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Evolution patterns of a one-dimensional homogeneous cellular automa-
ton  (CA)  are  investigated  for  some  standard  transition  functions.  The
different possible evolution patterns for an elementary CA starting with
at most one active cell or ON state cell are discussed. Also, with respect
to  some  initial  configurations,  evolution-wise  equivalent  Wolfram
codes are investigated. It is shown that these equivalent codes are auto-
morphic.
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Introduction1.

A  cellular  automaton  (CA)  is  a  computational  model  of  a  dynamical
system.  This  model  was  introduced  by  J.  von  Neumann  and  S.  Ulam
in  1940  for  designing  self-replicating  systems  that  later  saw  applica-
tions in physics, biology and computer science.

Neumann  conceived  a  CA  as  a  two-dimensional  mesh  of  finite-
state  machines  called  cells  that  are  locally  interconnected  with  each
other.  Each  of  the  cells  changes  its  states  synchronously,  depending
on the states of some neighboring cells (for details see [1–3] and refer-
ences therein). The local changes of each of the cells together induce a
change of the entire mesh. Later, a one-dimensional CA, that is, a CA
where the elementary cells are distributed on a straight line, was stud-
ied. Stephen Wolfram’s work in the 1980s contributed to a systematic
study  of  one-dimensional  cellular  automata  (CAs),  providing  the  first
qualitative classification of their behavior (reported in [4, 5]). 

This  paper  considers  only  synchronous  (all  the  cell  states  are
updated simultaneously) CAs where the underlying topology is a one-
dimensional  grid  line.  A  finite-state  semi-automaton  with  finite  mem-
ory models a simple computation. A CA is a computational model of
a  dynamical  system  where  a  finite/countably  infinite  number  of  semi-
automata  (cells)  are  arranged  in  an  ordered  linear  grid  [6,  7]
(Figure�1). 
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… … Ai-1 Ai Ai+1 … … 

Figure 1. A typical grid of a linear CA. 

Each  cell  works  synchronously,  leading  to  evolution  of  the  entire
grid through a number of discrete time steps. If the set of memory ele-

ments of each semi-automaton is 0, 1, then a typical pattern evolved

over time t may be as shown in Figure 2. 

Time ↓ Grid Position i → … -3 -2 -1 0 1 2 3 …

t  0 Configuration C0 → … 0 0 0 1 0 0 0 …

t  1 C1 → … 0 0 1 0 1 0 0 …

t  2 C2 → … 0 1 0 1 0 1 0 …

t  3 C3 → … 1 0 1 0 1 0 1 …

⋮ ⋮ … ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ …

Figure 2. The grid line at time t gives the configuration of the CA at time t. 

Algebraic  properties  of  a  CA  and  its  relation  to  group  theory  and
topology  have  been  the  focus  of  increasing  study  in  recent  years  (see
[8–12]).  The  study  of  invertible  CAs  has  also  been  of  special  interest
[13–15]. All the CAs referred to are deterministic in nature. Nondeter-
ministic CAs have also been studied in [16]. 

In  this  paper,  one-dimensional  synchronous  homogeneous  CAs  are
studied.  In  Section  2,  basic  concepts  are  introduced  and  some  funda-
mental  results  are  reported.  Evolution  patterns  of  homogeneous  CAs
under some standard transition functions are studied in Section�3. Sec-
tion 4 is devoted to elementary CAs (ECAs) starting with at most one
cell  in  the  active  or  ON  state.  Also,  some  evolution-wise  equivalent
Wolfram  codes  for  such  ECAs  are  discussed.  It  could  be  shown  that
there  exists  an  automorphism  between  transition  functions  repre-
sented by these Wolfram codes. 

Basic Concepts 2.

We give a formal definition of a CA.

Definition 1. Let  us  consider  a  finite  set  Q  called  the  state  set.  The
memory  elements  of  the  automata  placed  on  the  grid  line  belong  to
this state set Q. 

A  global  configuration  is  a  mapping  from  the  group  of  integers  ℤ

to the set Q given by C :ℤ → Q. 
The  set  Qℤ

 is  the  set  of  all  global  configurations  where

Qℤ  C C :ℤ → Q. 
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A mapping τ :Qℤ → Qℤ
 is called a global transition function. 

A CA (denoted by τ
Q) is a triplet Q, Qℤ, τ (see [17]) where Q is

the  finite  state  set,  Qℤ
 is  the  set  of  all  configurations  and  τ  is  the

global transition function. 

