
Classification of Chaotic Behaviors in Jerky
Dynamical Systems

Tianyi Wang

Wolfram High School Summer Camp
Bentley University
175 Forest Street
Waltham, MA 02452, USA

Differential equations are widely used to model systems that change
over time, some of which exhibit chaotic behaviors. This paper pro-
poses two new methods to classify these behaviors that are utilized by a
supervised machine learning algorithm. Dissipative chaotic systems, in
contrast to conservative chaotic systems, seem to follow a certain visual
pattern. Also, the machine learning program written in the Wolfram
Language is utilized to classify chaotic behavior with an accuracy
around 99.1±1.1%.

Keywords: chaotic systems; jerky dynamics; differential equations;
dynamical systems; phase space; supervised machine learning

Introduction1.

Differential equations that involve third derivatives, also known as
“jerks,” are called third-order differential equations. It has been
shown that a third-order differential equation can always be written
in a system of three differential equations of the first order [1, pp.�62].
If such a system has time as its independent variable, then it is called a
jerky dynamical system. The main goal of this paper is to classify such
systems and identify global chaotic behaviors of such systems. In this
paper, the classification of jerky dynamical systems is based on the
behavior of the trajectories in the phase space.

A jerky dynamical system can be visualized in a phase space, a
three-dimensional vector field that shows all possible states of the sys-
tem. A trajectory of the vector field can be drawn to indicate the evo-
lution of the system with certain initial conditions. Trajectories of
different systems can have different behaviors. If the system is conver-
gent, the trajectory gets arbitrarily close to a certain point in the
phase space. If the system is divergent, the trajectory can escape to
infinity or can be chaotic (meaning initially close points on the trajec-
tory can quickly evolve into very different states or are extremely sen-
sitive to initial conditions), getting attracted to a certain region.
Although there are cases where trajectories exhibit local chaotic

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

behavior before they escape, this paper will focus on the systems that
exhibit global chaotic behavior. Since the subjects of interest are sys-
tems that exhibit global chaotic behaviors, these systems must be
divergent, but the trajectories do not escape to infinity.

Furthermore, any dynamical systems, including chaotic ones, can
be classified into two categories: conservative or dissipative. Conserva-
tive systems are systems in which the phase space volume is preserved.
In contrast, phase space volume contracts along a trajectory in a dissi-
pative system [2, p. 540]. Therefore, it is possible to categorize
chaotic jerky dynamical systems more specifically into conservative
systems or dissipative systems. However, due to the complex behavior
of chaotic systems in the phase space, it is very hard for computers to
classify them.

In this paper, two methods are proposed to detect systems that are
potentially chaotic, based on Cauchy’s completeness theorem
(Section�2). Both methods are then utilized in a supervised machine
learning function to distinguish conservative and dissipative systems.
We discovered a prevailing visual pattern for dissipative systems
(Section 3), and the classifiers we trained reach more than 99% accu-
racy (Section 4). These classifiers can then be used to classify any
dynamical systems with relatively high accuracy (Section 5).

Theoretical Background and Methodology2.

This section introduces the theoretical methods that we use to identify
whether a system is convergent or divergent and whether a system is
conservative or dissipative. The motivation of the methods we use to
identify convergent systems comes from Cauchy’s completeness theo-
rem from literature [3, Chapter 3, pp. 52–53], which we will first
introduce here.

Theorem 1 (Cauchy’s Completeness Theorem). In any metric space , every
convergent sequence is a Cauchy sequence.

With Theorem 1, we can then derive the condition for a trajectory
in phase space to converge. We first make a rigorous definition for
the notation we will be using.

Definition 1. Consider a system of three differential equations:

ẋ = f1(x, y, z)

ẏ = f2(x, y, z)

ż = f3(x, y, z)

where fi :
3 →  are smooth, with t being the independent variable.

Define θ : → 3
 as a function that takes some input t and gives the

position of the trajectory in 3
 at t. Assume an arbitrary fixed incre-

94 T. Wang

Complex Systems, 30 © 2021

ment in time Δt > 0, ti+1 = ti + Δt. Let {t1, t2, …} be any sequence

such that limi→∞ ti = ∞. Define d(θ(ti+1), θ(ti)) = d(θi+1, θi) = di to be

the Euclidean distance between points θ(ti) and θ(ti+1).

Then we define what it means for a trajectory in phase space to
converge.

