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In  contrast  to  many  investigations  of  cellular  automata  with  regard  to
their  ability  to  accept  inputs  under  certain  time  constraints,  in  this
paper  we  are  studying  cellular  automata  with  regard  to  their  ability  to
generate  strings  in  real  time.  Structural  properties  such  as  speedup
results  and  closure  properties  are  investigated.  On  the  one  hand,
constructions  for  the  closure  under  intersection,  reversal  and  length-
preserving  homomorphism  are  presented,  whereas  on  the  other  hand
the nonclosure under union, complementation and arbitrary homomor-
phism  are  obtained.  Finally,  decidability  questions  such  as  emptiness,
finiteness,  equivalence,  inclusion,  regularity  and  context-freeness  are
addressed. 
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Introduction1.

Cellular automata (CAs) are a widely used model to describe, analyze
and understand parallel processes. They are particularly applicable to
massive  parallel  systems,  since  they  are  arrays  of  identical  copies  of
deterministic  finite  automata  where,  in  addition,  the  single  nodes  are
homogeneously connected to both their immediate neighbors. Further-
more, they work synchronously at discrete timesteps processing a par-
allel distributed input, where every cell is fed with an input symbol in
a pre-initial step.

A standard approach to measure the computational power of some
model  is  to  study  its  ability  to  accept  formal  languages  (see,  for
example,  [1]).  In  general,  the  given  input  is  accepted  if  there  is  a
timestep at which a designated cell, usually the leftmost one, enters an
accepting  state.  Commonly  studied  models  are  two-way  CAs  with
time restrictions such as real time or linear time, which means that the
available  time  for  accepting  an  input  is  restricted  to  the  length  of  the
input  or  to  a  multiple  of  the  length  of  the  input.  An  important
restricted  class  is  the  real-time  one-way  CAs  [2],  where  every  cell  is
connected  only  with  its  right  neighbor.  Hence,  the  flow  of
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information  is  only  from  right  to  left.  A  survey  of  results  concerning
the  computational  capacity,  closure  properties  and  decidability  ques-
tions  for  these  models  and  references  to  the  literature  may  be  found,
for example, in [3, 4]. 

In the language accepting approach, each computation can be con-
sidered  as  producing  a  yes  or  no  answer  for  every  possible  input
within  a  certain  time.  A  much  broader  view  on  cellular  automaton
(CA) computations is taken in [5, 6], where CA computations are con-
sidered as transducing actions; that is, they produce an output of size
n for every input of size n under time constraints such as real and lin-
ear  time.  Thus,  the  point  of  view  changes  from  a  parallel  language
accepting  device  to  a  parallel  language  transforming  device.  Grand-
jean et al. [5] discusses for CAs the time constraints of linear time and
real  time.  Moreover,  the  inclusion  relationships  based  on  these  con-
straints,  closure  properties  and  relations  to  CAs  considered  as  formal
language  acceptors  are  established.  An  important  technical  result  is  a
speedup theorem stating that every computation beyond real time can
be  sped  up  by  a  linear  factor.  Kutrib  and  Malcher  [6]  also  considers
CAs  with  sequential  input  mode,  called  iterative  arrays,  as  transduc-
ing  devices.  In  particular,  these  devices  are  compared  with  the  CA
counterpart  with  parallel  input  mode.  In  addition,  the  cellular  trans-
ducing  models  are  compared  with  classical  sequential  transducing
devices such as finite-state transducers and pushdown transducers. 

In  this  paper,  we  will  look  at  computations  with  CAs  from  yet
another  perspective.  Rather  than  computing  a  yes  or  no  answer  or
computing  an  output,  we  are  considering  CAs  as  generating  devices.
This  means  in  detail  that  the  CA  starts  with  an  arbitrary  number  of
cells all being in a quiescent state and, subsequently, works by apply-
ing  its  transition  function  synchronously  to  all  cells.  Finally,  if  the
configuration reaches a fixed  point, the sequence of cell states is con-
sidered as the string generated. From this point of view, CAs compute
a (partial) function mapping an initial length n to a string of length n
over  some  alphabet.  First  investigations  for  this  model  have  been
made  in  [7].  In  particular,  the  real-time  generation  of  unary  patterns
is  studied  in  depth  and  a  characterization  by  time-constructible  func-
tions and their corresponding unary formal languages is given. In this
paper,  we  will  continue  these  investigations  for  real-time  CAs  and
study, in particular, speedup possibilities, closure properties and decid-
ability questions of the model. 

It should be remarked that the notion of pattern generation is also
used  for  CAs  in  other  contexts.  For  example,  in  [8]  the  sequence  of
configurations  produced  by  a  CA  starting  with  some  input  is  con-
sidered  as  a  two-dimensional  pattern.  Kari  [9]  describes  a  CA  as  a
universal  pattern  generator  in  the  sense  that  starting  from  a  finite
configuration, all finite  patterns over the state alphabet are generated,
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which means here that these patterns occur as infixes  in the sequence
of configurations computed. 

The paper is organized as follows. In Section 2, we formally define
how  CAs  accept  and  generate  formal  languages  and  we  present  a
detailed example generating prefixes of the Thue–Morse sequence. Sec-
tion 3 is devoted to structural properties of cellular string generators.
Two  speedup  results  are  presented,  which  are  used  in  the  subsequent
constructions showing closure under intersection, reversal and length-
preserving  homomorphism.  In  Section  4,  we  deal  with  the  problems
of  deciding  emptiness,  finiteness,  infiniteness,  inclusion,  equivalence,
regularity  and  context-freeness  of  real-time  cellular  string  generators.
By  showing  that  suitably  encoded  computations  of  a  Turing  machine
can  be  generated  by  CAs  in  real  time,  all  decidability  problems  men-
tioned turn out to be not semidecidable. 

Preliminaries2.