Remark 1. For  a  particular  state  set  Q  and  a  particular  global  transi-

tion  function  τ,  a  triple  Q, Qℤ, τ  denoted  by  τ
Q

 defines  the  set  of

all  possible  cellular  automata  on  Q, τ.  However,  the  evolution  of  a

CA at times is dependent on the initial configuration (starting configu-

ration)  of  the  CA.  A  particular  CA  τ
QC0 ∈ τ

Q
 is  defined  as  the

quadruple  Q, Qℤ, τ, C0  such  that  C0 ∈ Qℤ
 is  the  initial  configura-

tion of the particular CA τ
QC0. 

The configuration  at time t is denoted by Ct
 such that Ct ∈ Qℤ

 for
all time t. 

Also,

τCt  Ct+1.

With reference to Figure 2 we get

C0 …0 001000…;

τC0  τ…0 001000…  …0 010100…  C1;

τC1  τ…0 010100…  …0 101010…  C2, etc.

Evolution  of  a  CA  is  mathematically  expressed  by  the  global  transi-
tion  function.  However,  this  global  transition  is  induced  by  transi-
tions  of  the  cells  at  each  grid  point  of  the  CA.  The  transition  of  the

state of the ith  cell at a particular time depends on the state of the cell

at the ith  grid point and its adjacent cells, which constitute the neigh-

borhood of the ith  cell. The transition of the cell at each grid point is
called local transition.

Definition 2. For  i ∈ ℤ, r ∈ ℕ,  let  Si  i - r, … , i - 1, i, i + 1, … ,

i + r} ⊆ ℤ.  Si  is  the  neighborhood  of  the  ith  cell.  r  is  the  radius  of  the

neighborhood of a cell. It follows that ℤ  ⋃i Si.

A restriction from ℤ to Si induces the following: 

Restriction  of  C  to  ci  is  given  by  ci : Si → Q,  and  ci  may  be  called  a

local configuration of the ith cell. 

1.

Restriction  of  Qℤ
 to  QSi

 is  given  by  QSi  ci ci : Si → Q,  and  QSi

may be called the set of all local configurations of the ith cell. 

2.

The  mapping  μi :Q
Si → Q  is  known  as  a  local  transition  function  for

the ith  cell having radius r. So ∀ i ∈ ℤ, μi(ci) ∈ Q. If the local configu-

ration of the ith cell at time t is denoted by ci
t, then μici

t  ci
t+1(i).
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Remark 2. If τC  C*,  then ∀ i ∈ ℤ, C*(i)  τC(i)  μi(ci).  So  we

have

Ct+1i  τCti  μi(ci
t)  ci

t+1i.1.

τC  …μi-1(ci-1) · μi(ci) · μi+1(ci+1)… .2.

Definition 3. If  all  μi  are  identical,  then  the  CA  is  homogeneous.  A

homogeneous CA may also be defined  as a triplet Q, r, μ where Q is

the finite-state  set, r is the radius of the neighborhood of a cell and μ

is the local transition function. 
However, if all μi are not identical, then the CA is hybrid. 

Henceforth,  in  this  paper,  CA  will  refer  to  a  one-dimensional
homogeneous synchronous CA. 

Remark 3. The set ℤ, where ℤ  Qℤ
Qℤ

 is the set of all global tran-

sition functions of a CA defined as ℤ  Qℤ
Qℤ
 τ τ :Qℤ → Qℤ. 

Remark 4. The set M, where M  QSi 
Q i ∈ ℤ is the set of all local

transition functions of a CA defined as

M  QSi 
Q

i ∈ ℤ  μ μ :QSi → Q, i ∈ ℤ.

If there is no ambiguity regarding Q, C0
 a CA is often denoted by τ

where τ ∈ ℤ. 

Definition 4. If  for  a  particular  CA,  Q  2  so  that  we  can  write

Q  0, 1, then the CA is said to be a binary CA or a Boolean CA. 

An elementary CA is a one-dimensional Boolean CA with 1-radius
of neighborhood for any cell. 

For  a  binary  CA  Q, Qℤ, τ,  if  C1, C2 ∈ Qℤ
 such  that  τC1  C2

where 

∀ i ∈ ℤ, C1(i)  0 ↔ C2(i)  1 and C1(i)  1 ↔ C2(i)  0,

then  C1
 is  the  complement  of  C2

 and  vice  versa.  τ  is  said  to  be  the
complement transition function and is denoted by τc.

Definition 5. A  global  transition  function  τ  is  an  identity  function

denoted by τe provided for all C ∈ Qℤ, τeC  C. 