Definition 2. The trajectory of a system θ(t) in a phase space converges
to a point P if for all ϵ > 0, there exists Tϵ such that θ(t) is within ϵ of

P for all t > Tϵ.

With the given definitions, together with Theorem 1, we now
derive two corollaries that are later utilized in generating visual data
associated with each system. They are also the guidelines we will use
in labeling training data for the supervised machine learning system.

Corollary 1. The trajectory of a system θ(t) converges to P if
limi→∞ di = 0.

Proof. If {θi} converges in phase space, then according to Theorem 1,

{θi} is a Cauchy sequence. From the definition of a Cauchy sequence,

we know that dθi, θj < ϵ for ti, tj > N for some N. From Defini-

tion�2, we know that if we choose N = Tϵ/2, then dθi, θj < ϵ holds

since dθi, θj ≤ d(θi, p) + dp, θj < 2ϵ  2 = ϵ holds in . Finally,

since ti+1 > ti > Tϵ/2, then di = d(θi+1, θi) < ϵ for all t > Tϵ/2. This

implies limi→∞ di = 0, which concludes the proof. □

Corollary 2. Consider the infinite sequence of Euclidean distance of a

system D = d1, d2, … , dn, …. Define Δi = di+1 - di. Let the dis-

tance difference sequence δ = {Δ1, Δ2, … , Δn, …}. The system con-

verges if the corresponding sequence δ is convergent and diverges if δ
is divergent.

Therefore, to test whether the system is convergent or divergent,
take an infinite number of sample points on the trajectory in the
phase space that corresponds to successive increase in time by a con-
stant increment. Next, calculate the Euclidean distances between two
successive points. These distances are elements of an infinite sequence

D = d1, d2, … , dn, …. If D is convergent, then the system is also

convergent. If D is divergent, then the system is also divergent. Fig-
ure�1 illustrates this method.

This method, which we will be using, is a direct result from Corol-
lary 1. We call this method the Euclidean distance test (EDT). Fig-
ure�2 is an example of what a convergent and a divergent system may
look like.

Classification of Chaotic Behaviors in Jerky Dynamical Systems 95

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

(a) b

Figure 1. (a) An example of a chaotic trajectory in a phase space and (b) an
illustration of the technique of taking sample points in phase space.

Figure 2. Plots of two Euclidean distance sequences. (a) The sequence con-
verges, meaning the corresponding system converges in the phase space.
(b) The sequence diverges, meaning the corresponding system diverges in the
phase space.

From Corollary 2, we know that we can also generate the sequence
δ = {Δ1, Δ2, … , Δn, …} and test its convergence. This method tests

whether the successive difference of Euclidean distances converges.
We call it the distance difference test (DDT).

After being able to identify and differentiate convergent and diver-
gent systems, we now introduce a theorem from literature that will
help us identify whether a chaotic system is conservative or dissipative
[4, Chapter 6, p. 158].

96 T. Wang

Complex Systems, 30 © 2021

Theorem 2. For a dynamical system

ẋ = f1(x, y, z)

ẏ = f2(x, y, z)

ż = f3(x, y, z),

where fi :
3 →  are differentiable functions, the system is conserva-

tive if

∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z
= 0.

Theorem 2 will serve as a theoretical guideline that helps us label
the category of a system when labeling the training data for the classi-
fier. There will be exceptions to Theorem 2, which we will mention in
the next section.

Discoveries of Visual Patterns Associated with Conservative and

Dissipative Systems.
3.

In this section we present the computational methods we use to gener-
ate visual data associated with conservative and dissipative systems.

Since both EDT and DDT are valid indicators of whether the sys-
tem is convergent or divergent, they will be used to train the classifier
function later in this paper. The results will be compared to see which
test is more effective. The following Wolfram Language function cal-
culates the Euclidean distance of successive points.

detectStableFixedEnding[f_, df_, ddf_, (*lasttime_:1000,*)t0_] :=
Module[{lengths},

length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];

 A sequence is generated with the function detectStableFixed
Ending. Because it is impossible to generate a sequence with infinitely
many terms on a computer, we compute one thousand terms to gain
relatively accurate results without going beyond the computational
power. The function vectorl calculates the sequence Euclidean dis-
tance, and disdiffper calculates the difference in Euclidean distances
divided by the distance of the sample points from the origin of the
coordinate system, considering that points very far from the origin
can have a greater change in distance.

