
String Generation by Cellular Automata

Martin Kutrib
Andreas Malcher

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de
andreas.malcher@informatik.uni-giessen.de

In contrast to many investigations of cellular automata with regard to
their ability to accept inputs under certain time constraints, in this
paper we are studying cellular automata with regard to their ability to
generate strings in real time. Structural properties such as speedup
results and closure properties are investigated. On the one hand,
constructions for the closure under intersection, reversal and length-
preserving homomorphism are presented, whereas on the other hand
the nonclosure under union, complementation and arbitrary homomor-
phism are obtained. Finally, decidability questions such as emptiness,
finiteness, equivalence, inclusion, regularity and context-freeness are
addressed.

Keywords: cellular automata; pattern generation; real-time
computation; speedup; closure properties; decidability problems

Introduction1.

Cellular automata (CAs) are a widely used model to describe, analyze
and understand parallel processes. They are particularly applicable to
massive parallel systems, since they are arrays of identical copies of
deterministic finite automata where, in addition, the single nodes are
homogeneously connected to both their immediate neighbors. Further-
more, they work synchronously at discrete timesteps processing a par-
allel distributed input, where every cell is fed with an input symbol in
a pre-initial step.

A standard approach to measure the computational power of some
model is to study its ability to accept formal languages (see, for
example, [1]). In general, the given input is accepted if there is a
timestep at which a designated cell, usually the leftmost one, enters an
accepting state. Commonly studied models are two-way CAs with
time restrictions such as real time or linear time, which means that the
available time for accepting an input is restricted to the length of the
input or to a multiple of the length of the input. An important
restricted class is the real-time one-way CAs [2], where every cell is
connected only with its right neighbor. Hence, the flow of

https://doi.org/10.25088/ComplexSystems.30.2.111

mailto:kutrib@informatik.uni-giessen.de
mailto:andreas.malcher@informatik.uni-giessen.de
https://doi.org/10.25088/ComplexSystems.30.2.111

information is only from right to left. A survey of results concerning
the computational capacity, closure properties and decidability ques-
tions for these models and references to the literature may be found,
for example, in [3, 4].

In the language accepting approach, each computation can be con-
sidered as producing a yes or no answer for every possible input
within a certain time. A much broader view on cellular automaton
(CA) computations is taken in [5, 6], where CA computations are con-
sidered as transducing actions; that is, they produce an output of size
n for every input of size n under time constraints such as real and lin-
ear time. Thus, the point of view changes from a parallel language
accepting device to a parallel language transforming device. Grand-
jean et al. [5] discusses for CAs the time constraints of linear time and
real time. Moreover, the inclusion relationships based on these con-
straints, closure properties and relations to CAs considered as formal
language acceptors are established. An important technical result is a
speedup theorem stating that every computation beyond real time can
be sped up by a linear factor. Kutrib and Malcher [6] also considers
CAs with sequential input mode, called iterative arrays, as transduc-
ing devices. In particular, these devices are compared with the CA
counterpart with parallel input mode. In addition, the cellular trans-
ducing models are compared with classical sequential transducing
devices such as finite-state transducers and pushdown transducers.

In this paper, we will look at computations with CAs from yet
another perspective. Rather than computing a yes or no answer or
computing an output, we are considering CAs as generating devices.
This means in detail that the CA starts with an arbitrary number of
cells all being in a quiescent state and, subsequently, works by apply-
ing its transition function synchronously to all cells. Finally, if the
configuration reaches a fixed point, the sequence of cell states is con-
sidered as the string generated. From this point of view, CAs compute
a (partial) function mapping an initial length n to a string of length n
over some alphabet. First investigations for this model have been
made in [7]. In particular, the real-time generation of unary patterns
is studied in depth and a characterization by time-constructible func-
tions and their corresponding unary formal languages is given. In this
paper, we will continue these investigations for real-time CAs and
study, in particular, speedup possibilities, closure properties and decid-
ability questions of the model.

It should be remarked that the notion of pattern generation is also
used for CAs in other contexts. For example, in [8] the sequence of
configurations produced by a CA starting with some input is con-
sidered as a two-dimensional pattern. Kari [9] describes a CA as a
universal pattern generator in the sense that starting from a finite
configuration, all finite patterns over the state alphabet are generated,

112 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

which means here that these patterns occur as infixes in the sequence
of configurations computed.

The paper is organized as follows. In Section 2, we formally define
how CAs accept and generate formal languages and we present a
detailed example generating prefixes of the Thue–Morse sequence. Sec-
tion 3 is devoted to structural properties of cellular string generators.
Two speedup results are presented, which are used in the subsequent
constructions showing closure under intersection, reversal and length-
preserving homomorphism. In Section 4, we deal with the problems
of deciding emptiness, finiteness, infiniteness, inclusion, equivalence,
regularity and context-freeness of real-time cellular string generators.
By showing that suitably encoded computations of a Turing machine
can be generated by CAs in real time, all decidability problems men-
tioned turn out to be not semidecidable.

Preliminaries2.

We denote the non-negative integers by ℕ. Let Σ denote a finite set of
letters. Then we write Σ*

 for the set of all finite strings consisting of
letters from Σ. The empty string is denoted by λ, and we set
Σ+  Σ* \ {λ}. A subset of Σ*

 is called a language over Σ. For the length
of a string w we write w. In general, we use ⊆ for inclusions and ⊂

for strict inclusions. For convenience, we use S# to denote S⋃ {#}.

A two-way CA is a linear array of identical finite automata, called
cells, numbered 1, 2, … , n. Except for border cells, each one is con-
nected to both of its nearest neighbors. The state transition depends
on the current state of a cell itself and the current states of its two
neighbors, where the outermost cells receive a permanent boundary
symbol on their free input lines. The cells work synchronously at dis-
crete timesteps.

