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This  paper  presents  a  mathematical  model  for  a  piston  flow  reactor
based  on  the  material  balance  law  using  partial  differential  equations.
A  more  general,  nondimensional  variant  of  the  model  is  also  derived.
The finite  difference method and coupled map lattice are used to create
numerical  algorithms  to  simulate  spatio-temporal  behavior  in  the  stud-
ied  system.  The  paper  also  includes  a  stability  analysis  of  the  proposed
algorithms  and  results  of  numerous  numerical  simulations,  done  in
order  to  compare  both  methods  and  to  visualize  the  spatio-temporal
behavior  of  the  reactor  and  the  effects  of  different  model  parameters.
Discussion of the obtained results and comparison of both algorithms is
also provided. 
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Introduction1.

This  paper  tackles  the  issue  of  numerical  solution  of  the  convection-
diffusion  boundary  value  problem  using  the  finite  difference  method
(FDM)  as  well  as  the  heuristic  coupled  map  lattice  (CML)  method.
The  boundary  value  problem  describes  the  dynamics  of  the  tubular
chemical reactor, where one kind of mass is transformed into another
during  a  chemical  reaction.  The  main  goal  of  the  paper  is  a  qualita-
tive,  simulation-based  comparison  of  these  two  different  numerical
discretization schemes for the evaluation of the given partial differen-
tial equation (PDE). Moreover, a stability analysis of both methods is
also conducted in order to prove their capabilities for practical imple-
mentation.  While  application  of  partial  differential  equations  (PDEs)
to  build  mathematical  models  of  complex  distributed  parameter  sys-
tems  (DPSs)  is  well  known  and  widely  described  in  literature  (e.g.,
[1–3]),  using  CML  to  simulate  complex  behavior  of  the  piston  flow
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reactor (PFR) seems to be a rather new direction. The original contri-
bution of this paper is an application of the heuristic CML method to
numerically solve the complex PDE.

The  issue  of  distributed  parameter  system  (DPS)  modeling  is
crucial,  because  by  conducting  different  numerical  simulations,  a  bet-
ter  understanding  of  their  spatio-temporal  behaviors  can  be  achieved
[4–6].  A  number  of  physical  objects  can  be  described  as  distributed
systems.  In  practice,  this  means  some  of  their  parameters  and  signals
should be considered functions of both temporal and spatial indepen-
dent variables [7]. Different examples of such systems can be found in
the  field  of  electrics  [8,  9],  mechanics  [5],  fluid  dynamics  [10,  11],
biology [12–14] and chemistry [2, 15–19]. 

Obviously, modeling is only one of the aspects addressed in the lit-
erature  for  such  systems.  Additional,  optimal  types  of  experimental
design,  including  the  identification  of  distributed  systems,  are  widely
discussed  as  well  [20–25].  Moreover,  since  many  DPSs  demonstrate
chaotic  spatio-temporal  behavior,  issues  of  describing  such  behaviors
quantitatively  and  qualitatively  are  also  dealt  with  [26–28].  Further-
more,  a  great  deal  of  effort  and  attention  is  put  into  control  algo-
rithms,  which  optimize  defined  quality  factors  [29]  or  stabilize
chaotic behavior [30–33]. 

Mathematical  models  of  DPSs  are  typically  formulated  as  PDEs
[3,�34], but for some applications, cellular automata (CAs) [35–37] or
CML  [38–40]  can  also  be  applied.  In  order  to  design  different  algo-
rithms used in numerical simulations for models provided by PDEs, a
finite  difference  method  (FDM)  is  used  to  replace  differential  equa-
tions  with  difference  equations.  Assuming  stability  of  the  proposed
numerical  methods,  this  approach  can  be  utilized  for  a  wide  range  of
practical problems [11]. 

This paper presents the application of PDEs, FDMs and CMLs for
modeling  standard  and  nondimensional  versions  of  piston  flow  reac-
tors (PFRs). 

Piston Flow Reactor2.

Material Balance Law2.1

In a chemical reactor design, the material balance law is used in com-
bination  with  chemical  kinetics  and  transport  phenomena  in  order  to
describe  the  transformation  of  one  kind  of  mass  into  another  by  way
of a chemical reaction [41]. Let us define  a control volume as a region
of  space  with  a  finite  volume  and  defined  boundaries  that  separate
this region from the rest of space. In addition, let us assume that some
chemical  reaction  takes  place  within  the  control  volume.  Then,  a
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simple  equation  can  be  written  to  describe  the  mass  balance  law  as
follows:

input + formation  output + accumulation,

where the formation part can be negative, in the case of consumption,
or  positive,  when  production  as  a  result  of  a  chemical  reaction  takes
place  in  the  system.  The  material  balance  law  can  also  be  written
using volumetric flow rates and volumes as follows:

Qinxin +RA avgV  Qoutxout +
dVxavg

dt
, (1)

where  Qin  and  Qout  are  the  volumetric  inlet  and  outlet  flow  rates,

respectively  (volume/time),  xin  and  xout  are  the  concentration  of  the

density of component A in the inlet and outlet flows (in moles per vol-
ume), RA avg  is the spatial average of the net rate of component A for-

mation  in  moles  per  volume  over  time  (positive  values  represent
production,  while  negative  values  represent  consumption),  V  is  the
volume  and  xavg  is  the  average  concentration  of  component  A  in  the

control  volume.  The  expression  Vxavg  reflects  the  inventory  and

dVxavg  dt  denotes  accumulation.  The  reaction  rate  RA  describes

the  chemical  kinetics  and  for  the  elementary  reaction  that  transforms
substance A into product B expressed as:

A⟶
k
B, (2)

can be written as follows:

RA  kxp, (3)

where k is the rate constant, x is the concentration of component A in
the control volume and p is the reaction order. Subsequently, the rate
constant  k  represents  Arrhenius’s  law  and  is  given  by  the  following
equation:

k  A exp(-Ea/Rh), (4)

where A is the pre-exponential or frequency factor constant for every
chemical reaction (frequency of collisions), Ea  is the activation energy

required for the reaction (frequently expressed in J/mol), R is the uni-
versal  gas  constant  (8.314  J/molK)  and  h  is  the  absolute  temperature
in kelvins (h, heating temperature).

Dynamics Equations2.2

Figure  1  is  a  simple  graphical  representation  of  a  PFR,  where  input
substance  A  is  processed  into  the  output  product  B  (A → B).  In  this

model,  t ∈ 0, T  denotes  a  temporal  variable,  n ∈ 0, N  is  a  spatial
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variable and x(t, n) represents the distributed state of the process and,
in practice, concentration of substance A at time step t and position n
in the space of the tubular reactor. The distributed control variable of
the  process  is  given  by  h(t, n)  and  represents  the  intensity  of  the  heat
source  at  time  step  t  and  spatial  position  n.  The  variable  v(t)  denotes
the velocity of the fluid. Let us assume that n′ ∈ [n, n + Δn] is the con-
trol volume of the PFR (Figure 2). Equation (1) can be formulated for
the control volume n′ as follows: 

Q(t)x(t, n) -RA avgΔV 

Q(t)x(t, n + Δn) + ΔV
∂x(t, n′)

∂ t
.

(5)

The  flow  rate  is  expressed  as  Q(t)  v(t)Ac,  where  v(t)  is  the  fluid

velocity and Ac  denotes the section of the reactor. The control volume

is  given  by  ΔV  AcΔn.  Taking  all  those  definitions  into  account,

using equation (3) and adding diffusion, the mass balance law for the
control volume ΔV can be written as:

AcΔn
∂x(t, n′)

∂ t
 v(t)Ac(x(t, n) - x(t, n + Δn)) +

α
∂x(t, n + Δn)

∂n
-

∂x(t, n)

∂n
-AcΔnkx

p(t, n′).
(6)

The  expression  on  the  left  side  of  equation  (6)  represents  the  velocity
of substance A changing over time for the control volume of the reac-
tor.  The  first  expression  on  the  right  side  denotes  the  amount  of
substance  A  flowing  through  the  control  volume  of  the  reactor.  The
second one represents the diffusion process, while the last one denotes
reaction,  that  is,  the  amount  of  substance  A  processed  into  output
product B. Parameter α is the diffusion factor, and p signifies the reac-
tion order. For further investigation, the first  reactor order is assumed
(p  1). Dividing equation (6) by AcΔn, the following equation can be

obtained:

∂x(t, n′)

∂ t
 -v(t)

x(t, n + Δn) - x(t, n)

Δn
+

α

Ac

∂x(t,n+Δn)

∂n
-

∂x(t,n)

∂n

Δn
- kx(t, n′).

(7)

Assuming  that  α1  α Ac,  using  the  derivative  definition  and  apply-

ing  Δn → 0  when  n′ → n,  the  mass  balance  law  can  finally  be  pre-
sented as follows:

∂x(t, n)

∂ t
+ v(t)

∂x(t, n)

∂n
 α1

∂2x(t, n)

∂n2
- kx(t, n), (8)
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where  the  second  expression  represents  advection  or  convection,  the
next  one  denotes  diffusion  and  the  last  one  describes  the  chemical

reaction  process  with k  kh  and p  1.  The  initial  and  boundary

conditions can be defined as:

for t  0 and 0 < n ≤ N : x0, n  0,

for t > 0 and n  0 : xt, 0  xt,
(9)

where  xt  is  the  instantaneous  density  of  the  substance  A  in  the  reac-

tor’s inlet.

Figure 1. A PFR.

Figure 2. The control volume of a PFR.