vectorl = Table[detectStableFixedEnding[y, Dy, DDy, n], {n, 1, 1000, 1}];
disdiffper = Table[(Abs[vectorl[[n+1]] -vectorl[[n]]]) /Norm[{y, Dy, DDy} /. t → n],

{n, 1, Length[vectorl] -1}];

Classification of Chaotic Behaviors in Jerky Dynamical Systems 97

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

By solving differential equations numerically and calculating the
Euclidean distances sequence (or distance differences sequence), it
becomes possible to visualize the behavior of trajectories in the phase
space. For convergent trajectories (Figure 2(a)), the sequences go to
zero. For trajectories that escape, the sequences go to infinity. Some
sequences that oscillate in finite ranges (Figure 2(b)) may exhibit
global chaotic behaviors. Therefore, their chaotic behavior can be con-
firmed by the phase space plot.

Many sequences of Euclidean distance for different systems were
generated in an attempt to search for visual patterns. The sequence is
visualized by the Wolfram Language function ListPlot. A series of com-
parisons between conservative and dissipative systems suggests the fol-
lowing observational result: conservative chaotic systems exhibit
diverse behaviors that are hard to predict, whereas dissipative chaotic
systems usually exhibit behavior that follows a certain visual pattern.
A description of such a pattern would be “scattering,” as demon-
strated in Figure 3. The ListPlot function visualizes dissipative jerky
systems that were discovered before [5].

2000 4000 6000 8000 10000

1

2

3

4

5

Figure 3.Classical behavior of a dissipative system. The sequence of Euclidean
distance points creates a scattering visual pattern.

Other dissipative chaotic systems exhibit similar behavior. Figure 4
shows three more examples generated by EDT using systems from [5].
Interestingly, they exhibit some lower bounds.

This pattern also seems to be true for dissipative chaotic systems
of�higher dimension, for example, four-dimensional systems. There-
fore, this visual pattern is likely to be an indication that the corre-
sponding system is dissipative. Conservative chaotic systems, on the
other hand, exhibit various behaviors that are difficult to classify
(Figures 5 and 6).

Also, a chaotic system can exhibit a visual pattern that is extremely
similar to the behavior of a dissipative chaotic system. A well-known

98 T. Wang

Complex Systems, 30 © 2021

system is the double-pendulum system. However, since it is a two-
dimensional motion, using a two-dimensional coordinate system is
sufficient to describe its motion. Therefore, the Euclidean distance
needs to change from three-dimensional distance to two-dimensional
distance. It is important to point out that reducing one dimension will
still produce similar results, since the phase space is only projected
from a three-dimensional space onto a two-dimensional space.

2000 4000 6000 8000 10000

1

2

3

2000 4000 6000 8000 10000

1

2

3

4

5

2000 4000 6000 8000 10000

5

10

15

20

Figure 4. Three more examples of dissipative behavior generated by EDT
using systems from [5].

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

5000 10000 15000 20000

20

40

60

80

(a) b

Figure 5. Euclidean distance plots of two conservative chaotic examples.

(a)�corresponds to system x
...

+ 14ẋ = sin(x) - 5x3 with initial conditions

x(1) = ẋ(1) = x
¨
(1) = 0.2. (b) corresponds to system x

...
+ 0.1ẋ + sin(x) =

0.5cos(t) with initial conditions x(0) = ẋ(0) = x
¨
(0) = 0.3.

Classification of Chaotic Behaviors in Jerky Dynamical Systems 99

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

200 400 600 800 1000

0.5

1.0

1.5

2.0

2.5

200 400 600 800 1000

1

2

3

4

(a) (b)

200 400 600 800 1000

1

2

3

4

5

(c)

Figure 6. Three more conservative systems. (a) is the plot of the system from
[6], (b) is the system from [7] and (c) is the system from [4].

One very important exception to Theorem 2 is the Nose–Hoover
system, a system used to describe particles interacting with an exter-
nal system in a way that the energy is conserved, which is defined as
follows:

ẋ = y

ẏ = yz - x

ż = 3 - y2.