Formally, a deterministic two-way CA is a system

M  S, Σ, F, s0, #, δ, where S is the finite, nonempty set of cell

states, Σ ⊆ S is the set of input symbols, F ⊆ S is the set of accepting
states, s0 ∈ S is the quiescent state, # ∉ S is the permanent boundary

symbol, and δ : S#⨯S⨯S# → S is the local transition function satisfy-

ing δ(s0, s0, s0)  s0.

A configuration ct of M at time t ≥ 0 is a mapping

ct : 1, 2, … , n → S for n ≥ 1, occasionally represented as a word

over S. Given a configuration ct, t ≥ 0, its successor configuration is

computed according to the global transition function Δ, that is,
ct+1  Δ(ct), as follows. For 2 ≤ i ≤ n - 1,

ct+1(i)  δcti - 1, ct(i), cti + 1,

String Generation by Cellular Automata 113

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

and for the outermost cells we set

ct+11  δ#, ct1, ct2 and ct+1(n)  δctn - 1, ct(n), #.

Thus, the global transition function Δ is induced by δ.

Here, a CA M can operate as a decider or a generator of strings.

A CA accepts a string (or word) a1a2…an ∈ Σ+
 if at some timestep

during the course of the computation starting in the initial configura-
tion c0(i)  ai, 1 ≤ i ≤ n, the leftmost cell enters an accepting state,

that is, the leftmost symbol of some reachable configuration is an
accepting state. If the leftmost cell never enters an accepting state, the
input is rejected. The language accepted by M is denoted by

L(M)  w ∈ Σ+ w is accepted byM.

A CA generates a string a1a2…an if at some timestep t during the

computation on the initial configuration c0(i)  s0, 1 ≤ i ≤ n: (1) the

string appears as configuration (i.e., ct(i)  ai, 1 ≤ i ≤ n) and (2) con-

figuration ct is a fixed point of the global transition function Δ (i.e.,

the configuration is stable from time t on). The pattern generated by
M is

P(M)  w ∈ S+ w is generated byM.

Since the set of input symbols and the set of accepting states are not
used when a CA operates as a generator, we may safely omit them
from its definition.

Let t : ℕ → ℕ be a mapping. If all w ∈ L(M) are accepted with at
most t(w) timesteps, or if all w ∈ P(M) are generated with at most
t(w) timesteps, then M is said to be of time complexity t. If t(n)  n
then M operates in real time. The family of all patterns generated by a
CA in real time is denoted by rt(M).

We illustrate the definitions with an example.

Example 1. The Thue–Morse sequence is an infinite sequence over the

alphabet 0, 1. The well-known sequence has applications in numer-

ous fields of mathematics and its properties are nontrivial. There are
several ways of generating the Thue–Morse sequence, one of which is
given by a Lindenmayer system with axiom 0 and rewriting rules
0 → 01 and 1 → 10. The generation of strings can be described as fol-
lows: starting with the axiom, every symbol 0 (symbol 1) is in parallel
replaced by the string 01 (10). This procedure is iteratively applied to
the resulting strings and yields the prefixes p0  0, p1  01,

p2  0110, p3  01 101001, p4  0 110100 110010 110 and so on.

We remark that the length of the prefix pi is 2
i.

The pattern PThue   pi i ≥ 0  derived therefrom can be generated

by some CA in real time [7]. However, this means that nothing is

114 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

generated whenever the length of the CA is not a power of two. Here,
we are going to generalize this construction and extend the pattern
generated in such a way that prefixes pi of the Thue–Morse sequence

are also generated even when the length of the CA is not a power of
two. The goal is to generate on initial length n the prefix pi with

i  log2(n). Since the length of the generated prefix is larger than

the number of cells if n is not a power of two, we will group two adja-

cent symbols x, y ∈ 0, 1 of the sequence into states x y where

appropriate. Note that in the special case of an input length being a
power of two, the construction described here is the construction
given in�[7].

The basic idea is to work with a real-time version of the firing
squad synchronization problem (FSSP) based on the time-optimal solu-
tion of Waksman [10]. The latter solution starts with one general at
the left end of the array and it takes n - 1 timesteps (n being the
length of the array) to reach the right end. If we start instead with
two generals at both ends, where the left general symmetrically
behaves like the right general, we save n - 1 timesteps. Since we need
one additional timestep to initialize the generals at both ends, we can

realize the FSSP within 2n - 2 - n - 1 + 1  n timesteps, that is,

within real time.
In the construction of the FSSP, the initial length is iteratively

divided into halves, whereby dependent on the arity, one or two mid-
dle points and thus one or two new generals are generated. In the first
case, here the single middle cell is virtually split into two. These cells
will represent two grouped adjacent symbols of the sequence. Next,
we identify these cells. The following recursive formula f(n, m) gives 2

if the mth
 cell on initial length n contains a compressed symbol, and

otherwise gives 1:

f(n, m) 

1 if n  1 or m ≤ 1,

2 if n > 1 odd and m 
n + 1

2
,

f
n + 1

2
, m mod

n + 1

2
+

m div
n + 1

2

if n > 1 odd and m ≠
n + 1

2
,

f
n

2
, m mod

n

2
if n > 1 even.

For example, in Figure 1 we have f15, 4  f8, 4  f4, 0  1,

f15, 8  2 and f15, 13  f8, 6  f4, 2  f2, 0  1.

String Generation by Cellular Automata 115

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

Figure 1. Generation of the prefix p4  0 110100 110 010110 of the Thue–

Morse sequence on initial length n  15.