Nondimensional Material Balance Equation2.3

Let us assume nondimensional variables for time:

θ 
t

τ
⇒ t 

θN

v
, (10)

where the average flow  time is given by τ  N / v. The nondimension-
alized spatial variable and the density of substance A are expressed as:

z 
n

N
⇒ n  zN, (11)

u 
x

x0
⇒ x  ux0, (12)
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where x0  is the initial density of substance A and can be also written

as  x0  xt, 0.  Putting  equations  (10),  (11)  and  (12)  into  equa-

tion�(8), we can obtain:

vx0

N

∂u

∂θ
+
vx0

N

∂u

∂z
 α1

x0

N2

∂2u

∂z2
- kupx0

p. (13)

Multiplying  both  sides  by  N / vx0,  the  following  equation  can  be

written:

∂u

∂θ
+

∂u

∂z


∂2u

∂z2

α1

vN
- up

N

v
kx0

p-1 . (14)

Equation (13) can be also transferred to:

∂u

∂θ
+

∂u

∂z


∂2u

∂z2

1

Pe
- upDa, (15)

where

Pe 
N2v

α1N


N2  α1

N / v


τdiffusion

τhydrodynamics

(16)

is the Péclet number and

Da 
N / v

1  kx0
p-1


τhydrodynamics

τreaction
(17)

is  the  Damhöhler  number.  Finally,  the  nondimensional  material  bal-
ance equation can be written as:

∂u

∂θ


1

Pe

∂2u

∂z2
-

∂u

∂z
-Dau

p. (18)

Piston Flow Reactor Task Definition2.4

The  main  task  of  the  PFR  described  by  the  nondimensional  material
balance  equation  (equation  (18))  can  be  defined  as  minimizing  the
average amount of unreacted component A in the reactor outlet: 

q 
1

T

0

T
v(t)u(t, N)dt → min. (19)

In  order  to  achieve  optimal  q,  PFR  can  be  controlled  using  concen-

trated variables (v(t) - fluid  velocity, u0  ut, 0 - nondimensionalized

density  of  component  A  in  the  reactor  feed),  as  well  as  distributed
variables  such  as  the  temperature  of  the  heat  sources  h(t, n).  All  the
control  variables  are  obviously  limited,  both  temporarily  and  in  their
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accumulated values. This can be written as:

0 ≤ v(t) ≤ vmax, (20)

0 ≤ ut, 0 ≤ umax, (21)

uavg 1 
1

N

0

N
u0, ndn ≤ umax a, (22)

uavg 2 
1

N

0

N
uT, ndn ≤ umax a, (23)

0 ≤ h(t, n) ≤ hmax, (24)

havg 
1

TN

0

T


0

N
h(t, n)dtdn ≤ hmax a. (25)

These  defined  indicators  are  used  in  the  simulation  part  of  the  paper
to  describe  some  quantitative  results  such  as  simple  reactor  efficiency
given by q and (uavg 2 - uavg 1) under application of different energy of

heating sources havg.

Finite Difference Method3.

Numerical Algorithm3.1

In  this  section,  the  FDM  is  used  in  order  to  solve  equation  (18)  by
approximating  it  with  difference  equations.  Using  the  Euler  method,
the  nondimensional  material  balance  equation  for  p  1  can  be
written as:

uθ+1
z - uθ

z

Δθ


1

Pe

uθ
z+1 - 2uθ

z + uθ
z-1

Δz2
-
uθ
z - uθ

z-1

Δz
- kuθ

z. (26)

After  some  basic  transformations,  the  FDM  algorithm  can  be
expressed by:

uθ+1
z  uθ

z-1L + uθ
zC + uθ

z+1R, (27)

where

C  1 -
2Δθ

Δz2Pe

-
Δθ

Δz
- kΔθ, (28)

and

L 
Δθ

Δz2Pe

+
Δθ

Δz
, (29)

R 
Δθ

Δz2Pe

. (30)
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A graphical representation of the differential scheme defined  by equa-
tions  (27)–(30)  is  presented  in  Figure  3(a).  However,  this  differential
scheme  is  not  stable  from  a  numerical  perspective.  In  order  to
improve  its  properties,  the  space  average  according  to  the  Lax
approach for the term ut

n
 has to be introduced as follows [11]:

uθ
z 

1

2
uθ
z-1 + uθ

z+1. (31)

Putting  the  Lax  scheme  into  equations  (27)–(30)  and  using  simple
transformations, the following numerical algorithm can be obtained:

uθ+1
z  uθ

z-1L + uθ
z+1R, (32)

where

L 
1

2
+

Δθ

2Δz
-
kΔθ

2
, (33)

and

R 
1

2
-

Δθ

2Δz
-
kΔθ

2
. (34)

A  graphical  representation  of  equations  (32)–(34)  is  presented  in
Figure 3(b).

(a) (b)

Figure 3. FDM scheme representation: (a) the basic one; (b) the Lax scheme.