A  CA  is  said  to  be  an  identity  CA  if  the  global  transition  function
is τe. 

Definition 6. A  global  transition  function  τ  is  an  m-place  left  shift
function  denoted  by  τLm,  where m ∈ ℕ  is  finite,  if  ∀ i ∈ ℤ,

τLmC(i)  C(i +m). 
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A  CA  is  an  m-place  left  shift  CA  if  the  global  transition  function
is�τLm. 

Definition 7. A  global  transition  function  τ  is  an  m-place  right  shift
function  denoted  by  τRm,  where  m ∈ ℕ  is  finite,  if  ∀ i ∈ ℤ,

τRmC(i)  C(i -m). 

A  CA  is  an  m-place  right  shift  CA  if  the  global  transition  function
is τRm. 

Definition 8. A  global  transition  function  τ  is  a  constant  function  pro-

vided  for  all  C ∈ QZ,  τC  C*
 for  a  particular  constant  configura-

tion C* ∈ Qℤ. 
If  ∀ i ∈ ℤ,  C*(i)  q  for  some  q ∈ Q,  then  the  global  transition

function is denoted by τq. 

A CA is said to be a constant CA if the global transition function is
a constant function. 

Binary Operations on One-Dimensional Cellular Automata with 

the Same State Set
2.1

Any  element  of  the  set  ℤ  Qℤ
Qℤ

 is  a  global  transition  function,

often called a CA with the state set Q.

Definition 9. A  binary  operation  *  on  ℤ  [8,  11,  13]  (for  composition
of global transition functions) is defined as follows: 

If τ1 and τ2 ∈ 
ℤ, then 

∀ C ∈ Qℤ, (τ1 * τ2)C  τ1τ2C.

Remark 5. For a particular state set Q, the binary operation * on ℤ  is
closed  and  associative.  Moreover,  since  τe  belongs  to  ℤ,  the  set

ℤ, *) forms a monoid (see [11, 13]). 

Remark 6. The  set  G, *  forms  a  group  where  G  τ τ is invertible

(see [13]). 

Proposition 1. Any  global  transition  function  τ  commutes  with  a  shift
transition  function  (see  [11,  13]).  Thus  for  some  finite  m ∈ ℕ  and
∀ C ∈ Qℤ, 

(τ * τLm)C  (τLm * τ)C and (τ * τRm)C  (τRm * τ)C.

Wolfram Code2.2

Wolfram  code  is  a  naming  system  often  used  for  one-dimensional
Boolean CAs, introduced by Stephen Wolfram (see [5]). 
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Corresponding  to  a  particular  local  rule  of  a  Boolean  CA,  it  is  a

number  in  the  range  from  0  to  22
2r+1

- 1  where  r  is  the  radius  of

neighborhood of a cell. 

For  example:  Let  the  local  rule  μ  for  some  ith  cell,  i ∈ ℤ  of  radius
1�be

μ(ci)  μcii - 1, ci(i), cii + 1  cii - 1 ⋁ cii + 1 ⋀ ci(i),

where ⋁ stands for the OR operation, and ⋀ stands for the AND oper-
ation. Thus,

μ 111 μ 110 μ 101 μ 100 μ 011 μ 010 μ 001 μ000 

1 1 0 0 1 0 0 0.

11 001000  is  the  binary  equivalent  of  200.  So  the  Wolfram  code  is
rule 200.

For  an  elementary  CA,  some  special  transition  functions  repre-
sented by the Wolfram codes are as follows:

Rule 204 is an identity function. 1.

Rule 0 or rule 255 is a constant function.2.

Rule 51 is a complement function. 3.

Rule 170 is a 1-place left shift function. 4.

Rule 240 is a 1-place right shift function. 5.

Patterns of Evolution of a Homogeneous Cellular Automaton 

under Some Standard Transitions 

3.

The  evolution  pattern  of  a  homogeneous  CA  for  identity,  constant,
complement and shift transition functions is discussed in this section.

Proposition 2. A homogeneous CA with a countably infinite  number of
cells having the global transition function: 

τe is stable from the initial step. 1.

τc is oscillatory, having 2-period cycles from the initial step. 2.

τq is stable from the initial step or after the first transition step for some

q ∈ Q. 

3.

Proof.

From definition of τe, the result follows. 1.

∀ C ∈ Qℤ, τc * τcC  (τc)2C  C. 2.

Let C ∈ Qℤ
 be such that Ci  q∀ i ∈ ℤ. 3.
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Then τqC  C and the CA is stable from the initial step.