In Figure 2 we have f17, 2  f9, 2  f5, 2  f3, 2  2,

f17, 8  f9, 8  f5, 4  f3, 2  2 and f17, 17  f9, 9 

f(5, 5)  f3, 3  f2, 2  f1, 0  1.

Figure 2. Generation of the prefix p5 of the Thue–Morse sequence on initial

length n  17.

The function f can be used to define the generated compressed
Thue–Morse sequence as follows. Let fn(m)  ∑j1

m f(n, j) and let

pi  wi, 1wi, 2…wi, 2i be an enumeration of the symbols of prefix pi.

Then, the corresponding compressed prefix pi
′(n) on initial length n

with i  log2(n) is pi
′n, 1pi

′n, 2…pi
′(n, n), where we define

pi
′(n, m)  wi, fn(m) if f(n, m)  1, and pi

′(n, m)  wi, fn(m)-1wi, fn(m) if

f(n, m)  2. For example, if n  15, we have f15, 8  2 and

116 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

f15, j  1 if j ≠ 8. Hence, f158  9 and f1513  14, which gives

p4
′ 15, 8  11 and p4

′ 15, 13  1, respectively.

The general generation procedure is as follows (see Figures 1 and 2

for examples). Initially, at time n  2 + 1, the left new middle cell

obtains the information 0 and the right new middle cell obtains the
information 1, or the new single and grouped middle cell obtains the
information 0 1. In the latter case, the cell simulates two cells from

now on. The signals sent out from the new middle cells to the left and
right, respectively, have this information attached. If these signals
meet some other signal so that another one or two new middle cell(s)
is (are) generated, the left cell gets the information 0 and the right cell
gets the information 1 if the signal carried the information 0. Other-
wise, the left cell gets the information 1 and the right cell gets the
information 0. This behavior is iterated up to the next to last timestep
in which all cells have become a general. In the last timestep, in which
all cells are synchronized, a left signal 0 (1) in cell i at time n - 1 leads
to 0 (1) in cell i - 1 and 1 (0) in cell i at time n. Analogously, a right
signal 0 (1) in cell i at time n - 1 leads to 0 (1) in cell i and 1 (0) in
cell i + 1 at time n. Note that here a split cell simulates two cells that
are counted to determine the numbers i. Finally, after the synchroniza-
tion, all states of the array represent the string generated and become
permanent.

Let Σ  0, 1, 0 0, 0 1, 1 0, 1 1 be the alphabet and π be a pro-

jection to the original letters, that is, π(x)  x and π(x y)  xy, for

x, y ∈ 0, 1. Then, the pattern generated by the constructed real-time

CA M has the desired property: w ∈ P(M) implies π(w)  pi with

i  log2(w).

Structural Properties 3.

For unary patterns of the form

Pφ   an if there is an m with n  φ(m) 

or even

P

φ  xn x  a if there is an m with n  φ(m), x  b otherwise,

where φ : ℕ → ℕ is a time-constructible function, the three notions of
language acceptance, time-constructibility and string generation are
characterizing each other; that is, they coincide. Here, we now turn to
structural properties of the string generators as speedup and closures
of the set of generated strings under certain operations.

String Generation by Cellular Automata 117

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

Speedup 3.1

Several types of cellular language acceptors can be sped up as long as
the remaining time complexity does not fall below real time. A proof
in terms of trellis automata can be found in [11]. In [12, 13] the
speedup results are shown for deterministic and nondeterministic
cellular and iterative language acceptors. The proofs are based on
sequential machine characterizations of the parallel devices. In
particular, for all k ≥ 1, deterministic CAs can be sped up from

(n + t(n))-time to n + t(n)  k-time [12–14]. The question of

whether every linear-time cellular language acceptor can be sped up
to real time is an open problem.

The situation for string generators is more involved. While for lan-
guage acceptors usually only the states of one distinguished cell deter-
mine acceptance or rejection, the states of all cells are the result of a
string generation. So, these known speedup results do not apply here.
However, in terms of transducers that given an input of size n com-
pute an output of size n, a speedup result is known [5] that can be
adapted to our notion.

As a preliminary lemma, we prove that cellular string generators
working in real time plus a constant amount of time can always be
sped up to real time.

Lemma 1. Let M be a cellular string generator with time complexity
n + k, where k ≥ 1 is a constant integer. Then an equivalent real-time
string generator M′

 can effectively be constructed.

Proof. The basic idea for the construction of M′
 is to have in every

cell k + 1 tracks such that at time t the tracks in M′
 are filled with

states from M at time t, t + 1, … , t + k. Hence, timestep n + k in M is
simulated at time n in M′

 in the last track. The construction works in
two phases. In the first phase, we start the simulation of M at both
ends, but we simulate k + 1 timesteps of M at once in every cell leav-
ing the quiescent state s0. In the remaining timesteps, each cell shifts

the contents of its ith track to its i - 1
st

 track for 2 ≤ i ≤ k + 1 and

updates the entry in the k + 1
st

 track. Hence, every cell keeps track

of the last k + 1 timesteps.
We have a left part and a right part of the computation in this first

phase. For the left part, we may assume that all missing information
from the right can be replaced by the information s0, since in the

beginning all cells are in the quiescent state s0. In addition, we have to

provide each cell in the left part with the necessary information from
the left, namely, with the states of the k cells to the left. This can be
realized by using k additional tracks. Analogously, we can assume for
the right part of the computation that missing information from the

118 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

left can be replaced by s0 and we can provide information about the

states of the k cells to the right by using k tracks.