Stability Analysis3.2

Equations (32)–(34) can be also presented in the following form: 

uθ+1
z  uθ

z-1 + uθ
z+1

1

2
-

Δθ

2Δz
-
kΔθ

2
+ uθ

z-1
Δθ

Δz
. (35)

Stability  of  the  differential  scheme  can  be  examined  by  introducing
the  Fourier  mod  in  accordance  with  the  von  Neumann  method  [11].
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The Fourier mod is expressed as:

u  ueikx. (36)

Using  this  definition  of  the  Fourier  mod,  equation  (35)  can  be
expressed as:

u θ+1eikxz 

u θeikxz-1 + eikxz+1 
1

2
-

Δθ

2Δz
-
kΔθ

2
+ u θeikxz-1

Δθ

Δz
.

(37)

Dividing  by  eikxz  and  using  the  fact  that  coskΔ  e-ikΔ + eikΔ  2

and eikΔ  coskΔ - i sinkΔ, we arrive at:

u θ+1  u θ coskΔ1 - kΔθ - i sinkΔ
Δθ

Δz
. (38)

Assuming that:

u θ+1  gu θ, (39)

where

g  coskΔ1 - kΔθ - i sinkΔ
Δθ

Δz
, (40)

according  to  the  von  Neumann  approach,  the  condition  of  stability
for a complex value of gain factor can be expressed as:

g  g*g ≤ 1, (41)

where  g*  is  the  conjugate  value  of  the  complex  number  g.  Taking  all
of this into consideration, we can write:

g*g  1 - kΔθ2 - sin2kΔ 1 - kΔθ2 -
Δθ

Δz

2

. (42)

For sin2kΔ  1, equation (42) is expressed as:

g*g 
Δθ

Δz

2

, (43)

so taking into consideration condition (41), stability is secured for an
assumption that:

Δθ ≤ Δz. (44)

Numerical Simulations3.3

A  numerical  simulation  of  the  PFR  dynamics  expressed  by  equa-
tion�(18)  can  be  conducted  using  the  FDM  and  the  Lax  scheme
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described  in  equations  (32)–(34).  This  numerical  algorithm  is  stable
for  condition  (44),  which  has  been  confirmed  in  numerical  simula-
tions.  Breaking  this  rule  introduces  instability,  making  the  simulation
impossible  to  perform.  Parameters  N,  T,  Δz  and  Δθ  define  the  Euler
grid itself, while the remaining parameters are part of the material bal-
ance  equation  in  equation  (18)  or  more  precisely,  in  some  cases,
Arrhenius’s law, which was given in equation (4). Simulation parame-
ters are listed in the tables. Results of the simulation are presented in
the  form  of  plots  in  order  to  demonstrate  the  behavior  of  the  system
with different parameters. Moreover, each section showing the simula-
tion  results  for  one  particular  set  of  parameters  is  summarized  by  a
table with defined factors showing the efficiency of control. 

Experiment 1: Piston Flow Reactor without Temperature Control3.3.1

Simulation  parameters  for  this  experimental  case  are  presented  in
Table 1. A Gaussian distribution of component A with the parameters
μ  25  and  σ  10  was  introduced  to  the  reactor  feed.  The  distribu-
tion of the density of reactant A over time and space is visible in map
form in Figure 4(a) and as a three-dimensional plot in Figure 4(b). Fig-
ure  5(a)  illustrates  the  distribution  of  the  density  of  component  A  in
the  reactor  effluent  as  defined  for  time  step  t  80.  Figure  5(b)  pre-
sents  distribution  of  the  density  of  reactant  A  in  space  for  two  time
steps: t  0 and t  T. Table 2 contains the values of the average den-
sity  of  reactant  A  introduced  into  the  reactor  uavg 1  and  available  at

the  end  of  the  reactor  uavg 2,  the  average  temperature  applied  to  the

reactor  havg  and  the  quality  factor  q  found  in  equation  (19).  The  ini-

tial Gaussian distribution of reactant A flows  through the reactor, but
due  to  the  low  temperature  delivered  havg  0  to  the  reactor  in  time

Parameter Description Value 

N space boundary 400 

T time boundary 400 

Δz space step 0.5 

Δθ time step 0.1 

μ normal distribution, mean 25 

σ normal distribution, standard deviation 10 

v fluid velocity 1 

A frequency factor 1 

Ea activation energy 40000 (J/mol)

h temperature 273.15 (K)

k rate constant 2 * 10-8
 

Da Damhöhler number 8.97 * 10-6
 

Table 1. Simulation parameters for Experiment 1 (FDM).
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and  space,  the  amount  of  component  A  remains  the  same.  The  value
of  the  quality  factor  q  is  relatively  high,  which  does  not  fulfill  the
assumed goal.

(a) (b)

Figure 4. Distribution  of  A  over  time  and  space  in  the  form  of:  (a)  map;
(b) three-dimensional plot.

