
Self-Stabilizing Distributed Algorithms by
Gellular Automata

Taiga Hongu
Masami Hagiya

The University of Tokyo
Tokyo, Japan

hongu314@g.ecc.u-tokyo.ac.jp
hagiya@is.s.u-tokyo.ac.jp

Gellular automata are cellular automata with the properties of asyn-
chrony, Boolean totality and noncamouflage. In distributed computing,
it is essential to determine whether problems can be solved by self-
stable gellular automata. From any initial configuration, self-stable gel-
lular automata converge to desired configurations, as self-stability
implies the ability to recover from temporary malfunctions in transi-
tions or states. This paper shows that three typical problems in
distributed computing, namely, solving a maze, distance-2 coloring and
spanning tree construction, can be solved with self-stable gellular
automata.

Keywords: gellular automata; solving a maze; distance-2 coloring;
spanning tree construction; self-stability

Introduction1.

Many studies have been conducted to implement cellular automata
using physical or chemical materials, such as [1–3]. These include
recent efforts to implement cellular automata by reaction-diffusion
systems in porous gels [4]. One motivation for implementing cellular
automata using gels is to develop smart materials that can
autonomously respond to external environments.

The term gellular automata was coined in [5], where the diffusion
of DNA molecules is controlled by opening and closing holes between
cells. Gellular automata were later formalized as cellular automata
with the features of asynchrony, Boolean totality and noncamouflage
in [6, 7], where two types of DNA molecules were assumed, one for
states of cells and the other for signals transmitting states.

In the research in the latter direction, the computational universal-
ity of gellular automata was shown [6], and the computational power
of gellular automata as distributed systems was investigated in [8].
Self-stability is a crucial factor in distributed computing. According to
[9], self-stability is the ability of a system to converge to states with

https://doi.org/10.25088/ComplexSystems.30.2.159

mailto:hongu314@g.ecc.u-tokyo.ac.jp
mailto:hagiya@is.s.u-tokyo.ac.jp
https://doi.org/10.25088/ComplexSystems.30.2.159

desired conditions from any initial state. If gellular automata are self-
stable, they recover desired conditions even if temporary malfunctions
occur in transitions or states. Smart materials are expected to have
this property.

In our previous study, we developed self-stable gellular automata
that solved a maze [10] using a distributed algorithm similar to Lee’s
algorithm [11], under the restrictions that the number of states is
finite and state transitions are asynchronous. However, this system
takes time to detect undesired situations, such as loops.

In this paper, we reconsider the transition rules and target configu-
rations of the gellular automata and present new transition rules that
can solve a maze in a relatively short time. Moreover, we examine
two other typical problems in distributed computing: distance-2 color-
ing and spanning tree construction. Like solving a maze, we confirm
that these problems can be solved with self-stable gellular automata
and explain how to design suitable systems for this purpose.

There are many studies on cellular automata solving maze prob-
lems, such as [12, 13], but we could not find self-stable ones except
ours. Self-stable cellular automata for k-coloring are proposed by a
very recent study [14]. They examined k-coloring by deterministic
cellular automata and probabilistic ones, and suggest a different self-
stabilizing algorithm for the number of colors k. However, typical dis-
tributed problems such as mazes and spanning trees are not dealt
with. Also, self-stability is defined from the viewpoint of the proba-
bilistic model in their paper, while it is defined from the viewpoint of
the nondeterministic model in ours.

The gellular automaton for solving a maze and others are demon-
strated by the simulator available at cell-sim-ca0d6.firebaseapp.com.
Select “New Maze” in “Simulation Target.”

Solving a Maze2.

Definitions 2.1

In this paper, a two-dimensional square lattice and a von Neumann
neighborhood are assumed. Each cell in the square lattice has a state
from the following set:

W, B, S, T0, T
*, T†, R ⋃ Pi

′, Pi
′′, Pi

*, Pi
† i  0, 1, 2, … , n - 1.

The states T0, T
*
 and T†

 are denoted T. The states Pi
′, Pi

′′, Pi
*
 and Pi

†

are collectively denoted Pi. If i is arbitrary, Pi is simply denoted P.

The parameter n is the number of states in Pi and is equal to five in

this section.
The state W denotes a wall of a maze, which does not make any

transitions. The state B denotes a blank, which may make a transition

160 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

https://cell-sim-ca0d6.firebaseapp.com/

to P or R. The states S and T are the starting point and the terminal
point, respectively, and they do not make any transitions. The state R
indicates that it is reachable from the terminal point, and a path con-
sisting of P stretches over cells in R.

The superscripts

′, ′′, * and † are used for detecting junctions by
rules (9–21), explained later, and the subscripts i are used for direct-
ing paths.

Definition 1 (transition rule). A transition rule consists of three compo-
nents: the current state of a cell that makes a transition, a condition
to be satisfied by the neighboring cells and the next state that the cell
will take.

Definition 2 (asynchrony, Boolean totality, noncamouflage). Cellular
automata are asynchronous if cells make transitions asynchronously;
that is, each cell may either make a transition by following a transi-
tion rule or do nothing at each step. Cellular automata are Boolean
totalistic if the conditions of transition rules depend only on neighbor-
ing cells being in a particular state, not on the direction or number of
cells. Cellular automata are noncamouflage if no conditions of transi-
tion rules contain the current state of the cell that makes a transition.

A transition rule of asynchronous Boolean-totalistic noncamou-
flage cellular automata is defined as follows:

s1(t1 ⋀… ⋀ tm ⋀ ¬ tm+1 ⋀… ⋀ ¬ tm+n) → s2.

In this rule, s1 is the current state, t1⋀…⋀ tm⋀¬ tm+1⋀…⋀ ¬ tm+n

is the condition, and s2 is the next state. This means that a cell in state

s1 whose neighborhood contains cells in states t1, … , tn and does not

contain cells in states tm+1, … , tm+n can make a transition to state s2.

By the noncamouflage property, s1 does not appear among

t1, … , tm+n.

Definition 3 (configuration, run, step). A configuration is a mapping
from cells at lattice points in a square lattice to states, and a run is an
infinite sequence of configurations, each of which, except for the first
one, is obtained by applying the transition rules to the previous config-
uration. A transition step is the process of transforming from configu-
ration C1 to configuration C2, which is obtained by having each cell

in C1 make a single transition or do nothing. Due to the asynchrony

and possibility that several rules can be applied to a state, a configura-
tion sometimes has more than one next possible configuration. In this
case, one of them is chosen nondeterministically.