At time n  2 + 1, if the initial length n is even and at time

n + 1  2 if n is odd, the left and right part of the computation meet

in the middle cell(s), from which the second phase starts. In this

phase, all information to update the entries in the k + 1
st

 track is

available, taking into account both neighbors. Hence, the simulation
of the last k + 1 timesteps can be continued. At timestep n in M′, we

have eventually simulated the desired n + k
th

 timestep of M in the

k + 1
st

 track. To extract this information in the nth timestep of M′,

we start an instance of the FSSP in the beginning of another track. If

the FSSP fires at timestep n, we just output the k + 1
st

 track that

would be calculated at timestep n. □

Example 2. Let us discuss the speedup from n + 2 to n starting with an
initial length of n  7. Figure 3 shows the original computation
where configurations are numbered from 1 to 63, as well as the sped-
up computation.

(a) (b)

Figure 3. (a) Original computation of n + 2 timesteps on initial length n  7
as discussed in Example 2. (b) The sped-up real-time computation.

Here, the lower three tracks are used to keep track of the states in
the last three timesteps of the original computation. The upper two
tracks are used to send information from left to right in the left part
and from right to left in the right part. This information is used to
update the lower three tracks. In the first phase, states are computed

String Generation by Cellular Automata 119

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

under the assumption that enough cells to the right or left, respec-
tively, are in the quiescent state s0. If this assumption fails, since the

middle cell(s) are approached, we still have to enter some state accord-
ing to the assumption, but this state may not be the state of the origi-
nal computation and is denoted by ⎵. However, such states are not
necessary for the computation in the second phase.

Next, we turn to showing how to speed up the part of the time
complexity beyond real time by a constant factor. As mentioned
before, to this end we consider the involved and tricky construction
shown for transductions in [5]. Before we turn to the adaption to our
notion, we sketch the underlying idea of [5] to speed up the part of
the time complexity beyond real time by a factor 2 (see Figure 4). The

basic idea is to compress the input of length n into the

n

2
 cells

1

4
n + 1,

1

4
n + 2, … ,

3

4
n, to simulate the given (n + t(n))-time CA with

double speed on the compressed input, and to decompress the simula-
tion result. The most involved part is the compression depicted in the
red parts of the space-time diagram in Figure 4. Roughly speaking, in
these areas the compression takes place in addition to as many as pos-
sible simulation steps. The cells in the green area of the space-time

Figure 4. Principle of speeding up the part of the time complexity beyond real
time by a factor 2 according to [5].

120 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

diagram are in the quiescent state. The simulation in the blue area

is with double speed. Concerning the time, once cell

1

2
n has left

the�quiescent state, it has to perform a further

1

2
n + t(n) steps. Since

the simulation is with double speed, this takes

1

4
n +

1

2
t(n) time. The

decompression of the computation result takes another
1

4
n timesteps.

Theorem 1. Let M be a cellular string generator with time complexity
n + t(n), where t : ℕ → ℕ is a function such that M is synchronizable at
timestep n + t(n). Then, for all k ≥ 1, an equivalent string generator

M′
 with time complexity n + t(n)  k can effectively be constructed.

Proof. The principle of the construction is as shown in [5] and has
been described above. However, since a cellular string generator has
to end a successful computation in a stable configuration, there are
differences with the transductions considered in [5]. So, basically, the
simulation sketched in Figure 4 has to be stopped synchronously at

time

3

4
n +

1

2
t(n), and the decompression has to be stopped syn-

chronously at time n +
1

2
t(n).

The first synchronization justifies the condition that M has to be
synchronizable at timestep n + t(n). So, some FSSP that synchronizes
M at this time is implemented on an extra track of M. Therefore, its

simulation is finished by firing the cells

1

4
n + 1,

1

4
n + 2, … ,

3

4
n at

time

3

4
n +

1

2
t(n) as required. Additionally, the decompression phase is

started synchronously.
The second synchronization is achieved by using two more extra

tracks. On the first track, an FSSP is implemented that synchronizes
all cells at timestep n. On the second track, an FSSP is implemented
that would synchronize all cells at time n + t(n). But now this second
FSSP runs with speed one until the first FSSP fires, and continues with

half speed. So it fires at time n +
1

2
t(n) as required. □

Closure Properties 3.2

This subsection is devoted to investigating the closure properties of

the family rtCA. We start with the Boolean operations.

Proposition 1. The family rtCA is closed under intersection. It is

closed neither under union nor under complementation.

Proof. The first result is the closure under intersection, which can be
realized by the well-known Cartesian product construction using two
tracks, in each of which the given real-time string generators are

String Generation by Cellular Automata 121

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

simulated. Additionally, in a third track an instance of the FSSP is
started. In the last timestep, when the FSSP is firing, it is checked in
each cell whether or not in the first and second track the same state s
would be entered. If so, the single state s is entered. Otherwise, some
new state p is entered that alternates with another new state q. It is
clear that in this way all strings are generated that are generated by
both given real-time string generators. On the other hand, states p
and q ensure that no string is generated that is not generated by both
given real-time string generators.

Next we study the union operation. Each real-time string generator
M with state set S can be considered to define a (partial) function fM
between ℕ and S+. Hence, a real-time string generator M that gener-
ates the union P(M1)⋃ P(M2) for real-time string generators M1 and

M2 defines such a function fM as well. This means that there must not

be any n ∈ ℕ such that fM1
(n) ≠ fM2

(n). In other words, if two real-

time string generators produce different strings on the same initial
length, the union cannot be described by a function and hence cannot
be realized by a real-time string generator. This shows that the family

rtCA is not closed under union. By De Morgan’s laws we

obtain�that the family rtCA is not closed under complementation

as�well.�□

We would like to remark that in [7] it has been shown that the
pattern

P

φ  xn x  a if there is an m with n  φ(m), x  b otherwise

is generated by some real-time CA if φ is a time-constructible func-
tion. Define the pattern

P

φ

c
 xn x  a if there is an m with n ≠ φ(m), x  b otherwise.