We denote the non-negative integers by ℕ. Let Σ denote a finite  set of
letters.  Then  we  write  Σ*

 for  the  set  of  all  finite  strings  consisting  of
letters  from  Σ.  The  empty  string  is  denoted  by  λ,  and  we  set
Σ+  Σ* \ {λ}. A subset of Σ*

 is called a language over Σ. For the length
of  a  string  w  we  write  w.  In  general,  we  use  ⊆  for  inclusions  and  ⊂

for strict inclusions. For convenience, we use S# to denote S⋃ {#}.

A two-way CA is a linear array of identical finite  automata, called
cells,  numbered  1, 2, … , n.  Except  for  border  cells,  each  one  is  con-
nected  to  both  of  its  nearest  neighbors.  The  state  transition  depends
on  the  current  state  of  a  cell  itself  and  the  current  states  of  its  two
neighbors,  where  the  outermost  cells  receive  a  permanent  boundary
symbol on their free input lines. The cells work synchronously at dis-
crete timesteps. 

Formally,  a  deterministic  two-way  CA  is  a  system

M  S, Σ, F, s0, #, δ,  where  S  is  the  finite,  nonempty  set  of  cell

states,  Σ ⊆ S  is  the  set  of  input  symbols,  F ⊆ S  is  the  set  of  accepting
states,  s0 ∈ S  is  the  quiescent  state,  # ∉ S  is  the  permanent  boundary

symbol,  and  δ : S#⨯S⨯S# → S  is  the  local  transition  function  satisfy-

ing δ(s0, s0, s0)  s0. 

A  configuration  ct  of  M  at  time  t ≥ 0  is  a  mapping

ct : 1, 2, … , n → S  for  n ≥ 1,  occasionally  represented  as  a  word

over  S.  Given  a  configuration  ct,  t ≥ 0,  its  successor  configuration  is

computed  according  to  the  global  transition  function  Δ,  that  is,
ct+1  Δ(ct), as follows. For 2 ≤ i ≤ n - 1, 

ct+1(i)  δcti - 1, ct(i), cti + 1,
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and for the outermost cells we set

ct+11  δ#, ct1, ct2 and ct+1(n)  δctn - 1, ct(n), #.

Thus, the global transition function Δ is induced by δ.

Here, a CA M can operate as a decider or a generator of strings. 

A CA accepts a string (or word) a1a2…an ∈ Σ+
 if at some timestep

during the course of the computation starting in the initial configura-
tion  c0(i)  ai,  1 ≤ i ≤ n,  the  leftmost  cell  enters  an  accepting  state,

that  is,  the  leftmost  symbol  of  some  reachable  configuration  is  an
accepting state. If the leftmost cell never enters an accepting state, the
input  is  rejected.  The  language  accepted  by  M  is  denoted  by

L(M)  w ∈ Σ+ w is accepted byM. 

A  CA  generates  a  string  a1a2…an  if  at  some  timestep  t  during  the

computation  on  the  initial  configuration  c0(i)  s0,  1 ≤ i ≤ n:  (1)  the

string appears as configuration  (i.e., ct(i)  ai, 1 ≤ i ≤ n) and (2) con-

figuration  ct  is  a  fixed  point  of  the  global  transition  function  Δ  (i.e.,

the  configuration  is  stable  from  time  t  on).  The  pattern  generated  by
M is 

P(M)  w ∈ S+ w is generated byM.

Since  the  set  of  input  symbols  and  the  set  of  accepting  states  are  not
used  when  a  CA  operates  as  a  generator,  we  may  safely  omit  them
from its definition.

Let  t : ℕ → ℕ  be  a  mapping.  If  all  w ∈ L(M)  are  accepted  with  at
most  t(w)  timesteps,  or  if  all  w ∈ P(M)  are  generated  with  at  most
t(w) timesteps, then  M is said to be  of time complexity t.  If t(n)  n
then M operates in real time. The family of all patterns generated by a
CA in real time is denoted by rt(M). 

We illustrate the definitions with an example. 

Example 1.  The  Thue–Morse  sequence  is  an  infinite  sequence  over  the

alphabet  0, 1.  The  well-known  sequence  has  applications  in  numer-

ous  fields  of  mathematics  and  its  properties  are  nontrivial.  There  are
several ways of generating the Thue–Morse sequence, one of which is
given  by  a  Lindenmayer  system  with  axiom  0  and  rewriting  rules
0 → 01 and 1 → 10. The generation of strings can be described as fol-
lows: starting with the axiom, every symbol 0 (symbol 1) is in parallel
replaced by the string 01 (10). This procedure is iteratively applied to
the  resulting  strings  and  yields  the  prefixes  p0  0,  p1  01,

p2  0110,  p3  01 101001,  p4  0 110100 110010 110  and  so  on.

We remark that the length of the prefix pi is 2
i. 

The pattern PThue   pi i ≥ 0  derived therefrom can be generated

by  some  CA  in  real  time  [7].  However,  this  means  that  nothing  is
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generated whenever the length of the CA is not a power of two. Here,
we  are  going  to  generalize  this  construction  and  extend  the  pattern
generated in such a way that prefixes  pi  of the Thue–Morse sequence

are  also  generated  even  when  the  length  of  the  CA  is  not  a  power  of
two.  The  goal  is  to  generate  on  initial  length  n  the  prefix  pi  with

i  log2(n).  Since  the  length  of  the  generated  prefix  is  larger  than

the number of cells if n is not a power of two, we will group two adja-

cent  symbols  x, y ∈ 0, 1  of  the  sequence  into  states  x y  where

appropriate.  Note  that  in  the  special  case  of  an  input  length  being  a
power  of  two,  the  construction  described  here  is  the  construction
given in�[7]. 

