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In  a  temporal  network,  causal  paths  are  characterized  by  the  fact  that
links from a source to a target must respect the chronological order. In
this  paper  we  study  the  causal  paths  structure  in  temporal  networks  of
face-to-face  human  interactions  in  different  social  contexts.  In  a  static
network, paths are transitive; that is, the existence of a link from a to b
and  from  b  to  c  implies  the  existence  of  a  path  from  a  to  c  via  b.  In  a
temporal  network,  the  chronological  constraint  introduces  time  corre-
lations  that  affect  transitivity.  A  probabilistic  model  based  on  higher-
order  Markov  chains  shows  that  correlations  that  can  invalidate
transitivity  are  present  only  when  the  time  gap  between  consecutive
events  is  larger  than  the  average  value  and  are  negligible  below  such  a
value. The comparison between the densities of the temporal and static
accessibility  matrices  shows  that  the  static  representation  can  be  used
with  good  approximation.  Moreover,  we  quantify  the  extent  of  the
causally connected region of the networks over time. 
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Introduction1.

Many real systems composed of elements connected to each other can
be  described  as  networks.  Notable  examples  are  the  internet,  trans-
port  networks  and  power  grids.  These  technological  and  infrastruc-
tural  networks  can  be  considered  static  over  timescales  of  many
human daily activities because their structure does not change. On the
contrary,  human  interactions  can  be  thought  of  as  events  occurring
over  time.  Product  ratings,  emails  and  social  networks  are  examples
of  temporal  networks  [1]  because  the  topology  changes  over  time.
The set of interactions between any two nodes of the network can be
described  as  a  set  of  links  to  each  of  which  are  associated  the  nodes
that  interacted  and  the  time  when  the  interaction  occurred.  Interac-
tions  involving  many  nodes  can  be  treated  by  considering  all  links
that  traversed  them  during  the  temporal  interval  in  which  the  inter-
actions occurred. 
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The  study  of  social  dynamics  is  becoming  increasingly  important
thanks to the availability of large datasets collected with technologies
capable  of  monitoring  human  activities  at  different  levels  of  space-
temporal  scales.  Consider,  for  example,  mobile  calls,  instant  messag-
ing and digital traces [2–4]. One might think that data analysis sheds
light  on  human  behavior  [5,  6].  Many  aspects  of  human  interactions
can  be  analyzed  considering  the  static  time-aggregated  network  in
which  a  link  between  any  two  nodes  exists  if  they  interacted  at  least
once.  Additional  statistical  information  can  be  obtained  by  associat-
ing to each link a weight that is the number of times the link has been
active  during  the  observation  period.  However,  the  (weighted)  static
representation may not be adequate to describe the underlying dynam-
ics  stemming  from  human  interactions,  which  can  often  be  described
as  a  diffusive  process  over  the  social  network  or  by  means  of  models
where individuals are agents who change their state over time accord-
ing  to  specific  rules  [7–10].  Moreover,  in  these  cases  events  obey  the
principle of causality. When studying human interactions, it is crucial
to  specify  whether  they  are  direct  or  mediated.  With  the  advent  of
wearable  devices,  it  is  now  possible  to  study  human  interactions  at
the  level  of  face-to-face  proximity.  In  this  context,  we  can  represent
personal  encounters  as  a  collection  of  pathways  that  traverse  all  the
people who interacted. 

In  this  paper,  we  study  the  causal  paths  structure  in  temporal  net-
works  of  face-to-face  human  interactions  in  different  social  contexts.
When  causality  is  involved,  we  must  take  into  account  the  temporal
order  in  which  the  links  of  a  path  occur.  The  ordering  of  the  links
introduces  correlations  that  may  invalidate  results  based  on  a  static
time-aggregated  network  [11–13].  For  temporal  networks,  there  are
fewer  well-established  analysis  techniques  than  for  static  represen-
tations.  We  investigate  whether  and  to  what  extent  the  static  repre-
sentation  is  justified  for  the  examined  networks,  using  two  different
probabilistic models based on higher-order Markov chains and acces-
sibility  matrices.  We  also  quantify  the  extent  of  the  causally  con-
nected region of the networks during the period of observation. 

