
Classification of Chaotic Behaviors in Jerky 
Dynamical Systems

Tianyi Wang

Wolfram High School Summer Camp
Bentley University
175 Forest Street
Waltham, MA 02452, USA

Differential  equations  are  widely  used  to  model  systems  that  change
over  time,  some  of  which  exhibit  chaotic  behaviors.  This  paper  pro-
poses two new methods to classify these behaviors that are utilized by a
supervised  machine  learning  algorithm.  Dissipative  chaotic  systems,  in
contrast to conservative chaotic systems, seem to follow a certain visual
pattern.  Also,  the  machine  learning  program  written  in  the  Wolfram
Language  is  utilized  to  classify  chaotic  behavior  with  an  accuracy
around 99.1±1.1%. 
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Introduction1.

Differential  equations  that  involve  third  derivatives,  also  known  as
“jerks,”  are  called  third-order  differential  equations.  It  has  been
shown  that  a  third-order  differential  equation  can  always  be  written
in a system of three differential equations of the first order [1, pp.�62].
If such a system has time as its independent variable, then it is called a
jerky dynamical system. The main goal of this paper is to classify such
systems  and  identify  global  chaotic  behaviors  of  such  systems.  In  this
paper,  the  classification  of  jerky  dynamical  systems  is  based  on  the
behavior of the trajectories in the phase space.

A  jerky  dynamical  system  can  be  visualized  in  a  phase  space,  a
three-dimensional vector field  that shows all possible states of the sys-
tem. A trajectory of the vector field  can be drawn to indicate the evo-
lution  of  the  system  with  certain  initial  conditions.  Trajectories  of
different systems can have different behaviors. If the system is conver-
gent,  the  trajectory  gets  arbitrarily  close  to  a  certain  point  in  the
phase  space.  If  the  system  is  divergent,  the  trajectory  can  escape  to
infinity  or can be chaotic (meaning initially close points on the trajec-
tory can quickly evolve into very different states or are extremely sen-
sitive  to  initial  conditions),  getting  attracted  to  a  certain  region.
Although  there  are  cases  where  trajectories  exhibit  local  chaotic
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behavior before they escape, this paper will focus on the systems that
exhibit  global  chaotic  behavior.  Since  the  subjects  of  interest  are  sys-
tems  that  exhibit  global  chaotic  behaviors,  these  systems  must  be
divergent, but the trajectories do not escape to infinity. 

Furthermore,  any  dynamical  systems,  including  chaotic  ones,  can
be classified into two categories: conservative or dissipative. Conserva-
tive systems are systems in which the phase space volume is preserved.
In contrast, phase space volume contracts along a trajectory in a dissi-
pative  system  [2,  p.  540].  Therefore,  it  is  possible  to  categorize
chaotic  jerky  dynamical  systems  more  specifically  into  conservative
systems or dissipative systems. However, due to the complex behavior
of chaotic systems in the phase space, it is very hard for computers to
classify them. 

In this paper, two methods are proposed to detect systems that are
potentially  chaotic,  based  on  Cauchy’s  completeness  theorem
(Section�2).  Both  methods  are  then  utilized  in  a  supervised  machine
learning  function  to  distinguish  conservative  and  dissipative  systems.
We  discovered  a  prevailing  visual  pattern  for  dissipative  systems
(Section 3), and the classifiers  we trained reach more than 99% accu-
racy  (Section  4).  These  classifiers  can  then  be  used  to  classify  any
dynamical systems with relatively high accuracy (Section 5).

Theoretical Background and Methodology2.

This section introduces the theoretical methods that we use to identify
whether  a  system  is  convergent  or  divergent  and  whether  a  system  is
conservative  or  dissipative.  The  motivation  of  the  methods  we  use  to
identify  convergent  systems  comes  from  Cauchy’s  completeness  theo-
rem  from  literature  [3,  Chapter  3,  pp.  52–53],  which  we  will  first
introduce here.

Theorem 1 (Cauchy’s Completeness Theorem). In any metric space , every
convergent sequence is a Cauchy sequence.

With Theorem 1, we can then derive the condition for a trajectory
in  phase  space  to  converge.  We  first  make  a  rigorous  definition  for
the notation we will be using.