Again let C ∈ Qℤ
 be such that C(i) ≠ q at least for some i ∈ ℤ. 

Then  τqC  C*
 where  C*(i)  q∀ i ∈ ℤ  and  the  CA  becomes  sta-

ble after the first step. 

Hence the proposition. □

Remark 7. The  evolution  pattern  of  a  homogeneous  CA  with  a  finite
number  of  cells  under  τe,  τ

c
 and  τq  is  similar  to  that  of  a  homoge-

neous CA with a countably infinite number of cells. 

Proposition 3. In a binary CA, let τc  be a complement global transition

function and τq  be a constant global transition function for q ∈ 0, 1

such that q*  is the complement of q. Then ∀ C ∈ Qℤ, if C is the com-
plement of the configuration C, 

τq * τ
cC  τc * τqC,

where τc * τqC is the complement of τc * τqC.

Proof. Let C ∈ Qℤ. Then ∀ i ∈ ℤ, 

τq * τ
cC(i)  τqτ

cC(i)  q.

Again,

τc * τqC(i)  τ
cτqC(i)

*
 (τc(q))*  (q*)*  q.

Hence the result. □ 

Proposition 4. Let  τq  be  a  constant global  transition  function  for  some

q ∈ Q. Let τ be any global transition function having μ(ci)  q. 

If ∀ j ∈ Si ⊆ ℤ, ci(j)  q, then τq commutes with τ. 

Proof. Let τq  be a constant global transition function for some q ∈ Q.

Then ∀ C ∈ Qℤ, ∀ i ∈ ℤ, 

τqC(i)  q.

Let ci ∈ Si ⊆ ℤ be such that ∀ j ∈ Si, ci(j)  q.

If  τ  is  any  global  transition  function  having  local  transition
μ(ci)  q, then 

∀ j ∈ Si ⊆ ℤ, τC(j)  q.

Since ℤ  ⋃i Si, it follows that ∀ i ∈ ℤ,

τ * τqC(i)  q  τq * τC(i). □
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Proposition 5. For  a  homogeneous  CA  with  a  countably  infinite  num-
ber  of  cells  under  transition  function  τLm  for  some  finite  m ∈ ℕ  hav-

ing  an  initial  configuration  that  is  not  block  repetitive,  the  evolution
pattern will yield countably infinite global configurations. 

Proof. The cell states shift m places leftward at each discrete time step
under  transition  function  τLm.  For  a  CA  with  a  countably  infinite

number  of  cells,  this  transition  pattern  continues  for  all  time,  giving
countably infinite  global configurations,  since the initial configuration

is not block repetitive. □ 

Proposition 6. For  a  homogeneous  CA  with  n  cells  with  periodic
boundaries  evolving  under  transition  function  τLm  for  some  finite

m ∈ ℕ,

s 
n

gcd(m, n)

if m < n ∈ ℕ.

Proof. Let a CA with n cells with periodic boundaries have the transi-
tion  function  τLm  where  m < n.  As  the  transition  pattern  continues,

the  cell  states  shift  m  places  leftward  at  each  discrete  time  step.  So,

∀ i ∈ 1, 2, … n, 

τC(i)  C(i +m).

Let s be the smallest integer such that

τsC(i)  C(i + sm)  C(i).

As  n  is  finite,  it  will  always  be  possible  to  find  one  such  s.  Since  the
initial  configuration  is  not  block  repetitive,  the  initial  configuration

reappears at every s  n  gcd(m, n) step. Hence the result follows. □ 

Proposition 7. A  homogeneous  CA  with  periodic  boundaries  and  a
countably infinite  number of cells or n cells under transition function
τLm  having  a  repetitive  block  configuration  of  k  cells  for  some  finite

m, k ∈ ℕ is

s-periodic where1.

◼ s  k  gcdm, k if m < k < n 

◼ s  k  gcdm - k, k if k < m < n 

stationary from initial step if m  k < n 2.

Proof.  A  homogeneous  CA  with  a  repetitive  block  configuration  of  k
cells for some finite  k ∈ ℕ can be treated as a CA of  k cells with peri-
odic  boundaries  having  an  initial  configuration  that  is  not  block
repetitive.
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Thus under τLm, the initial configuration reappears at every1.

◼ s  k  gcdm, k step if m < k < n

◼ s  k  gcdm - k, k step if k < m < n.

Again,  if  m  k < n,  then  since  the  cell  states  shift  k  places  leftward
at every  discrete  time  step,  the  initial  configuration  always  remains
stationary. 

2.

