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The Besicovitch pseudodistance defined  in [1] for biinfinite  sequences is
invariant  by  translations.  We  generalize  the  definition  to  arbitrary
locally  compact  second-countable  groups  and  study  how  properties  of
the  pseudodistance,  including  invariance  by  translations,  are  deter-
mined by those of the sequence of sets of finite  positive measure used to
define  it. In particular, we restate from [2] that if the Besicovitch pseu-
dodistance  comes  from  an  exhaustive  Følner  sequence,  then  every  shift
is  an  isometry.  For  non-Følner  sequences,  it  is  proved  that  some  shifts
are  not  isometries,  and  the  Besicovitch  pseudodistance  with  respect  to
some subsequences even makes them discontinuous. 
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Introduction1.

The  Besicovitch  pseudodistance  was  proposed  by  Blanchard,  For-

menti and Ku∘ rka in [1] as an “antidote” to sensitivity of the shift map
in  the  prodiscrete  (Cantor)  topology  of  the  space  of  one-dimensional
configurations  over a finite  alphabet. The idea is to take a window on
the integer line, which gets larger and larger, and compute the proba-
bility that in a point under the window, chosen uniformly at random,
two  configurations  will  take  different  values.  The  upper  limit  of  this
sequence  of  probabilities  behaves  like  a  distance,  except  for  taking  a
value  of  zero  only  on  pairs  of  equal  configurations:  this  defines  an
equivalence relation, and the resulting quotient space is a metric space
on which the shift is an isometry, or equivalently, the pseudodistance
is shift invariant.  

The original choice of windows is Xn  〚-n, n〛, the set of integers

from  -n  to  n  included.  This  notion  can  be  easily  extended  to
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arbitrary dimension d ≥ 1, taking a sequence of hypercubic windows.
If  we  allow  arbitrary  shapes,  the  notion  of  Besicovitch  space  can  be
extended  to  configurations  over  arbitrary  groups;  in  this  case,  how-
ever,  the  properties  of  the  group  and  the  choice  of  the  windows  can
affect the pseudodistance being or not being shift invariant. An exam-
ple  of  a  Besicovitch  pseudodistance  that  is  not  shift  invariant  is  given
in  [2],  where  it  is  also  proved  that,  if  a  countable  group  is  amenable
(cf.  [3]  and  [4,  Chapter  4]),  then  the  Besicovitch  pseudodistance  with
respect to any exhaustive Følner sequence is shift invariant. The class
of  amenable  groups  is  of  great  interest  and  importance  in  group  the-
ory, symbolic dynamics and cellular automata theory. 

In the last two disciplines we mentioned, the groups are considered
by default as discrete spaces, where every subset is open (and closed).
A discrete space is always locally compact, and is second countable if
and  only  if  it  is  countable.  In  addition,  the  counting  measure
(λ(U)  n if U  is finite  with n elements, λ(U)  ∞ if U  is infinite)  has
the  role  of  a  Haar  measure  such  that  λ(aU)  λ(U)  for  every  element
a and subset U. But every locally compact group has a Haar measure,
unique  up  to  a  multiplicative  constant,  so  we  may  think  of  applying
our  discussion  to  this  broader  class:  the  role  of  the  finite  nonempty
windows from the previous paragraph will be taken by Borel measur-
able subsets of finite,  but positive, measure. The definition  of Besicov-
itch pseudodistance will be similar, provided that we restrict our atten-
tion to the class of Borel measurable configurations. 

In  this  paper,  which  expands  and  extends  our  submission  [5]  to
AUTOMATA  2020,  we  explore  the  relations  between  the  properties
of  Besicovitch  pseudodistances  over  configuration  spaces  with  locally
compact  groups  (which  we  will  sometimes  suppose  to  be  second
countable) and those of the sequence of subsets of finite  positive mea-
sure  used  to  define  it.  In  Section  3,  we  give  the  main  definition  and
prove that if a sequence of subsets of finite  positive measure is nonde-
creasing and has unbounded measure, then the corresponding Besicov-
itch space is pathwise connected: this generalizes [1, Proposition 1]. In
Section  4,  we  introduce  a  notion  of  synchronous  Følner  equivalence
between  sequences,  and  a  related  order  relation  where  one  sequence
comes  before  another  sequence  if  it  is  synchronously  Følner  equiva-
lent to a subsequence of the latter. This, on the one hand, generalizes
Følner  sequences,  and  on  the  other  hand,  allows  us  to  compare  the
Besicovitch  pseudodistances  and  submeasures  associated  with  differ-
ent  sequences.  In  particular,  we  prove  that  an  increasing  sequence  of
subsets of finite  positive measure is Følner if and only if every shift is
an  isometry  for  the  corresponding  Besicovitch  pseudodistance:  this
provides the converse of [2, Theorem 3.5]. Finally, we give conditions
for  absolute  continuity  and  Lipschitz  continuity  of  Besicovitch  sub-
measures with respect to each other. 
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Background2.

Throughout the paper, we will suppose that all the topological spaces
discussed  are  Hausdorff.  We  call  alphabet  a  discrete  nonempty
finite�set.  

Haar Measure  2.1

Let  G  be  a  locally  compact  topological  group  and  let  Σ  be  its  Borel
σ-algebra.  It  is  well  known  that  G  admits  a  Haar  measure

λ : Σ → 0, ∞ satisfying the following properties:  

λG > 0.  1.

λgS  λS for every g ∈ G and S ∈ Σ.  2.

λK < ∞ for every compact K ⊆ G.  3.

For every S ∈ Σ, λS  infλU S ⊆ U, U open.  4.

For every open U ⊆ G, λU  supλK K ⊆ S, K compact.  5.

In addition, the Haar measure is unique up to a positive multiplica-
tive  constant.  From  properties  1–5,  it  follows  that  λ(U) > 0  for  every
nonempty open set U. 

Example 1.  If  G  is  discrete,  the  counting  measure  defined  by
λ(U)  U  if  U  is  finite  and  λ(U)  ∞  if  U  is  infinite  is  the  unique
Haar measure on G such that λ({g})  1 for every g ∈ G. 

Example 2.  If  G  (, +),  the  Lebesgue  measure  (more  precisely,  its
restriction  to  the  Borel  σ-algebra)  is  the  unique  Haar  measure  on  

such that λ0, 1  1. 

Pseudodistances Induced by Submeasures  2.2

Definition 1. Let  Σ  be  a  σ-algebra  of  subsets  of  G.  A  submeasure  over
Σ is a map μ : Σ →  ⊔ {+∞} such that for every V, W ∈ Σ:  

μ∅  0. 1.

μV ⋃W ≤ μV + μW. 2.

μV ≤ μW if V ⊆ W. 3.

If  G  and  A  are  two  sets,  the  difference  set  of  two  configurations

x, y ∈ AG
 is the set Δ(x, y)  i ∈ G x(i) ≠ y(i). 

Any  submeasure  over  G  gives  rise  to  an  associated  pseudodistance

over  the  set    of  measurable  configurations  x ∈ AG
 (i.e.,  for  every

a ∈ A,  i ∈ G xi  a ∈ Σ):  since  the  difference  set  is  then  also  mea-

surable, we define: 

dμ(x, y)  μ(Δ(x, y))∀ x, y ∈ .
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When  G  is  discrete,  all  of  its  subsets  are  measurable  (and  even
open),  so  that  the  reader  can  forget  about  the  measurability  con-
ditions. 