Definition 4 (passage, path, loop, junction). A passage is a sequence of
neighboring cells, each of which is in state B, R or P. A maze is con-
nected if there is a passage from the starting point S to the terminal
point T in the maze.

Self-Stabilizing Distributed Algorithms by Gellular Automata 161

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

A path is a sequence of neighboring cells in states
… , P0, P1, … , Pn-1, P0, … , where the indices are incremented in

(ℤ / nℤ).
If a path has both ends, that is, a head that is not adjacent to Pi-1

and a tail that is not adjacent to Pi+1, we say that the path is maxi-

mal. If the head of a maximal path is adjacent to T and its tail is adja-
cent to S, the maximal path is called a solving path.

If a path has no ends, it is called a loop. In particular, if a loop has
no junctions (described later), we call that loop pure.

We say that a path has a junction if a cell in state Pi in the path is

adjacent to two or more different cells in Pi-1 (or S if i  0) or two or

more in Pi+1 (or T). Such a cell in state Pi is called an entrance in the

former case and an egress in the latter case.

Definition 5 (solution). A solution of a maze is a configuration in
which there is only one maximal path, and its head (tail) is adjacent
to the starting point S (the terminal point T, respectively). If the maze
is connected, there are solutions, and if it is not connected, there are
no solutions. Figure 1 shows an example of the solutions of the maze.

Figure 1. An example of solutions of a maze (black cells denote W).

Definition 6 (fair run). A run R is fair if a certain configuration C
appears in R infinitely often, and any configuration C′

 that can be
obtained from C by a transition step also appears in R infinitely
often.

Throughout this paper, we assume nondeterministic models of
computation. In probabilistic models such as Markov processes,
probabilities of unfair runs are zero; that is, runs are fair with proba-
bility�1.

Definition 7 (target configuration, self-stability). Some configurations
that are desirable (for a specific purpose) are defined as target configu-
rations. Cellular automata are self-stable if, in any fair run from any
configuration, a target configuration appears in finite steps, and only
target configurations appear after that.

162 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

Definition 7 is generally adopted in the field of distributed comput-
ing [9]. Even when a perturbation occurs in a target configuration, a
new target configuration eventually appears if cellular automata are
self-stable, because we can start a fair run from the resulting nontar-
get configuration.

Procedure for Solving a Maze2.2
Transition Rules2.2.1

We introduce 21 transition rules of gellular automata for solving a
maze:

BT0 → R 1 Pi
*(¬ Pi-1

′′) → Pi
′ 12

B(R) → R 2 Pi(Pi+1
′ ⋀ Pi+1

′′) → Pi
† 13

RS → P0
′ 3 PiT ⋀ Pi+1

′′  → Pi
† 14

R(Pi ⋀ ¬ Pi+2) → Pi+1
′ 4 Pi

′′Pi-1
†  → B 15

Pi¬ T ⋀ ¬ R ⋀ ¬ Pi+1 → B (5) Pi
†(¬ Pi+1

′′) → Pi
′ 16

Pi¬ S ⋀ ¬ Pi-1 → B 6 T0(Pi) → T* 17

Pi
′() → Pi

′′ (7) T*Pi
′ ⋀ Pj

′′ → T† 18

Pi
′′() → Pi

′ 8 Pi
′′T† → B 19

Pi(Pi-1
′ ⋀ Pi-1

′′) → Pi
* 9 T†(¬ P′′) → T0 20

P0S ⋀ Pn-1
′′  → P0

* 10 T*(¬ P) → T0 21

Pi
′′(Pi+1

*) → B 11

Each rule is actually a schema of rules and represents a number
of �definite rules. For example, rule (4) represents
R(Pi

′ ⋀ ¬ Pi+2
′ ⋀ ¬ Pi+2

′′) → Pi+1
′

 and R(Pi
′′ ⋀ ¬ Pi+2

′ ⋀ ¬ Pi+2
′′) → Pi+1

′

for each i, because Pi
′
 and Pi

′′
 are collectively denoted by Pi.

If a cell in state B is adjacent to T0 or R, rules (1–2) change its

state to R. In this way, we can detect all reachable cells from the ter-
minal point T. Once a cell in state B adjacent to the starting point S
makes a transition to R, rules (3–4) generate a path from S and
extend it while making as few loops as possible by preventing the
path from joining an existing path.

Self-Stabilizing Distributed Algorithms by Gellular Automata 163

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

Rules (5–6) are intended to reduce dead ends of paths. If the head
of a path is not adjacent to T and cannot stretch any more because
there are no neighboring cells in state R, it changes back to state B.
Similarly, if the tail of a path is not adjacent to S, it changes back to
state B.

Entrances are reduced with rules (7–12). First, cells in state Pi
′
 or

Pi
′′

 switch their states from Pi
′
 to Pi

′′
 or Pi

′′
 to Pi

′. Next, a cell adjacent

to both Pi
′
 and Pi

′′
 finds itself being an entrance and makes a transi-

tion to state Pi
*. Then, one (or more) of the paths joining at the

entrance cell disappears gradually, and the entrance changes back to
state Pi

′.

Figure 2 shows the procedure for reducing entrances. Egresses are
also reduced with rules (13–16).

Rules (17–21) restrict the number of paths reaching the terminal
point T to fewer than one. If the terminal point T0 is adjacent to cells

in state P, it makes a transition to state T*, and no more cells in R are
generated from it. As in the case of junctions, if the terminal point T
is adjacent to several cells in P, one (or more) of the paths joining at T
disappears gradually.

Figure 2. Reduction of an entrance by rules (7–12).

Self-Stability of Solving a Maze 2.2.2

An initial configuration is a configuration that satisfies all of the fol-
lowing conditions:

(I-1) There is just one starting point S and one terminal point T, and these
are not adjacent.

(I-2) The number of cells not in state W is finite.

A target configuration is a configuration that does not satisfy condi-
tions (I-1) and (I-2) for an initial configuration or that satisfies all of
the following conditions:

(T-1) If the maze is connected, there is only one solving path from S to T*.