By interchanging the roles of the symbols a and b, we immediately

obtain that the pattern P

φ

c
 is generated by some real-time CA as well.

Clearly, P

φ

c
 is in general not the set-theoretic complement of P


φ, but

can be interpreted to be the opposite of P

φ.

For the union of two patterns generated, we may consider the
special case that the union can be described by a function. The basic

idea to show the closure of rtCA in this special case would be simi-

lar to the construction for the intersection. That is, in two tracks the
given real-time string generators are simulated and in the third track
an instance of the FSSP is started. Analogously, in the last timestep it
is checked whether the first two tracks would generate the same sta-
ble configuration or exactly one stable configuration. However, an

122 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

instability can occur, for example, in one cell only, say on the first
track. If the configuration on the second track is stable, then we
should generate it. Otherwise, the unstable cells should stay unstable
so that no string is generated. Thus, the instability should be made
stable if and only if the other configuration is stable. This check prob-
ably costs more than constant time. Hence, it is currently an open
question whether a real-time CA generating the union can be con-
structed even if the union of patterns can be described by a function.

Next, we look at the reversal operation. By interchanging the left-
hand and right-hand entries of the local transition function, we imme-
diately obtain that the reversal of a real-time pattern can also be
generated by a real-time string generator.

Proposition 2. The family rtCA is closed under reversal.

Finally, we investigate homomorphisms and obtain that the family

rtCA is not closed under arbitrary homomorphisms, whereas we

can show that the family rtCA is closed under length-preserving

homomorphisms.

Proposition 3. The family rtCA is not closed under arbitrary homo-

morphism, but is closed under length-preserving homomorphism.

Proof. For the nonclosure under arbitrary homomorphism, we con-

sider the language L  a, bb, which can be generated by a real-time

CA, and the homomorphism h, which maps a to aa and b to b. Then,

h(L)  aa, bb, which cannot be generated by any real-time CA.

Now, let M  S, s0, #, δ be a real-time CA generating the pattern

P ⊆ Σ*, where Σ ⊆ S. Moreover, let h : Σ* → Γ*
 be a length-preserving

homomorphism. For the construction of a CA that generates h(P) in
real time, we consider a primed version S′ of the state set S, where the
primed version of Σ is denoted by Σ′, and we extend h to a length-

preserving homomorphism h′ mapping from S′* to S′ ⋃ Γ
*
 such that

h′(a′)  h(a) if a′ ∈ Σ′, and h′(s′)  s′ if s′ ∈ S′ \Σ′.
Next, we will sketch the construction of a CA M′

 generating
P(M′)  h′(P(M))  h′(P)  h(P) in real time plus one that is subse-
quently sped up with Lemma 1 to work in real time. The basic idea is
to work with three tracks and to start in the first track the simulation
of M with state set S′, and in the second track an instance of the FSSP.
At timestep n, when the FSSP fires, we generate in the third track the
homomorphic image under h′ of the first track. At timestep n + 1, we
check in every cell whether its state in the first track, that is, in the
simulated configuration of M at time n, would also remain the same
in the next timestep, that is, in the simulated configuration of M at
time n + 1. If so, each such cell enters the state from the third track,

String Generation by Cellular Automata 123

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

that is, the homomorphic image under h′ of the state in the simulated
configuration of M at time n. Otherwise, a new state p is entered that
alternates with some other new state q. Furthermore, the transition
function of M′

 is suitably complemented so that configurations con-
taining only symbols from Γ remain stable. If the configuration of M
at time n is stable, a string from Σ*

 is generated by M and we obtain
that the homomorphic image under h′, which is equivalent to h on Σ,
of this string is generated by M′. Otherwise, if M generates no string
due to an unstable configuration, then M′

 enters an unstable configu-
ration as well. Therefore, it is ensured that M′

 generates no string as

well in such cases. □

Decidability Problems 4.

In order to generate some sophisticated patterns, we provide a tech-
nique that is based on the possibility of CAs to simulate certain data
structures without any loss of time [3]. Here we consider in particular
the data structures queues and rings, where a ring is a queue that can
write and erase at the same time (for convenience we will call both
queues). For the simulation, some designated cell (the rightmost one,
for example) simulates the front and the end of the queues. For the
sake of completeness, we next recall exemplarily the principle of this
simulation from [3].

Simulation of a queue and ring store. It suffices to use three addi-
tional tracks for the simulation. Let the three registers of each cell be
numbered one, two and three from top to bottom, and suppose that
the second register is connected to the first register of the right neigh-
bor, and the third register is connected to the third register of the
right neighbor. The content of the store is identified by scanning the
registers as connected. That is, beginning in the designated cell, first
the first register is scanned and then the second register. Next the first
and second register of the right neighbor, and so on until the last cell
participating in the simulation is reached. The scanning continues
with its third register and then with the third register of its left neigh-
bor, and so on. Empty registers are ignored.

The store dynamics of the transition function is defined such that
each cell prefers to have only the first two registers filled. The third
register is used to move the entered symbols to the end of the store.
Altogether, it obeys the following rules (cf. Figure 5).

If the third register of a left neighbor is filled, a cell takes over the
symbol from that register. The cell stores the symbol into its first free
register, if possible. Otherwise, it stores the symbol into its own third
register.

1.

124 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

Figure 5. Principle of a ring (queue) simulation. Subfigures are in row-major
order.