Definition 1. Consider a system of three differential equations:

ẋ = f1(x, y, z)

ẏ = f2(x, y, z)

ż = f3(x, y, z)

where  fi :
3 →   are  smooth,  with  t  being  the  independent  variable.

Define  θ : → 3
 as  a  function  that  takes  some  input  t  and  gives  the

position  of  the  trajectory  in  3
 at  t.  Assume  an  arbitrary  fixed  incre-
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ment  in  time  Δt > 0,  ti+1 = ti + Δt.  Let  {t1, t2, …}  be  any  sequence

such  that  limi→∞ ti = ∞.  Define  d(θ(ti+1), θ(ti)) = d(θi+1, θi) = di  to  be

the Euclidean distance between points θ(ti) and θ(ti+1). 

Then  we  define  what  it  means  for  a  trajectory  in  phase  space  to
converge.

Definition 2.  The  trajectory  of  a  system  θ(t)  in  a  phase  space  converges
to a point P if for all ϵ > 0, there exists Tϵ  such that θ(t) is within ϵ of

P for all t > Tϵ.

With  the  given  definitions,  together  with  Theorem  1,  we  now
derive  two  corollaries  that  are  later  utilized  in  generating  visual  data
associated  with  each  system.  They  are  also  the  guidelines  we  will  use
in labeling training data for the supervised machine learning system.

Corollary 1.  The  trajectory  of  a  system  θ(t)  converges  to  P  if
limi→∞ di = 0.

Proof.  If  {θi}  converges  in  phase  space,  then  according  to  Theorem  1,

{θi}  is  a  Cauchy  sequence.  From  the  definition  of  a  Cauchy  sequence,

we  know  that  dθi, θj < ϵ  for  ti, tj > N  for  some  N.  From  Defini-

tion�2,  we  know  that  if  we  choose  N = Tϵ/2,  then  dθi, θj < ϵ  holds

since  dθi, θj ≤ d(θi, p) + dp, θj < 2ϵ  2 = ϵ  holds  in  .  Finally,

since  ti+1 > ti > Tϵ/2,  then  di = d(θi+1, θi) < ϵ  for  all  t > Tϵ/2.  This

implies limi→∞ di = 0, which concludes the proof. □

Corollary 2.  Consider  the  infinite  sequence  of  Euclidean  distance  of  a

system  D = d1, d2, … , dn, ….  Define  Δi = di+1 - di.  Let  the  dis-

tance  difference  sequence  δ = {Δ1, Δ2, … , Δn, …}.  The  system  con-

verges if the corresponding sequence δ is convergent and diverges if δ
is divergent. 

Therefore,  to  test  whether  the  system  is  convergent  or  divergent,
take  an  infinite  number  of  sample  points  on  the  trajectory  in  the
phase  space  that  corresponds  to  successive  increase  in  time  by  a  con-
stant  increment.  Next,  calculate  the  Euclidean  distances  between  two
successive points. These distances are elements of an infinite  sequence

D = d1, d2, … , dn, ….  If  D  is  convergent,  then  the  system  is  also

convergent.  If  D  is  divergent,  then  the  system  is  also  divergent.  Fig-
ure�1 illustrates this method.

This method, which we will be using, is a direct result from Corol-
lary  1.  We  call  this  method  the  Euclidean  distance  test  (EDT).  Fig-
ure�2 is an example of what a convergent and a divergent system may
look like.

Classification of Chaotic Behaviors in Jerky Dynamical Systems 95

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93


(a) b

Figure 1. (a)  An  example  of  a  chaotic  trajectory  in  a  phase  space  and  (b)  an
illustration of the technique of taking sample points in phase space. 

Figure 2. Plots  of  two  Euclidean  distance  sequences.  (a)  The  sequence  con-
verges,  meaning  the  corresponding  system  converges  in  the  phase  space.
(b) The  sequence  diverges,  meaning  the  corresponding  system  diverges  in  the
phase space. 

From Corollary 2, we know that we can also generate the sequence
δ = {Δ1, Δ2, … , Δn, …}  and  test  its  convergence.  This  method  tests

whether  the  successive  difference  of  Euclidean  distances  converges.
We call it the distance difference test (DDT).