(T-2) There are no maximal paths except solving paths.

(T-3) There are no cells in R adjacent to S, P or B.

164 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

(T-4) If the maze is not connected, there is a cell in T0 not adjacent to B

or�P.

(T-5) There are no junctions; that is, there are no cells in Pi adjacent to two

or more cells in Pi-1 (or S if i  0), or two or more in Pi+1 (or T).

(T-6) There are no cells in Pi
*
 or Pi

†.

We now prove that these gellular automata are self-stable.

Theorem 1. (Self-Stability of Solving a Maze) Gellular automata with
the given states, transition rules and conditions of target configura-
tions are self-stable.

First, we show that from any initial configuration, a target configu-
ration appears after a finite number of steps. Second, we show that
once a target configuration appears, only target configurations appear
afterward.

Lemma 1. Assume that from any initial configuration, a target con-
figuration can be obtained by some transition steps. Then a target
configuration appears in any fair run.

Proof. Assume that no target configuration appears in a fair run. As
the cellular space is finite, the number of possible configurations is
also finite. Therefore, there exists a configuration C that appears an
infinite number of times in the run, and because of fairness, any con-
figurations that can be obtained from C, including a target configura-

tion, also appear in the run. This is a contradiction. □

To prove the theorem, we first show that we can obtain a target
configuration from any initial configuration by the following opera-
tions (i)–(iv) in order.

We spread R by rules (1–2) until they can no longer be applied, then
spread P by rules (3–4) until they can no longer be applied.

(i)

By applying rules (5–16), we remove all maximal paths except solving
paths. Then there are only solving paths without junctions and pure
loops. If there remain cells in Pi

*
 or Pi

†, we get rid of them by applying

rules (8, 12, 16).

(ii)

If the maze is connected and there are solving paths, we move to (iv). (iii)

If the maze is connected, but there are no solving paths because the
terminal point T is not adjacent to P, we change T to T0 by applying

rules (20–21). We then spread R from T0 only on the passage that will

be a solving path without junctions. When R is adjacent to P in a pure
loop, we change all R on the passage to P by applying rules (3–4) and
remove the loop and the resulting path using rules (5–16). By repeating
this process, a single solving path is obtained.

If there remain cells in Pi
*
 or Pi

†, we get rid of them using rules (8,

12, 16). There should be no cells in R adjacent to B, S and P because

Self-Stabilizing Distributed Algorithms by Gellular Automata 165

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

we spread R only on the passage of a solving path, and there should be
no junctions.

If the maze is not connected, we also change T to T0, as above. We

then spread R to all cells reachable from T while removing pure loops
by rules (3–4), (7–16). Then there should be no cells in R adjacent to
B, S and P and no junctions. Moreover, T0 should not be adjacent to

B, P.

If there are two or more solving paths, we keep one and remove the oth-
ers by applying rules (17–21). Because there are no junctions in the
paths, we can remove them by applying rule (5) until just one cell is
adjacent to S. Finally, we change T to T*

 by rule (17).

(iv)

Figure 3 shows the operations (i)–(iv).

Figure 3. Procedure of the operation (i–iv).

166 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

We now show that only target configurations appear after a target
configuration is obtained. Table 1 shows the conditions satisfied after
each transition step.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Initial State x x x x x x x x

operation (i) o o x x o x x x

operation (ii) o o o o x x x x

operation (iii) o o o o o o x x

operation (iv) o o o o o o o o

Table 1. Conditions of mazes satisfied after each operation.

(I) There are no cells in R adjacent to S, P.

(II) There are no cells in B adjacent to R.

(III) There are no junctions and no cells in Pi
*
 or Pi

†.

(IV) There are no maximal paths except solving paths.

(V) If the maze is unconnected, there is a cell in T0 not adjacent to B, P.

(VI) If the maze is connected, there are solving paths.

(VII) If the maze is connected, each of the cells in S or T has just one neigh-
boring cell in P.

(VIII) If the maze is connected, there is a cell in T*.

After (iv), all of the conditions (I–VIII) are satisfied. We can see
that the conditions of the target configurations are satisfied. (T-1)
holds because of (III), (VI), (VII), (VIII). (T-2), (T-3), (T-4), (T-5) and
(T-6) hold because of (IV), (II), (V), (III) and (III). (In fact, if and only
if all of the conditions (I–VIII) are satisfied, all of the conditions of tar-
get configurations (T-1–T-6) are satisfied.) Then only rules (7–8) can
be applied to cells under target configurations, and they continue to
satisfy (T-1–T-6). Therefore, after the first, only target configurations
appear.

Distance-2 Coloring 3.

Definitions 3.1

The space of cellular automata for solving the distance-2 coloring
problem is the same as that for solving a maze. A state of a cell is

either W, which represents a wall, or a pair c, conf of a color state c

and a conflict state conf. Cells whose state is a pair c, conf are called

colored.

Self-Stabilizing Distributed Algorithms by Gellular Automata 167

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

A color state c is either ci
′
 or ci

′′ i  1, 2, … , n, and cells whose

color state is ci
′
 or ci

′′
 are considered to have the same color i. They

are sometimes collectively denoted by ci or c, as in the case of

automata for solving a maze. The parameter n is the number of colors
used, which is 13 in this section. A conflict state conf is a list of 0 or

1, such as 0, 1, 0, … , 1, whose length is n. The ith element is 1 if

there are two or more neighboring cells in the color i and is 0 other-
wise. A cell in the color i may change its color if conf[i] of any neigh-
boring cell is 1 or it has a neighboring cell in the same color i.

Definition 8. (distance-2 coloring) A colored cell is called unsafe if
there is a neighboring cell in the same color as the cell or a pair of
neighboring cells in the same color, and safe otherwise. A configura-
tion is called distance-2 colored if there are no unsafe cells.

The color of any cell in a distance-2 colored configuration is differ-
ent from those of the cells within a distance of two cells from it.

Figure 4 shows distance-2 coloring with five colors. Cells with dif-
ferent letters have different colors. Panel (a) shows a distance-2 col-
ored configuration, but panel (b) does not because there are colored
cells adjacent to two cells in R. (Note that cells W adjacent to more
than two cells in the same color are allowed.)

(a) (b)

Figure 4. An example of distance-2 coloring of cells.