Hence the result follows. □ 

Remark 8. A  homogeneous  CA  with  periodic  boundaries  and  n  cells
under transition function τLn  for some finite  n ∈ ℕ is stationary from

the initial step, since the cell states shift n places leftward at every dis-
crete time step, keeping the initial configuration stationary. 

Proposition 8. A  homogeneous  CA  with  n  cells  with  boundaries  fixed
to  qB ∈ Q  having  transition  function  τLm  for  some  finite  m ≤ n ∈ ℕ

becomes stationary with all cells acquiring the qB  state after at most s

steps where

s  ceil
n

m


n

m
.

Proof. The cell states shift m places leftward at each discrete time step
under transition function τLm  and m rightmost cells of the CA acquire

the qB state, the state of the right boundary. 

If  ∃ j < n ∈ ℕ  such  that  ci(i)  qB  ∀ i  j + 1, … , n,  then  this  pro-

cess  continues  and  all  the  cells  eventually  acquire  the  qB  state  after  s

steps where

s  ceil
j

m


j

m
.

However,  if  ∄ j < n ∈ ℕ  such  that  ci(i)  qB  ∀ i  j + 1, … , n,  then

all the cells acquire the qB state after s  
n

m
 steps.

Hence the proposition. □ 

Remark 9. Similarly,  evolution  patterns  of  a  homogeneous  CA  under
transition  function  τRm  for  some  finite  m ∈ ℕ  can  be  obtained  where

the cell states shift m places rightward at each discrete time step. 

Elementary Cellular Automata Having at Most One Cell in the ON 

State Initially
4.

Evolution patterns of some ECAs with a countably infinite  number of
cells starting with at most one cell in the ON state are studied in this
section.  Thus,  an  ECA  considered  here  can  either  have  all  OFF  state
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cells or have exactly one ON state cell initially. Let a cell having state
“1”  correspond  to  the  ON  state  and  a  cell  having  “0”  correspond  to
the OFF state. Clearly, the evolution of an ECA is reflected by its tran-
sition  functions  (represented  by  Wolfram  codes)  and  hence  its  local
configurations.

Now,  two  CAs  are  equivalent  if  and  only  if  their  local  structures
are  permutations  of  each  other  [18].  Automorphism  between  two
CAs  using  permutations  has  been  discussed  in  [19].  Here,  transition
functions  of  some  ECAs  having  evolution-wise  equivalent  Wolfram
codes  as  defined  in  Definition  10  have  been  discussed.  Also,  it  has
been  shown  that  these  transition  functions  represented  by  evolution-
wise equivalent Wolfram codes induce an automorphism. 

Definition 10. Any  two  transition  functions  τ1, τ2,  represented  by

Wolfram  codes  w1, w2,  respectively,  are  evolution-wise  equivalent

with respect to some initial configuration C0 ∈ ℤ, if ∀ s ∈ ℕ, 

τ1
s C0  τ2

s C0

where τi
s  τi *⋯ * τi

s times

 for i  1, 2 and “*” represents the composition

of the transition functions.

A  set  of  evolution-wise  equivalent  transition  functions  forms  a
semigroup with regard to “*”, since composition of functions is asso-
ciative.  Moreover,  the  semigroup  becomes  a  group  if  the  transition
functions are invertible. 

Theorem 1. Let  E, *  be  a  semigroup  of  all  evolution-wise  equiva-

lent  transition  functions.  For  an  initial  configuration  C0 ∈ Qℤ
 and

∀ s ∈ ℕ, a function ρ :E → E defined by 

ρτ1
s C0  τ2

s C0

is an automorphism.

Proof. Let τ1, τ2 ∈ E, *. Then ∀ s ∈ ℕ, τ1
s , τ2

s ∈ E. 

Now, for any i, j ∈ ℕ, it follows that 

ρτ1
j * τ1

kC0  ρτ1
j+kC0

 τ2
j+kC0

 τ2
j τ2

kC0

 τ2
j * τ2

kC0

 τ2
j C0 * τ2

kC0

 ρτ1
j C0 * ρτ1

kC0.

Hence ρ is an automorphism. □
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Evolution of Elementary Cellular Automata with a Countably 

Infinite Number of Cells Starting with All OFF State Cells
4.1

An  ECA  can  have  23  8  local  configurations.  The  evolution  pattern
of  an  ECA  is  dependent  on  the  transitions  of  the  state  of  the  middle
cell of its local configurations.

Theorem 2. The  transition  function  of  an  ECA  with  a  countably  infi-
nite  number  of  cells  having  all  OFF  state  cells  initially  is  either  con-
stant or complimentary. 