After being able to identify and differentiate convergent and diver-
gent  systems,  we  now  introduce  a  theorem  from  literature  that  will
help us identify whether a chaotic system is conservative or dissipative
[4, Chapter 6, p. 158].
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Theorem 2. For a dynamical system

ẋ = f1(x, y, z)

ẏ = f2(x, y, z)

ż = f3(x, y, z),

where  fi :
3 →   are  differentiable  functions,  the  system  is  conserva-

tive if 

∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z
= 0.

Theorem  2  will  serve  as  a  theoretical  guideline  that  helps  us  label
the category of a system when labeling the training data for the classi-
fier.  There will be exceptions to Theorem 2, which we will mention in
the next section. 

Discoveries of Visual Patterns Associated with Conservative and 

Dissipative Systems.
3.

In this section we present the computational methods we use to gener-
ate visual data associated with conservative and dissipative systems. 

Since  both  EDT  and  DDT  are  valid  indicators  of  whether  the  sys-
tem is convergent or divergent, they will be used to train the classifier
function later in this paper. The results will be compared to see which
test  is  more  effective.  The  following  Wolfram  Language  function  cal-
culates the Euclidean distance of successive points. 

detectStableFixedEnding[f_, df_, ddf_, (*lasttime_:1000,*)t0_] :=
Module[{lengths},

length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];

 A  sequence  is  generated  with  the  function  detectStableFixed
Ending. Because it is impossible to generate a sequence with infinitely
many  terms  on  a  computer,  we  compute  one  thousand  terms  to  gain
relatively  accurate  results  without  going  beyond  the  computational
power.  The  function  vectorl  calculates  the  sequence  Euclidean  dis-
tance,  and  disdiffper  calculates  the  difference  in  Euclidean  distances
divided  by  the  distance  of  the  sample  points  from  the  origin  of  the
coordinate  system,  considering  that  points  very  far  from  the  origin
can have a greater change in distance.

vectorl = Table[detectStableFixedEnding[y, Dy, DDy, n], {n, 1, 1000, 1}];
disdiffper = Table[(Abs[vectorl[[n+1]] -vectorl[[n]]]) /Norm[{y, Dy, DDy} /. t → n],

{n, 1, Length[vectorl] -1}];
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By  solving  differential  equations  numerically  and  calculating  the
Euclidean  distances  sequence  (or  distance  differences  sequence),  it
becomes possible to visualize the behavior of trajectories in the phase
space.  For  convergent  trajectories  (Figure  2(a)),  the  sequences  go  to
zero.  For  trajectories  that  escape,  the  sequences  go  to  infinity.  Some
sequences  that  oscillate  in  finite  ranges  (Figure  2(b))  may  exhibit
global chaotic behaviors. Therefore, their chaotic behavior can be con-
firmed by the phase space plot.

Many  sequences  of  Euclidean  distance  for  different  systems  were
generated in an attempt to search for visual patterns. The sequence is
visualized by the Wolfram Language function ListPlot. A series of com-
parisons between conservative and dissipative systems suggests the fol-
lowing  observational  result:  conservative  chaotic  systems  exhibit
diverse behaviors that are hard to predict, whereas dissipative chaotic
systems  usually  exhibit  behavior  that  follows  a  certain  visual  pattern.
A  description  of  such  a  pattern  would  be  “scattering,”  as  demon-
strated  in  Figure  3.  The  ListPlot  function  visualizes  dissipative  jerky
systems that were discovered before [5].

2000 4000 6000 8000 10000
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2
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4

5

Figure 3.Classical behavior of a dissipative system. The sequence of Euclidean
distance points creates a scattering visual pattern.

Other dissipative chaotic systems exhibit similar behavior. Figure 4
shows three more examples generated by EDT using systems from [5].
Interestingly, they exhibit some lower bounds.

This  pattern  also  seems  to  be  true  for  dissipative  chaotic  systems
of�higher  dimension,  for  example,  four-dimensional  systems.  There-
fore,  this  visual  pattern  is  likely  to  be  an  indication  that  the  corre-
sponding  system  is  dissipative.  Conservative  chaotic  systems,  on  the
other  hand,  exhibit  various  behaviors  that  are  difficult  to  classify
(Figures 5 and 6).