(a) (b)

Figure 5. Distribution  of  A:  (a)  over  time  in  the  reactor  effluent;  (b)  in  space
for two time points.

Indicator Description Value 

uavg 1 average A density in t  0 0.062 

uavg 2 average A density in t  T 0.062 

havg average temperature change 0 (K) 

q quality factor 0.263 

Table 2. Simulation indicators for Experiment 1 (FDM).
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Experiment 2: Piston Flow Reactor with Temperature Control3.3.2

In  this  experimental  case,  a  much  higher  temperature  (h  573.15  K)
was used in order to make the reaction more efficient.  The rest of the
parameters  remain  the  same.  Figures  6(a)  and  6(b)  present  the  distri-
bution of the density of reactant A over time and space in the form of
a  map  and  three-dimensional  plot,  respectively.  Figure  7(a)  illustrates
the  distribution  of  the  density  of  component  A  in  the  reactor  effluent
as defined  for time step t  80. Figure 7(b) presents the spatial distri-
bution of reactant A at the initial step of the simulation (t  0) and at
the end (t  T). As can be seen in Figures 6(a), 6(b) and 7(b), the ini-
tial Gaussian distribution of reactant A flows  through the reactor, but
this  time  the  chemical  reaction  is  much  stronger,  resulting  in  much
higher  and  more  efficient  usage  of  component  A.  This  is  also  con-
firmed  by  the  simulation  results  presented  in  Table  3.  The  average
density of reactant A at the end of the simulation uavg 2  is much lower

than at the beginning of the simulation uavg 1.The value of the quality

factor  q  is  much  lower  than  in  the  previous  experimental  case.  Obvi-
ously,  this  time  energy  represented  by  the  average  temperature  havg
was much higher. 

(a) (b)

Figure 6. Distribution  of  A  over  time  and  space  in  a  form  of:  (a)  map;
(b) three-dimensional plot.

Indicator Description Value 

uavg 1 average A density in t  0 0.062

uavg 2 average A density in t  T 0.002 

havg average temp. change 300 (K)

q quality factor 0.029 

Table 3. Simulation indicators for Experiment 2 (FDM).
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(a) (b)

Figure 7. Distribution  of  A:  (a)  over  time  in  the  reactor  effluent;  (b)  in  space
for two time points.

Experiment 3: Dependency between the Fluid Velocity and the 

Quality Factor
3.3.3

Figure 8 presents the relationship between the quality factor q and the
average  temperature  havg  applied  to  the  system  for  different  fluid

velocities v. As can be seen, for all tested velocities, there is a particu-
lar  amount  of  energy  in  the  form  of  heat  that  must  be  exceeded  in
order  to  achieve  significant  changes  in  the  quality  factor.  In  other
words,  there  are  particular  ranges  for  different  fluid  velocities,  where
the  relationship  between  the  temperature  and  the  quality  factor  is
more  or  less  linear.  Apart  from  that,  it  can  be  clearly  seen  that  the
same  value  for  the  quality  factor  q  can  be  achieved  when  the  fluid
velocity v grows by increasing the average temperature havg. 

Figure 8. Dependency  between  the  quality  factor  q  and  the  average  tempera-

ture havg applied to the system for different fluid velocities v, q  f havg.

Experiment 4: Dependency between the Heating Temperature 

and the Quality Factor
3.3.4

Figure 9  illustrates  the  relationship  between  the  quality  factor q  and
the  fluid  velocity v  for  different  average  temperatures havg  applied  to

the  system.  In  general,  decreasing  the  fluid  velocity  v  for  the  same
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average temperature havg  reduces the quality factor q. For lower tem-

peratures,  the  curve  of  this  dependency  is  steeper,  while  for  higher
temperatures the dependency approaches a linear one. The same value
of  the  quality  factor  q  for  different  average  temperatures  havg  can  be

achieved  by  changing  the  fluid  velocity  v.  If  the  fluid  velocity  is
higher, the temperature must also be increased in order to achieve the
same value of the quality factor.

Figure 9. Dependency between the quality factor q and the fluid  velocity v for
different heater temperatures h, q  f (v).

Experiment 5: Dependency between the Quality Factor and the 

Density of Heaters in Space
3.3.5

This  section  presents  the  results  from  examining  the  dependency
between the quality factor q or the average amount of reactant A and
the  end  of  the  simulation  (t  T)  and  the  density  of  the  heaters  and
their temperature. Figure 10 presents the relationship between the dis-
tribution  of  heaters  given  by  the  distance  between  them  in  space  ds
and the average heating temperature havg  for different temperatures of

heaters h. Obviously, the same average temperature in the system can
be obtained by increasing the number of heat sources (lower distance
ds  between them) if the heating temperature for each source is lower.