If the third register of its left neighbor is free, it marks its own third
register as free.

2.

If the second register of its left neighbor is free, it erases its own first
register. Observe that the erased symbol is taken over by the left neigh-
bor. In addition, the cell stores the content of its second register into its
first one, if the second one is filled. Otherwise, it takes the symbol of
the first register of its right neighbor, if this register is filled.

3.

If the second register of its left neighbor is filled and its own second reg-
ister is free, then the cell takes the symbol from the first register of its
right neighbor and stores it into its own second register.

4.

Possibly, more than one of these actions are superimposed.5.

Undecidability results. The first decidability problem we are deal-
ing with is the question of whether a given CA M generates a string at
all, or whether the pattern P(M) is empty. In order to show that the
emptiness problem is not even semidecidable, even for CAs that gener-
ate patterns in real time, we reduce the problem to decide whether a
Turing machine does not halt on empty input. It is well known that
this problem is not semidecidable.

For the reduction, a technique from [15] is utilized. Basically, the
history of a Turing machine computation is encoded into a string. It
suffices to consider deterministic Turing machines with one single
tape and one single read-write head. Without loss of generality and
for technical reasons, we assume that the Turing machines can either

String Generation by Cellular Automata 125

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

print a symbol on the current tape square or move the head one
square to the right or left. Moreover, they neither can print blanks
nor leave a square containing a blank. Finally, a Turing machine is
assumed to perform at least one transition. So, let Q be the state set
of some Turing machine M, where q0 is the initial state and

T ⋂Q  ∅ is the tape alphabet containing the blank symbol ⎵. Then

a configuration of M can be written as a string of the form

T*Q, TT*
 such that x1x2…xi(q, y)xi+1xi+2…xn is used to express

that M is in state q, scanning tape symbol y, and
x1x2…xiyxi+1xi+2…xn is the support of the tape inscription.

Dependent on M, we define the string vM. Let $ ∉ T ⋃Q, m ≥ 1

and wi ∈ T*Q, TT*, 0 ≤ i ≤ m be configurations of M. If M does

not halt on empty input, then vM  λ. Otherwise, we set

vM  $w0$w1$w2$⋯wm,

where w0 is the initial configuration (q0, ⎵), wm is a halting configura-

tion and wi is the successor configuration of wi-1, 1 ≤ i ≤ m. Now we

define a pattern as PM  {vM} \ {λ}.

Proposition 4. Let M be a Turing machine. Then the pattern PM is gen-

erated by some CA in real time.

Proof. The basic idea of the construction of a real-time CA that gener-
ates PM is as follows. The rightmost cell emits one symbol of the

string vM in every timestep onto a special track. The content of this ini-

tially empty track is successively shifted to the left by all cells. In
order to compute the correct symbols, the rightmost cell simulates a
queue. In addition, it uses two auxiliary registers, R1 and R2.

In more detail, the rightmost cell does the following. Whenever it
emits a symbol onto the special track, this symbol is additionally
entered into the initially empty queue. Let δ be the transition function
of M, and δ(q0, ⎵)  (q′, y) with y ∈ T (recall that M cannot leave a

blank square). Then, in the first three steps, the rightmost cell emits
the symbols $, (q0, ⎵) and $ (the first three symbols of vM) and fills

R1 with (q′, y) and R2 with $. In general, registers R1 and R2 contain

two symbols that can be seen as at the front of the queue. So, after
the third step the actual queue content is empty and its extension by
the two registers is (q′, y)$ (the first symbol is at the front of the
queue), which is basically the second configuration of M. From now
on, the queue content is revolved symbol by symbol, whereby the suc-
cessor configuration is determined, emitted and entered into the
queue again.

We distinguish two cases. First, let R2 contain a single symbol

from T ⋃ $. This means that the short part of the configuration that

126 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

may change due to an action of M is yet unreached or already pro-
cessed. So in this case, the content of R1 is emitted, the content of R2

is moved to R1, and the first symbol is removed from the actual queue

and stored into R2 (see Figure 6).

In the second case, register R2 contains a symbol (q, x) from Q⨯T.

This means that the part of the configuration that may change due to
an action of M is reached. In order to compute the changes, a step of
M has to be simulated. Dependent on the head movement of M, we
distinguish subcases. If δ(q, x)  (q′, y), that is, M writes without
moving the head, then the action is as shown in Figure 7.

Emit and enqueue : R1, R1 ← R2, R2 ← dequeue.

Figure 6. Action of the rightmost cell. On the left the action is depicted sym-
bolically. For the cell structure, the register of the left-shifting track to which
symbols are emitted (indicated by the left arrow on top), register R1 above

register R2 and the idealized queue are depicted.

Emit and enqueue : R1, R1 ← (q′, y), R2 ← dequeue.

Figure 7. Action of the rightmost cell when the head of the Turing machine
does not move. The cell structure is as in Figure 6.

If δ(q, x)  q′, left and R1 contains $, that is, M moves its head to

the left from the leftmost visited square to a blank square, then the
action is as shown in Figure 8 at the top.

If δ(q, x)  q′, left and R1 does not contain $, that is, M moves

its head to the left to a nonblank square, then the action is as shown
in Figure 8 at the bottom.

If δ(q, x)  q′, right and the symbol at the front of the actual

queue is $, that is, M moves its head to the right from the rightmost
visited square to a blank square, then the action is as shown in Fig-
ure�9 at the top.

String Generation by Cellular Automata 127

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

Emitand enqueue : R1, R1 ← (q′, ⎵), R2 ← x.

Emit and enqueue : q′, R1, R1 ← x, R2 ← dequeue.