(1)

The Nose–Hoover system has divergence z, suggesting that the sys-
tem is dissipative. However, it has been shown computationally that
the Nose–Hoover system is actually conservative [8, p. 2]. Due to its
nonzero divergence, the Nose–Hoover system displays “scattering”
behavior similar to most dissipative systems. Several modifications of
equation (1) are done to make the Nose–Hoover system dissipative
[8, pp. 2, 5]. Nonintuitively, these dissipative versions of the Nose–
Hoover system exhibit visual patterns that are completely different
from the scattering behavior. These unconventional dissipative sys-
tems have the following forms:

ẋ = y - bx

ẏ = yz - x

ż = 3 - y2
(2)

100 T. Wang

Complex Systems, 30 © 2021

ẋ = y

ẏ = yz - x

ż = 3 - y2 - bz

(3)

where b ∈ . Each of equations (2) and (3) exhibits completely differ-
ent behavior depending on the value of b (Figures 7 and 8), which sug-
gests that not all dissipative systems confirm the scattering pattern.

200 400 600 800 1000

3.0

3.5

4.0

4.5

5.0

5.5

200 400 600 800 1000

1

2

3

4

5

6

200 400 600 800 1000

2

4

6

8

10

12

200 400 600 800 1000

2

4

6

8

10

12

Figure 7. Euclidean distance sequence plot of equation (2) with different val-
ues of b. From left to right, b = 1, 1.5, 4.5, 5, respectively.

200 400 600 800 1000

1

2

3

4

5

200 400 600 800 1000

1

2

3

4

5

200 400 600 800 1000

2.0

2.5

3.0

3.5

200 400 600 800 1000

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Figure 8. Euclidean distance sequence plot of equation (3) with different val-
ues of b. From left to right, b = 1, 1.5, 3, 4, respectively.

Classification of Chaotic Behaviors in Jerky Dynamical Systems 101

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

In conclusion, in most cases, if a scatter plot of a Euclidean dis-
tance sequence exhibits a scattering pattern, then the corresponding
system is likely to be dissipative. For plots that have more diverse
behavior, the corresponding system is likely to be conservative.

Supervised Machine Learning Classifier for Conservative and

Dissipative Chaotic Systems
4.

The Nose–Hoover system is a very important exception, suggesting
that conservative chaotic systems can behave in a way that is similar
to dissipative systems. And, though less frequently, dissipative systems
can have more complicated behavior than just the usual scattering
visual pattern. Though it is reasonable to believe that most dissipative
systems confirm the scattering pattern, such exceptions make it diffi-
cult to conclusively identify a dissipative system just by looking at the
ListPlot graph. Also, since conservative systems exhibit much more
diverse behaviors, it is even harder to identify them. Therefore, it
would appear that developing a machine learning algorithm to clas-
sify chaotic dynamical systems is more convenient and more accurate.

The Wolfram Language function Classify can deal with this task
for a relatively small learning sample size. Since the learning sample
size in this research is typically no more than 1000, it is sufficient to
use Classify without constructing a neural network. The first step is to
start from the chaotic conservative and dissipative systems that were
already discovered. These systems would be the initial samples. Then,
by changing the initial conditions of these systems, we can get a differ-
ent sample of the same kind (conservative or dissipative). Changing
initial conditions by different amounts will serve to obtain more sam-
ples for the training set of the classifier function.

The second step is replication, a process in which the initial sam-
ples are used to generate more chaotic systems of the same kinds. The
idea is to change the initial conditions of the samples by a little bit.
Chaotic systems are extremely sensitive to initial conditions, which
means a slight change in initial conditions might totally destroy a
chaotic system because the numerical values that cause a system to be
chaotic are very rare. Numerical search for second-order polynomial
jerk functions has been done before [2, p. 538]. The result shows that
for randomly chosen initial conditions, the most common situation is
that the trajectory escapes to infinity, and the second most common
case is that the trajectory converges to a certain point. The odds of

finding a chaotic solution are around one in 104. The numerical
method for replicating samples in this research is the following: given
a chaotic system with initial conditions (x0, y0, z0), or sometimes

(ẋ0, ẏ0, ż0), change the initial conditions by ϵ amount, where ϵ ≪ 1

102 T. Wang

Complex Systems, 30 © 2021

but still several orders of magnitude bigger than the smallest machine
precision. It was experimentally found that for all the samples chosen

from different references for this study [1–9], ϵ = 2 · 10-10 is a safe
range in which the chaotic systems remain chaotic. Therefore, we

chose step size Δ = 10-10, so that for three initial conditions
(x0, y0, z0), each initial condition can increase by an amount of 0,

10-10 or 2 · 10-10. Therefore, for a single chaotic sample, 27 samples
of the same kind are replicated. The following code demonstrates one
example of how this replication process is achieved, which generates a
numerical list of Euclidean distances.