Remark 1.  The  topological  space  corresponding  to  such  a  pseudodis-
tance  is  homogeneous  in  the  following  sense:  the  balls  around  every
two points y and z are isometric. Indeed, identify A with the additive

group  ℤ  Aℤ.  Then  for  every  y, z ∈ ,  the  map  ψy,z :  →   defined

by  ψy,z(x)(i)  x(i) - y(i) + z(i)  for  every  x ∈   and  i ∈ G  is  an  isome-

try between any ball around y and the corresponding one around z.

We say that submeasure μ is absolutely continuous with respect to
submeasure  ν  if  ν(W)  0⟹μ(W)  0  for  any  measurable  subset
W ⊂ G. 

Remark 2. Let ϵ, δ > 0, μ, ν two submeasures on G, and z ∈ . The fol-
lowing are equivalent:

For every measurable subset W ⊂ G, μW ≥ ϵ⟹νW ≥ δ. 1.

For every x, y ∈ , dμ(x, y) ≥ ϵ⟹dν(x, y) ≥ δ. 2.

For every x ∈ , dμ(x, z) ≥ ϵ⟹dν(x, z) ≥ δ.  3.

Consequently,  the  identity  map,  from  space    endowed  with  dν
onto  space    endowed  with  dμ,  is  continuous  (resp.  α-Lipschitz)  if

and only if μ is absolutely continuous with respect to ν (resp. μ ≤ αν).
In that case, the identity is even absolutely continuous. 

Shifts and Translations  2.3

If A is an alphabet, G is a group and g ∈ G, the shift by g is the func-

tion  σg :  →   defined  by  σg(x)(i)  xg-1i  for  every  x ∈ AG
 and

i ∈ G.  A  map  ψ  from    to  itself  is  shift  invariant  if  ψσg  σgψ  for
every  g ∈ G.  Note  that  Δ(σg(x), σg(y))  gΔ(x, y)  for  every  x, y ∈ 
and g ∈ G.  

Since  the  maps  ψy, z  from  Remark  1  are  shift  invariant,  it  can  be

seen  that  the  shift  is  continuous,  Lipschitz,  and  other  properties  in
every x if and only if it is in one x. 

Given  a  submeasure  μ  on  G  and  an  element  g  of  G,  define

gμ(W)  μg-1W  for  every  measurable  subset  W ⊂ G.  Then  the  shift

by  g,  within  space    endowed  with  dμ,  is  topologically  the  same  as

the  identity  map,  from    endowed  with  dμ  onto  space    endowed

with dg-1μ, because: 

μΔ(σg(x), σg(y))  μ(gΔ(x, y))  g-1μ(Δ(x, y)).

Remark 1 can then be rephrased into the following.  
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Remark 3. If G is a group, g ∈ G, and  is endowed with dμ, then the

shift  map  by  g  is  continuous  (resp.  α-Lipschitz)  if  and  only  if  g-1μ  is
absolutely  continuous  (resp.  α-Lipschitz)  with  respect  to  μ.  In  that
case, the shift by g is even absolutely continuous. 

Besicovitch Submeasure and Pseudodistance   3.

Among classical examples of submeasures are the ones that induce the
Cantor  topology,  or  shift-invariant  Besicovitch,  or  Weyl  pseudodis-
tances (see [6, Def 4.1.1]. We will focus on the Besicovitch topology.  

Definition  3.1

Measure space. Let G be a nonempty topological space endowed with
a  Borel  measure  λ  with  the  following  regularity  and  homogeneity
properties:  

For every set of finite measure W and every ϵ > 0, there is a compact set

K such that λWΔK < ϵ.

1.

There exists β > 0 such that every point has a neighborhood of measure
at most β.  

2.

These properties are satisfied  by several measures, such as the Haar
measure if G is a locally compact group: there exists a compact subset
of positive measure, which we can call β, and any given element of G
belongs to some translate of that subset. 

Example 3.  Let  G  be  discrete  and  let  λ  be  the  counting  measure.  Then
Point 1 is trivially satisfied as the compacts are precisely the finite sub-
sets, and Point 2 is satisfied with β  1. 

Our hypotheses allow the following, rather natural, construction. 

Lemma 1.  For  every  subset  of  finite  measure  W ⊂ G  and  every  real
number  γ ∈]-δ, λ(W)],  there  exists  a  Borel  set  U ⊂ W  such  that
λ(U) ∈ γ + [0, β[. 

Proof. If γ  λ(W), then simply take U  W. Otherwise, the two prop-
erties  of  the  measure  give  a  compact  subset  K  such  that
λ(WΔK) < λ(W) - γ,  and  open  neighborhoods  of  measure  at  most  β

for  each  point  of  K,  which  cover  the  whole  K.  By  compactness,  K  is

covered  by  finitely  many  of  them,  say  B

0, B

1, … , B


k-1.  Let  us  con-

sider Bi  B

i⋂W, so that W⋂K ⊂ ⋃i<k Bi. Note that: 

◼ λ⋃i<0 Bi  λ∅  0. 

◼ λ⋃i<k Bi ≥ λW⋂ K ≥ λW - λWΔK ≥ γ. 

◼ λ⋃i≤j Bi - λ⋃i≤j Bi  λBj ∈ 0, β for every j ∈ 〚0, k〚.   
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Hence,  there  exists  a  minimal j ∈ 〚0, k〚  such  that λ⋃i≤j Bi ≥ γ,

and we must have λ⋃i≤j Bi < γ + β (note that this is satisfied  by j  0

if γ ∈] - β, 0]). It is enough to define U  ⋃i≤j Bi. □

Conditional  probability.  For  all  Borel  subsets  W, V ⊂ G  such  that

0 < λ(V) < ∞, let us denote λ(W V) 
λ(W⋂V)

λ(V)
. 

Remark 4. Let U, V, W be Borel subsets such that 0 < λ(V) < ∞. 

λW⋃U V ≤ λW V + λU V, and the equality holds if the union is

disjoint. 

1.

If V ⊂ U and λU < ∞, then 2.

λV UλW V  λV ⋂W U ≤ λW U.

Exhaustive sequences. Let (Xn) be a sequence of subsets of G such

that  0 < λ(Xn) < ∞  for  every  n ∈ ℕ.  (The  positive-measure  assump-

tion  is  here  for  convenience,  but  is  not  relevant  for  the  core  of  the
statements.) (Xn) is nondecreasing if for every n ∈ ℕ, Xn ⊆ Xn+1. It is

exhaustive if it is nondecreasing and ⋃n∈ℕ Xn  G. 

Remark 5.  Consider  an  exhaustive  sequence  (Xn),  and  W ⊂ G  such

that λ(W) < ∞. Then: 

If ϵ > 0, then there exists m ∈ ℕ such that λW\Xm < ϵ.  1.

If λW > 0, then there exists m ∈ ℕ such that λW Xm > 0.  2.

If  λG  ∞,  then  for  every  ϵ > 0,  there  exists  q(Xn)
W, ϵ  such  that  for

every n ≥ q(Xn)
W, ϵ, λW Xn < ϵ and λW\Xn < ϵ.  

3.

By  nondecreasingness  of  (Xn),  statements  of  the  form  “there  exists

m”  can  be  replaced  into  the  form  “there  exists  n  such  that  for  all
m ≥ n.” 