Proof.  The  initial  global  transition  of  an  ECA  starting  with  all  OFF
state  cells  is  dependent  on  the  transitions  of  the  local  configuration
000. The following cases arise: 

◼ Case  1:  The  middle  cell  of  the  local  configuration  000  remains  at
state�0. 

Since  all  the  cells  of  the  ECA  remain  in  the  0  state,  the  only  possible

transition function is such that ∀ i ∈ ℤ, ∀ C ∈ Qℤ, τCi  0.

The  transition  function  is  a  constant  function  and  can  be  represented
by rule 0 of Wolfram as shown in Figure 3(a).

A transition function of this ECA will be independent of the rest of the
seven local configurations and thus can be represented by 27  128 evo-
lution-wise equivalent Wolfram codes. 

◼ Case  2:  The  middle  cell  of  the  local  configuration  000  changes  to
state�1. 

Here  all  the  cells  of  the  ECA  change  to  state  1,  such  that  ∀ i ∈ ℤ,

∀ C ∈ Qℤ, τCi  1.

After the first  step, the evolution pattern of the ECA will depend on the
transitions of the local configuration 111. The following cases arise: 

If  the  middle  cell  of  the  local  configuration  111  remains  at  state  1,
the transition function is a constant function and can be represented
by rule 255 of Wolfram as shown in Figure 3(b). 

(a)

If  the  middle  cell  of  the  local  configuration  111  changes  to  state  0,
then  the  ECA  will  have  a  2-period  oscillation.  The  transition
function  will  be  a  complimentary  function  and  can  be  represented
by rule 51 of Wolfram as shown in Figure 3(c). 

(b)

In either case, since the global configurations  will be independent of the
local  configurations  001,  010,  011,  100,  101  and  110,  a  transition
function  can  be  represented  by  26  64  evolution-wise  equivalent
Wolfram codes. 

Hence the theorem. □ 

Corollary 1. The set of all Wolfram codes for the transition function of
an ECA starting with all OFF state cells can be partitioned into three
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equivalence  classes.  The  three  classes  comprise  the  transition  func-
tions  represented  by  Wolfram  codes  that  are  evolution-wise  equiva-
lent to rule 0, rule 255 or rule 51. 

Evolution of Elementary Cellular Automata with a Countably 

Infinite Number of Cells Starting with Exactly One ON State Cell
4.2

An  ECA  with  a  countably  infinite  number  of  cells  starting  with
exactly one ON state cell can henceforth have configurations  with all
OFF  state  cells  or  exactly  one  ON  state  cell  or  more  than  one  ON
state cell. Some cases are discussed here.

Elementary Cellular Automata Having at Most One Cell Always 

in the ON State
4.2.1

Theorem 3. The  transition  function  of  an  ECA  with  a  countably  infi-
nite  number  of  cells  starting  with  one  ON  state  cell  and  always  hav-
ing  at  most  one  ON  state  cell  is  constant,  identity  or  a  1-place  shift
function. 

Proof. Let only the ith cell of the ECA be ON initially. 
If  that  cell  remains  ON  always  and  the  other  cells  are  OFF,  then

the transition function is an identity such that ∀ i ∈ ℤ, ∀ C ∈ Qℤ, 

τC(i)  C(i).

If the ith cell becomes OFF, then the following cases arise:

All the cells become OFF in the next step. 1.

The  transition  function  is  a  constant  function  (Figure  4(a))  such  that

∀ i ∈ ℤ, ∀ C ∈ Qℤ, τCi  0.

Since the cells of an ECA have 1 radius of neighborhood, the i + 1th  or

i - 1th cell becomes ON in the next step. 

2.

Thus  the  transition  is  a  1-place  shift  function  such  that  ∀ C ∈ Qℤ,

τCi  Ci + 1  or Ci - 1.

Since the ECA is homogeneous, the theorem follows. □ 

Wolfram Codes for Elementary Cellular Automata Having 

Exactly One Cell Always in the ON State
4.2.2

As  per  Theorem  3,  it  is  obvious  that  possible  transition  functions
of�an  ECA  having  exactly  one  ON  state  cell  are  identity  function,
1-place left shift function and 1-place right shift function.

Theorem 4. For an ECA with a countably infinite  number of cells hav-
ing  exactly  one  cell  always  in  the  ON  state,  a  transition  function  can
be represented by 16 equivalent Wolfram codes. 
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Proof.  A  binary  CA  with  1  radius  of  neighborhood  of  cells  can  have

23  local  configurations.  An  ECA  having  a  global  configuration  with
exactly  one  ON  state  cell  is  dependent  on  the  local  configurations
001, 010, 100 and 000 only. 

