rulesets: An Exploration Leading
to an Enumeration,” The Mathematica Journal, 13, 2011.
www.mathematica-journal.com/2011/05/11/indexing-strings-and-
rulesets.

[4] K. Caviness. “Universal String Enumeration” from the Wolfram Demon-
strations Project—-A Wolfram Web Resource.
demonstrations.wolfram.com/UniversalStringEnumeration.

[5] K. Caviness. “Tree of Strings” from the Wolfram Demonstrations
Project—A Wolfram Web Resource.
demonstrations.wolfram.com/TreeOfStrings.

Complex Systems, 29 © 2020

https://www.mathematica-journal.com/2011/05/11/indexing-strings-and-rulesets/
https://www.mathematica-journal.com/2011/05/11/indexing-strings-and-rulesets/
https://demonstrations.wolfram.com/UniversalStringEnumeration/
https://demonstrations.wolfram.com/TreeOfStrings/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