Proof. 

W  ⊔n∈ℕ W⋂Xn+1\Xn, so that λW  ∑n∈ℕ λW⋂Xn+1\Xn. The con-

vergence of this sum implies that there exists m ∈ ℕ such that 

1.

λW\Xm  
n≥m

λW⋂Xn+1\Xn < ϵ.

Simply pick the m from Point 1 with any ϵ < λW. 2.

If  λW  0,  there  is  nothing  to  prove.  Otherwise,  since  G  has  infinite

measure,  it  must  admit  a  subset  V ⊂ G  of  measure  at  least  
λ(W)

ϵ
+ ϵ.  By

Point  1,  there  exists  q

(Xn)
W, ϵ  such  that  for  all  n ≥ q


(Xn)
W, ϵ,

λV ⋃W\Xn < ϵ.  In  particular,  λXn ≥ λV ⋃W - ϵ ≥ λV - ϵ ≥
λ(W)

ϵ
.

3.
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Hence λW Xn ≤
λ(W)

λ(W)

ϵ

≤ ϵ. By taking a maximum with the m obtained

in Point 1, we get the desired two inequalities. □

Besicovitch  submeasure.  The  Besicovitch  submeasure  μ(Xn)
 is

defined over the Borel σ-algebra into [0, 1] by:

μ(Xn)
(W)  lim sup

n
λ(W Xn).

The Besicovitch pseudodistance is d(Xn)
 dμXn

. 

Example 4. Let G  ℤ, A  0, 1 and Xn  〚-n, n〛 for every n ∈ ℕ. 

If x(i)  0 for every i ∈ ℤ and y ∈ 0, 1ℤ  is the characteristic func-

tion of the prime numbers, then d(Xn)
(x, y)  0. 

Remark 6.  In  general,  we  will  assume  that  limn→∞ λ(Xn)  ∞.  In  that

case, μ(Xn)
(W)  0 for every finite-measure set W. 

Connectedness  3.2

Lemma 2.  Let  (Xn)  be  nondecreasing  such  that  limn→∞ λ(Xn)  ∞,

W ⊂ G  a  Borel  set,  γ ∈ [0, 1].  Then  there  exists  a  Borel  set  V ⊂ W
such that μ(V)  γμ(W). 

Proof.  Let  us  define,  by  induction  on  n ∈ ℕ,  Un ⊂W⋂Xn  such  that

λ(Un) ∈ γλW⋂Xn + [0, β[ and, if n > 1, Un⋂Xn-1  Un-1. 

First, U0 can easily be defined as V ⊂W⋂X0 by Lemma 1. 

Assume  that  Un  has  been  so  defined,  and  let  us  define

Un+1.  Let  γ′  γλW⋂Xn+1 - λ(Un).  By  induction  hypothesis,

γ′ ∈ γλW⋂Xn+1 - γλW⋂Xn - [0, β[,  which  is  equal  to

γλW⋂Xn+1\Xn - [0, β[,  since  (Xn)  is  nondecreasing.  Since

γ ∈ 0, 1,  we  deduce  that  -β < γ′ ≤ λW⋂Xn+1\Xn.  We  can  apply

Lemma  1  to  get  a  subset  U ⊂W⋂Xn+1\Xn  such  that  λ(U) ∈

γ′ + [0, β[. Defining Un+1  Un ⊔ U, we get λ(Un+1)  λ(Un) + λ(U) ∈

λ(Un) + γ + [0, β[  γλW⋂Xn+1 + [0, β[. 

We  now  define  V  ⋃n∈ℕ Un.  By  construction,  we  immediately  get

that V ⊂W, and V⋂Xn  Un for every n ∈ ℕ. Besides,

λ(Un Xn) ∈ γλW⋂Xn Xn + 0,
β

λ(Xn)
,

so  that  λ(Un Xn) ~n→∞ γλ(W Xn),  since  λ(Xn)  goes  to  infinity.

We�get: 
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μ(V)  lim sup
n→∞

λ(V Xn)

 lim sup
n→∞

λ(Un Xn)

 lim sup
n→∞

γλ(W Xn)

 γμ(W). □

Theorem 1. If  (Xn)  is  a  nondecreasing  sequence  such  that

limn→∞ λ(Xn)  ∞, then the Besicovitch space is pathwise connected. 

Proof.  Let  x, y ∈ .  Let  us  define  ϕ0  x  and  ϕ1  y.  Now,  for

k ∈ ℕ,  suppose  that  we  have  defined,  for  every  (γi)1≤i≤k ∈ 0, 1
k,  a

Borel set ϕ∑1≤i≤k γi2
-i of W such that: 

μ Δ ϕ 
1≤i≤k

γi2
-i , ϕ 

1≤i≤k

γi2
-i + 2-k 

μ(Δ(x, y))

2k
.

Let 

(γi)1≤i≤k+1 ∈ 0, 1
k+1,

x′  ϕ 
1≤i≤k

γi2
-i , and

y′  ϕ 
1≤i≤k

γi2
-i + 2-k .

From Lemma 2, there exists a Borel set V ⊂ Δ(x′, y′) such that  

μ(V) 
1

2
μ(Δ(x′, y′)).

Define 

z  ϕ 
1≤i≤k+1

γi2
-i

by zj  yj
′
 if j ∈ V, and zj  xj

′
 if j ∈ G\V. Then   

μ(Δ(x′, z))  μ(V) 
1

2
μ(Δ(x′, y′)) 

μ(Δ(x, y))

2k+1

and  

μ(Δ(z, y′))  μ(Δ(x′, y′)) - μ(V)) 
μ(Δ(x, y))

2k+1
.
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Since ϕ is a Lipschitz function from the set of dyadic numbers from

0, 1  (endowed  with  the  Euclidean  metric)  into ,  we  can  extend  it

into a Lipschitz function from 0, 1 into . □ 

Følner Equivalence and Besicovitch Submeasures   4.

Følner Equivalence    4.1

The definitions  in this subsection are inspired by the notion of Følner
sequence [7].  

Synchronous  Følner  equivalence.  Let  (Xn)  and  (Yn)  be  sequences

of �subsets  of  finite  positive  measure  of  G.  We  say  that  they  are
synchronously Følner equivalent if 

lim
n→∞

λ(XnΔYn)

λ(Xn)
 0.

Proposition 1.  Consider  sequences  (Xn)  and  (Yn)  of  subsets  of  finite

positive measure. The following are equivalent. 

Xn and Yn are synchronously Følner equivalent.  1.

λXn ⋂ Yn ~n→∞ λXn ~n→∞ λYn.  2.

λXn ~n→∞ λYn and λXn\Yn  on→∞λXn.  3.

Proof.  

1⟹2 This follows from the obvious inequalities, since Xn  and Yn  have

finite  measure:  λX ≥ λX⋂ Y ≥ λX - λXΔY  and  λX - λY ≤

λXΔY. 

2⟹3 Just note that λXn\Yn  λXn - λXn ⋂ Yn. 

3⟹1 Note that: 

λXnΔYn  λXn\Yn + λYn\Xn

 λXn\Yn + λYn - λXn ⋂ Yn

 2λXn\Yn + λYn - λXn

 on→∞λXn. □ 

Corollary 1. Synchronous Følner equivalence is an equivalence relation. 

Proof.   