Procedure for Distance-2 Coloring3.2

In this section, we introduce the transition rules and the proof of self-
stability of the automata for distance-2 coloring.

Transition Rules3.2.1

The automata for distance-2 coloring have the following seven transi-
tion rules. The symbol * expresses an arbitrary color state or conflict
state. The symbol conf [i]j is a conflict state such that conf[i]  j,

that is, [* , … , * , j, * , … , *], where the ith element is replaced by j:

168 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

ci
′, conf() → ci

′′, conf 1

ci
′′, conf() → ci

′, conf 2

ci, conf [j]0cj
′, * ⋀ cj

′′, * → ci, conf [j]1 3

ci, conf [j]1¬ cj
′′, * → ci, conf [j]0 4

ci
′, conf((ci

′′, *)) → cj
′, conf (5)

ci
′′, conf((ci

′, *)) → cj
′′, conf 6

ci
′′, conf1 * , conf2 [i]1 → cj

′, conf1. (7)

These transition rules work as follows.

◼ (1–2): They switch the color states of cells from ci
′
 to ci

′′
 or ci

′′
 to ci

′
 to

enable cells to recognize whether there are two or more neighboring
cells in the same color.

◼ (3–4): If a cell has two or more neighboring cells in the same color i,

they change confi of the cell from 0 to 1. If not, they change it from 1
to 0.

◼ (5–6): If a cell is adjacent to cells in the same color, they change the
color of the cell to an arbitrary one.

◼ (7): If a cell is in a color state ci
′′

 and there is a neighboring cell whose

confi is 1, they change its color to an arbitrary one.

Self-Stability of Distance-2 Coloring 3.2.2

An initial configuration is a configuration in which the number of
cells not in state W is finite. A target configuration is a configuration
that does not satisfy the above condition for initial configurations or
that satisfies all of the following conditions:

(T-1) There are no colored cells whose colors are the same as one of their
neighboring cells.

(T-2) There are no colored cells that are adjacent to two or more neighbor-
ing cells with the same color.

(T-3) There are no colored cells whose conflict states are not 0, 0, … , 0.

Now we show that these gellular automata are self-stable.

Theorem 2 (Self-Stability of Distance-2 Coloring). Gellular automata
with the above states, transition rules and conditions of target configu-
rations are self-stable.

As in the case of solving a maze, we consider the following
operations:

Self-Stabilizing Distributed Algorithms by Gellular Automata 169

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

(i) If there is a cell such that confi  1 for some i and there is at most one

neighboring cell of color i, we change its confi from 1 to 0 by applying
rule (4).

(ii) If a cell and one of its neighboring cells are the same color, we change its
color according to rules (5–6). Also, if two or more neighboring cells of
a cell are the same color i, we first make both ci

′
 and ci

′′
 appear in the

neighboring cells by rules (1–2). Then its confi is changed to 1 by
rule�(3) and finally, we change ci

′′
 by rule (7). In both cases, we choose

the color to which the cell changes, except the color of neighboring cells
and that of the cells to which they are adjacent. As the number of colors
we cannot choose is at most 12 (as in Figure 5), which is less than the
number of colors, 13, we can always choose one, and the number of
unsafe cells decreases.

(iii) By repeating (i–ii), we can change all of the unsafe cells to safe ones and

their conflict states to 0, 0, … , 0.

A target configuration is obtained through the operations (i–iii).
Then only rules (1–2) can be applied to cells in target configurations,
which does not change conditions (T-1–T-3). Therefore, after the
first, only target configurations appear.

Figure 5. 12-cells.

Minimum Coloring4.

5-Coloring4.1

Self-stability is proved in the case of n  13 in Section 3. On the other
hand, the cellular space can be colored according to distance-2 color-
ing within five colors as shown in Figure 6. Each number corresponds
to a respective color.

In fact, in the case of n  5, gellular automata with the above
states, transition rules and conditions of target configurations are self-
stable. At first, as in Figure 6, we determine the allocation of colors
according to distance-2 coloring (called ideal allocation hereafter).
Then, a target configuration can be obtained by operations (i–iii).
However, we should revise process (ii) as follows.

(ii') As with (ii), we can determine the cell to be colored. Here, we choose
the color just corresponding to the color of the cell in the ideal

170 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

allocation. Then the coloring allocation gradually approaches the ideal
allocation; that is, the number of the cells that are at the same coordi-
nate in both allocations but have different colors decreases. (Note that
the operation may end before the coloring allocation accords with the
ideal allocation, but it satisfies the conditions of target configurations.)

Of course, we can see that only target configurations can be
obtained after one appears similar to n  13.

Figure 6. An example of 5-coloring.

4-Coloring 4.2

We need at least five colors for distance-2 coloring because if there is
a cell in state C that is surrounded by cells in state C, all of these five
cells should have different colors. However, according to [15],
2-distance coloring of graph G is achieved within k colors such that

k  degreeG + 1. That implies that initial configurations in which

there are no cells surrounded by cells in the state C can be colored
with four colors. Then with a similar method to 5-coloring, we can
color such a configuration.

Spanning Tree 5.

Definitions 5.1

The space of cellular automata for spanning tree construction is the
same as that for solving a maze. A state of a cell is either W, which

represents a wall, or a pair P, C, which should belong to a spanning

tree. Here P is called a tree state and C is called a color-conflict state.
A tree state P is one of the following set:

ri, ticj, licj i  0, 1, … , m - 1, j  1, 2, … , n.

A cell whose tree state is ri, ticj or licj is called a root, an inner

node or a leaf of a spanning tree. The index i is called a wave index,

Self-Stabilizing Distributed Algorithms by Gellular Automata 171

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

and cj is called a parent color. If i or j is arbitrary, ri is denoted r, and

ticj is denoted by ti, tcj and t (and similarly for licj). A color-

conflict state C is a pair of a color state and a conflict state, similar to
the case of distance-2 coloring. The parameter m is the number of ri,

which is six in this section.

Definition 9 (parent, child). In the following explanation, cells in T are
denoted as Ti in order to distinguish different cells.

If a parent color of a cell T0 is the same as a color of one of its

neighboring cells T1, then T1 is a parent of T0, and T0 is a child of

T1. A cell in state T2 is called an ascendant of T0 only when T2 is a

parent of T0 or (respectively) an ascendant of T0. Then T0 is called a

descendant of T2.