This  figure  also  shows  that  below  a  certain  distance  (ds ≤ 5  in  this

case), the amount of energy introduced into the system grows rapidly.
This  means  that  using  too  many  sources  simultaneously  will  cause  a
rapid  increase  in  the  amount  of  energy  applied  to  the  system.  Fig-
ure�11 illustrates the dependency between the quality factor q and the
distance between heaters ds. Taking into consideration the conclusion

that  can  be  drawn  by  analyzing  the  previous  chart,  it  can  be  easily
seen  that  it  is  more  efficient  to  use  a  higher  temperature  with  heaters
distributed  more  sparsely  in  space.  The  curve  of  the  relationship

between the quality factor and the distance between heaters q  fds
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for the temperature of all heaters at the level of h  500 appears to be
the most linear one. This finding might be useful and valuable in prac-
tical  applications.  Figure  12  presents  the  relationship  between  the
quality factor q and the average temperature applied to the system for
different  heater  temperatures.  As  can   be  seen  from  this  chart,  by
using  higher  temperatures  with  the  heaters,  it  becomes  easier  to
achieve a lower quality factor using the same amount of energy in the
form  of  average  temperature.  Assuming  a  high  temperature  of  the
heaters (e.g., T  500), increasing the average temperature applied to
the  system  by  increasing  the  density  of  heater  distribution  does  not
lead  to  a  significant  decrease  in  the  quality  factor.  This  essentially
means that it does not make sense to introduce more sources of heat,
because this will not speed up the reaction any further. 

Figure 10. Dependency  between  average  temperature  havg  and  the  distance

between heaters ds, havg  f ds.

Figure 11. Dependency between the quality factor q and the distance between

heaters ds, havg  f ds.
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Figure 12. Dependency between the quality factor q and the average tempera-

ture havg, q  f havg.

Experiment 6: Dependency between the Quality Factor and the 

Frequency of Heating
3.4

This  section  presents  results  that  are  similar  to  the  ones  presented  in
the previous section, but in this case the relationship between the qual-
ity  factor  q  and  the  distance  dt  between  consecutive  heating  actions

and  the  average  temperature  havg  is  considered  for  different  tempera-

tures  h.  The  relationship  between  the  quality  factor  and  the  distance
in  time  between  consecutive  heating  actions  and  the  relationship
between the quality factor and the average temperature applied to the
system for different temperatures have a similar shape to the ones pre-
sented  in  the  previous  section,  so  it  was  decided  not  to  present  those
figures.  This  means  that  both  of  these  treatments  are  symmetrical.
Changing  the  length  of  time  or  the  distance  in  space  between  heating
actions  provides  similar  results.  Obviously,  because  heating  sources
are inert, switching is not immediate.

Coupled Map Lattice4.

CML  models  are  distributed  parameter  systems  similar  to  CAs  that
can  be  applied  to  simulate  spatio-temporal  behavior  [38–40].  In  this
section,  this  approach  will  be  used  in  order  to  create  a  model  of
a PFR. 

Mathematical Model4.1

A one-dimensional CML can be defined as follows:

xt+1(n)  f(xt(n)) + εLgxtn - 1 + ε0g(xt(n)) + εRgxtn + 1, (45)

where  t  1, … , T  are  discrete  time  steps,  n  1, … , N  denotes  the

number of components, ε  (εL, ε0, εR) is a CML kernel, f(x) defines
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local  dynamics  and  g(x)  is  a  coupling  function.  Figure  13  is  a  simple
graphical  representation  of  CML  assuming  that  f  f(xt(n), pt(n)),

where  pt(n)  is  an  additional  control  parameter,  given  for  each  step  in

time  and  space,  influencing  local  dynamics.  In  this  model,  periodical

(xt(n +N)  xt(n)) or fixed  (xt0  0, xtN + 1  0) types of bound-

ary conditions are frequently used. The initial state of the system cor-
responds  to  the  spatially  distributed  state  of  the  process.  CMLs,
because  of  their  capability  to  model  distributed  parameter  systems
and  simulate  complex  spatio-temporal  behavior,  are  also  frequently
used to model chaotic systems. An example of such a type of applica-
tion is presented in Figure 14. 

Figure 13. CML.

Figure 14. Chaotic spatio-temporal behavior in CML.
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Numerical Algorithm4.2

The material balance law described by equation (1) can be also formu-
lated as follows:

du

dt


Q

ΔV
(uin - uout) -RA, (46)

where Q is volumetric flow  defined  as a product of the reactor’s cross
section and fluid  velocity Q  Acv, ΔV is a control volume defined  as

ΔV  AcΔn,  where  Δn  is  a  control  volume  length,  and  uin  and  uout
are the concentrations of the density of component A in the inlet and
outlet  flows.  After  some  more  transformations,  equation�(46)  can  be
written as follows:

du

dt


v

Δn
(uin - uout) -RA, (47)

where  v  is  a  velocity  of  fluid  flowing  through  the  reactor  and
RA  kup  describes  a  reaction  speed,  where  p  is  a  reaction  order