◼ From Proposition 1, note that if Xn and Yn are synchronously Følner

equivalent, then 

λXnΔYn

λYn
~n→∞

λXnΔYn

λXn

→n→∞ 0.

So the relation is symmetric.  
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◼ Transitivity  follows  from  Proposition  1  and  from  the  inclusion

XΔZ ⊆ XΔY ⋃ YΔZ,  which  holds  for  every  finite-measure  set X, Y

and Z. 

◼ Reflexivity is trivial. □  

Since  the  definition  involves  a  lim  (and  not  a  lim  inf),  we  immedi-
ately note the following. 

Remark 7.  (Xn)  and  (Yn)  are  synchronously  Følner  equivalent  if  and

only if Xkn
 and Ykn

 are synchronously Følner equivalent, for every

increasing sequence kn. 

Følner dominance. We denote (Xn) ⪯ (Yn), and say that (Xn) is Føl-

ner dominated by (Yn), if (Xn) is synchronously Følner equivalent to a

subsequence Ykn
. 

Remark 8. ⪯ is a preorder relation. 

Proposition 2. Let (Xn) be an exhaustive sequence, and (Yn) a sequence

of subsets of finite positive measure such that limn→∞ λ(Yn)  ∞. 

Then  for  every  n ∈ ℕ,  mn  minm∈ℕλ(XnΔYm)  is  reached,  and

supn∈ℕmn  +∞. 

Moreover,  (Xn) ⪯ (Yn)  if  and  only  if  (Xn)  is  synchronously  Følner

equivalent to Ymn
.  

By  symmetry  of  synchronous  equivalence,  this  means  that
(Xn) ⪯ (Yn) if and only if 

lim
n→∞

min
m∈ℕ

λ(XnΔYm)

λ(Xn)
 lim

n→∞
min
m∈ℕ

λ(XnΔYm)

λ(Ym)
 0.

Proof.  

◼ For  each  n ∈ ℕ,  λXnΔYm ≥ λYm\Xn ≥ λYm - λXn  goes  to  infinity

when m goes to infinity.  In particular, there is k ∈ ℕ such that for every

m ≥ k,  λXnΔYm ≥ λXnΔY0.  So  the  minimum  of  λXnΔYm  (and  of
λ(Xn)ΔYm

λ(Xn)
) is reached between 〚0, k〚. 

◼ Let  us  prove  that  limn→∞ mn  ∞.  Let  k ∈ ℕ.  Since  supn∈ℕλYn  ∞,

there  exists  l ≥ k  such  that  for  every  m < l,  λYm < λYl.  Since  Xn  is

exhaustive,  Point  1  of  Remark  5  gives  some  n ∈ ℕ  such  that

λYl\Xn <
1

2
λYl -maxm<lλYm. For every m < l, 
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λXnΔYm ≥ λXn\Ym because XnΔYm ⊇ Xn\Ym

≥ λXn - λYm

≥ λXn -max
m<l

λYm

> λXn + 2λYl\Xn - λYl by definition of n

> λXnΔYl.

We get that m ≠ mn, and overall, mn ≥ l ≥ k is arbitrarily large.  

◼ By  the  previous  point,  (mn)  admits  a  strictly  increasing  subsequence.

Hence, if Xn is synchronously Følner equivalent to Ymn
, then by defi-

nition, Xn ⪯ Yn. 

◼ Conversely,  assume  that  Xn  is  strongly  Følner  equivalent  to  some

subsequence Ykn . By definition of mn, λXnΔYmn
 ≤ λXnΔYkn . Hence, 

lim
n→∞

λXnΔYmn


λXn

≤ lim
n→∞

λXnΔYkn 

λXn

 0. □

Følner  equivalence.  We  say  that  two  sequences  (Xn)  and  (Yn)  of

subsets  of  finite  positive  measure  are  Følner  equivalent,  and  write
(Xn) ~ (Yn), if both (Xn) ⪯ (Yn) and (Yn) ⪯ (Xn). 

This is the case if they are synchronously Følner equivalent, but the
converse is false. 

Example 5.  Let  G  ℤ  and  for  every  n ≥ 1  let  Xn  〚-n, -n〛  and

Yn  X1+⌊log n⌋, where log is the base-2 logarithm. Then 

min
m≥1

λ(XnΔYm)

λ(Xn)
 0

is reached for m  2n - 1, and  

min
m≥1

λ(YnΔXm)

λ(Yn)
 0

is  reached  for  m  1 + logn;  by  Proposition  2,  (Xn) ~ (Yn).  How-

ever, λ(Yn)  on→∞(λ(Xn)), so by Proposition 4, (Xn) and (Yn) are not

synchronously Følner equivalent.    

Remark 9. Følner equivalence is an equivalence relation. 

Proposition 3.  Consider  two  sequences  (Xn)  and  (Yn)  of  subsets  of

finite  positive  measure  such  that  (Yn)  is  nondecreasing  and

λ(Xn) ~n→∞ λ(Yn). 

Then  (Xn)  and  (Yn)  are  synchronously  Følner  equivalent  if  and

only if (Xn) ⪯ (Yn). 
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Proof.  Assume  that  there  is  a  sequence kn  such  that (Xn)  is

synchronously  Følner  equivalent  to Ykn
  (the  converse  implication  is

trivial).  Let  n ∈ ℕ.  If  kn ≤ n,  then  λXn\Yn ≤ λXn\Ykn
  and

λYn\Xn ≤ λYn\Ykn
 + λYkn

\Xn  since  (Yn)  is  nondecreasing.  Sum-

ming  up,  λ(XnΔYn) ≤ λXnΔYkn
 + λYn\Ykn

.  Symmetrically,  if

n ≤ kn, λ(XnΔYn) ≤ λXnΔYkn
 + λYkn

\Yn. Overall, we get: 

λ(XnΔYn) ≤ λXnΔYkn
 + λYkn

 - λ(Yn) .

By synchronous Følner equivalence, this gives:  

λ(XnΔYn)  λYkn
 - λ(Yn) + on→∞λYkn

.

Besides,  Proposition  1  (applied  to  (Xn)  and  Ykn
)  gives  λYkn



~n→∞ λ(Xn) ~n→∞ λ(Yn). Summing up, we deduce that:  

λ(XnΔYn)  on→∞λ(Xn) .□

Comparing Besicovitch Submeasures  4.2

Point 3 of Remark 5 allows the following construction, which will be
useful in the following proofs.  

Lemma 3.  Let  (Xn)  be  an  exhaustive  sequence  of  an  infinite-measure

G.  Let  W  ⋃i∈ℕ Wi  where  Wi ⊂ G  has  finite  positive  measure  for

each  i ∈ ℕ,  such  that,  for  every  n ∈ ℕ,  jn  maxWj⋂Xn≠∅
j  is  well

defined (i.e., Xn intersects finitely many Wi). Then: 

μ(Xn)
W ≥ lim supi→∞maxm∈ℕλWi Xm.1.

If limn→∞ ϵn  0 and q(Xn)
⋃i<jn

Wi, ϵn ≤ n for every n ∈ ℕ, then:  2.

μ(Xn)
W  lim sup

i→∞

max
m∈ℕ

λWi Xm.

In  general,  there  exists  an  increasing  integer  sequence  l  such  that,
denoting Wl  ⋃i∈ℕ Wli

:  
3.

μ(Xn)
Wl  lim

i→∞
max
m∈ℕ

λWli
Xm.

Proof.  