If there is a sequence of neighboring cells T and it contains T0 and

T3, T3 is reachable from T0. (Note that T0 itself is also reachable

from T0.)

Definition 10 (path, loop). A path is a sequence of neighboring cells
whose states are aligned regularly like this:

ti0
cj0

, cj1
, conf0, ti1

cj1
cj2

, conf1, ti2
cj2

cj3
, conf2,

… , tik-2
cjk-2

cjk-1
, confk-2, tik-1

cjk-1
cjk

, confk-1.

The beginning of the sequence can be a root, and the end of the
sequence can be a leaf. That is, a path is a sequence of neighboring
cells such that:

◼ The tree state of each cell, except both ends of the sequence, is an inner
node.

◼ Cells except the beginning of the sequence satisfy the following
condition:
(1) The parent color of the cell is equivalent to the color of the next
cell.

◼ Cells except for the end of the sequence satisfy the following condition:
(2) The color of each cell is equivalent to the parent color of the previ-
ous cell.

Assume that the sequence T0, … , Tn is a path. If T0 and Tn are

inner nodes and a color of Tn is the same as a parent color of T0, the

path is called a loop. If the path is not a loop and the beginning (end)
of the path T0 (Tn) has no neighboring cell that can be a parent

(child), the cell T1 (Tn) is called a head (a tail, respectively). If a path

has both ends, a head and a tail, we say a path is maximal. Notably,
if there is a maximal path whose head is a root and whose tail is a
leaf, the maximal path is a branch path.

172 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

A path has a junction when a cell in T in the path has two or more
parents or two or more children. Such a cell in T is called an entrance
in the former and an egress in the latter case, respectively.

If a tree state of a cell is ticj or licj, it points to a neighboring

cell whose color is j as its parent. In this manner, we can define a par-
ent-child relation in the cellular space if the parent of each cell is
uniquely determined. Figure 7 shows an example of the construction
of a spanning tree.

Figure 7. An example of a spanning tree construction.

Procedure for Spanning Tree Construction 5.2
Transition Rules 5.2.1

In order to construct a spanning tree by the following rules, dis-
tance-2 coloring is required to be achieved. If the rules (1–7) for
distance-2 coloring are written in such a form:

s1(t1 ⋀… ⋀ tm ⋀ ¬ tm+1 ⋀… ⋀ ¬ tm+n) → s2

then the rules (1′–7′) for spanning tree construction are needed:

(P, s1)((* , t1) ⋀… ⋀ (* , tm) ⋀ ¬ (* , tm+1) ⋀… ⋀ ¬ (* , tm+n)) → (P, s2

In addition to these seven rules, there are 24 more rules, that is, 31
rules in all for spanning tree construction:

Self-Stabilizing Distributed Algorithms by Gellular Automata 173

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

ticj, ck, conf¬ (t[ck], *) ⋀ ¬

l[ck], *

→ licj, ck, conf 8

licj, ck, conf((t[ck], *)) → ticj, ck, conf 9

licj, ck, confl[ck], * → ticj, ck, conf 10

These rules mean that an inner node that does not have any child
makes a transition to a leaf, and a leaf that has children makes a tran-
sition to an inner node:

ticj, C(* , (ck, *)) ⋀ ¬  * , cj, * → ti[ck], C

j ≠ k

11

licj, C(* , (ck, *)) ⋀ ¬  * , cj, * → li[ck], C j ≠ k. 12

If a cell has no neighbors whose colors are the same as its parent
color, the parent color is changed to one of the colors of the neigh-
bors. These are used to let all the reachable cells from a root merge
with the spanning tree:

ti-1cj, Cri, cj, * → ticj, C i  0, 2, 4 13

ti-1cj, Cti[ck], cj, * → ticj, C i  0, 2, 4 14

li-1cj, Cri, cj, * → licj, C i  0, 2, 4 15

li-1cj, Cti[ck], cj, * → licj, C i  0, 2, 4 16

licj, C() → li+1cj, C i  0, 2, 4 17

ti-1[ch], cj,ticj, (* , *) ⋀ ¬ lkcj, (* , *) ⋀ ¬ tkcj, (* , *)

→ ti[ch], cj, i  1, 3, 5; i ≠ k 18

ti-1[ch], cj,licj, (* , *) ⋀ ¬ lkcj, (* , *) ⋀ ¬ tkcj, (* , *)

→ ti[ch], cj, i  1, 3, 5; i ≠ k 19

ri-1, cj,ticj, (* , *) ⋀ ¬ lkcj, (* , *) ⋀ ¬ tkcj, (* , *)

→ ri, cj, i  1, 3, 5; i ≠ k 20

ri-1, cj,licj, (* , *) ⋀ ¬ lkcj, (* , *) ⋀ ¬ tkcj, (* , *)

→ ri, cj, i  1, 3, 5; i ≠ k 21

ri, C () → ri+1, C i  1, 3, 5 22

To confirm whether a spanning tree is constructed, waves are
generated alternately from a root to leaves (from parents to children)
and from leaves to a root (from children to parents). Wave indices are
incremented in (ℤ /mℤ), such as … , 4, 5, 0, 1, 2, … . In
rules�(13–22), the index i is incremented. Wave index 0 is propagated

174 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

from a root by changing the wave indices of cells from 5 to 0. When
it reaches each leaf, its wave index is changed from 5 to 0, and
instantly 0 to 1, then wave index 1 is propagated from a leaf by chang-
ing the wave indices of cells from 0 to 1. (If a cell has several children,
it can be changed if all children have been changed.) When it reaches
the root, its wave index is changed 0 to 1, and instantly 1 to 2, Wave
indices 2, 3, 4 and 5 are propagated as well. Therefore, the wave from
a root has an even number index, and the wave from leaves has an
odd number index. If a spanning tree is constructed, it does not have
a loop, and all the cells reachable from a root are in branch paths.

Figure 8 shows the transitions of the wave index. The root of the
spanning tree, which is denoted by a gray cell, changes its wave index
from 0 to 2 by applying rules (13–22) to each cell.