Figure 8. Action of the rightmost cell when the head of the Turing machine

moves to the left. z

∈ T \ {⎵}. The cell structure is as in Figure 6.

Emit and enqueue : R1x, R1 ← (q′, ⎵), R2 ← dequeue.

Emit and enqueue : R1x, R1 ← q′, dequeue, R2 ← dequeue.

Figure 9. Action of the rightmost cell when the head of the Turing machine

moves to the right. z

∈ T \ {⎵}. The cell structure is as in Figure 6.

Finally, if δ(q, x)  q′, right and the symbol at the front of the

actual queue is not $, that is, M moves its head to the right to a non-
blank square, then the action is as shown in Figure 9 at the bottom.

For easier writing, in the last two subcases two symbols are emit-
ted. These subcases are actually realized by two steps.

In order to conclude the construction of the real-time CA, we add
an additional track on which an FSSP is set up that synchronizes the
array at real time. At that time, the leftmost cell receives the first sym-
bol of the generated sequence, and all but possibly the rightmost cell
enter a state that is their current symbol of the sequence. However,

128 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

the generated sequence is the valid string vM only if the last configura-

tion computed by the rightmost cell is a halting configuration of M.
So the rightmost cell is extended such that it always checks whether
the current configuration (of M) is halting. If not, the computation
continues to emit symbols as before. If yes, the computation continues
to emit the current configuration and a trailing $. After that, it just
emits some error symbol. Finally, the rightmost cell enters the stable
state $ (the last symbol of vM) if it emits this $ as the trailing symbol

of a halting configuration exactly at the synchronization time, that is,
at real time. Otherwise it starts to alternate between entering two
different states, thus preventing the computation from generating a
pattern.

We conclude that the real-time CA constructed generates the string
vM if and only if M halts on empty tape and the length of the array is

vM. That is, it generates pattern PM. □

Basically, Proposition 4 is already the reduction of the problem to
decide whether a Turing machine does not halt on empty input to our
emptiness problem.

Theorem 2. Given a real-time CA M, it is not semidecidable whether
P(M) is empty.

Proof. Given an arbitrary Turing machine M′, by Proposition 4 we
construct a real-time CA M that generates the pattern PM′ . Pattern

PM′ is empty if and only if M′
 does not halt on empty input. So if the

emptiness of P(M) were semidecidable, then the problem to decide
whether a Turing machine does not halt on empty input would be

semidecidable, a contradiction. □

From the undecidability of the emptiness problem, the undecidabil-
ity of the equivalence and inclusion problem follows immediately.

Corollary 1. Given two real-time CAs M1 and M2, it is neither semide-

cidable whether they generate the same pattern, that is,
P(M1)  P(M2), nor whether P(M1) ⊆ P(M2).

Proof. It is easy to construct a real-time CA that generates the empty
pattern. So if equivalence would be semidecidable, then emptiness
would be semidecidable as well. Since P(M1)  P(M2) if and only if

P(M1) ⊆ P(M2) and P(M2) ⊆ P(M1), the semidecidability of inclusion

would imply the semidecidability of equivalence, a contradiction. □

Theorem 3. Given a real-time CA M, it is neither semidecidable
whether P(M) is finite nor whether P(M) is infinite.

Proof. Let M′
 be an arbitrary Turing machine.

String Generation by Cellular Automata 129

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.25088/ComplexSystems.30.2.111

In order to show the assertion for finiteness, the pattern PM′ is

extended to P

M′  vM′an n ≥ 0 \ an n ≥ 0 . Since P


M′ is empty

and thus finite if and only if M′
 does not halt on empty input, the non-

semidecidability of finiteness follows.
For infiniteness, the pattern PM′ is changed differently. We set

P

M′   $w0$w1$⋯$wm$ m ≥ 1,

w0  (q0, ⎵), and wi is successor of wi-1 .

Since pattern P

M′ is infinite if and only if M′

 does not halt on empty

input, the non-semidecidability of infiniteness follows. □

Next we turn to two decidability problems that, to some extent,
relate pattern generation with language acceptance. It is of natural
interest if a given language is regular or context free. So here we can
ask whether the strings of a pattern form a regular or context-free lan-
guage.

Theorem 4. Given a real-time CA M, it is neither semidecidable
whether P(M) forms a regular nor whether P(M) forms a context-free
language.

Proof. Let L be an arbitrary recursively enumerable language. Then
there is a Turing machine M′

 that enumerates the words of L; that is,
it produces a list of not necessarily distinct words from L such that
any word in L appears in the list. Modify M′

 as follows. Whenever a
new word w is to be put into the list, the new machine M′′

 first
checks if w already appears in the list. If yes, it is not put into the list
again and M′′

 continues to enumerate the next word. If not, the word
w is put into the list and after that M′′

 enters a state from some set

Q+ that indicates that a new word has been enumerated.

Similarly to the proof of Theorem 3 we set

PM′′   $w0$w1$⋯$wm$ m ≥ 1, w0  (q0, ⎵),

wi is successor of wi-1, and the state in wm belongs toQ+ .

So if L is finite, the pattern PM′′ is finite and thus regular and con-

text free. If L is infinite, the pattern PM′′ is infinite, and a simple appli-

cation of the pumping lemma shows that it is not regular and not

context free. In particular, pattern PM′′ is regular and context free if

and only if L is finite. Since finiteness of recursively enumerable lan-

guage is not semidecidable, the assertion follows. □

130 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

Acknowledgments

A preliminary version of this work was presented at the 26th Interna-
tional Workshop on Cellular Automata and Discrete Complex Sys-
tems (AUTOMATA 2020), August 10–12, 2020, and is published
in�[16].