(in�this  case  p  1  was  assumed).  Equation  (47)  can  be  presented  as
follows: 

du

dt


v

Δn
(uin - uout) - ku. (48)

Using  the  definition  of  substance  A  density  in  time  and  space

u  ut(n),  in  the  inlet  (uin  utn - 1)  and  outlet  (uout  utn + 1)  of

the  control  volume  with  length  2Δn  and  the  definition  of  derivative,
we obtain:

ut+1(n) - ut(n)

Δt


v

2Δn
utn - 1 - utn + 1 - kut(n). (49)

After  some  basic  transformations,  the  following  equation  can  be
derived:

ut+1(n)  ut(n)1 - kΔt - v
Δt

2Δn
utn + 1 - utn - 1. (50)

Equation  (50)  describes  CML  with  local  function  f(u)  u,  coupling
function g(u)  u and kernel defined as:

ε  v
Δt

2Δn
, 1 - kΔt, -v

Δt

2Δn
. (51)

This  type  of  kernel  defines  systems  with  reaction  and  nonsymmetric
diffusion.

Stability Analysis4.3

As  was  done  for  the  FDM,  according  to  the  von  Neumann  method

[11],  Fourier  mod  u  ueikx  can  be  introduced  in  order  to  conduct  a
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stability  analysis. Taking into consideration  that  eikΔ - e-ikΔ  2 

i sinkΔ, we obtain:

u t+1  u t 1 - kΔt - v
Δt

Δn
i sinkΔ . (52)

Assuming that:

u t+1  gu t, (53)

the stability condition can be defined as follows:

g  g*g ≤ 1, (54)

where  g*  is  the  conjugate  value  of  the  complex  number  g.  The  equa-
tion for the gain factor can written as follows:

g2  1 - kΔt2 + v
Δt

Δn
sinkΔ

2

. (55)

For relatively small values of k and much higher values of fluid  veloc-
ity v, this condition is not fulfilled,  which means that the algorithm is
not stable. As was done for the FDM, the spatial average of ut(n) was

introduced in accordance with the Lax method:

ut(n) 
1

2
utn - 1 + utn + 1. (56)

A new version of the algorithm can be presented as follows:

ut+1(n) 
1

2
utn - 1 + utn + 11 - kΔt -

-v
Δt

2Δn
utn + 1 - utn - 1.

(57)

Again applying the von Neumann method [11] and taking into consid-

eration that eikΔ - e-ikΔ  2  i sinkΔ and eikΔ + e-ikΔ  2  coskΔ,

we obtain:

u t+1  u t 1 - kΔt coskΔ -
vΔt

Δn
i sinkΔ . (58)

The algorithm is stable for g*g ≤ 1, so after some more transforma-

tions, the condition can be given by:

vΔt

Δn
≤ 1, (59)

which defines the stability condition for the temporal step as follows:

Δt ≤
Δn

v
. (60)
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This type of condition defined  for the temporal step is described in lit-
erature  as  the  Courant–Friedrichs–Lewy  [42,  43]  condition.  The  CFL
condition  states  that  a  time  step  is  limited  to  some  level  given  by  the
space step and velocity and a bigger one should not be taken.

Numerical Simulations4.4

This  section  contains  results  of  numerical  simulations  conducted
using CML for PFR defined  in previous sections for the same parame-
ters as the ones used for the FDM.

Experiment 1: Piston Flow Reactor without Temperature Control4.4.1

Figure  15  presents  distribution  of  substance  A  over  time  and  space,
while  Figure  16  shows  the  distribution  of  A  over  time  in  the  reactor
effluent  and  space  for  two  time  points.  Notice  that  the  results  of  the
simulation  are  the  same  as  using  the  FDM.  Table  4  contains  average
values  of  substance  A  density  in  the  reactor  inlet  uavg 1  and  outlet

uavg 2,  average  temperature  applied  to  the  reactor  and  quality  factor

defined  by the equation (19). The initial Gaussian distribution of sub-
stance  A  flows  through  the  reactor,  but  due  to  the  small  amount  of
energy  havg  0,  the  density  of  substance  A  remains  unchanged.  Both

qualitative and quantitative results are the same as for the FDM. 

(a) (b)

Figure 15. Distribution of A over time and space in a form of: (a) map; (b) 3D
plot.

Experiment 2: Piston Flow Reactor with Temperature Control4.4.2

Figures  17  and  18  present  PFR  dynamics  with  the  temperature  con-
trol applied to the system. Notice that the initial amount of substance
A is processed much more efficiently than it was in the previous exam-
ple.  Table  5  contains  average  values  of  substance  A  in  the  reactor
inlet and outlet and the value of the quality factor. In order to achieve
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similar  simulation  results,  higher  temperatures  had  to  be  applied  in
the CML model. It is related to the fact that an additional diffusion ele
ment was introduced in the FDM. 