The  paper  is  organized  as  follows:  in  Section  2  we  introduce  the
notation and the probabilistic models; we describe the datasets in Sec-
tion  3  and  report  the  results  in  Section  4.  We  make  the  final  conclu-
sions in Section 5. 

Probabilistic Models2.

In this section, we introduce the notation and the probabilistic models
used  to  analyze  the  datasets.  A  temporal  network  GT  (V, ET)  can

be  defined  as  a  set  of  nodes  (or  vertices)  vi ∈ V  and  edges  (or  links)
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ET  V⨯V⨯0, T  where 0, T  is  the  temporal  interval  of  observa-

tion. The interaction between two nodes v1  and v2  that starts at time

t  and  has  duration  ω  is  an  event  that  can  be  represented  as  a  time-
stamped  link  (v1, v2, t, ω).  In  the  case  of  the  examined  datasets,  we

can consider the time as a discrete variable. Events whose duration is
less than the temporal resolution ϵ of the data acquisition system can-
not be observed. In all other cases, ω can be divided into n elementary
time  steps  ω  nσ  (σ ≥ ϵ)  and  the  interaction  (v1, v2, t, ω)  can  be

replaced  by  the  sequence  of  “instantaneous”  events  (v1, v2, ti)  where

ti  t + iσ ≤ t +ω and i  0, … , n. A causal path between a source v0
and a target vl is any sequence

(v0, v1, t1), (v1, v2, t2), … , (vl-2, vl-1, tl-1), (vl-1, vl, tl)

where  t1 < t2 < ⋯ < tl-1 < tl.  The  length  l  of  the  path  is  the  number

of links that traverse its nodes. A single node is a path of length zero.
It  is  sometimes  useful  to  impose  the  constraint  0 < ti+1 - ti ≤ δ

between consecutive events to select only causal paths that contribute
to  dynamical  processes  whose  characteristic  timescale  is  δ.  For  exam-
ple,  we  may  be  interested  in  studying  the  propagation  of  information
during  conversations  of  average  duration  δ  by  analyzing  data  col-
lected during a period T ≫ δ.

Higher-Order Markov Chains2.1

We  now  briefly  present  the  higher-order  Markov  chains  probabilistic
model  used  to  analyze  the  datasets.  The  model  has  been  proposed  in
[14]  and  the  reader  is  encouraged  to  read  the  paper  for  more  details.
In  the  static  time-aggregated  network  representation,  the  existence  of
the  links  (vi-1, vi)  and  (vi, vi+1)  implies  the  existence  of  the  path

(vi-1, vi, vi+1);  then  we  would  be  led  to  think  that  vi-1  can  influence

vi+1 via vi. However, this transitivity may be invalidated in the tempo-

ral  network  by  time  correlations  because  it  exists  only  if  (vi-1, vi)

occurred  before  (vi, vi+1).  For  any  given  δ,  let  S  p(1), … , p(N)  be

the  collection  of  all  causal  paths  that  satisfy  the  condition
0 < ti+1 - ti ≤ δ.  A  causal  path pl  of  length l  can  be  considered  a

sequence of transitions over random variables (v0 → v1 → ⋯ → vl). In

this  model,  we  define  a  discrete-time  Markov  chain  of  order  k  and
assume  that  for  a  vertex  vi  of  the  path,  the  probability  to  reach  it

depends only on the k previously traversed vertices 

P(vi v0 → ⋯ → vi-1)  P(vi vi-k → ⋯ → vi-1).