By  Point  2  of  Remark  5,  there  exists  m ∈ ℕ  such  that  λWi Xm > 0.

For  i ∈ ℕ,  define  ki  such  that  λWi Xki
  maxm∈ℕλWi Xm.  Let  us

prove  that  for  every  k ∈ ℕ,  ∃ l ∈ ℕ  such  that  for  every  i > l,  ki > k.

The assumption gives that i ∈ ℕ Wi ⋂Xk ≠ ∅ is finite,  so that we can

call  l  its  maximum.  In  other  words,  for  every  i > l  and  every

m ≤ k,  Wi ⋂Xm  ∅  (because  Xn  is  nondecreasing),  so  that

1.
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λWi Xm  0 < maxm∈ℕλWi Xm,  so ki > k.  We  have  proven

that limn→∞ ki  ∞.  Hence, μ(Xn)
W  lim supn→∞λW Xn ≥

lim supi→∞λW Xki
.  We  get  the  desired  inequality  by  noting  that

Wi ⊂ W. 

Point 1 already gives one inequality. For the converse: 2.

μ(Xn)
W  lim sup

n→∞

λi<jn
Wi ⋃Wjn

⋃i>jn
Wi Xn

≤ lim sup
n→∞

λi<jn
Wi Xn

+ lim sup
n→∞

λWjn
Xn

+ lim sup
n→∞

λi>jn
Wi Xn

≤ lim sup
n→∞

ϵn + lim sup
n→∞

max
m∈ℕ

λWjn
Xm + 0

≤ 0 + lim sup
i→∞

max
m∈ℕ

λWi Xm.

The last inequality comes from the fact that the sequence jn is nonde-

creasing  (because  Xn  is  nondecreasing),  and  not  upper  bounded

(because the Wi are nonempty), so it goes to infinity.  

Pick any sequence (ϵn) converging to 0. Let us define some sequence l by

recurrence,  from  any  seed  l0 ∈ ℕ.  Assume  that  ln  is  defined,  and  write

kn  q(Xn)
⋃j≤n Wlj

, ϵn. Let ln+1  jkn-1, so that for every m ≥ ln+1, Wm

does not intersect Xkn-1
. 

3.

The  sequence  being  defined,  consider j


n  maxWlj
⋂Xn≠∅

j.  By  defini-

tion  of  the  sequence,  kj

n-1

 q(Xn)
⋃j<j


n
Wlj

, ϵn,  and  Wlj


n
 does  not

intersect Xkj


n-1
-1. Since Xn is nondecreasing, it does not intersect any

Xm,  with  m ≤ kj

n-1

- 1.  On  the  other  hand,  the  definition  of  j


n  gives

that  Wlj


n
 intersects  Xn.  We  can  deduce  that  n > kj


n-1

- 1.  This  means

that Wl satisfies the hypothesis of Point 2. 

Replacing  the  lim  sup  by  a  lim  can  be  achieved  by  taking,  again,  a

subsequence. □

Now we are able to prove the main equivalence of the paper. 

Lemma 4. Let ϵ, δ > 0, and (Xn), (Yn) be exhaustive. The following are

equivalent.  

For every W ⊂ G, if μ(Yn)W ≥ ϵ, then μ(Xn)
W ≥ δ.1.

lim infn∈ℕ maxm∈ℕ

ϵλ(Yn)-λ(Yn\Xm)

λ(Xm)
≥ δ.  2.
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If kn  realizes the maximum for each n ∈ ℕ, and if ϵ < 1, then these

properties imply that 

δ

ϵ
≤ lim inf

n∈ℕ

λ(Yn)

λXkn

≤ lim sup

n∈ℕ

λ(Yn)

λXkn

≤

1 - δ

1 - ϵ
.

In particular, the properties imply that δ ≤ ϵ. 

Proof. Let us start by proving the final inequalities. Assume that 

lim inf
n∈ℕ

ϵλ(Yn) - λYn\Xkn


λXkn


≥ δ.

Then on the one hand, it is clear that  

lim inf
n∈ℕ

ϵλ(Yn)

λXkn


is  even  bigger,  which  gives  the  first  inequality.  On  the  other  hand,

since λYn\Xkn
 ≥ λ(Yn) - λXkn

, we can see that: 

lim inf
n∈ℕ
ϵ - 1

λ(Yn)

λXkn

+ 1 ≥ lim inf

n∈ℕ

ϵλ(Yn) - λYn\Xkn


λXkn


≥ δ,

which gives

lim sup
n∈ℕ

λ(Yn)

λXkn

≤

1 - δ

1 - ϵ
,

provided that ϵ < 1. □

2 ⇒ 1

μ(Xn)
(W)  lim sup

m→∞

λ(W Xm)

≥ lim sup
n→∞

λW Xkn


≥ lim sup
n→∞

λW⋂Yn⋂Xkn


λXkn


 lim sup
n→∞

λW⋂Yn - λW⋂Yn\Xkn


λXkn


≥ lim sup
n→∞

λW⋂Yn - λYn\Xkn


λXkn

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μ(Xn)
(W)  lim sup

n→∞

ϵλ(Yn) - λYn\Xkn


λXkn


+
λW⋂Yn - ϵλ(Yn)

λ(Yn)

λ(Yn)

λXkn


≥ lim inf
n→∞

ϵλ(Yn) - λYn\Xkn


λXkn


+ lim sup
n→∞

λW⋂Yn

λ(Yn)
- ϵ lim inf

n∈ℕ

λ(Yn)

λXkn


≥ δ + 0
δ

ϵ

by the two premises and the first inequalities.  

1 ⇒ 2 Let us build a set W that contradicts Point 1, assuming that: 

lim inf
n∈ℕ

max
m∈ℕ

ϵλ(Yn) - λYn\Xm

λ(Xm)
≥ δ.

For  each  n ∈ ℕ,  by  Point  1  of  Remark  5,  there  exists

kn  mink λYn\Xk ≤ ϵλ(Yn). By noting that  

Yn⋂Xkn
\Xkn-1

 Yn\Xkn-1
\Yn\Xkn



(by convention X-1 is empty), we can write that  

λYn⋂Xkn
\Xkn-1

  λYn\Xkn-1
 - λYn\Xkn

,

which  is  bigger  than  ϵλ(Yn) - λYn\Xkn
,  by  minimality  of  kn.  By

Lemma  1,  Yn⋂Xkn
\Xkn-1

 includes  a  measurable  set  Zn ⊂ W

such�that 

λ(Zn) ∈ ϵλ(Yn) - λYn\Xkn
 + [0, β[.

Define  

Wn  Yn\Xkn
  Zn.

Note that Wn ⊂ Yn, and that  

ϵ < λ(Wn Yn) ≤ ϵ +
β

λ(Yn)
,

so that  

lim
n→∞
λ(Wn Yn)  ϵ.
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The  Wi  satisfy  the  hypotheses  of  Lemma  3  with  jkn
< n  for  every

n ∈ ℕ  (since  kn  is  unbounded  and  (Xn)  is  nondecreasing,  this  proves

that  jm  is  finite  for  every  m),  so  that  Point  3  gives  an  integer

sequence�l, with 

μ(Xn)
(Wl)  lim

i→∞
max
m∈ℕ
λWli

Xm.

By construction, we have:  

λ(Wi Xm) 
λYi⋂Xm\Xki

 + λZi⋂Xm

λ(Xm)
.