Indicator Description Value 

uavg 1 average A density in t  0 0.062 

uavg 2 average A density in t  T 0.062 

havg average temperature change 0 (K) 

q quality factor 0.263 

Table 4. Simulation indicators for Experiment 1 (CML).

(a) (b)

Figure 16. Distribution of A: (a) over time in the reactor effluent;  (b) in space
for two time points.

(a) (b)

Figure 17. Distribution of A over time and space in a form of: (a) map; (b) 3D
plot.
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(a) (b)

Figure 18. Distribution of A: (a) over time in the reactor effluent;  (b) in space
for two time points.

Indicator Description Value 

uavg 1 average A density in t  0 0.062

uavg 2 average A density in t  T 0.002 

havg average temperature change 1730 (K)

q quality factor 0.029 

Table 5. Simulation indicators for Experiment 2 (CML).

Summary5.

Finite Difference Method versus Coupled Map Lattice5.1

This paper tackles the issue of modeling complex distributed parame-
ter systems (DPSs). In this case, a chemical tubular reactor with piston
flow  is  examined.  In  the  first  few  sections,  a  method  for  formulating
partial  differential  equations  (PDEs)  for  a  piston  flow  reactor  (PFR)
based  on  the  material  balance  law  and  chemical  kinetics  is  presented
and  a  nondimensionalized  version  of  this  equation  is  derived.  In  the
next step, the finite  difference method (FDM) and coupled map lattice
(CML)  are  applied  in  order  to  solve  mathematical  equations  imple-
menting a model of the reactor. Two simple numerical algorithms are
proposed. For both of them based on the Lax approach, stability con-
ditions are calculated using the von Neumann method. Those stability
conditions  are  also  confirmed  in  numerical  simulations.  Furthermore,
a  control  task  for  such  objects  is  defined.  The  following  sections  pre-
sent the results of various experiments conducted according to the pro-
posed models.

Based on the obtained results, it was concluded that both methods
provide  similar  qualitative  and  quantitative  results.  However,  the
CML model seems to be much simpler in implementation. Moreover,
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creating the mathematical model does not require deep understanding
of the modeled object and the process. On the other hand, both mod-
els are similar and the biggest differences can be visible for more com-
plicated  chemical  reactions  introducing  strong  nonlinearities  in  the
local  dynamics  and  coupling  functions.  Moreover,  the  concept  and
architecture  of  the  cellular  automaton  (CA)  and  CML  seem  to  be
more  suitable  to  model  distributed  parameter  systems.  Such  models
can  also  be  easily  applied  using  modern,  multiprocessor  graphical
cards, which significantly increase efficiency of simulation. 

Piston Flow Reactor Properties5.2

The  main  goal  in  controlling  PFRs  is  to  minimize  the  quality  factor,
which is defined  by the amount of unreacted substance in the reactor
outlet. Obviously, the amount of energy used in order to speed up the
chemical reaction should be minimized. Bearing in mind that the way
of providing energy in the form of heat is distributed in both time and
space and that fluid  velocity at the reactor inlet can be modified,  this
problem becomes nontrivial.

The results of Experiments 1 and 2 clearly show that by providing
higher  temperatures  in  all  the  heat  sources  along  the  reactor,  lower
values  of  the  quality  factor  can  be  obtained.  In  practice,  this  means
that  in  accordance  with  Arrhenius’s  law,  a  higher  initial  amount  of
reactant  A  is  consumed.  Unfortunately,  this  situation  is  undesirable,
since  it  is  necessary  to  minimize  the  amount  of  energy  provided.  The
results  of  Experiment  3  confirm  the  fact  that  as  the  average  fluid
velocity in the reactor increases, more energy must be applied in order
to achieve an equally low amount of reactant A in the reactor outlet.
The  figures  included  in  this  paper  show  this  relationship  for  different
fluid  velocities.  The  results  of  Experiment  4  indicate  that  the  fluid
velocity  must  be  decreased  when  the  heating  sources  provide  less
energy.  Additionally,  the  aim  of  Experiment  5  was  to  describe  the
relationship between the density of the heating sources and their tem-
perature  and  the  quality  factor.  A  few  interesting  findings  from  the
simulation results are worth pointing out. First, when it comes to the
average  spatial  temperature,  increasing  the  distance  between  heating
sources  beyond  five  does  not  change  the  average  temperature  signif-
icantly,  even  if  the  temperature  of  a  single  source  is  much  higher.
Based on the results obtained, we also state that it is more justified  to
use fewer heating sources or longer distance between them with more
energy rather than many sources of heat with less energy. Exactly the
same  conclusion  can  be  drawn  for  the  temporal  distribution  of
heating  sources,  assuming  that  the  switching  process  can  be  done
without any delays, which is not the case with objects in reality. Thus,
it  is  more  efficient  to  switch  on  heating  sources  less  frequently  with
more energy.
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