For a given order k, a maximum likelihood estimation is performed to
find the transition probabilities 

P(k) := P(vi vi-k → ⋯ → vi-1).
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It is found that the probabilities that maximize the likelihood function
can be calculated from the relative frequencies of subpaths of length k
in  S.  The  order  k  0  only  generates  vertices  of  the  network.  For
k  1, only subpaths of length 1 are considered, and the model repro-
duces  the  topology  of  the  static  weighted  network  where  the  weight
of  each  edge  is  its  frequency.  For  k > 1,  the  model  captures  correla-
tions  of  longer  paths  that  cannot  be  evaluated  on  the  basis  of  the
topology of the underlying static network. To a k-order model is asso-

ciated a k-order aggregated network G(k)
 [15]. Each node of G(k)

 is a

k-tuple  v(k)  (v1, … , vk),  and  a  link  v(k), w(k)  exists  between  two

nodes  if  vi+1  wi  for  i  1, … , k - 1.  A  k-order  Markov  chain  is

treated  as  a  first-order  Markov  chain  over  nodes  of  G(k).  To  find
which  is  the  higher-order  network  abstraction  that  best  models  the
observed paths, a procedure that combines multiple layers of Markov
chains  is  used.  For  a  given  path  pl,  the  transition  probability  of  the

multilayer model of order K is

(K)(v0 → ⋯ → vl) 


k1

K-1

P(k)(vk v0 → ⋯ → vk-1)
iK

l

P(K)(vi vi-K → ⋯ → vi-1).

The likelihood function of the multilayer order K model is 

ℒK  
j1

N

(K)p(j),

and  the  optimal  order  Kopt  is  found  by  progressively  evaluating  the

likelihood  ratio  ℒK /ℒK+1  of  models  having  consecutive  orders.  If

Kopt  1,  correlations  preserve  the  transitivity,  while  it  is  broken  if

Kopt > 1. Thus in the first case the static time-aggregated network rep-

resentation  is  justified  to  analyze  data.  We  note  that  the  set  of
observed causal paths S depends on the inter-events time gap δ, there-
fore Kopt also depends on it.

Accessibility Matrices2.2

This  model  has  been  proposed  in  [16]  and  the  reader  is  advised  to
read  the  paper  for  the  details.  In  a  static  network,  the  accessibility
matrix  provides  a  macroscopic  view  of  the  connections.  Its  elements
are  1  if  the  nodes  corresponding  to  the  indices  are  connected  by  a
path  of  any  length,  and  zero  otherwise.  In  the  static  case,  the  adja-
cency  matrix  A  of  the  network  is  Aij  1  if  nodes  (i, j)  are  connected

by  an edge;  Aij  0  otherwise. The  elements  of  the matrix  An
 are  the

number  of  paths  of  length  n  connecting  the  nodes.  We  define  the
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binary  operator  ,  which  acts  on  matrices  in  the  following  way:

Mij  1  if Mij ≠ 0  and Mij  0  if Mij  0.  The  accessibility

matrix is 

PN   
i1

N

Ai ,

where  N  is  the  number  of  nodes.  Since  the  maximum  distance  is  the
diameter  D  of  the  network,  the  process  of  summing  up  saturates  and
one has PN  PD. The density of an N⨯N matrix M is 

ρ(M) 
nnz(M)

N2
,

where  nnz(M)  is  the  number  of  nonzero  elements.  The  probability  of
finding  a  shortest  path  of  length  l ≤ n  between  two  randomly  chosen
nodes is 

Pl ≤ n  ρ(Pn).

For  a  disconnected  network,  ρ(PD) < 1  because  the  number  of

nonzero  entries  of  the  accessibility  matrices  of  the  disjoint  compo-

nents  is  less  than  N2.  A  temporal  network  can  be  represented  by  a
sequence of chronologically ordered adjacency matrices 

  At1
, At2

, … , AtT
.

Causality  is  guaranteed  by  the  condition  t1 < t2 < ⋯ < tT  T.  The

accessibility matrix of the temporal network is

T   
i1

T

1 +Ati
 .

The  density  of  the  accessibility  matrix  ρ(n)  gives  the  fraction  of  the

network causally connected for t ≤ tn. The model provides a criterion

to  quantify  the  goodness  of  the  static  time-aggregated  approximation
for  a  temporal  network  by  evaluating  the  causal  fidelity  index

0 ≤ γ  ρ(T)  ρ(PN) ≤ 1.  Low  values  of  γ  indicate  bad  approxima-

tion,  meaning  that  the  majority  of  paths  in  the  static  representation
do  not  correspond  to  causal  paths  in  the  temporal  network.  Instead,
high values of γ indicate good approximation. 