Also, a chaotic system can exhibit a visual pattern that is extremely
similar  to  the  behavior  of  a  dissipative  chaotic  system.  A  well-known
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system  is  the  double-pendulum  system.  However,  since  it  is  a  two-
dimensional  motion,  using  a  two-dimensional  coordinate  system  is
sufficient  to  describe  its  motion.  Therefore,  the  Euclidean  distance
needs  to  change  from  three-dimensional  distance  to  two-dimensional
distance. It is important to point out that reducing one dimension will
still  produce  similar  results,  since  the  phase  space  is  only  projected
from a three-dimensional space onto a two-dimensional space. 
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Figure 4. Three  more  examples  of  dissipative  behavior  generated  by  EDT
using systems from [5].
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(a) b

Figure 5. Euclidean  distance  plots  of  two  conservative  chaotic  examples.

(a)�corresponds  to  system  x
...

+ 14ẋ = sin(x) - 5x3  with  initial  conditions

x(1) = ẋ(1) = x
¨
(1) = 0.2.  (b)  corresponds  to  system  x

...
+ 0.1ẋ + sin(x) =

0.5cos(t) with initial conditions x(0) = ẋ(0) = x
¨
(0) = 0.3.
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(c)

Figure 6. Three  more  conservative  systems.  (a)  is  the  plot  of  the  system  from
[6], (b) is the system from [7] and (c) is the system from [4].

One  very  important  exception  to  Theorem  2  is  the  Nose–Hoover
system,  a  system  used  to  describe  particles  interacting  with  an  exter-
nal  system  in  a  way  that  the  energy  is  conserved,  which  is  defined  as
follows:

ẋ = y

ẏ = yz - x

ż = 3 - y2.

(1)

The Nose–Hoover system has divergence z, suggesting that the sys-
tem  is  dissipative.  However,  it  has  been  shown  computationally  that
the  Nose–Hoover  system  is  actually  conservative  [8,  p.  2].  Due  to  its
nonzero  divergence,  the  Nose–Hoover  system  displays  “scattering”
behavior  similar  to  most  dissipative  systems.  Several  modifications  of
equation  (1)  are  done  to  make  the  Nose–Hoover  system  dissipative
[8,  pp.  2,  5].  Nonintuitively,  these  dissipative  versions  of  the  Nose–
Hoover  system  exhibit  visual  patterns  that  are  completely  different
from  the  scattering  behavior.  These  unconventional  dissipative  sys-
tems have the following forms:

ẋ = y - bx

ẏ = yz - x

ż = 3 - y2
(2)
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ẋ = y

ẏ = yz - x

ż = 3 - y2 - bz

(3)

where b ∈ . Each of equations (2) and (3) exhibits completely differ-
ent behavior depending on the value of b (Figures 7 and 8), which sug-
gests that not all dissipative systems confirm the scattering pattern.
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Figure 7. Euclidean  distance  sequence  plot  of  equation  (2)  with  different  val-
ues of b. From left to right, b = 1, 1.5, 4.5, 5, respectively.
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Figure 8. Euclidean  distance  sequence  plot  of  equation  (3)  with  different  val-
ues of b. From left to right, b = 1, 1.5, 3, 4, respectively.
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In  conclusion,  in  most  cases,  if  a  scatter  plot  of  a  Euclidean  dis-
tance  sequence  exhibits  a  scattering  pattern,  then  the  corresponding
system  is  likely  to  be  dissipative.  For  plots  that  have  more  diverse
behavior, the corresponding system is likely to be conservative.

Supervised Machine Learning Classifier for Conservative and 

Dissipative Chaotic Systems
4.

The  Nose–Hoover  system  is  a  very  important  exception,  suggesting
that  conservative  chaotic  systems  can  behave  in  a  way  that  is  similar
to dissipative systems. And, though less frequently, dissipative systems
can  have  more  complicated  behavior  than  just  the  usual  scattering
visual pattern. Though it is reasonable to believe that most dissipative
systems  confirm  the  scattering  pattern,  such  exceptions  make  it  diffi-
cult to conclusively identify a dissipative system just by looking at the
ListPlot  graph.  Also,  since  conservative  systems  exhibit  much  more
diverse  behaviors,  it  is  even  harder  to  identify  them.  Therefore,  it
would  appear  that  developing  a  machine  learning  algorithm  to  clas-
sify chaotic dynamical systems is more convenient and more accurate. 