The  basic  idea  is  to  work  with  a  real-time  version  of  the  firing
squad synchronization problem (FSSP) based on the time-optimal solu-
tion  of  Waksman  [10].  The  latter  solution  starts  with  one  general  at
the  left  end  of  the  array  and  it  takes  n - 1  timesteps  (n  being  the
length  of  the  array)  to  reach  the  right  end.  If  we  start  instead  with
two  generals  at  both  ends,  where  the  left  general  symmetrically
behaves like the right general, we save n - 1 timesteps. Since we need
one additional timestep to initialize the generals at both ends, we can

realize  the  FSSP  within  2n - 2 - n - 1 + 1  n  timesteps,  that  is,

within real time. 
In  the  construction  of  the  FSSP,  the  initial  length  is  iteratively

divided into halves, whereby dependent on the arity, one or two mid-
dle points and thus one or two new generals are generated. In the first
case,  here  the  single  middle  cell  is  virtually  split  into  two.  These  cells
will  represent  two  grouped  adjacent  symbols  of  the  sequence.  Next,
we identify these cells. The following recursive formula f(n, m) gives 2

if  the  mth
 cell  on  initial  length  n  contains  a  compressed  symbol,  and

otherwise gives 1: 

f(n, m) 

1 if n  1 or m ≤ 1,

2 if n > 1 odd and m 
n + 1

2
,

f
n + 1

2
, m mod

n + 1

2
+

m div
n + 1

2

if n > 1 odd and m ≠
n + 1

2
,

f
n

2
, m mod

n

2
if n > 1 even.

For  example,  in  Figure  1  we  have  f15, 4  f8, 4  f4, 0  1,

f15, 8  2 and f15, 13  f8, 6  f4, 2  f2, 0  1.
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Figure 1. Generation  of  the  prefix  p4  0 110100 110 010110  of  the  Thue–

Morse sequence on initial length n  15. 

In  Figure  2  we  have  f17, 2  f9, 2  f5, 2  f3, 2  2,

f17, 8  f9, 8  f5, 4  f3, 2  2  and  f17, 17  f9, 9 

f(5, 5)  f3, 3  f2, 2  f1, 0  1. 

Figure 2. Generation  of  the  prefix  p5  of  the  Thue–Morse  sequence  on  initial

length n  17. 

The  function  f  can  be  used  to  define  the  generated  compressed
Thue–Morse  sequence  as  follows.  Let  fn(m)  ∑j1

m f(n, j)  and  let

pi  wi, 1wi, 2…wi, 2i  be  an  enumeration  of  the  symbols  of  prefix  pi.

Then,  the  corresponding  compressed  prefix  pi
′(n)  on  initial  length  n

with  i  log2(n)  is  pi
′n, 1pi

′n, 2…pi
′(n, n),  where  we  define

pi
′(n, m)  wi, fn(m)  if  f(n, m)  1,  and  pi

′(n, m)  wi, fn(m)-1wi, fn(m)  if

f(n, m)  2.  For  example,  if  n  15,  we  have  f15, 8  2  and
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f15, j  1  if j ≠ 8.  Hence, f158  9  and f1513  14,  which  gives

p4
′ 15, 8  11 and p4

′ 15, 13  1, respectively.

The general generation procedure is as follows (see Figures 1 and 2

for  examples).  Initially,  at  time n  2 + 1,  the  left  new  middle  cell

obtains  the  information  0  and  the  right  new  middle  cell  obtains  the
information  1,  or  the  new  single  and  grouped  middle  cell  obtains  the
information  0 1.  In  the  latter  case,  the  cell  simulates  two  cells  from

now on. The signals sent out from the new middle cells to the left and
right,  respectively,  have  this  information  attached.  If  these  signals
meet some other signal so that another one or two new middle cell(s)
is (are) generated, the left cell gets the information 0 and the right cell
gets  the  information  1  if  the  signal  carried  the  information  0.  Other-
wise,  the  left  cell  gets  the  information  1  and  the  right  cell  gets  the
information 0. This behavior is iterated up to the next to last timestep
in which all cells have become a general. In the last timestep, in which
all cells are synchronized, a left signal 0 (1) in cell i at time n - 1 leads
to 0 (1) in cell i - 1 and 1 (0) in cell i at time n. Analogously, a right
signal  0  (1)  in  cell  i  at  time  n - 1  leads  to  0  (1)  in  cell  i  and  1  (0)  in
cell i + 1 at time n. Note that here a split cell simulates two cells that
are counted to determine the numbers i. Finally, after the synchroniza-
tion, all states of the array represent the string generated and become
permanent. 

Let Σ  0, 1, 0 0, 0 1, 1 0, 1 1 be the alphabet and π be a pro-

jection  to  the  original  letters,  that  is,  π(x)  x  and  π(x y)  xy,  for

x, y ∈ 0, 1. Then, the pattern generated by the constructed real-time

CA  M  has  the  desired  property:  w ∈ P(M)  implies  π(w)  pi  with

i  log2(w).

Structural Properties 3.

For unary patterns of the form

Pφ   an if there is an m with n  φ(m) 

or even

P

φ  xn x  a if there is an m with n  φ(m), x  b otherwise,

where  φ : ℕ → ℕ  is  a  time-constructible  function,  the  three  notions  of
language  acceptance,  time-constructibility  and  string  generation  are
characterizing each other; that is, they coincide. Here, we now turn to
structural  properties  of  the  string  generators  as  speedup  and  closures
of the set of generated strings under certain operations. 
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Speedup 3.1

Several types of cellular language acceptors can be sped up as long as
the  remaining  time  complexity  does  not  fall  below  real  time.  A  proof
in  terms  of  trellis  automata  can  be  found  in  [11].  In  [12,  13]  the
speedup  results  are  shown  for  deterministic  and  nondeterministic
cellular  and  iterative  language  acceptors.  The  proofs  are  based  on
sequential  machine  characterizations  of  the  parallel  devices.  In
particular,  for  all  k ≥ 1,  deterministic  CAs  can  be  sped  up  from

(n + t(n))-time  to  n + t(n)  k-time  [12–14].  The  question  of

whether  every  linear-time  cellular  language  acceptor  can  be  sped  up
to real time is an open problem.