If  m ≤ ki,  then  Xm ⊆ Xki
,  and  Zi⋂Xm ⊆ Zi⋂Xki-1

 ∅,  so  that

λ(Wi Xm)  0.  On  the  contrary,  if  m > ki,  then  Zi ⊆ Xki
⊆ Xm,  and

Yi⋂Xm\Xki
 Yi\Xki

\Yi\Xm, so that:  

λ(Wi Xm) 
λYi⋂Xm\Xki

 + λ(Zi)

λ(Xm)

≤
λYi\Xki

 - λYi\Xm + ϵλ(Yi) - λYi\Xki
+ β

λ(Xm)

≤ max
m∈ℕ

ϵλ(Yi) - λYi\Xm + β

λ(Xm)
.

The  lim  inf  in  both  sides  of  this  inequality  together  with  our  hypoth-
esis gives  

μ(Xn)
(Wl) < δ.

On  the  other  hand,  applying  now  Point  1  of  Lemma  3  to
sequence�(Yn):  

μ(Yn)
(Wl) ≥ lim

i→∞
max
m∈ℕ
λWli

Ym

≥ lim
i→∞
λWli

Yli
  lim

n→∞
λ(Wn Yn)  ϵ. □

The previous lemma allows us to now characterize the main proper-
ties of interest for comparing two Besicovitch submeasures. 

Proposition 4. Let (Xn) and (Yn) be exhaustive sequences.  

For each α > 0, μ(Yn) ≤ αμ(Xn)
 if and only if  1.

∀ ϵ > 0, lim inf
n→∞

max
m∈ℕ

λYn -
1

ϵ
λYn\Xm

λXm

≥
1

α
.
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μ(Yn)
 is  absolutely  continuous  with  respect  to  μ(Xn)

 if  and  only  if

∃ α > 0, μ(Yn) ≤ αμ(Xn)
.  

2.

μ(Yn)
≤ μ(Xn)

 if and only if Yn ⪯ Xn.  3.

μ(Yn)
 μ(Xn)

 if and only if Yn ~ Xn.  4.

We  can  even  see  from  the  proof  that  (Yn) ⪯ (Xn)  if  and  only  if

there  exists  ϵ ∈]0, 1[  such  that  for  every  Borel  measurable  subset
W ⊂ G, μ(Xn)

(W) < ϵ⟹μ(Yn)
(W) < ϵ. 

Proof.  

Just  note  that  μ(Yn) ≤ αμ(Xn)
 is  equivalent  to  the  properties  in  Lemma  4,

for every δ and ϵ  αδ, and hence to: 

1.

lim inf
n∈ℕ

max
m∈ℕ

λYn -
1

ϵ
λYn\Xm

λXm

≥
1

α
.

From  Lemma  4,  μ(Yn)  is  absolutely  continuous  with  respect  to  μ(Xn)
 if

and only if 

2.

∀ ϵ > 0, lim inf
n→∞

max
m∈ℕ

λYn -
1

ϵ
λYn\Xm

λXm

> 0.

From  Point  1,  this  is  equivalent  to  the  existence  of  some  α  such  that
μ(Yn)

≤ αμ(Xn)
.  

Consider a sequence kn that witnesses that Yn ⪯ Xn: 3.

lim
n→∞

λYnΔXkn


λYn
 0.

By Point 3 of Proposition 1,  

lim
n∈ℕ

λYn -
1

ϵ
λYn\Xkn



λXkn


 lim
n∈ℕ

λYn

λXkn


1 -
1

ϵ
lim
n∈ℕ

λYn\Xkn


λYn

 1 1 -
1

ϵ
0 .

We can conclude with Point 1. Conversely, suppose that 

lim inf
n∈ℕ

λYn -
1

ϵ
λYn\Xkn



λXkn


≥ 1.

By the last inequalities in Lemma 4, we know that 

lim
n∈ℕ

λYn

λXkn


 1.
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Moreover,  

lim
n→∞

λYn\Xkn


λXkn


≤ lim
n→∞

ϵλYn

λXkn


- ϵ lim inf
n∈ℕ

λYn -
1

ϵ
λYn\Xkn



λXkn


 ϵ - ϵ  0.

By Point 3 of Proposition 1, we obtain that Yn ⪯ Xn.  

This statement follows directly from the definitions and Point 3. □4.

The following is direct from Proposition 4 and Remark 2. 

Corollary 2.  Let  (Xn)  and  (Yn)  be  exhaustive.  Then  (Yn) ⪯ (Xn)  (resp.

(Yn) ~ (Xn))  if  and  only  if  the  identity  map  from  space    endowed

with  d(Xn)
 onto  space    endowed  with  d(Yn)

 is  1-Lipschitz  (resp.  an

isometry).  

Here are particular classes of sequences, where the proposition can
be applied. 

Corollary 3. Let (Xn) and (Yn) be exhaustive. 

If there exist a real number α > 0 and a sequence kn such that  1.

lim inf
n→∞

λYn Xkn
 ≥

1

α

and Yn ⊂ Xkn
, then μ(Yn)

≤ αμ(Xn)
.  

On  the  other  hand,  if  λXn ~n→∞ λYn  but  Xn  and  Yn  are  not

(synchronously)  Følner  equivalent,  and  q(Ym)Xn, ϵn  n + 1  for  some

real  sequence  (ϵn)  converging  to  0,  then  μ(Xn)
 is  not  absolutely  continu-

ous with respect to μ(Yn)
.

2.

Proof.  

We can use Point 1 of Proposition 4, because for every ϵ > 0, 1.

lim inf
n→∞

max
m∈ℕ

λXn -
1

ϵ
λXn\Ym

λYm
≥ lim inf

n→∞

λXn -
1

ϵ
λXn\Ykn 

λYkn 

 lim inf
n→∞

λXn

λYkn 

≥
1

α
.
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Suppose λXn ~n→∞ λYn and Xn and Yn are not synchronously Føl-

ner equivalent. By Proposition 3, Xn  Yn, that is,

2.

ϵ  lim sup
n→∞

λXn\Yn

λYn
> 0.

We can write:  

lim inf
n→∞

λXn -
1

ϵ
λXn\Yn

λYn
 0.

By the second assumption, for every m > n, Xn\Ym  ∅ and 

λ(Xn)

λ(Ym)
≤ ϵn.

We get: 

max
m∈ℕ

λXn -
1

ϵ
λXn\Ym

λYm
≤ max

λXn -
1

ϵ
λXn\Yn

λYn
, ϵn .

Putting  things  together, lim infn→∞maxm∈ℕ

λ(Xn)-
1

ϵ
λ(Xn\Ym)

λ(Ym)
 is 0.  We  con-

clude with Point 2 of Proposition 4. □

Corollary 4.  Let  (Xn)  and  (Yn)  be  exhaustive.  Assume  that

λ(Xn) ~n→∞ λ(Yn). Then the following are equivalent.  

Xn and Yn are (synchronously) Følner equivalent.  1.

μYln 
 μXln

, for every increasing sequence ln.  2.

μYln 
 is absolutely continuous with respect to μXln

, for every increasing

sequence ln.  

3.

Proof.  

1⟹2  By  Remark  7,  synchronous  Følner  equivalence  is  transmitted  to

all  subsequences  (provided  that  one  takes  the  same  subsequence  for

Xn and for Yn). We conclude using Proposition 4. 