Tablefunc = Table[func = NDSolveValue[{
x '[t] ⩵ y[t] -5 x[t],
y '[t] ⩵ y[t] *z[t] -x[t],
z '[t] ⩵ 3-y[t]^2,
x[0] ⩵ 0+e1,
y[0] ⩵ 5+e2,
z[0] ⩵ 0+e3
}, {x[t], y[t], z[t]}, {t, 0, 1000}],
{e1, 0, 2*10^-10, 10^-10},
{e2, 0, 2*10^-10, 10^-10}, {e3, 0, 2*10^-10, 10^-10}];
FlattenTablefunc = Flatten[Tablefunc, 2];
MakeVectorFromFunc2[q_] :=
Table[detectStableFixedEnding[
f_, df_, ddf_, (*lasttime_:1000,*)t0_] := Module[{lengths},

length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];
vectorl = Table[detectStableFixedEnding[Part[Flatten[q, 2][[x]], 1],
Part[Flatten[q, 2][[x]], 2], Part[Flatten[q, 2][[x]], 3], n], {n, 1, 1000, 1}],
{x, 1, Length[FlattenTablefunc]}];

Also, it is necessary to pay special attention to the Nose–Hoover
system, since both the conservative Nose–Hoover system and the dissi-
pative Nose–Hoover system behave very differently from the conven-
tional examples, making them good learning samples for the classifier
function. It is clear from the last section that both equations (2) and
(3) exhibit dramatically different behavior for different values of b.
Therefore, it is necessary to consider a different value of b as an addi-
tional factor besides the initial condition for the Nose–Hoover sam-
ple. The value of b was set to be able to vary from 0.75 to 5, with a
step size of 0.75. Coupled with the allowed variations for initial condi-
tions, the additional variation in the b value produces 56 samples of
the same kind for equations (2) and (3). It is worth noticing that equa-
tion (1) was also considered as a learning sample for the classifier to
classify conservative systems more accurately, but since its behavior is
independent of the value of b, this will only produce 27 learning sam-
ples for the conservative category. The following code generates Nose–
Hoover samples from equation (2). Since there is one more level of
structure due to b values, the table is flattened to its third level rather
than its second.

Classification of Chaotic Behaviors in Jerky Dynamical Systems 103

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

Tablefunc = Table[func = NDSolveValue[{
x '[t] ⩵ y[t] -b*x[t],
y '[t] ⩵ y[t] *z[t] -x[t],
z '[t] ⩵ 3-y[t]^2,
x[0] ⩵ 0+e1,
y[0] ⩵ 5+e2,
z[0] ⩵ 0+e3
}, {x[t], y[t], z[t]}, {t, 0, 1000}],
{e1, 1*10^-10, 2*10^-10, 10^-10},
{e2, 0, 1*10^-10, 10^-10}, {e3, 0, 1*10^-10, 10^-10}, {b, 0.5, 5, 0.75}];
FlattenTablefunc = Flatten[Tablefunc, 3];
MakeVectorFromFunc2[q_, l_] :=
Table[detectStableFixedEnding[
f_, df_, ddf_, (*lasttime_:1000,*)t0_] := Module[{lengths},

length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];
vectorl = Table[detectStableFixedEnding[Part[Flatten[q, l][[x]], 1],
Part[Flatten[q, l][[x]], 2], Part[Flatten[q, l][[x]], 3], n], {n, 1, 1000, 1}],
{x, 1, Length[FlattenTablefunc]}];

The third step is bias elimination. There are some samples that
exist in a very small range, making it possible for the classifier to put
plots of small ranges into one category. But this classification is not
correct because the goal is to classify based on visual patterns instead
of numerical values. An easy solution to this issue is to multiply every
sample by a random real number. This can be easily accomplished
with the Wolfram Language function RandomReal. Each sample is
randomly scaled by a factor no bigger than 1000.

The final step before training the classifier is to extract the test set.
A test set is used to measure the accuracy of the classifier. All the unbi-
ased learning samples, conservative and dissipative, are combined into
one list. After shuffling the sample list and making conservative and
dissipative samples be evenly distributed, 100 and 200 samples are
extracted from the list as test sets for two testing rounds.