The  middle  cell  state  of  one  of  the  configurations  001,  010  and
100 should transition to state 1 and the middle cell state of 000 must
remain  at  0.  Moreover,  a  transition  function  of  the  CA  will  be  inde-
pendent of the rest of the local configurations,  namely 011, 101, 110

and  111.  Hence  there  can  be  24  different  combinations  of  binary

sequences, giving 16 equivalent Wolfram codes. □ 

Theorem 5. The  equivalent  Wolfram  codes  of  transition  functions  for
a  countably  infinite  ECA  having  exactly  one  cell  always  in  the  ON
state are as follows:

Identity transition functions as shown in Figure 4(b) can be represented
by rules 4, 12, 36, 44, 68, 76, 100, 108, 132, 140, 164, 172, 196, 204,
228 and 236. 

1.

1-place left shift transition functions as shown in Figure 4(c) can be rep-
resented  by  rules  2,  10,  34,  42,  66,  74,  98,  106,  130,  138,  162,  170,
194, 202, 226 and 234. 

2.

1-place  right  shift  transition  functions  as  shown  in  Figure  4(d)  can  be
represented  by  rules  16,  24,  48,  56,  80,  88,  112,  120,  144,  152,  176,
184, 208, 216, 240 and 248. 

3.

Proof.  It  is  obvious  that  rule  4  represents  an  identity  transition  func-
tion  for  an  ECA.  Another  possible  rule  for  an  identity  transition

function may be 010 → 1, 011 → 1. So the rule may be calculated as:

μ 111 μ 110 μ 101 μ 100 μ 011 μ 010 μ

001 μ 000  00001 100  1⨯23 + 1⨯22  12.

Similarly, we may get other results. □ 

Corollary 2. The set of Wolfram codes for the transition function of an
ECA with a countably infinite  number of cells having exactly one cell
in the ON state always are

S 
2, 4, 10, 12, 16, 24, 34, 36, 42, 44, 48, 56, 66, 68, 74, 76,

80, 88, 98, 100, 106, 108, 112, 120, 130, 132, 138, 140,
144, 152, 162, 164, 170, 172, 176, 184, 194, 196,
202, 204, 208, 216, 226, 228, 234, 236, 240, 248.

If  W  is  the  set  of  Wolfram  codes  for  the  transition  functions  of  an

ECA  and  w ∈ W - S,  then  w  cannot  be  the  Wolfram  code  for  the

transition  function  of  an  ECA  with  a  countably  infinite  number  of
cells having exactly one cell always in the ON state.

Evolutions of Some One-Dimensional Homogeneous Cellular Automata 87

https://doi.org/10.25088/ComplexSystems.30.1.75

https://doi.org/10.25088/ComplexSystems.30.1.75


Wolfram Codes for Elementary Cellular Automata Never Having 

Two Adjacent Cells in the ON State
4.2.3

An  ECA  never  having  a  global  configuration  with  two  adjacent  ON
state  cells  can  be  dependent  on  the  local  configurations  000,  001,
010, 100 and 101 only. Clearly, the middle cell state of the local con-
figuration  000  must  always  remain  at  0.  Now  if  the  middle  cell  state
of only one of 001, 010 or 100 is at state 1, then the ECA will always
have  exactly  one  ON  state  cell,  as  discussed  in  Section  4.2.2.  Again,
local configurations  001 and 010, 100 and 010, or 001, 010 and 100
cannot  be  at  state  1  simultaneously,  since  for  these  cases,  two  adja-
cent  cells  will  acquire  ON  states.  Thus  the  middle  cell  state  of  the
local configuration  010 must remain at 0. Here, the middle cell states
of the local configurations  001 and 100 have been considered to be at
state 1, since 001 and 100 at state 0 would represent an ECA having
all OFF state cells after the first step.

Theorem 6. For  an  ECA  with  a  countably  infinite  number  of  cells
never having two adjacent ON state cells, a transition function can be
represented by eight evolution-wise equivalent Wolfram codes. 

Proof. An ECA never having a global configuration  with two adjacent
ON  state  cells  will  depend  on  the  transition  of  the  local  configura-
tions 101. Moreover, a transition function of the ECA will be indepen-
dent of the local configurations 011, 110 and 111. Hence there can be

23  different combinations of binary sequences, giving eight evolution-
wise equivalent Wolfram codes. 

The following cases can arise:

◼ Case 1: The middle cell of the local configuration 101 is at state 0. 