2⟹3 This is obvious. 

1⟹3  If  Xn  and  Yn  are  not  synchronously  Følner  equivalent,  then

there  exists  an  infinite  set  I ⊂ ℕ  and  a  real  number  α > 0  such  that
∀ n ∈ I, 

λXnΔYn

λXn

≥ α.

This  implies  that  for  every  increasing  sequence  ln ∈ I
ℕ,  Xln

  and  Yln 

are  not  synchronously  Følner  equivalent.  We  can  take  an  increasing
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sequence ln ∈ I
ℕ

 such  that q(Ym)Xln
, ϵln   ln+1,  for  some  real

sequence (ϵn)  converging  to 0.  Then Xln
  and Yln   satisfy  the  assump-

tions for Point 2 of Corollary 3. □

Shift    4.3

Throughout this subsection and the next two, G will be a locally com-
pact group with Haar measure λ, and (Xn) will be a sequence of sub-

sets of G such that 0 < λ(Xn) < ∞ for every n ∈ ℕ. If G is discrete, the

Haar  measure  of  choice  is  the  counting  measure.  Countable  groups
are presumed discrete.  

Følner  sequences.  (Xn)  is  (left)  g-Følner  if  (Xn) ~ (gXn).  Since

λ(Xn)  λ(gXn),  Proposition  3  says  that  it  is  enough  to  require

(Xn) ⪯ (gXn), and that in this case, (Xn) and (gXn) are synchronously

Følner  equivalent.  (Xn)  is  a  (left)  Følner  sequence  if  it  is  g-Følner  for

every g ∈ G. 
Finitely  generated  groups.  A  countable  group  G  is  finitely  gener-

ated  (briefly,  f.g.)  if  a  finite  subset  E ⊂ G  exists  such  that  for  every

g ∈ G  there  exists  e1, … , en ∈ E⋃E
-1

 such  that  e1⋯ en  g.  The

minimum such n is called the norm of g (w.r.t. E) and denoted by g;

the set g ∈ G g ≤ n is called the ball of radius n (w.r.t. E). 

If  the  size  of  the  balls  grows  polynomially  with  the  radius,  then
they  form  a  Følner  sequence,  so  Point  3  of  Corollary  5  generalizes
[6,�Cor  4.1.4].  Vice  versa,  if  the  size  of  the  balls  grows  exponentially
with  the  radius,  then  no  subsequence  of  the  sequence  of  balls  is  Føl-
ner; whether the converse implication holds is still an open problem. 

Amenable groups. Let L∞G be the space of the Borel measurable

functions  u :G →   for  which  M ≥ 0  exists  such  that

λx ∈ G u(x) > M  0.  G  is  amenable  if  it  has  a  left-invariant

mean, that is, a linear functional m :L∞G →  such that:  

If f (x) ≥ 0 for every x ∈ G, then mf  ≥ 0. 1.

If f (x)  1 for every x ∈ G, then mf   1.2.

For  every  g ∈ G  and  f ∈ L∞G,  mgf   mf ,  where  gf  is  defined  by

gf (x)  f g-1x for every x ∈ G.  

3.

If  G  is  σ-countable,  that  is,  a  countable  union  of  compact  subsets
(in particular, if it is second countable) then (cf. [8, Section 16], in par-
ticular  Propositions  16.10  and  16.16)  G  is  amenable  if  and  only  if  it
has  a  Følner  sequence,  and  the  sequence  can  be  taken  to  be  exhaus-
tive. For the case when G is discrete, the reader can compare [4, Chap-
ter 4] and [9, Chapter 5]. 
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The following comes directly from Corollary 2. 

Corollary 5. Let G be a locally compact group admitting an exhaustive
sequence (Xn). 

The following are equivalent:   1.

Xn is g-Følner. (a)

μ(Xn)
 μg-1Xn

. (b)

The shift by g is an isometry for d(Xn)
. (c)

Xn is Følner if and only if every shift is an isometry for d(Xn)
.  2.

If  G  is  σ-countable  (in  particular,  if  it  is  second  countable)  then  it  is

amenable  if  and  only  if  there  exists  an  exhaustive  sequence  Xn  such

that every shift is an isometry for d(Xn)
.   

3.

Note that one implication of Point 3 was already stated in [2, Theo-
rem 3.5] in the case of countable groups, but the proof contains a con-
fusion  between  left  and  right  Følner.  The  full  equivalence  generalizes
[6, Cor 4.1.4]. 

Corollary 6. Let G be a locally compact group.  

If  G  is  finitely  generated  and  Xn  is  the  sequence  of  balls  with  respect

to  some  finite  generating  set,  then  the  shift  by  any  element  g ∈ Xg  is

Xg-Lipschitz.  

1.

Let  g ∈ G.  An  exhaustive  sequence  is  g-Følner  if  and  only  if  all  of  its
subsequences  induce  a  Besicovitch  pseudodistance  for  which  the  shift
by g is continuous.  

2.

If G is second countable, then G is amenable if and only if it admits an
exhaustive sequence of which all subsequences yield a Besicovitch pseu-
dodistance that makes every shift continuous.   

3.

The first  point generalizes [6, Prop 4.1.3]. Note that it still applies
in nonamenable groups such as the free group on two generators, but
the shifts are no longer isometries, and there is a subsequence of balls
with respect to which the Besicovitch pseudodistance makes them dis-
continuous. 

Proof.  

We can apply Point 1 of Corollary 3: Yn  g ·Xn ⊂ Xg ·Xn  Xn+g. 1.

This comes from Corollary 4 and Remark 3. 2.

This  comes  from  Point  2  and  the  characterization  of  amenability

through Følner sequences. □
3.
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There  are  nondecreasing  non-Følner  sequences  for  which  the  shift

is Lipschitz (but not an isometry) in ℤd. 

Example 6. Let  G  ℤd  endowed  with  the  counting  measure,

Xn  〚-n, n〛 ⋃ 2〚-n, n〛d,  so  that  Xn  2n + 1 + 2n  2d

~n→∞ 3n
d.  Let  g ∈ ℤd  such  that  g∞  1.  Then  on  the  one  hand,

for every n, Xn + g ⊂ X2n and 

X2n

Xn
~n→∞

6nd

3nd
 2d.

Point 1 of Corollary 3, with kn  2n, gives that every shift is 2d-Lips-

chitz. On the other hand, the sequence is not g-Følner, because  

μ2ℤd  lim sup
n→∞

2n + 1d

3nd


2d

3d

while  

μ2ℤ + gd  lim sup
n→∞

ng1 2n + 1d-g1

3nd


2d-g1

3d
.

By Point 1 of Corollary 5, the shift by g is not an isometry.  

Propagations and Right-Følner Sequences    4.4

As  the  Haar  measure  is  left  invariant,  the  “dual”  measure

λ(U)  λU-1  for  every  Borel  set  U  is  right  invariant.  The  two  mea-

sures  need  not  be  equal:  those  groups  for  which  they  are,  are  called
unimodular;  the  class  of  unimodular  groups  includes  discrete  groups
and  amenable  groups.  The  definition  of  synchronous  Følner  equiva-
lence,  Følner  dominance  and  Følner  equivalence  can  be  stated  again
for  the  right-Haar  measure;  we  can  denote  the  “dualized”  notions  as

⪯R and ~R. All the results proven for λ have a dual version for λ, pro-

vided  that  multiplication  on  the  left  is  replaced  by  multiplication  on
the right, and vice versa. 