The  Wolfram  Language  function  Classify  can  deal  with  this  task
for  a  relatively  small  learning  sample  size.  Since  the  learning  sample
size  in  this  research  is  typically  no  more  than  1000,  it  is  sufficient  to
use Classify without constructing a neural network. The first  step is to
start  from  the  chaotic  conservative  and  dissipative  systems  that  were
already discovered. These systems would be the initial samples. Then,
by changing the initial conditions of these systems, we can get a differ-
ent  sample  of  the  same  kind  (conservative  or  dissipative).  Changing
initial conditions by different amounts will serve to obtain more sam-
ples for the training set of the classifier function. 

The  second  step  is  replication,  a  process  in  which  the  initial  sam-
ples are used to generate more chaotic systems of the same kinds. The
idea  is  to  change  the  initial  conditions  of  the  samples  by  a  little  bit.
Chaotic  systems  are  extremely  sensitive  to  initial  conditions,  which
means  a  slight  change  in  initial  conditions  might  totally  destroy  a
chaotic system because the numerical values that cause a system to be
chaotic  are  very  rare.  Numerical  search  for  second-order  polynomial
jerk functions has been done before [2, p. 538]. The result shows that
for  randomly  chosen  initial  conditions,  the  most  common  situation  is
that  the  trajectory  escapes  to  infinity,  and  the  second  most  common
case  is  that  the  trajectory  converges  to  a  certain  point.  The  odds  of

finding  a  chaotic  solution  are  around  one  in  104.  The  numerical
method for replicating samples in this research is the following: given
a  chaotic  system  with  initial  conditions  (x0, y0, z0),  or  sometimes

(ẋ0, ẏ0, ż0),  change  the  initial  conditions  by  ϵ  amount,  where  ϵ ≪ 1
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but still several orders of magnitude bigger than the smallest machine
precision. It was experimentally found that for all the samples chosen

from  different  references  for  this  study  [1–9],  ϵ = 2 · 10-10  is  a  safe
range  in  which  the  chaotic  systems  remain  chaotic.  Therefore,  we

chose  step  size  Δ = 10-10,  so  that  for  three  initial  conditions
(x0, y0, z0),  each  initial  condition  can  increase  by  an  amount  of  0,

10-10  or 2 · 10-10. Therefore,  for a  single chaotic  sample, 27  samples
of the same kind are replicated. The following code demonstrates one
example of how this replication process is achieved, which generates a
numerical list of Euclidean distances.

Tablefunc = Table[ func = NDSolveValue[{
x '[t] ⩵ y[t] -5 x[t],
y '[t] ⩵ y[t] *z[t] -x[t],
z '[t] ⩵ 3-y[t]^2,
x[0] ⩵ 0+e1,
y[0] ⩵ 5+e2,
z[0] ⩵ 0+e3
}, {x[t], y[t], z[t]}, {t, 0, 1000}],
{e1, 0, 2*10^-10, 10^-10},
{e2, 0, 2*10^-10, 10^-10}, {e3, 0, 2*10^-10, 10^-10}];
FlattenTablefunc = Flatten[Tablefunc, 2];
MakeVectorFromFunc2[q_] :=
Table[detectStableFixedEnding[
f_, df_, ddf_, (*lasttime_:1000,*)t0_] := Module[{lengths},

length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];
vectorl = Table[detectStableFixedEnding[Part[Flatten[q, 2][[x]], 1],
Part[Flatten[q, 2][[x]], 2], Part[Flatten[q, 2][[x]], 3], n], {n, 1, 1000, 1}],
{x, 1, Length[FlattenTablefunc]}];