By using these four steps (summarized in Figure 9), we start from
some initial samples, then we duplicate them to generate more learn-
ing examples, eliminate bias and extract a test set from the learning

Figure 9. The diagram of the procedure from collecting samples to training a
classifier.

104 T. Wang

Complex Systems, 30 © 2021

samples. Then the learning samples are used to train the classifier and
the test set is used to measure the accuracy of the classifier.

In the following code, D1 and C1 are lists that contain labeled sam-
ples of dissipative systems and conservative systems, respectively. The
test (100 elements) and train are extracted from the shuffled total sam-
ple collection tt. The training set is used to train the classifier cl, and
the accuracy of the classifier is examined by using the test set and
ClassifierMeasurements to generate a ConfusionMatrixPlot.

t = Flatten[{D1, C1}];
tt = RandomSample[t];
test = Take[tt, {1, 100}];
train = Take[tt, {101, 517}];
cl = Classify[train];
ClassifierMeasurements[cl, test, "ConfusionMatrixPlot"]

The samples used in the classifier above were obtained by EDT. In
Section 2, it was established that DDT is also valid for obtaining sam-
ples. The procedures for collecting samples are very similar, except
that the function for generating sequences needs to be slightly modi-
fied by adding a command for calculating disdiffper, as shown in the
following.

MakeVectorFromFunc2[q_] :=
Table[
detectStableFixedEnding[f_,
df_, ddf_, (*lasttime_:1000,*)t0_] := Module[{lengths},
length = EuclideanDistance[{f, df, ddf} /. t → t0, {f, df, ddf} /. t → t0-1]];
vectorl = Table[detectStableFixedEnding[Part[Flatten[q, 2][[x]], 1],
Part[Flatten[q, 2][[x]], 2], Part[Flatten[q, 2][[x]], 3], n], {n, 1, 1000, 1}];
disdiffper = Table[(Abs[vectorl[[n+1]] -vectorl[[n]]]) /
Norm[{Part[Flatten[q, 2][[x]], 1], Part[Flatten[q, 2][[x]], 2],
Part[Flatten[q, 2][[x]], 3]} /. t → n], {n, 1, Length[vectorl] -1}],
{x, 1, Length[FlattenTablefunc]}];

The results suggest that both methods of training a classifier
worked reasonably well (Figures 10 and 11). Even though the accu-
racy report said that DDT is slightly better than EDT, it is important
to keep in mind that the process of obtaining samples involves ran-
domly scaling the plot. This means that each time the training set and
the testing set are different from the training set and the test set
obtained last time, which may cause variations in accuracies and the
number of misclassified samples. Nonetheless, it has been demon-
strated that EDT and DDT are useful algorithms to classify conserva-
tive and dissipative systems computationally.

Classification of Chaotic Behaviors in Jerky Dynamical Systems 105

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

3
8

6
2

conservative

dissipative

co
n
se

rv
a
ti
v
e

d
is
si
p
a
ti
v
e

38

62

predicted class

a
ct
u
a
l
cl
a
ss 38

0

0

62

7
2

1
2
8

conservative

dissipative

co
n
se

rv
a
ti
v
e

d
is
si
p
a
ti
v
e

71

129

predicted class

a
ct
u
a
l
c
la
ss 71

1

0

128

(a) b

Figure 10. The accuracy of the classifier is measured by a confusion matrix
plot. The classifier is trained using samples obtained by EDT. In the confu-
sion matrix, diagonal entries indicate the number of elements in the test set
that are classified correctly, whereas the nondiagonal entries indicate samples
that are misclassified. The matrix on the left is the result of testing 100 ele-
ments after feeding 417 learning samples. The matrix on the right is the result
of testing 200 elements after feeding 317 learning samples. There is only one
misclassified element by the latter training method. According to the informa-
tion report of the classifier, the accuracies are (98.2±2.5)% and (99.2±2.4)%.

3
0

7
0

conservative

dissipative

co
n
se

rv
a
ti
v
e

d
is
si
p
a
ti
v
e

29

71

predicted class

a
ct
u
a
l
cl
a
ss 29

1

0

70

3
0

7
0

conservative

dissipative

co
n
se

rv
a
ti
v
e

d
is
si
p
a
ti
v
e

29

71

predicted class

a
ct
u
a
l
cl
a
ss 29

1

0

70

(a) b

Figure 11. The accuracy of the classifier measured by a confusion matrix plot.
The classifier is trained using samples obtained by DDT. The matrix on the
left is the result of testing 100 elements after feeding 417 learning samples.
The matrix on the right is the result of testing 200 elements after feeding 317
learning samples. Both methods misclassified one element. According to the
information report of the classifier, the accuracies are (99.4±1.9)% and
(99.3±2.4)%.