Let  G  be  a  locally  compact  group  and  g ∈ G.  A  sequence  (Xn)

of �subsets  of  positive  finite  measure  of  G  is  right  g-Følner  if

(Xn) ~R (Xng), that is, Xn
-1 is left g-1-Følner. Equivalently (dualizing

Proposition  3),  λ(XnΔXng)  on→∞λ(Xn).  A  right-Følner  sequence  is

then a sequence that is right g-Følner for every g ∈ G. 
Now  let  A  be  an  alphabet.  The  propagation  in  direction  g ∈ G  is

the function πg :  →  defined  by πg(x)(i)  x(ig) for every x ∈  and
i ∈ G.  With  this  definition,  the  value  of  πg(x)  at  point  ig  equals  the
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value  of  x  at  point  i:  that  is,  the  information  moves  in  direction  g.
Points  1, 2  and  3 of  Corollary  5 can  then be  dualized  to  right-Følner
sequences and propagations: 

Corollary 7. Let G be a unimodular locally compact group.  

An  exhaustive  sequence  Xn  is  right  g-Følner,  if  and  only  if

μ(Xn)
 μ(Xng)

 if  and  only  if  the  propagation  in  direction  g  is  an

isometry.  

1.

An exhaustive sequence is right Følner if and only if every propagation
is an isometry.  

2.

If  G  is  σ-countable  (in  particular,  if  it  is  second  countable)  then  G  is
amenable  if  and  only  if  it  admits  an  exhaustive  sequence  of  which  all
subsequences  yield  a  Besicovitch  pseudodistance  that  makes  every  shift
continuous.   

3.

Proof.  Given  x ∈ ,  let  x(i)  xi-1  for  every  x ∈   and  i ∈ G:  then

for every x, y ∈  and g ∈ G, x  x, Δx, y  (Δ(x, y))-1  and πg(x) 

σg(x),  thus  also  d(Xn)
(x, y)  dXn

-1x, y  and  d(Xn)
(πg(x), πg(y)) 

dXn
-1σ

g(x), σg(y),  so  that  the  propagation  in  direction  g  is  an

isometry for d(Xn)
 if and only if the shift by g is an isometry for dXn

-1 .

All points then follow easily from Corollary 5. □

Block Maps    4.5

Let G be a discrete group. A block map on G with source alphabet A,
target  alphabet  B,  neighborhood  N  {j1, …, jk}  and  local  rule

ϕ :Ak → B  is  a  function  F :AG → BG  defined  as  the  synchronous
application of ϕ at the “N-shaped neighborhood” of each point of the

group:  that  is,  for  every  x ∈ AG
 and  i ∈ G,  F(x)(i) 

ϕ(x(ij1), … , x(ijn)). By the Curtis–Lyndon–Hedlund theorem [10] (see

also [4, Chapter 1]), block maps are all and only those functions from

AG
 to  BG  that  are  continuous  in  the  prodiscrete  topology  and

commute  with  all  the  shifts.  Every  propagation  is  a  block  map,  but
the shift by g ∈ G is a block map if and only if g is central in G, that

is,  gh  hg  for  every  h ∈ G;  in  this  case,  σg  πg
-1
.  Note  that  the

local rule ϕ can be seen as the local rule of another block map Φ with

source  alphabet  Ak,  target  alphabet  B,  and  neighborhood  N  {e},
where e is the identity element of G. Since the neighborhood is trivial,

we  have  Δ(Φ(x), Φ(y)) ⊆ Δ(x, y)  for  every  x, y ∈ Ak
G.  Hence  Φ  is

1-Lipschitz,  but  not  necessarily  an  isometry:  for  example,  ϕ  could  be
constant.  

Block  maps  can  be  defined  equivalently  as  follows.  For

f1, … , fk :A
G → AG

 define  the  product  f  f1⨯⋯⨯ fk :A
G → Ak

G
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by  f(x)(i)  f1(x)(i), … , fk(x)(i)  for  every  x ∈ AG
 and  i ∈ G.  Then  a

block map F with source alphabet A, target alphabet B, neighborhood

N  {j1, … , jk}  and  local  rule  ϕ  has  the  form  F  Φ◦πj1 ⨯⋯⨯πjk ,

where  Φ  is  a  block  map  with  source  alphabet  Ak,  target  alphabet  B,
neighborhood N  {e}, and local rule ϕ, and πj  is the projection to the

jth component. 

Lemma 5. Suppose f1, … , fk :A
G → AG

 are such that fq  is αq-Lipschitz

with  respect  to  d(Xn)
.  Then  f  f1⨯⋯⨯ fk :A

G → Ak
G

 is  ∑q1
k αq-

Lipschitz  with  respect  to  d(Xn)
.  In  particular,  if  αq  α  for  every

q ∈ 1, k, then f  is kα-Lipschitz, and if each fq  is an isometry, then f

is k-Lipschitz.  

Proof.  For  every  x, y ∈   and  i ∈ G,  we  have  f(x)(i) ≠ f(y)(i)  if  and

only if fq(x)(i) ≠ fq(y)(i) for at least one q ∈ 1, k, that is, 

Δf(x), f(y)  q1
k
Δfq(x), fq(y).

Consequently,  μ(Xn)
Δf(x), f(y) ≤ ∑q1

k μ(Xn)
Δfq(x), fq(y),  and  the

thesis follows easily. □

The composition of an α-Lipschitz function with a β-Lipschitz func-
tion is an αβ-Lipschitz function. As every propagation is a block map,
Lemma 5 and Point 2 of Corollary 7 allow us to dualize Points 2 and
3  of  Corollary  6  and  recover  (cf.  [2,  Theorem  3.7]  and  [11,  Theo-
rem�18]) the following characterization. 

Corollary 8.  Let G be a discrete group.  

An  exhaustive  sequence  is  right  Følner  if  and  only  if  all  of  its  subse-
quences yield a Besicovitch pseudodistance that makes every block map
continuous.  

1.

If  G  is  σ-countable  (in  particular,  if  it  is  second  countable)  then  it  is

amenable if and only if it admits an exhaustive sequence Xn such that,

for  every  k ≥ 1  and  every  increasing  ln,  every  block  map  with  neigh-

borhood size k is k-Lipschitz with respect to dXln
.  

2.

Conclusion  5.

We  have  generalized  Besicovitch  submeasures  from  the  class  of  dis-
crete  groups  to  the  class  of  locally  compact  groups  and  presented
ways to compare them in terms of absolute continuity, Lipschitz conti-
nuity and equality, based on the properties of the sequences of subsets
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of  finite  positive  Haar  measure  that  describe  them.  Endowing  the  set
of  measurable  configurations  with  the  Besicovitch  topology,  we  have
derived  conditions  on  the  defining  sequence  for  the  shift  maps  to  be
continuous,  Lipschitz  or  isometric.  As  part  of  this,  we  gave  another
characterization of amenable groups.  

Possible  future  work  could  involve  extension  to  configuration
spaces  on  possibly  non-second-countable  groups.  This  would  require
the  use  of  the  more  general  notions  of  directed  set  and  of  net,  and
although the definition  of Besicovitch pseudodistance and submeasure
would  be  immediate  to  extend,  the  iterative  constructions  of  Lem-
mas�2 and 4 could need a major revision. 
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