Also,  it  is  necessary  to  pay  special  attention  to  the  Nose–Hoover
system, since both the conservative Nose–Hoover system and the dissi-
pative  Nose–Hoover  system  behave  very  differently  from  the  conven-
tional examples, making them good learning samples for the classifier
function.  It  is  clear  from  the  last  section  that  both  equations  (2)  and
(3)  exhibit  dramatically  different  behavior  for  different  values  of  b.
Therefore, it is necessary to consider a different value of b as an addi-
tional  factor  besides  the  initial  condition  for  the  Nose–Hoover  sam-
ple.  The  value  of  b  was  set  to  be  able  to vary  from  0.75  to  5,  with  a
step size of 0.75. Coupled with the allowed variations for initial condi-
tions,  the  additional  variation  in  the  b  value  produces  56  samples  of
the same kind for equations (2) and (3). It is worth noticing that equa-
tion  (1)  was  also  considered  as  a  learning  sample  for  the  classifier  to
classify conservative systems more accurately, but since its behavior is
independent of the value of b, this will only produce 27 learning sam-
ples for the conservative category. The following code generates Nose–
Hoover  samples  from  equation  (2).  Since  there  is  one  more  level  of
structure due to b values, the table is flattened  to its third level rather
than its second.
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Tablefunc = Table[func = NDSolveValue[{
x '[t] ⩵ y[t] -b*x[t],
y '[t] ⩵ y[t] *z[t] -x[t],
z '[t] ⩵ 3-y[t]^2,
x[0] ⩵ 0+e1,
y[0] ⩵ 5+e2,
z[0] ⩵ 0+e3
}, {x[t], y[t], z[t]}, {t, 0, 1000}],
{e1, 1*10^-10, 2*10^-10, 10^-10},
{e2, 0, 1*10^-10, 10^-10}, {e3, 0, 1*10^-10, 10^-10}, {b, 0.5, 5, 0.75}];
FlattenTablefunc = Flatten[Tablefunc, 3];
MakeVectorFromFunc2[q_, l_] :=
Table[detectStableFixedEnding[
f_, df_, ddf_, (*lasttime_:1000,*)t0_] := Module[{lengths},

length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];
vectorl = Table[detectStableFixedEnding[Part[Flatten[q, l][[x]], 1],
Part[Flatten[q, l][[x]], 2], Part[Flatten[q, l][[x]], 3], n], {n, 1, 1000, 1}],
{x, 1, Length[FlattenTablefunc]}];

The  third  step  is  bias  elimination.  There  are  some  samples  that
exist in a very small range, making it possible for the classifier  to put
plots  of  small  ranges  into  one  category.  But  this  classification  is  not
correct because the goal is to classify based on visual patterns instead
of numerical values. An easy solution to this issue is to multiply every
sample  by  a  random  real  number.  This  can  be  easily  accomplished
with  the  Wolfram  Language  function  RandomReal.  Each  sample  is
randomly scaled by a factor no bigger than 1000. 

The final  step before training the classifier  is to extract the test set.
A test set is used to measure the accuracy of the classifier. All the unbi-
ased learning samples, conservative and dissipative, are combined into
one  list.  After  shuffling  the  sample  list  and  making  conservative  and
dissipative  samples  be  evenly  distributed,  100  and  200  samples  are
extracted from the list as test sets for two testing rounds.

By  using  these  four  steps  (summarized  in  Figure  9),  we  start  from
some  initial  samples,  then  we  duplicate  them  to  generate  more  learn-
ing  examples,  eliminate  bias  and  extract  a  test  set  from  the  learning

Figure 9. The  diagram  of  the  procedure  from  collecting  samples  to  training  a
classifier.
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samples. Then the learning samples are used to train the classifier  and
the test set is used to measure the accuracy of the classifier.

In the following code, D1 and C1 are lists that contain labeled sam-
ples of dissipative systems and conservative systems, respectively. The
test (100 elements) and train are extracted from the shuffled total sam-
ple  collection  tt.  The  training  set  is  used  to  train  the  classifier  cl,  and
the  accuracy  of  the  classifier  is  examined  by  using  the  test  set  and
ClassifierMeasurements to generate a ConfusionMatrixPlot.

t = Flatten[{D1, C1}];
tt = RandomSample[t];
test = Take[tt, {1, 100}];
train = Take[tt, {101, 517}];
cl = Classify[train];
ClassifierMeasurements[cl, test, "ConfusionMatrixPlot"]

The samples used in the classifier  above were obtained by EDT. In
Section 2, it was established that DDT is also valid for obtaining sam-
ples.  The  procedures  for  collecting  samples  are  very  similar,  except
that  the  function  for  generating  sequences  needs  to  be  slightly  modi-
fied  by  adding  a  command  for  calculating  disdiffper,  as  shown  in  the
following.