References

[1] A. R. Smith, “Cellular Automata and Formal Languages,” in 11th
Annual Symposium on Switching and Automata Theory (SWAT 1970),
Piscataway, NJ: IEEE, 1970 pp. 216–224. doi:10.1109/SWAT.1970.4.

[2] C. R. Dyer, “One-Way Bounded Cellular Automata,” Information and
Control, 44(3), 1980 pp. 261–281.
doi:10.1016/S0019-9958(80)90164-3.

[3] M. Kutrib, “Cellular Automata: A Computational Point of View,” New
Developments in Formal Languages and Applications (G. Bel-Enguix,
M. D. Jiménez-López and C. Martín-Vide, eds.), Berlin: Springer, 2008
pp. 183–227. doi:10.1007/978-3-540-78291-9_6.

[4] M. Kutrib, “Cellular Automata and Language Theory,” Encyclopedia
of �Complexity and Systems Science (R. A. Meyers, ed.), New York:
Springer, 2009 pp. 800–823.

[5] A. Grandjean, G. Richard and V. Terrier, “Linear Functional Classes
over Cellular Automata,” in Proceedings of the 18th International
Workshop on Cellular Automata and Discrete Complex Systems and
the 3rd International Symposium Journées Automates Cellulaires
(AUTOMATA & JAC 2012) (E. Formenti, ed.), EPTCS, 90, 2012
pp.�177–193. doi:10.4204/EPTCS.90.15.

[6] M. Kutrib and A. Malcher, “One-Dimensional Cellular Automaton
Transducers,” Fundamenta Informaticae, 126(2), 2013 pp. 201–224.
doi:10.3233/FI-2013-878.

[7] M. Kutrib and A. Malcher, “One-Dimensional Pattern Generation by
Cellular Automata,” in Proceedings of the 14th International
Conference on Cellular Automata for Research and Industry (ACRI
2020), Lodz, Poland (T. M. Gwizdałła, L. Manzoni, G. C. Sirakoulis,
S. Bandini and K. Podlaski, eds.), Cham, Switzerland: Springer, 2020
pp.�46–55. doi:10.1007/978-3-030-69480-7_6.

[8] S. Wolfram, “Random Sequence Generation by Cellular Automata,”
Advances in Applied Mathematics, 7(2), 1986 pp. 123–169.
doi:10.1016/0196-8858(86)90028-X.

[9] J. Kari, “Universal Pattern Generation by Cellular Automata,” Theoreti-
cal Computer Science, 429, 2012 pp. 180–184.
doi:10.1016/j.tcs.2011.12.037.

String Generation by Cellular Automata 131

https://doi.org/10.25088/ComplexSystems.30.2.111

https://doi.org/10.1109/SWAT.1970.4
https://doi.org/10.1016/S0019-9958(80)90164-3
https://doi.org/10.1007/978-3-540-78291-9_6
https://doi.org/10.4204/EPTCS.90.15
https://doi.org/10.3233/FI-2013-878
https://doi.org/10.1007/978-3-030-69480-7_6
https://doi.org/10.1016/0196-8858(86)90028-X
https://doi.org/10.1016/j.tcs.2011.12.037
https://doi.org/10.25088/ComplexSystems.30.2.111

[10] A. Waksman, “An Optimum Solution to the Firing Squad Synchroniza-
tion Problem,” Information and Control, 9(1), 1966 pp. 66–78.
doi:10.1016/S0019-9958(66)90110-0.

[11] C. Choffrut and K. ��ulik II, “On Real-Time Cellular Automata and
Trellis Automata,” Acta Informatica, 21(4), 1984 pp. 393– 407.
doi:10.1007/BF00264617.

[12] O. H. Ibarra, S. M. Kim and S. Moran, “Sequential Machine Characteri-
zations of Trellis and Cellular Automata and Applications,” SIAM Jour-
nal on Computing, 14(2), 1985 pp. 426– 447. doi:10.1137/0214033.

[13] O. H. Ibarra and M. A. Palis, “Some Results Concerning Linear Itera-
tive (Systolic) Arrays,” Journal of Parallel and Distributed Computing,
2(2), 1985 pp. 182–218. doi:10.1016/0743-7315(85)90034-6.

[14] W. Bucher and K. ��ulik II, “On Real Time and Linear Time Cellular
Automata,” RAIRO Informatique Théorique et Applications, 18(4),
1984 pp. 307–325. www.numdam.org/item/ITA_1984__18_4_307_0.

[15] J. Hartmanis, “On the Succinctness of Different Representations of Lan-
guages,” in Proceedings of the 6th International Colloquium on
Automata, Languages and Programming (ICALP 1979), Graz, Austria
(H. Maurer, ed.), Berlin, Heidelberg: Springer, 1979 pp. 282–288.
doi:10.1007/3-540-09510-1_22.

[16] M. Kutrib and A. Malcher, “Cellular String Generators,” in Proceedings
of the 26th International Workshop on Cellular Automata and Discrete
Complex Systems (AUTOMATA 2020), Stockholm, 2020 (H. Zenil,
ed.), Cham, Switzerland: Springer, 2020 pp. 59–70.
doi:10.1007/978-3-030-61588-8_5.

132 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021

https://doi.org/10.1016/S0019-9958(66)90110-0
https://doi.org/10.1007/BF00264617
https://doi.org/10.1137/0214033
https://doi.org/10.1016/0743-7315(85)90034-6
http://www.numdam.org/item/ITA_1984__18_4_307_0/
https://doi.org/10.1007/3-540-09510-1_22
https://doi.org/10.1007/978-3-030-61588-8_5