The situation for string generators is more involved. While for lan-
guage acceptors usually only the states of one distinguished cell deter-
mine  acceptance  or  rejection,  the  states  of  all  cells  are  the  result  of  a
string generation. So, these known speedup results do not apply here.
However,  in  terms  of  transducers  that  given  an  input  of  size  n  com-
pute  an  output  of  size  n,  a  speedup  result  is  known  [5]  that  can  be
adapted to our notion. 

As  a  preliminary  lemma,  we  prove  that  cellular  string  generators
working  in  real  time  plus  a  constant  amount  of  time  can  always  be
sped up to real time. 

Lemma 1.  Let  M  be  a  cellular  string  generator  with  time  complexity
n + k, where k ≥ 1 is a constant integer. Then an equivalent real-time
string generator M′

 can effectively be constructed.

Proof.  The  basic  idea  for  the  construction  of  M′
 is  to  have  in  every

cell  k + 1  tracks  such  that  at  time  t  the  tracks  in  M′
 are  filled  with

states from M at time t, t + 1, … , t + k. Hence, timestep n + k in M is
simulated at time n in M′

 in the last track. The construction works in
two  phases.  In  the  first  phase,  we  start  the  simulation  of  M  at  both
ends, but we simulate k + 1 timesteps of M at once in every cell leav-
ing  the  quiescent  state  s0.  In  the  remaining  timesteps,  each  cell  shifts

the  contents  of  its  ith  track  to  its  i - 1
st

 track  for  2 ≤ i ≤ k + 1  and

updates  the  entry  in  the  k + 1
st

 track.  Hence,  every  cell  keeps  track

of the last k + 1 timesteps. 
We have a left part and a right part of the computation in this first

phase.  For  the  left  part,  we  may  assume  that  all  missing  information
from  the  right  can  be  replaced  by  the  information  s0,  since  in  the

beginning all cells are in the quiescent state s0. In addition, we have to

provide  each  cell  in  the  left  part  with  the  necessary  information  from
the  left,  namely,  with  the  states  of  the  k  cells  to  the  left.  This  can  be
realized by using k additional tracks. Analogously, we can assume for
the  right  part  of  the  computation  that  missing  information  from  the
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left  can  be  replaced  by  s0  and  we  can  provide  information  about  the

states of the k cells to the right by using k tracks. 

At  time  n  2 + 1,  if  the  initial  length  n  is  even  and  at  time

n + 1  2 if n is odd, the left and right part of the computation meet

in  the  middle  cell(s),  from  which  the  second  phase  starts.  In  this

phase,  all  information  to  update  the  entries  in  the  k + 1
st

 track  is

available,  taking  into  account  both  neighbors.  Hence,  the  simulation
of  the  last  k + 1  timesteps  can  be  continued.  At  timestep  n  in  M′,  we

have  eventually  simulated  the  desired  n + k
th

 timestep  of  M  in  the

k + 1
st

 track.  To  extract  this  information  in  the  nth  timestep  of  M′,

we  start  an  instance  of  the  FSSP  in  the  beginning  of  another  track.  If

the  FSSP  fires  at  timestep  n,  we  just  output  the  k + 1
st

 track  that

would be calculated at timestep n. □ 

Example 2. Let us discuss the speedup from n + 2 to n starting with an
initial  length  of  n  7.  Figure  3  shows  the  original  computation
where configurations  are numbered from 1 to 63, as well as the sped-
up computation. 

(a) (b)

Figure 3. (a)  Original  computation  of  n + 2  timesteps  on  initial  length  n  7
as discussed in Example 2. (b) The sped-up real-time computation.

Here, the lower three tracks are used to keep track of the states in
the  last  three  timesteps  of  the  original  computation.  The  upper  two
tracks  are  used  to  send  information  from  left  to  right  in  the  left  part
and  from  right  to  left  in  the  right  part.  This  information  is  used  to
update  the  lower  three  tracks.  In  the  first  phase,  states  are  computed
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under  the  assumption  that  enough  cells  to  the  right  or  left,  respec-
tively,  are  in  the  quiescent  state  s0.  If  this  assumption  fails,  since  the

middle cell(s) are approached, we still have to enter some state accord-
ing to the assumption, but this state may not be the state of the origi-
nal  computation  and  is  denoted  by  ⎵.  However,  such  states  are  not
necessary for the computation in the second phase.

Next,  we  turn  to  showing  how  to  speed  up  the  part  of  the  time
complexity  beyond  real  time  by  a  constant  factor.  As  mentioned
before,  to  this  end  we  consider  the  involved  and  tricky  construction
shown for transductions in [5]. Before we turn to the adaption to our
notion,  we  sketch  the  underlying  idea  of  [5]  to  speed  up  the  part  of
the time complexity beyond real time by a factor 2 (see Figure 4). The

basic  idea  is  to  compress  the  input  of  length  n  into  the  

n

2
 cells

1

4
n + 1,

1

4
n + 2, … ,

3

4
n,  to  simulate  the  given  (n + t(n))-time  CA  with

double speed on the compressed input, and to decompress the simula-
tion result. The most involved part is the compression depicted in the
red parts of the space-time diagram in Figure 4. Roughly speaking, in
these areas the compression takes place in addition to as many as pos-
sible  simulation  steps.  The  cells  in  the  green  area  of  the  space-time

Figure 4. Principle of speeding up the part of the time complexity beyond real
time by a factor 2 according to [5].
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diagram  are  in  the  quiescent  state.  The  simulation  in  the  blue  area

is  with  double  speed.  Concerning  the  time,  once  cell  

1

2
n  has  left

the�quiescent  state,  it  has  to  perform  a  further  

1

2
n + t(n)  steps.  Since

the  simulation  is  with  double  speed,  this  takes  

1

4
n +

1

2
t(n)  time.  The

decompression of the computation result takes another 
1

4
n timesteps. 

Theorem 1.  Let  M  be  a  cellular  string  generator  with  time  complexity
n + t(n), where t : ℕ → ℕ is a function such that M is synchronizable at
timestep  n + t(n).  Then,  for  all  k ≥ 1,  an  equivalent  string  generator

M′
 with time complexity n + t(n)  k can effectively be constructed.