MakeVectorFromFunc2[q_] :=
Table[
detectStableFixedEnding[f_,
df_, ddf_, (*lasttime_:1000,*)t0_] := Module[{lengths},
length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];
vectorl = Table[detectStableFixedEnding[Part[Flatten[q, 2][[x]], 1],
Part[Flatten[q, 2][[x]], 2], Part[Flatten[q, 2][[x]], 3], n], {n, 1, 1000, 1}];
disdiffper = Table[(Abs[vectorl[[n+1]] -vectorl[[n]]]) /
Norm[{Part[Flatten[q, 2][[x]], 1], Part[Flatten[q, 2][[x]], 2],
Part[Flatten[q, 2][[x]], 3]} /. t → n], {n, 1, Length[vectorl] -1}],
{x, 1, Length[FlattenTablefunc]}];

The  results  suggest  that  both  methods  of  training  a  classifier
worked  reasonably  well  (Figures  10  and  11).  Even  though  the  accu-
racy report said that DDT is slightly better than EDT, it is important
to  keep  in  mind  that  the  process  of  obtaining  samples  involves  ran-
domly scaling the plot. This means that each time the training set and
the  testing  set  are  different  from  the  training  set  and  the  test  set
obtained  last  time,  which  may  cause  variations  in  accuracies  and  the
number  of  misclassified  samples.  Nonetheless,  it  has  been  demon-
strated that EDT and DDT are useful algorithms to classify conserva-
tive and dissipative systems computationally. 
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Figure 10. The  accuracy  of  the  classifier  is  measured  by  a  confusion  matrix
plot.  The  classifier  is  trained  using  samples  obtained  by  EDT.  In  the  confu-
sion  matrix,  diagonal  entries  indicate  the  number  of  elements  in  the  test  set
that are classified  correctly, whereas the nondiagonal entries indicate samples
that  are  misclassified.  The  matrix  on  the  left  is  the  result  of  testing  100  ele-
ments after feeding 417 learning samples. The matrix on the right is the result
of testing 200 elements after feeding  317 learning samples. There is only one
misclassified  element by the latter training method. According to the informa-
tion report of the classifier, the accuracies are (98.2±2.5)% and (99.2±2.4)%.

3
0

7
0

conservative

dissipative

co
n
se

rv
a
ti
v
e

d
is
si
p
a
ti
v
e

29

71

predicted class

a
ct
u
a
l
cl
a
ss 29

1

0

70

3
0

7
0

conservative

dissipative

co
n
se

rv
a
ti
v
e

d
is
si
p
a
ti
v
e

29

71

predicted class

a
ct
u
a
l
cl
a
ss 29

1

0

70

(a) b

Figure 11. The accuracy of the classifier  measured by a confusion matrix plot.
The  classifier  is  trained  using  samples  obtained  by  DDT.  The  matrix  on  the
left  is  the  result  of  testing  100  elements  after  feeding  417  learning  samples.
The matrix on the right is the result of testing 200 elements after feeding 317
learning  samples.  Both  methods  misclassified  one  element.  According  to  the
information  report  of  the  classifier,  the  accuracies  are  (99.4±1.9)%  and
(99.3±2.4)%.
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Supervised Machine Learning Classifier for Identifying Chaotic 

Dynamical Systems
5.

Recognizing  chaotic  behaviors  from  a  collection  that  contains  both
chaotic and nonchaotic systems is a much more difficult  task for com-
puters.  Convergent  trajectories  are  usually  easy  to  identify  because
their  Euclidean  distance  sequences  converge  to  zero.  Systems  that
have  escaping  trajectories  are  generally  harder  to  distinguish  from
those  with  chaotic  trajectories  because  they  might  exhibit  locally
chaotic  behaviors  or  behaviors  that  are  extremely  similar  to  those  of
chaotic  systems.  An  example  of  such  systems  is  given  below.  The
parameters  0.2  and  1  are  the  result  of  numerical  searches  of  chaotic
solutions to the equation with this particular form:

x
...
+ ẋ - 0.2x(x - 1) = 0 (4)

The trajectory of equation (4) exhibits locally chaotic behavior in a
very  small  range  and  then  quickly  escapes.  The  chosen  initial  condi-
tion  is  x(0) = 0,  ẋ(0) = -0.011,  x¨ (0) = 0.  The  trajectory  and  its
Euclidean distance sequence are shown in Figure 12.