The  transition  function  of  the  ECA  can  be  represented  by  rule  90  of
Wolfram, as shown in Figure 5(a). 

Thus  the  Wolfram  codes  that  are  evolution-wise  equivalent  to  rule  90
are rules 18, 26, 82, 146, 154, 210 and 218. 

◼ Case 2: The middle cell of the local configuration 101 is at state 1. 

The  transition  function  of  the  ECA  can  be  represented  by  rule  50  of
Wolfram, as shown in Figure 5(b). 

Thus  the  Wolfram  codes  that  are  evolution-wise  equivalent  to  rule  50
are rules 58, 114, 122, 178, 186, 242 and 250. 

Hence the theorem. □ 

Wolfram Codes for Elementary Cellular Automata Having Shift 
Transitions

4.2.4

For  an  ECA  starting  with  exactly  one  ON  state  cell  and  having  shift
transitions,  the  middle  cell  state  of  the  local  configuration  000  must
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always remain at 0. Now, if the middle cell state of the local configu-
ration 010 changes to state 0, then the ECA will have: 

◼ strictly  1-place  shift  transitions  as  discussed  in  Section  4.2.2,  when
either 001 or 100 changes to state 1 

◼ transitions as discussed in Section 4.2.3, when both 001 & 100 change
to state 1

◼ constant transition with all OFF state cells after the first step

Thus, the middle cell state of the local configuration 010 has been con-
sidered to be at state 1.

Theorem 7. For an ECA with a countably infinite number of cells start-
ing with exactly one ON state cell, if the middle cell of the local con-
figuration  010  remains  at  state  1,  then  a  shift  transition  function  can
be represented by four evolution-wise equivalent Wolfram codes. 

Proof. An ECA starting with exactly one ON state cell and having the
middle  cell  of  the  local  configuration  010  at  state  1  will  depend  on
the  transition  of  the  local  configurations  001,  011,  100  and  110.
Moreover, a transition function of the ECA will be independent of the

local  configurations  101  and  111.  Hence  there  can  be  22  different
combinations  of  binary  sequences,  giving  four  evolution-wise  equiva-
lent Wolfram codes. 

The following cases can arise:

◼ Case 1: The middle cell of the local configuration  001 is at state 1 and
that of 100 and 110 is at state 0. 

The transition function of the ECA is a left shift function. 

If  the  middle  cell  of  the  local  configuration  011  is  at  state  0,  then
the  transition  function  can  be  represented  by  Wolfram  codes  6,  38,
134 and 166. The ECA will be as shown in Figure 6(a). 

(a)

If  the  middle  cell  of  the  local  configuration  011  is  at  state  1,  then
the transition function can be represented by Wolfram codes 14, 46,
142 and 174. The ECA will be as shown in Figure 6(b). 

(b)

◼ Case 2: The middle cell of the local configuration  100 is at state 1 and
that of 001 and 011 is at state 0. 

The transition function of the ECA is a right shift function. 

If  the  middle  cell  of  the  local  configuration  110  is  at  state  0,  then
the transition function can be represented by Wolfram codes 20, 52,
148 and 180. The ECA will be as shown in Figure 6(c). 

(a)

If  the  middle  cell  of  the  local  configuration  011  is  at  state  1,  then
the  transition  function  can  be  represented  by  Wolfram  codes  84,
116, 212 and 244. The ECA will be as shown in Figure 6(d). 

(b)

Hence the theorem. □ 
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Any  cell  of  the  ECA  having  state  “1”  or  ON  is  represented  by
a black  cell  and  any  cell  having  state  “0”  or  OFF  is  represented  by  a
white cell in the figures. 

Figure 3. ECA having all cells in the OFF state initially.

Figure 4. ECA starting with exactly one cell in the ON state. 

Figure 5. ECA never having adjacent ON state cells.

Figure 6. ECA having shift transitions.
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Conclusion5.

The  results  obtained  in  this  paper  are  for  homogeneous  and  syn-
chronous  cellular  automata  (CAs).  Evolution  patterns  for  elementary
CAs  having  at  most  one  active  cell  initially  have  been  discussed  here.
The evolution-wise equivalent Wolfram codes (which induce automor-
phism)  for  such  elementary  CAs  having  constant,  complimentary,
identity  and  shift  transitions  have  been  reported.  Also  evolution-wise
equivalent  Wolfram  codes  for  rules  90  and  50  have  been  formulated.
An  investigation/extension  of  results  for  other  types  of  CAs  may  be
worth attempting.
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