Datasets3.

We use publicly available datasets provided by the SocioPatterns [17]
collaboration.  The  data  acquisition  system  is  based  on  a  sensing
platform  that  uses  wearable  badges  equipped  with  radio  frequency
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identification  (RFID) devices. Contacts data is gathered at the level of
face-to-face  proximity  (~1.5  meter)  with  a  temporal  resolution  of
20�seconds [18]. We consider different social contexts:

◼ High  school:  contacts  between  students  of  five  classes  in  a  high  school
in  Marseilles  (France)  collected  during  seven  days  in  November
2012�[19]. 

◼ Hospital:  contacts  between  patients  and  healthcare  personnel  in  a
hospital  ward  in  Lyon  (France)  collected  during  five  days  in  December
2010 [20]. 

◼ HT09:  encounters  between  people  who  attended  the  ACM  Hypertext
Conference held in Turin (Italy) in 2009 [21]. 

◼ Infectious:  encounters  between  people  during  the  Infectious  exhibition
event  held  at  the  Science  Gallery  in  Dublin  (Ireland)  from  April  17  to
July 17, 2009 [21]. 

◼ SFHH:  interactions  between  participants  at  a  scientific  conference  in
Nice (France), June 4–5, 2009 [22].

◼ Workplace: contacts between individuals in an office  building in France
in 2015 [22].

Since  all  measurements  of  interest  to  us  are  invariant  under  time
translation,  to  better  compare  the  temporal  networks  for  all  of  them,
we  make  sure  that  events  start  at  t  0.  Table  1  shows  the  size  and
temporal information of the datasets. 

The  software  libraries  we  use  in  this  paper  are:  tacoma  at
github.com/benmaier/tacoma  to  study  the  edge  activity,  pathpy  at
github.com/IngoScholtes/pathpy  to  study  the  causal  paths  statistics
and  perform  the  multilayer  Markov  chains  analysis,  and
TemporalNetworkAccessibility  classes  at  github.com/hartmutlentz/
TemporalNetworkAccessibility to compute the accessibility matrices. 

Network Nodes
Time-Stamped 

Links
Observation 

Duration (sec) δavg(sec) δmax(sec)

High school 180 45047 729500 64.72 220280

Hospital 75 32424 347500 36.76 26980

HT09 113 20818 212340 40.48 28900

Infectious 10972 415912 6946340 90.28 152980

SFHH 403 70261 114300 32.58 38320

Workplace 217 78249 993540 53.74 218600

Table 1. Human  face  to  face  interaction  temporal  networks  analyzed  in  this
paper.  The  minimum  inter-events  time  δmin  is  equal  to  20  sec,  which  is  the

time  resolution  of  the  data  acquisition  system.  The  average  (maximum)  time
gap between consecutive events is δavg (δmax).
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Results4.

The overall edge activity is plotted in Figure 1 for all networks. Inac-
tivity  periods  during  which  data  was  not  collected  are  clearly  shown.
The  total  number  of  causal  paths  depends  on  the  inter-events  time
window  δ.  Looking  at  Table  1,  we  observe  that  for  all  networks,  the
minimum  and  average  time  gap  between  consecutive  events  δmin  and

δavg is of the order of tens of seconds, while the maximum δmax is two

or  three  orders  of  magnitude  larger.  To  sample  the  interval
[δmin, δmax],  we  divide  it  into  subintervals  of  equal  width.  We  choose

the sampling width μ  1 minute and collect the path statistics at 

δi  δmin + iμ ≤ δmax i  0, 1, … , m.