If a spanning tree is constructed correctly, there are no pairs of
adjacent cells in T the difference of whose wave indices is three, such
as 0 and 3, or 2 and 5. We call such a pair an unsafe pair. If the
difference is two, such as 0 and 2, or 3 and 5, we call a pair an unsta-
ble pair:

ri, cj, *¬ lcj, C ⋀ ¬ tcj, C → ri+1, cj, *. (23)

 Note that the smaller difference is considered. For instance, the differ-
ence of a pair (0,5) is one, since this is not an unstable or unsafe pair.

Figure 8. Transitions of wave index of the root from 0 to 2.

Self-Stabilizing Distributed Algorithms by Gellular Automata 175

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

If a root does not have any child, sometimes waves are not propa-
gated. Then the root doubles as a leaf, that is, increments its own
wave index:

ti[ck], Crj, (ck, *) → tj[ck], C  i - j ≥ 2 24

ti[ck], Ctj[ch], (ck, *) → tj[ck], C  i - j ≥ 2 25

li[ck], Ctj[ch], (ck, *) → lj[ck], C  i - j ≥ 2. 26

If there is an unstable or unsafe pair of cells that are in a parent-
child relation, a wave index of one of the pair is changed to be the
same number as that of the parent.

Figure 9 shows the application of rules (24–26) to the descendant
cells of the root. They are applied so that the root and its descendant
cells have the same wave index:

ti[ck], Crj, (ch, *) → tj[ch], C  i - j ≥ 3; k ≠ h 27

ti[ck], Ctjcg, (ch, *) → tj[ch], C  i - j ≥ 3; k ≠ h 28

li[ck], Ctjcg, (ch, *) → lj[ch], C  i - j ≥ 3; k ≠ h 29

ti[ck], Cljcg, (ch, *) → tj[ch], C  i - j ≥ 3; k ≠ h 30

li[ck], Cljcg, (ch, *) → lj[ch], C  i - j ≥ 3; k ≠ h. 31

Figure 9. Application of the rules (24–26).

Moreover, if there is an unsafe pair of cells, not only the wave
index but also the parent color of one of them is changed. The aim is
to join them in branch paths.

Figure 10 shows how to take external cells into the tree. At first,
wave indices of cells in the tree are changed by rules (13–22) to make
an unsafe pair, and then external cells in this pair are taken into the
tree by rules (27–31). These details are described in Section 5.2.2.

176 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

Figure 10. Application of rules (27–31).

Self-Stability of Spanning Tree Construction 5.2.2

An initial configuration is a configuration that satisfies all of the fol-
lowing conditions:

(I-1) There is just one root.

(I-2) The number of cells not in state W is finite.

A target configuration is a configuration that satisfies all of the fol-
lowing conditions:

(T-1) There are no cells in state T that are reachable from a root and in a
loop.

(T-2) There are no cells in state T that are reachable from a root and not in
any branch path.

(T-3) All the branch paths have at most one interference pair: a pair of adja-
cent cells in a branch path that are in a parent-child relation and
whose difference of the wave indices is 1 in (ℤ /mℤ), such as 5 and 0,
0 and 1.

(T-4) If the wave index of a root is 1 (3, 5), those of all its descendant cells
are also 1 (3, 5).

(T-5) All cells in state T reachable from a root are in valid tree states; that is,
a cell that does not have parents is a root, cells that have both parents
and children are inner nodes, and cells that do not have children are
leaves.

We now prove that, if distance-2 coloring is achieved, (T-1) is satis-
fied whenever (T-2) is satisfied.

Self-Stabilizing Distributed Algorithms by Gellular Automata 177

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

Lemma 2. If distance-2 coloring is achieved, there are no entrances.

Proof. Given the conditions of distance-2 coloring, there are no cells
whose two or more neighboring cells are the same color. If a cell is an
entrance; that is, it has two or more parents, these are the same color,

which contradicts the above. □

Assume that distance-2 coloring is achieved and there is a loop
in �one-half of a branch path; the path is in the form of

(r, *), … , Tk, … , Tk, … , l, *. It has an entrance, which contradicts

the above. Thus we can show that (T-1) is satisfied whenever (T-2) is
satisfied.

We also show there are no unsafe pairs of cells reachable from a
root in the target configuration.

Lemma 3. There are no unsafe pairs of cells reachable from a root in
target configurations.

Proof. Because of (T-2) and (T-3), the difference between the wave
indices of cells that are reachable from a root and a root is at most
one. Thus the wave indices of cells appearing in a configuration are
one more than that of the root, the same as that of the root or one
less than that of the root. Therefore, the difference of the wave index

of all the reachable cells is at most two. □

Then we show that for gellular automata under these transition
rules, the initial configurations and the target configurations are self-
stable. At first, we obtain a target configuration from any initial
configuration. Then we show no configurations except target configu-
rations appear after that. Now the following operations (i–iii) are
performed.

(i) First, distance-2 coloring is achieved by rule (1′–7′) in the same manner
as Section 3.2.2.

(ii) Next, we apply rules (11–12) so that all the cells except a root have a
parent. After that, we also apply rules (8–10), as these are no longer
applied now, to set leaves in a correct position of paths. Then, we make
the root and all of its descendant cells have the same wave index with-
out changing the parent-child relation by the following operations: Sup-
pose cells in a path from the root to the first interference pair have the
same wave index. If a difference between wave indices of a parent and
a child of the first interference pair is

one (the parent is one greater than the child), if the index of the
parent is 0, 2 or 4, the wave can be propagated from the root to the
leaves by rules (13–16). If not, the index of the root is also 1, 3 or 5,
so indices of the parent cell and all its ascendant cells can be
changed to 2, 4 or 0 by rules (13–14), (22), then rules (24–26) can
be applied to the child without changing the parent-child relation.

(a)

178 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

one (the parent is one less than the child), if the index of the parent
is 0, 2 or 4, the wave can be propagated from the leaves to the root
by rules (18–21). If not, the index of the root is also 1, 3 or 5, so
indices of the parent cell and all its ascendant cells can be changed
to 2, 4 or 0 by rules (13–14), (22).

(b)

two or more, the wave index of the child can be changed to the
same number as that of the parent by rules (24–26).

(c)

This is repeated until the root and its descendant cells have the same
wave index. In such a case, we call the wave index the tree wave index.