106 T. Wang

Complex Systems, 30 © 2021

Supervised Machine Learning Classifier for Identifying Chaotic

Dynamical Systems
5.

Recognizing chaotic behaviors from a collection that contains both
chaotic and nonchaotic systems is a much more difficult task for com-
puters. Convergent trajectories are usually easy to identify because
their Euclidean distance sequences converge to zero. Systems that
have escaping trajectories are generally harder to distinguish from
those with chaotic trajectories because they might exhibit locally
chaotic behaviors or behaviors that are extremely similar to those of
chaotic systems. An example of such systems is given below. The
parameters 0.2 and 1 are the result of numerical searches of chaotic
solutions to the equation with this particular form:

x
...
+ ẋ - 0.2x(x - 1) = 0 (4)

The trajectory of equation (4) exhibits locally chaotic behavior in a
very small range and then quickly escapes. The chosen initial condi-
tion is x(0) = 0, ẋ(0) = -0.011, x¨ (0) = 0. The trajectory and its
Euclidean distance sequence are shown in Figure 12.

50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) (b)

Figure 12. The trajectory and Euclidean distance sequence of the system in
equation (4). (a)�the trajectory is attracted to a small region for some finite
cycles and then escapes. (b) the Euclidean distance sequence first oscillates
and then diverges.

Additionally, there are some trajectories that escape to infinity
while rotating periodically, forming a cylindrical path. There are also
some trajectories that exhibit global chaotic behavior while expand-
ing to infinity. Such systems, like some members of three-dimensional
quadratic systems, have been studied previously [6]. In this classifier,
the former are defined as escape trajectories and the latter are defined

Classification of Chaotic Behaviors in Jerky Dynamical Systems 107

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

as chaotic trajectories. However, since the former class exhibits behav-
iors that are similar to chaos and the latter class exhibits behaviors
that are similar to escaping behaviors, they will create considerable
difficulties for the classifier.

In order to duplicate convergent initial samples and escaping initial
samples, their initial conditions are added by a random real number
instead of a small ϵ because they are relatively less sensitive to the
change of initial conditions compared to chaotic systems. This
method of duplication ensures the duplicates will be the same kind as
their initial samples. A total number of 776 convergent and escaping
samples are generated. They are mixed with chaotic samples obtained
in Section 4 for training. Two hundred testing elements are extracted
from a total of 1293 samples. Both EDT and DDT are employed in
training for comparison. The results suggest that in this task, DDT is
considerably better in accuracy than EDT, and observation shows
that DDT generates plots that are more distinguishable than EDT
(Figures 13 and 14).

9
2

5
1

5
7

chaotic

convergent

escape

ch
a
o
ti
c

co
n
v
e
rg
e
n
t

e
sc
a
p
e

77

51

72

predicted class

a
ct
u
a
l
cl
a
ss

77

0

15

0

51

0

0

0

57

9
5

4
6

5
9

chaotic

convergent

escape

ch
a
o
ti
c

co
n
v
e
rg
e
n
t

e
sc
a
p
e
90

47

63

predicted class

a
ct
u
a
l
cl
a
ss

89

0

6

0

46

0

1

1

57

(a) b

Figure 13. The accuracy of the classifier measured by a confusion matrix plot.
The classifier is trained using samples obtained by EDT. Two tests are con-
ducted by randomly changing the elements in the test set and the training set.
The results suggest that of all misclassifications, the most frequent situation is
that the classifier had trouble distinguishing escaping trajectories from chaotic
trajectories, which is consistent with the analysis. According to the report of
the classifier, the accuracy is (92.5±1.2)%.

108 T. Wang

Complex Systems, 30 © 2021

7
5

4
8

7
7

chaotic

convergent

escape

ch
a
o
ti
c

co
n
v
e
rg
e
n
t

e
sc
a
p
e

74

48

78

predicted class

a
ct
u
a
l
cl
a
ss

74

0

1

0

48

0

0

0

77

8
9

4
0

7
1

chaotic

convergent

escape

ch
a
o
ti
c

co
n
v
e
rg
e
n
t

e
sc
a
p
e

88

40

72

predicted class

a
ct
u
a
l
cl
a
ss

87

0

2

0

40

0

1

0

70

(a) b

Figure 14. The accuracy of the classifier measured by a confusion matrix plot.
The classifier is trained using samples obtained by DDT. Two tests are con-
ducted by randomly changing the elements in the test set and the training set.
According to the report of the classifier, the accuracy is (99.1±1.1)%.