Figure  2  shows  the  probability  distributions  Pl, δ  of  causal  paths  of

length  l  as  a  function  of  δ.  It  is  interesting  to  note  that  the  distribu-

tions Pl, δ have the same trend for all social contexts. The probabil-

ity  P1, δ  decreases  with  δ,  while  Pl > 1, δ  increases  in  almost  the

whole  range  [δmin, δmax].  In  the  figure,  only  the  probability  distribu-

tions  for  paths  of  length  l ≤ 5  are  plotted  for  better  readability.  The

distributions  Pl > 5, δ  all  have  the  same  shape  of  Pl > 1, δ  and

Pl + 1, δ < Pl, δ. In the interval δmin, δavg, the percentage of paths

of  length  l  1  varies  in  the  range  ~[70–90]%;  the  percentages  of
paths  of  length  l  2  in  the  range  ~[7–23]%,  and  paths  of  length
l ≥ 3�are  rare.  In  the  limit  δ → δmax,  the  contribution  of  paths  of

length  3 ≤ l ≤ 10  to  the  statistics  is  significantly  higher.  However,
even  in  this  limit,  paths  of  length  l > 10  are  rare.  Figure  3  shows  for
δ  δmin,  δavg  and  δmax  the  probabilities  of  causal  paths  of  length

l ≤ 10.  Time  correlations  in  causal  paths  come  into  play  only  when
l ≥ 2,  and  their  importance  is  greater  the  longer  the  path  length.
Therefore, we expect that transitivity is not lost around δavg  but only

for δ > δavg. This is confirmed by the higher-order, multilayer Markov

chains model. It is difficult  to predict the exact value of δ for which a
first-order  network abstraction is inadequate. However, we argue that
since  for  the  majority  of  the  links  of  a  causal  path  the  time  gap
between  consecutive  events  is  around  δavg,  the  first-order  approxima-

tion  could  be  acceptable  and  the  static  time-aggregated  network
model could be used with a good degree of confidence.  We thus com-
pute  the  causal  fidelity  index  γ  to  quantify  the  goodness  of  the  static
representation.  The  results  of  both  models  are  reported  in  Table  2.
Apart  from  the  Infectious  network  for  which  γ  0.57,  we  observe  a
value  of  γ ≈ 1  in  all  other  cases.  This  indicates  that  regardless  of  the
social  context,  the  static  time-aggregated  network  representation  is  a
good approximation of the causal paths structure and may be trusted
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to  describe  dynamical  processes  whose  timescale  does  not  differ  too
much from the average inter-events time gap. The density of the acces-
sibility  matrix  ρ(n)  is  plotted  in  Figure  4  for  all  networks.  It  gives

information on the extent of the causally connected region of the net-
work over time.

Figure 1. Number of active edges during the observation period.

Figure 2. Probability distributions Pl, δ of causal paths of length l as a func-

tion of the inter-events time δ. The maximum observed path length is lmax.
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Figure 3. Probability  distributions  of  causal  paths  as  a  function  of  the  length
for  the  inter-events  times  δ  δmin  (top),  δ  δavg  (middle)  and  δ  δmax

(bottom).

Kopt    

Network δmin δavg δmax γ

High school 1 1 2 0.97

Hospital 1 1 2 0.93

HT09 1 1 2 0.99

SFHH 1 1 2 0.99

Workplace 1 1 2 0.99

Infectious 1 1 2 0.57

Table 2. The  table  shows,  for  all  examined  temporal  networks,  the  optimal
maximum order Kopt  provided by the multilayer Markov chains model evalu-

ated  for  minimum,  average  and  maximum  inter-events  times,  and  the  causal
fidelity index γ.