Proof.  The  principle  of  the  construction  is  as  shown  in  [5]  and  has
been  described  above.  However,  since  a  cellular  string  generator  has
to  end  a  successful  computation  in  a  stable  configuration,  there  are
differences  with  the  transductions  considered  in  [5].  So,  basically,  the
simulation  sketched  in  Figure  4  has  to  be  stopped  synchronously  at

time  

3

4
n +

1

2
t(n),  and  the  decompression  has  to  be  stopped  syn-

chronously at time n +
1

2
t(n). 

The  first  synchronization  justifies  the  condition  that  M  has  to  be
synchronizable  at  timestep  n + t(n).  So,  some  FSSP  that  synchronizes
M  at  this  time  is  implemented  on  an  extra  track  of  M.  Therefore,  its

simulation  is  finished  by  firing  the  cells  

1

4
n + 1,

1

4
n + 2, … ,

3

4
n  at

time 

3

4
n +

1

2
t(n) as required. Additionally, the decompression phase is

started synchronously. 
The  second  synchronization  is  achieved  by  using  two  more  extra

tracks.  On  the  first  track,  an  FSSP  is  implemented  that  synchronizes
all  cells  at  timestep  n.  On  the  second  track,  an  FSSP  is  implemented
that  would  synchronize  all  cells  at  time  n + t(n).  But  now  this  second
FSSP runs with speed one until the first  FSSP fires,  and continues with

half speed. So it fires at time n +
1

2
t(n) as required. □ 

Closure Properties 3.2

This  subsection  is  devoted  to  investigating  the  closure  properties  of

the family rtCA. We start with the Boolean operations.

Proposition 1.  The  family  rtCA  is  closed  under  intersection.  It  is

closed neither under union nor under complementation.

Proof.  The  first  result  is  the  closure  under  intersection,  which  can  be
realized  by  the  well-known  Cartesian  product  construction  using  two
tracks,  in  each  of  which  the  given  real-time  string  generators  are
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simulated.  Additionally,  in  a  third  track  an  instance  of  the  FSSP  is
started.  In  the  last  timestep,  when  the  FSSP  is  firing,  it  is  checked  in
each cell whether or not in the first  and second track the same state s
would be entered. If so, the single state s is entered. Otherwise, some
new  state  p  is  entered  that  alternates  with  another  new  state  q.  It  is
clear  that  in  this  way  all  strings  are  generated  that  are  generated  by
both  given  real-time  string  generators.  On  the  other  hand,  states  p
and q ensure that no string is generated that is not generated by both
given real-time string generators. 

Next we study the union operation. Each real-time string generator
M  with  state  set  S  can  be  considered  to  define  a  (partial)  function  fM
between  ℕ  and  S+.  Hence,  a  real-time  string  generator  M  that  gener-
ates  the  union  P(M1)⋃ P(M2)  for  real-time  string  generators  M1  and

M2 defines  such a function fM as well. This means that there must not

be  any  n ∈ ℕ  such  that  fM1
(n) ≠ fM2

(n).  In  other  words,  if  two  real-

time  string  generators  produce  different  strings  on  the  same  initial
length, the union cannot be described by a function and hence cannot
be realized by a real-time string generator. This shows that the family

rtCA  is  not  closed  under  union.  By  De  Morgan’s  laws  we

obtain�that  the  family  rtCA  is  not  closed  under  complementation

as�well.�□ 

We  would  like  to  remark  that  in  [7]  it  has  been  shown  that  the
pattern 

P

φ  xn x  a if there is an m with n  φ(m), x  b otherwise

is  generated  by  some  real-time  CA  if  φ  is  a  time-constructible  func-
tion. Define the pattern

P

φ

c
 xn x  a if there is an m with n ≠ φ(m), x  b otherwise.

By  interchanging  the  roles  of  the  symbols  a  and  b,  we  immediately

obtain that the pattern P

φ

c
 is generated by some real-time CA as well.

Clearly,  P

φ

c
 is  in  general  not  the  set-theoretic  complement  of  P


φ,  but

can be interpreted to be the opposite of P

φ.

For  the  union  of  two  patterns  generated,  we  may  consider  the
special  case  that  the  union  can  be  described  by  a  function.  The  basic

idea to show the closure of rtCA in this special case would be simi-

lar  to  the  construction  for  the  intersection.  That  is,  in  two  tracks  the
given  real-time  string  generators  are  simulated  and  in  the  third  track
an instance of the FSSP is started. Analogously, in the last timestep it
is  checked  whether  the  first  two  tracks  would  generate  the  same  sta-
ble  configuration  or  exactly  one  stable  configuration.  However,  an

122 M. Kutrib and A. Malcher

Complex Systems, 30 © 2021



instability  can  occur,  for  example,  in  one  cell  only,  say  on  the  first
track.  If  the  configuration  on  the  second  track  is  stable,  then  we
should  generate  it.  Otherwise,  the  unstable  cells  should  stay  unstable
so  that  no  string  is  generated.  Thus,  the  instability  should  be  made
stable if and only if the other configuration  is stable. This check prob-
ably  costs  more  than  constant  time.  Hence,  it  is  currently  an  open
question  whether  a  real-time  CA  generating  the  union  can  be  con-
structed even if the union of patterns can be described by a function. 

Next,  we  look  at  the  reversal  operation.  By  interchanging  the  left-
hand and right-hand entries of the local transition function, we imme-
diately  obtain  that  the  reversal  of  a  real-time  pattern  can  also  be
generated by a real-time string generator. 

Proposition 2. The family rtCA is closed under reversal.

Finally,  we  investigate  homomorphisms  and  obtain  that  the  family

rtCA  is  not  closed  under  arbitrary  homomorphisms,  whereas  we

can  show  that  the  family  rtCA  is  closed  under  length-preserving

homomorphisms. 

Proposition 3. The  family  rtCA  is  not  closed  under  arbitrary  homo-

morphism, but is closed under length-preserving homomorphism.