Conclusion6.

In this paper, different behaviors of jerky dynamical systems have
been discussed, specifically their behaviors in phase space. Two meth-
ods of classifying jerky dynamical systems are proposed, and classi-
fiers are trained using known samples based on these two methods:
Euclidean distance test (EDT) and distance difference test (DDT).

By visualizing the behavior of chaotic systems in phase space using
the EDT method, it was found that most dissipative systems with zero
divergence exhibit a similar visual pattern described as “scattering,”
whereas conservative systems exhibit much more diverse and complex
behaviors, making them more interesting to study.

In the task of differentiating conservative and dissipative chaotic
systems, both EDT and DDT demonstrated quite accurate results. In
the task of distinguishing convergent, escaping and chaotic systems,
DDT has an obvious advantage over EDT. The potential applications
of these machine learning algorithms may include searching new
chaotic systems and classifying chaotic systems given the behavioral
data in the phase space.

Classification of Chaotic Behaviors in Jerky Dynamical Systems 109

https://doi.org/10.25088/ComplexSystems.30.1.93

https://doi.org/10.25088/ComplexSystems.30.1.93

Acknowledgments

The author thanks Wolfram Research for holding Wolfram High
School Summer Camp in 2019 and the faculty of the camp, including
Stephen Wolfram (Wolfram Research), Peter Barendse (Wolfram
Research) and Eryn Gillam (MIT) for proposing and perfecting this
project. The author gives special thanks to his camp mate, Adrienne
Lai, for proofreading this paper and correcting the grammatical mis-
takes that the author made.

References

[1] Ö. Umut and S. Yasar, “A Simple Jerky Dynamics, Genesio System,”

International Journal of Modern Nonlinear Theory and Application, 2(1),
2013 pp. 60–68. doi:10.4236/ijmnta.2013.21007.

[2] J. C. Sprott, “Some Simple Chaotic Jerk Functions,” American Journal
of Physics, 65(6), 1997 pp. 537–543. doi:10.1119/1.18585.

[3] W. Rudin, Principles of Mathematical Analysis, Beijing: China Machine
Press, 2019.

[4] B. Hasselblatt and A. Katok, A First Course in Dynamics: With a
Panorama of Recent Developments, New York: Cambridge University
Press, 2003.

[5] S. Vaidyanathan and C. Volos, eds., Advances and Applications in
Chaotic Systems, Cham, Switzerland: Springer International Publish-
ing,�2016.

[6] J. C. Sprott, “Some Simple Chaotic Flows,” Physical Review E, 50(2),
1994 pp. R647–R650. doi:10.1103/PhysRevE.50.R647.

[7] J. Heidel and F. Zhang, “Nonchaotic and Chaotic Behavior in Three-

Dimensional Quadratic Systems: Five-One Conservative Cases,” Interna-
tional Journal of Bifurcation and Chaos, 17(6), 2007 pp. 2049–2072.
doi:10.1142/S021812740701821X.

[8] B. Munmuangsaen, J. C. Sprott, W. J.-C. Thio, A. Buscarino and L. For-
tuna, “A Simple Chaotic Flow with a Continuously Adjustable Attractor

Dimension,” International Journal of Bifurcation and Chaos, 25(12), 2015
1530036. doi:10.1142/S0218127415300360.

[9] G. Gugapriya, K. Rajagopal, A. Karthikeyan and B. Lakshmi, “A Fam-

ily of Conservative Chaotic Systems with Cyclic Symmetry,” Pramana–
Journal of Physics, 92(4), 2019 48. doi:10.1007/s12043-019-1719-1.

110 T. Wang

Complex Systems, 30 © 2021

https://doi.org/10.4236/ijmnta.2013.21007
https://doi.org/10.1119/1.18585
https://doi.org/10.1103/PhysRevE.50.R647
https://doi.org/10.1142/S021812740701821X
https://doi.org/10.1142/S0218127415300360
https://doi.org/10.1007/s12043-019-1719-1