Table  3  shows  the  extent  of  the  causally  connected  region  of  the
networks  during  the  observation  period  T.  The  Infectious  network  is
~1%  causally  connected  at  the  end  of  the  observation  period.  Its
static  time-aggregated  network  is  not  connected.  This  means  that
there  are  components  that  never  were  connected  during  the  observa-
tion period. These components contain isolated individuals or disjoint
groups  of  individuals.  Note  that  the  analyzed  data  of  the  Infectious
network  was  collected  from  April  17  to  July  17,  2009;  therefore  it  is
possible that people who participated in the exhibition event on differ-
ent  days  never  met.  We  observe  that  the  High  school  and  SFHH  net-
works  are  90%  causally  connected  after  about  one-quarter  of  the
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observation  period,  meaning  a  high  level  of  mobility  and  interaction
between  individuals.  We  may  think  that  students  of  a  class  had  fre-
quent  relationships  not  only  between  themselves  but  also  with  stu-
dents  of  other  classes,  for  example  during  recess  time  after  courses,
and  people  who  attended  the  scientific  conference  frequently  met  to
exchange  opinions.  The  Hospital  network  becomes  90%  causally
connected only at the end of the observation period and the extent of
the  network  region  connected  by  causal  paths  increases  quite  slowly.
The  HT09  network  becomes  90%  causally  connected  after  ~50%  of
the  observation  period,  which  is  a  sign  that  the  majority  of  people
had already had a face-to-face contact during the first  half of the con-
ference  duration  time.  The  Workplace  network  is  25%  causally  con-
nected  just  after  ~1%  of  the  observation  period  and  becomes  90%
causally connected after ~37%. This is an indication that the employ-
ees  who  worked  in  the  office  building  had  frequent  relationships,
probably because their activities required strong team collaboration. 

Figure 4. Densities  ρ(n)  of  the  accessibility  matrices  of  the  temporal  net-

works as a function of the time.

Time to Reach

Network 25% 50% 75% 90%

High school 2.4 3.2 13.0 24.8

Hospital 10.6 26.7 70.0 95.3

HT09 4.0 8.9 20.0 48.9

SFHH 8.4 15.8 24.2 25.6

Workplace 0.88 2.0 18.0 37.3

Infectious ~1% causally connected   

Table 3. The table shows the percentage of the observation period T taken to
have  one-quarter,  half,  three-quarters  and  90%  of  the  network  causally  con-
nected.  The  Infectious  network  is  only  ~1%  causally  connected  at  the  end
of T.
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Conclusion5.

We studied the causal paths structure in temporal networks of human
face-to-face  proximity  interactions  in  different  social  contexts.  The
importance of causal paths lies in the fact that they are the underlying
background on top of which diffusive processes evolve. Temporal net-
works are often analyzed by applying well-established algorithms and
techniques  to  the  static  time-aggregated  representation.  Although  this
approach  provides  information  on  global  properties,  it  implicitly
assumes  link  transitivity  and  does  not  capture  time  correlations.
Therefore,  it  may  lead  to  misleading  results  in  the  analysis  of  causal
paths.  To  quantify  time  correlations  and  the  goodness  of  the  static
approximation,  we  applied  two  independent  models  to  the  datasets,
one  based  on  multilayer,  higher-order  Markov  chains,  and  the  other
on  the  unfolding  of  the  accessibility  matrices.  We  found  that  for  all
examined  networks,  the  probability  distributions  of  causal  paths  as  a
function  of  the  waiting  time  δ  between  consecutive  events  have  the
same shape. The number of causal paths of length one decreases with
δ  and  that  of  longer  paths  increases.  The  number  of  causal  paths  of
length one considerably exceeds that of longer paths for δ less than or
equal  to  the  average  value  δavg.  Time  correlations  are  present  for

paths  of  length  l ≥ 2.  Their  number  increases  with  δ  but  exceeds  that
of a path of length one only for δ ≫ δavg. For all examined networks,

the  multilayer,  higher-order  Markov  chains  model  shows  that  transi-
tivity  is  not  lost  when  δ  δavg,  indicating  that  for  temporal  scales  of

this  order,  the  static  network  representation  may  be  a  good  approxi-
mation.  We  evaluated  the  ratio  of  the  densities  of  the  temporal  and
static  accessibility  matrices,  which  provides  an  index  0 ≤ γ ≤ 1.  High
values of γ indicate that the static representation is a good approxima-
tion  and  low  values  indicate  a  bad  approximation.  Except  for  one  of
the  examined  networks  (exhibition  event  lasting  about  three  months)
for which γ ~0.6, for all other networks we found that γ ~1. We also
quantified  the extent of the causally connected region of the networks
during the observation period, obtaining an overall view of the people
mobility in the different social contexts.
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