Proof.  For  the  nonclosure  under  arbitrary  homomorphism,  we  con-

sider the language L  a, bb, which can be generated by a real-time

CA, and the homomorphism h, which maps a to aa and b to b. Then,

h(L)  aa, bb, which cannot be generated by any real-time CA. 

Now, let M  S, s0, #, δ be a real-time CA generating the pattern

P ⊆ Σ*,  where  Σ ⊆ S.  Moreover,  let  h : Σ* → Γ*
 be  a  length-preserving

homomorphism.  For  the  construction  of  a  CA  that  generates  h(P)  in
real time, we consider a primed version S′  of the state set S, where the
primed  version  of  Σ  is  denoted  by  Σ′,  and  we  extend  h  to  a  length-

preserving homomorphism h′  mapping from S′*  to S′ ⋃ Γ
*
 such that

h′(a′)  h(a) if a′ ∈ Σ′, and h′(s′)  s′ if s′ ∈ S′ \Σ′. 
Next,  we  will  sketch  the  construction  of  a  CA  M′

 generating
P(M′)  h′(P(M))  h′(P)  h(P)  in  real  time  plus  one  that  is  subse-
quently sped up with Lemma 1 to work in real time. The basic idea is
to work with three tracks and to start in the first  track the simulation
of M with state set S′, and in the second track an instance of the FSSP.
At timestep n, when the FSSP fires,  we generate in the third track the
homomorphic image under h′  of the first  track. At timestep n + 1, we
check  in  every  cell  whether  its  state  in  the  first  track,  that  is,  in  the
simulated  configuration  of  M  at  time  n,  would  also  remain  the  same
in  the  next  timestep,  that  is,  in  the  simulated  configuration  of  M  at
time  n + 1.  If  so,  each  such  cell  enters  the  state  from  the  third  track,
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that is, the homomorphic image under h′  of the state in the simulated
configuration  of M at time n. Otherwise, a new state p is entered that
alternates  with  some  other  new  state  q.  Furthermore,  the  transition
function  of  M′

 is  suitably  complemented  so  that  configurations  con-
taining  only  symbols  from  Γ  remain  stable.  If  the  configuration  of  M
at time n is stable, a string from Σ*

 is generated by M and we obtain
that the homomorphic image under h′, which is equivalent to h on Σ,
of  this  string  is  generated  by  M′.  Otherwise,  if  M  generates  no  string
due to an unstable configuration,  then M′

 enters an unstable configu-
ration  as  well.  Therefore,  it  is  ensured  that  M′

 generates  no  string  as

well in such cases. □ 

Decidability Problems 4.

In  order  to  generate  some  sophisticated  patterns,  we  provide  a  tech-
nique  that  is  based  on  the  possibility  of  CAs  to  simulate  certain  data
structures without any loss of time [3]. Here we consider in particular
the data structures queues and rings, where a ring is a queue that can
write  and  erase  at  the  same  time  (for  convenience  we  will  call  both
queues).  For  the  simulation,  some  designated  cell  (the  rightmost  one,
for  example)  simulates  the  front  and  the  end  of  the  queues.  For  the
sake  of  completeness,  we  next  recall  exemplarily  the  principle  of  this
simulation from [3].

Simulation  of  a  queue  and  ring  store.  It  suffices  to  use  three  addi-
tional tracks for the simulation. Let the three registers of each cell be
numbered  one,  two  and  three  from  top  to  bottom,  and  suppose  that
the second register is connected to the first  register of the right neigh-
bor,  and  the  third  register  is  connected  to  the  third  register  of  the
right  neighbor.  The  content  of  the  store  is  identified  by  scanning  the
registers  as  connected.  That  is,  beginning  in  the  designated  cell,  first
the first  register is scanned and then the second register. Next the first
and second register of the right neighbor, and so on until the last cell
participating  in  the  simulation  is  reached.  The  scanning  continues
with its third register and then with the third register of its left neigh-
bor, and so on. Empty registers are ignored. 

The  store  dynamics  of  the  transition  function  is  defined  such  that
each  cell  prefers  to  have  only  the  first  two  registers  filled.  The  third
register  is  used  to  move  the  entered  symbols  to  the  end  of  the  store.
Altogether, it obeys the following rules (cf. Figure 5). 

If  the  third  register  of  a  left  neighbor  is  filled,  a  cell  takes  over  the
symbol  from  that  register.  The  cell  stores  the  symbol  into  its  first  free
register,  if  possible.  Otherwise,  it  stores  the  symbol  into  its  own  third
register. 

1.
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Figure 5. Principle  of  a  ring  (queue)  simulation.  Subfigures  are  in  row-major
order.

If  the  third  register  of  its  left  neighbor  is  free,  it  marks  its  own  third
register as free. 

2.

If  the  second  register  of  its  left  neighbor  is  free,  it  erases  its  own  first
register. Observe that the erased symbol is taken over by the left neigh-
bor. In addition, the cell stores the content of its second register into its
first  one,  if  the  second  one  is  filled.  Otherwise,  it  takes  the  symbol  of
the first register of its right neighbor, if this register is filled. 

3.

If the second register of its left neighbor is filled and its own second reg-
ister  is  free,  then  the  cell  takes  the  symbol  from  the  first  register  of  its
right neighbor and stores it into its own second register. 

4.

Possibly, more than one of these actions are superimposed.5.

Undecidability  results.  The  first  decidability  problem  we  are  deal-
ing with is the question of whether a given CA M generates a string at
all,  or  whether  the  pattern  P(M)  is  empty.  In  order  to  show  that  the
emptiness problem is not even semidecidable, even for CAs that gener-
ate  patterns  in  real  time,  we  reduce  the  problem  to  decide  whether  a
Turing  machine  does  not  halt  on  empty  input.  It  is  well  known  that
this problem is not semidecidable. 