Figure 11 shows the procedure of operation (ii)-(a), (b). The procedure
in the case (c) is described in Figure 10.

Figure 11. (continues)

Self-Stabilizing Distributed Algorithms by Gellular Automata 179

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

Figure 11. Procedure of operation (ii).

(iii) Then, we can optionally change the tree wave index by applying
rules�(13–22). If there is a pair of cells in which one is in a branch path
and the other is not, we change the tree wave index by rules (13–22)
(or rule (23) if the root has no children) so that the difference of the
wave indices of them is three, change the parent color and the wave
index of the latter cell to those of the former cell by rules (27–31), and
repeat (ii) so that a root and all the descendants have the same wave
index. This is repeated until the root and all of the cells reachable from
the root are in branch paths and have the same index.

Table 2 shows the conditions satisfied after each operation.

(I) (II) (III) (IV) (V) (VI)

Initial State x x x x x x

operation (i) o x x x x x

operation (ii) o o o x x x

operation (iii) o o o o o o

Table 2. Conditions of a spanning tree satisfied after each operation.

(I) No cell is adjacent to more than two cells that have the same color
(distance-2 colored).

(II) Root and all its descendant cells have the same wave index.

(III) All descendant cells of a root are in valid tree states.

(IV) No cells in T are reachable from a root and not in any branch path.

(V) Root and all cells in T reachable from the root have the same wave
index.

(VI) All cells in T reachable from a root are in valid tree states.

After (iii), all of the conditions (I–VI) are satisfied. (T-2) is satisfied
if and only if (IV) is satisfied, and according to Lemma 2, (T-1) is also
satisfied. Moreover, (T-3) and (T-4) are satisfied if (V) is satisfied,

180 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

and (T-5) is satisfied if (VI) is satisfied. Thus a target configuration
appears by these operations.

Then we consider which rules can be applied in the target configu-
rations, and whether they can make the other configurations appear.
Since rules (3′–7′) are not applied if a configuration is distance-2 col-
ored, and rules (8–28) do not change the color-conflict states of cells,
(3′–7′) cannot be applied to target configurations. Also (1′–2′) do not
affect the conditions of target configurations, thus we do not need to
consider these rules. Besides, only cells reachable from a root affect all
the conditions of target configurations, so we do not consider the
application of rules to unreachable cells from a root.

◼ (8–10) They cannot be applied because of (T-5).

◼ (11–12) Since all cells reachable from a root are in branch paths
because of (T-2), they cannot be applied.

◼ (13–22) They can be applied.

◼ (23) Since all the cells reachable from a root are in branch paths
because of (T-2), it can be applied only when the root is not adjacent to
any cells in state T. In this case, other rules we consider, (8–21),
(24–33), cannot be applied, and (23) does not change the conditions of
target configurations in that case. (Rule (22) can be applied, but it is
included in (23) when there is no T adjacent to the root.) Thus only tar-
get configurations appear, so we do not consider this rule after that.

◼ (24–26) Because of (T-3), the difference of wave indices of reachable
cells in parent-child relation is one at most, then they cannot be
applied.

◼ (27–31) Because of (T-3) and Lemma 3, they cannot be applied.

Then, except (1′–2′), only rules (13–22) can be applied to cells in
target configurations. They only change the wave indices, so (T-1),
(T-2) and (T-5) are satisfied.

When (T-4) is considered, the wave index of a root can be changed
to 1 (3, 5) by rules (20–21). This can be applied only when the wave
indices of all the adjacent cells are 0 (2, 4). Because of (T-3), then,
those of all of the descendant cells of the root are 0 (2, 4), and rules
(13–19), (22) cannot be applied at the same time. Thus (T-4) is also
satisfied.

Then let us consider (T-3). There are seven patterns of two branch
paths satisfying the conditions of target configurations, like Figure 12,
and we show no patterns make transitions to configurations except
target configurations.

The index of a root is 1, 3 or 5, and all the reachable cells have the
same index.

(a)

Self-Stabilizing Distributed Algorithms by Gellular Automata 181

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

The index of a root is 0, 2 or 4, and all the reachable cells have the
same index.

(b)

The index of a root is 0, 2 or 4, and each branch path has one interfer-
ence pair such that the index of the parent is one more than that of the
child.

(c)

The index of a root is 0, 2 or 4, and each branch path has one interfer-
ence pair such that the index of the parent is one less than that of the
child.

(d)

The index of a root is 0, 2 or 4, and only one of the branch paths has
one interference pair such that the index of the parent is one more than
that of the child.

(e)

The index of a root is 0, 2 or 4, and only one of the branch paths has
one interference pair such that the index of the parent is one less than
that of the child.

(f)

The index of a root is 0, 2 or 4, and each branch path has one interfer-
ence pair such that the index of one parent is one more than that of the
child, and the index of the other parent is one less than that of the child.

(g)

Figure 12. All the patterns of two branch paths.

182 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

Then we consider whether these patterns make transitions to con-
figurations except for target configurations.

In this case, only rule (22) can be applied, which does not change (T-3). (a)

In this case, only rule (17) can be applied, which does not change (T-3). (b)

In this case, rules (13–16) can be applied only to the children of the
interference pairs, so it does not change (T-3).

(c)

In this case, rules (13–16) can be applied only to the parents of the inter-
ference pairs. If the parents of these pairs have several children, they
can be applied only when all of the children have the same index that is
one more than that of the parent, so two or more interference pairs are
not generated in one branch path. Thus it does not change (T-3).

(d)

Consider when rules (13–16) (or (18–21)) and rule (17) are applied at
the same time. Junction cells cannot be leaves since junctions have chil-
dren, and not all the children of the junction cells have the same index
in this case. Then the junction does not make a transition, there is a
pair of cells the difference of which is two or more, therefore interfer-
ence pairs are not generated. Thus it does not change (T-3).

(e-f)

Similar to the case (e-f), the junction does not make a transition until
all of the children have the same index. Thus it does not change (T-3).

(g)

Therefore (T-3) is also satisfied. By the above, only target configu-
rations appear after it appears.

Conclusion6.

In this paper, we showed how to construct gellular automata that
solve three problems: solving a maze, distance-2 coloring and span-
ning tree construction. As self-stable gellular automata can recover
from malfunctions of states and transitions, materials that contain
them are able to form structures like blood vessels or neural networks
that can repair themselves following external damage or environmen-
tal changes.