50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) (b)

Figure 12. The  trajectory  and  Euclidean  distance  sequence  of  the  system  in
equation  (4).  (a)�the  trajectory  is  attracted  to  a  small  region  for  some  finite
cycles  and  then  escapes.  (b)  the  Euclidean  distance  sequence  first  oscillates
and then diverges.

Additionally,  there  are  some  trajectories  that  escape  to  infinity
while  rotating  periodically,  forming  a  cylindrical  path.  There  are  also
some  trajectories  that  exhibit  global  chaotic  behavior  while  expand-
ing to infinity.  Such systems, like some members of three-dimensional
quadratic  systems,  have  been  studied  previously  [6].  In  this  classifier,
the former are defined  as escape trajectories and the latter are defined
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as chaotic trajectories. However, since the former class exhibits behav-
iors  that  are  similar  to  chaos  and  the  latter  class  exhibits  behaviors
that  are  similar  to  escaping  behaviors,  they  will  create  considerable
difficulties for the classifier.

In order to duplicate convergent initial samples and escaping initial
samples,  their  initial  conditions  are  added  by  a  random  real  number
instead  of  a  small  ϵ  because  they  are  relatively  less  sensitive  to  the
change  of  initial  conditions  compared  to  chaotic  systems.  This
method of duplication ensures the duplicates will be the same kind as
their  initial  samples.  A  total  number  of  776  convergent  and  escaping
samples are generated. They are mixed with chaotic samples obtained
in  Section  4  for  training.  Two  hundred  testing  elements  are  extracted
from  a  total  of  1293  samples.  Both  EDT  and  DDT  are  employed  in
training  for  comparison.  The  results  suggest  that  in  this  task,  DDT  is
considerably  better  in  accuracy  than  EDT,  and  observation  shows
that  DDT  generates  plots  that  are  more  distinguishable  than  EDT
(Figures 13 and 14). 
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Figure 13. The accuracy of the classifier  measured by a confusion matrix plot.
The  classifier  is  trained  using  samples  obtained  by  EDT.  Two  tests  are  con-
ducted by randomly changing the elements in the test set and the training set.
The results suggest that of all misclassifications,  the most frequent situation is
that the classifier  had trouble distinguishing escaping trajectories from chaotic
trajectories,  which  is  consistent  with  the  analysis.  According  to  the  report  of
the classifier, the accuracy is (92.5±1.2)%.
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Figure 14. The accuracy of the classifier  measured by a confusion matrix plot.
The  classifier  is  trained  using  samples  obtained  by  DDT.  Two  tests  are  con-
ducted by randomly changing the elements in the test set and the training set.
According to the report of the classifier, the accuracy is (99.1±1.1)%.

Conclusion6.

In  this  paper,  different  behaviors  of  jerky  dynamical  systems  have
been discussed, specifically  their behaviors in phase space. Two meth-
ods  of  classifying  jerky  dynamical  systems  are  proposed,  and  classi-
fiers  are  trained  using  known  samples  based  on  these  two  methods:
Euclidean distance test (EDT) and distance difference test (DDT). 

By visualizing the behavior of chaotic systems in phase space using
the EDT method, it was found that most dissipative systems with zero
divergence  exhibit  a  similar  visual  pattern  described  as  “scattering,”
whereas conservative systems exhibit much more diverse and complex
behaviors, making them more interesting to study. 

In  the  task  of  differentiating  conservative  and  dissipative  chaotic
systems,  both  EDT  and  DDT  demonstrated  quite  accurate  results.  In
the  task  of  distinguishing  convergent,  escaping  and  chaotic  systems,
DDT has an obvious advantage over EDT. The potential applications
of  these  machine  learning  algorithms  may  include  searching  new
chaotic  systems  and  classifying  chaotic  systems  given  the  behavioral
data in the phase space.
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