For  the  reduction,  a  technique  from  [15]  is  utilized.  Basically,  the
history  of  a  Turing  machine  computation  is  encoded  into  a  string.  It
suffices  to  consider  deterministic  Turing  machines  with  one  single
tape  and  one  single  read-write  head.  Without  loss  of  generality  and
for  technical  reasons,  we  assume  that  the  Turing  machines  can  either
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print  a  symbol  on  the  current  tape  square  or  move  the  head  one
square  to  the  right  or  left.  Moreover,  they  neither  can  print  blanks
nor  leave  a  square  containing  a  blank.  Finally,  a  Turing  machine  is
assumed  to  perform  at  least  one  transition.  So,  let  Q  be  the  state  set
of  some  Turing  machine  M,  where  q0  is  the  initial  state  and

T ⋂Q  ∅ is the tape alphabet containing the blank symbol ⎵. Then

a  configuration  of  M  can  be  written  as  a  string  of  the  form

T*Q, TT*
 such  that  x1x2…xi(q, y)xi+1xi+2…xn  is  used  to  express

that  M  is  in  state  q,  scanning  tape  symbol  y,  and
x1x2…xiyxi+1xi+2…xn is the support of the tape inscription. 

Dependent  on  M,  we  define  the  string  vM.  Let  $ ∉ T ⋃Q,  m ≥ 1

and  wi ∈ T*Q, TT*,  0 ≤ i ≤ m  be  configurations  of  M.  If  M  does

not halt on empty input, then vM  λ. Otherwise, we set 

vM  $w0$w1$w2$⋯$wm$,

where w0 is the initial configuration (q0, ⎵), wm is a halting configura-

tion and wi  is the successor configuration  of wi-1, 1 ≤ i ≤ m. Now we

define a pattern as PM  {vM} \ {λ}.

Proposition 4. Let M be a Turing machine. Then the pattern PM  is gen-

erated by some CA in real time.

Proof. The basic idea of the construction of a real-time CA that gener-
ates  PM  is  as  follows.  The  rightmost  cell  emits  one  symbol  of  the

string vM in every timestep onto a special track. The content of this ini-

tially  empty  track  is  successively  shifted  to  the  left  by  all  cells.  In
order  to  compute  the  correct  symbols,  the  rightmost  cell  simulates  a
queue. In addition, it uses two auxiliary registers, R1 and R2. 

In  more  detail,  the  rightmost  cell  does  the  following.  Whenever  it
emits  a  symbol  onto  the  special  track,  this  symbol  is  additionally
entered into the initially empty queue. Let δ be the transition function
of  M,  and  δ(q0, ⎵)  (q′, y)  with  y ∈ T  (recall  that  M  cannot  leave  a

blank  square).  Then,  in  the  first  three  steps,  the  rightmost  cell  emits
the  symbols  $,  (q0, ⎵)  and  $  (the  first  three  symbols  of  vM)  and  fills

R1  with (q′, y) and R2  with $. In general, registers R1  and R2  contain

two  symbols  that  can  be  seen  as  at  the  front  of  the  queue.  So,  after
the  third  step  the  actual  queue  content  is  empty  and  its  extension  by
the  two  registers  is  (q′, y)$  (the  first  symbol  is  at  the  front  of  the
queue),  which  is  basically  the  second  configuration  of  M.  From  now
on, the queue content is revolved symbol by symbol, whereby the suc-
cessor  configuration  is  determined,  emitted  and  entered  into  the
queue again. 

We  distinguish  two  cases.  First,  let  R2  contain  a  single  symbol

from T ⋃ $. This means that the short part of the configuration  that
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may  change  due  to  an  action  of  M  is  yet  unreached  or  already  pro-
cessed. So in this case, the content of R1  is emitted, the content of R2

is moved to R1, and the first symbol is removed from the actual queue

and stored into R2 (see Figure 6). 

In the second case, register R2  contains a symbol (q, x) from Q⨯T.

This means that the part of the configuration  that may change due to
an action of M is reached. In order to compute the changes, a step of
M  has  to  be  simulated.  Dependent  on  the  head  movement  of  M,  we
distinguish  subcases.  If  δ(q, x)  (q′, y),  that  is,  M  writes  without
moving the head, then the action is as shown in Figure 7. 

Emit and enqueue : R1, R1 ← R2, R2 ← dequeue.

Figure 6. Action of the rightmost cell. On the left the action is depicted sym-
bolically. For the cell structure, the register of the left-shifting track to which
symbols  are  emitted  (indicated  by  the  left  arrow  on  top),  register  R1  above

register R2 and the idealized queue are depicted.

Emit and enqueue : R1, R1 ← (q′, y), R2 ← dequeue.

Figure 7. Action  of  the  rightmost  cell  when  the  head  of  the  Turing  machine
does not move. The cell structure is as in Figure 6.

If δ(q, x)  q′, left and R1 contains $, that is, M moves its head to

the  left  from  the  leftmost  visited  square  to  a  blank  square,  then  the
action is as shown in Figure 8 at the top. 

If  δ(q, x)  q′, left  and  R1  does  not  contain  $,  that  is,  M  moves

its head to the left to a nonblank square, then the action is as shown
in Figure 8 at the bottom. 

If  δ(q, x)  q′, right  and  the  symbol  at  the  front  of  the  actual

queue  is  $,  that  is,  M  moves  its  head  to  the  right  from  the  rightmost
visited  square  to  a  blank  square,  then  the  action  is  as  shown  in  Fig-
ure�9 at the top. 
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Emitand enqueue : R1, R1 ← (q′, ⎵), R2 ← x.

Emit and enqueue : q′, R1, R1 ← x, R2 ← dequeue.

Figure 8. Action  of  the  rightmost  cell  when  the  head  of  the  Turing  machine

moves to the left. z

∈ T \ {⎵}. The cell structure is as in Figure 6.

Emit and enqueue : R1x, R1 ← (q′, ⎵), R2 ← dequeue.

Emit and enqueue : R1x, R1 ← q′, dequeue, R2 ← dequeue.

Figure 9. Action  of  the  rightmost  cell  when  the  head  of  the  Turing  machine

moves to the right. z

∈ T \ {⎵}. The cell structure is as in Figure 6.

Finally,  if  δ(q, x)  q′, right  and  the  symbol  at  the  front  of  the

actual queue is not $, that is, M moves its head to the right to a non-
blank square, then the action is as shown in Figure 9 at the bottom. 

For  easier  writing,  in  the  last  two  subcases  two  symbols  are  emit-
ted. These subcases are actually realized by two steps. 

In  order  to  conclude  the  construction  of  the  real-time  CA,  we  add
an  additional  track  on  which  an  FSSP  is  set  up  that  synchronizes  the
array at real time. At that time, the leftmost cell receives the first  sym-
bol  of  the  generated  sequence,  and  all  but  possibly  the  rightmost  cell
enter  a  state  that  is  their  current  symbol  of  the  sequence.  However,
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the generated sequence is the valid string vM only if the last configura-

tion  computed  by  the  rightmost  cell  is  a  halting  configuration  of M.
So  the  rightmost  cell  is  extended  such  that  it  always  checks  whether
the  current  configuration  (of  M)  is  halting.  If  not,  the  computation
continues to emit symbols as before. If yes, the computation continues
to  emit  the  current  configuration  and  a  trailing  $.  After  that,  it  just
emits  some  error  symbol.  Finally,  the  rightmost  cell  enters  the  stable
state $ (the last symbol of vM) if it emits this $ as the trailing symbol

of a halting configuration  exactly at the synchronization time, that is,
at  real  time.  Otherwise  it  starts  to  alternate  between  entering  two
different  states,  thus  preventing  the  computation  from  generating  a
pattern. 

We conclude that the real-time CA constructed generates the string
vM  if and only if M halts on empty tape and the length of the array is

vM. That is, it generates pattern PM. □ 

Basically,  Proposition  4  is  already  the  reduction  of  the  problem  to
decide whether a Turing machine does not halt on empty input to our
emptiness problem. 

Theorem 2.  Given  a  real-time  CA  M,  it  is  not  semidecidable  whether
P(M) is empty.

Proof.  Given  an  arbitrary  Turing  machine  M′,  by  Proposition  4  we
construct  a  real-time  CA  M  that  generates  the  pattern  PM′ .  Pattern

PM′  is empty if and only if M′
 does not halt on empty input. So if the

emptiness  of  P(M)  were  semidecidable,  then  the  problem  to  decide
whether  a  Turing  machine  does  not  halt  on  empty  input  would  be

semidecidable, a contradiction. □ 

From the undecidability of the emptiness problem, the undecidabil-
ity of the equivalence and inclusion problem follows immediately. 

Corollary 1. Given two real-time CAs M1  and M2, it is neither semide-

cidable  whether  they  generate  the  same  pattern,  that  is,
P(M1)  P(M2), nor whether P(M1) ⊆ P(M2).

Proof. It is easy to construct a real-time CA that generates the empty
pattern.  So  if  equivalence  would  be  semidecidable,  then  emptiness
would  be  semidecidable  as  well.  Since  P(M1)  P(M2)  if  and  only  if

P(M1) ⊆ P(M2)  and  P(M2) ⊆ P(M1),  the  semidecidability  of  inclusion

would imply the semidecidability of equivalence, a contradiction. □ 

Theorem 3.  Given  a  real-time  CA  M,  it  is  neither  semidecidable
whether P(M) is finite nor whether P(M) is infinite.

Proof. Let M′
 be an arbitrary Turing machine. 
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In  order  to  show  the  assertion  for  finiteness,  the  pattern  PM′  is

extended  to  P

M′  vM′an n ≥ 0 \ an n ≥ 0 .  Since  P


M′  is  empty

and thus finite if and only if M′
 does not halt on empty input, the non-

semidecidability of finiteness follows. 
For infiniteness, the pattern PM′  is changed differently. We set 

P

M′   $w0$w1$⋯$wm$ m ≥ 1,

w0  (q0, ⎵), and wi is successor of wi-1 .

Since  pattern  P

M′  is  infinite  if  and  only  if  M′

 does  not  halt  on  empty

input, the non-semidecidability of infiniteness follows. □ 

Next  we  turn  to  two  decidability  problems  that,  to  some  extent,
relate  pattern  generation  with  language  acceptance.  It  is  of  natural
interest  if  a  given  language  is  regular  or  context  free.  So  here  we  can
ask whether the strings of a pattern form a regular or context-free lan-
guage. 

Theorem 4.  Given  a  real-time  CA  M,  it  is  neither  semidecidable
whether P(M) forms a regular nor whether P(M) forms a context-free
language.

Proof.  Let  L  be  an  arbitrary  recursively  enumerable  language.  Then
there is a Turing machine M′

 that enumerates the words of L; that is,
it  produces  a  list  of  not  necessarily  distinct  words  from  L  such  that
any word in L appears in the list. Modify M′

 as follows. Whenever a
new  word  w  is  to  be  put  into  the  list,  the  new  machine  M′′

 first
checks if w already appears in the list. If yes, it is not put into the list
again and M′′

 continues to enumerate the next word. If not, the word
w  is  put  into  the  list  and  after  that  M′′

 enters  a  state  from  some  set

Q+ that indicates that a new word has been enumerated. 

Similarly to the proof of Theorem 3 we set 

PM′′   $w0$w1$⋯$wm$ m ≥ 1, w0  (q0, ⎵),

wi is successor of wi-1, and the state in wm belongs toQ+ .

So if L is finite,  the pattern PM′′  is finite  and thus regular and con-

text free. If L is infinite, the pattern PM′′  is infinite, and a simple appli-

cation  of  the  pumping  lemma  shows  that  it  is  not  regular  and  not

context  free.  In  particular,  pattern  PM′′  is  regular  and  context  free  if

and  only  if  L  is  finite.  Since  finiteness  of  recursively  enumerable  lan-

guage is not semidecidable, the assertion follows. □ 
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