By adding and changing some states and transition rules, we can
also design gellular automata for solving other problems. For
instance, gellular automata that solve the Hamiltonian circuit prob-
lem can be constructed by modifying those for a maze. The actual con-
struction of these gellular automata remains for future studies. We
also plan to improve the automata by decreasing the number of states
and transition rules and reducing the number of steps required for
them to converge to a target configuration.

Self-Stabilizing Distributed Algorithms by Gellular Automata 183

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.25088/ComplexSystems.30.2.159

Acknowledgments

We thank Akira Yagawa for valuable discussions and implementing
the simulator. We also thank the anonymous reviewers for improving
the paper. This work was partially supported by Grant-in-Aid for
challenging Exploratory Research 17K19961.

References

[1] F. Peper, J. Lee, S. Adachi and T. Isokawa, “Cellular Nanocomputers: A
Focused Review,” International Journal of Nanotechnology and Molecu-
lar Computation, 1(1), 2009 pp. 33–49. doi:10.4018/jnmc.2009010103.

[2] D. Scalise and R. Schulman, “Emulating Cellular Automata in Chemical
Reaction-Diffusion Networks,” Natural Computing, 15(2), 2016
pp.�197–214. doi:10.1007/s11047-015-9503-8.

[3] P. Yin, S. Sahu, A. J. Turberfield and J. H. Reif, “Design of
Autonomous DNA Cellular Automata,” in International Workshop
on�DNA-based Computers (DNA 2005), London, ON, Canada
(A. Carbone and N. A. Pierce, eds), Berlin, Heidelberg: Springer, 2005
pp. 399–416. doi:10.1007/11753681_32.

[4] T. Hosoya, I. Kawamata, S.-I. M. Nomura and S. Murata, “Pattern For-
mation on Discrete Gel Matrix Based on DNA Computing,” New
Generation Computing, 37(1), 2019 pp. 97–111.
doi:10.1007/s00354-018-0047-1.

[5] M. Hagiya, S. Wang, I. Kawamata, S. Murata, T. Isokawa, F. Peper and
K. Imai, “On DNA-based Gellular Automata,” in Unconventional Com-
putation and Natural Computation (UCNC 2014), London, ON,
Canada (O. Ibarra, L. Kari and S. Kopecki, eds.), Cham, Switzerland:
Springer, 2014 pp. 177–189. doi:10.1007/978-3-319-08123-6_15.

[6] T. Yamashita, T. Isokawa, F. Peper, I. Kawamata and M. Hagiya,
“Turing-Completeness of Asynchronous Non-camouflage Cellular
Automata,” in Cellular Automata and Discrete Complex Systems
(AUTOMATA 2017), Milan, Italy (A. Dennunzio, E. Formenti,
L. Manzoni and A. Porreca, eds.), Cham, Switzerland: Springer, 2017
pp. 187–199. doi:10.1007/978-3-319-58631-1_15.

[7] T. Yamashita, T. Isokawa, F. Peper, I. Kawamata and M. Hagiya,
“Turing-Completeness of Asynchronous Non-camouflage Cellular
Automata,” Information and Computation, 274, 2020 04539.
doi:10.1016/j.ic.2020.104539.

[8] T. Yamashita and M. Hagiya, “Simulating Population Protocols by
Gellular Automata,” in 57th Annual Conference of the Society of�Instru-
ment and Control Engineers of Japan (SICE 2018), Nara, Japan,
Piscataway, NJ: IEEE, 2018 pp. 1579–1585.
doi:10.23919/SICE.2018.8492697.

184 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

https://doi.org/10.4018/jnmc.2009010103
https://doi.org/10.1007/s11047-015-9503-8
https://doi.org/10.1007/11753681_32
https://doi.org/10.1007/s00354-018-0047-1
https://doi.org/10.1007/978-3-319-08123-6_15
https://doi.org/10.1007/978-3-319-58631-1_15
https://doi.org/10.1016/j.ic.2020.104539
https://doi.org/10.23919/SICE.2018.8492697

[9] S. Dolev, Self-Stabilization, Cambridge, MA: MIT Press, 2000.

[10] T. Yamashita, A. Yagawa and M. Hagiya, “Self-Stabilizing Gellular
Automata,” Unconventional Computation and Natural Computation
(UCNC 2019), Tokyo, (I. McQuillan and S. Seki, eds.), Cham, Switzer-
land: Springer, 2019 pp. 272–285. doi:10.1007/978-3-030-19311-9_21.

[11] C. Y. Lee, “An Algorithm for Path Connections and Its Applications,”
IRE Transactions on Electronic Computers, EC-10(3), 1961
pp.�346–365. doi:10.1109/TEC.1961.5219222.

[12] S. Golzari and M. R. Meybodi, “A Maze Routing Algorithm Based on
Two Dimensional Cellular Automata,” Cellular Automata (ACRI
2006), Perpignan, France, (S. El Yacoubi, B. Chopard and S. Bandini,
eds.), Berlin, Heidelberg: Springer, 2006 pp. 564–570.
doi:10.1007/11861201_65.

[13] M. A. I. Tsompanas, G. C. Sirakoulis and A. Adamatzky, “Cellular
Automata Models Simulating Slime Mould Computing,” Advances in
Physarum Machines: Sensing and Computing with Slime Mould
(A.�Adamatzky, ed.), Cham, Switzerland: Springer, 2016 pp. 563–594.
doi:10.1007/978-3-319-26662-6_27.

[14] N. Fatès, I. Marcovici and S. Taati, “Cellular Automata for the Self-
Stabilisation of Colourings and Tilings,” Reachability Problems (RP
2019), Brussels, Belgium, (E. Filiot R. Jungers and I. Potapov, eds.),
Cham, Switzerland: Springer, 2019 pp. 121–136.
doi:10.1007/978-3-030-30806-3_10.

[15] B. Benmedjdoub, E. Sopena and I. Bouchemakh, “2-Distance Colorings
of Integer Distance Graphs,” HAL Archives. (Mar 17, 2021)
hal.archives-ouvertes.fr/hal-01279943.

Self-Stabilizing Distributed Algorithms by Gellular Automata 185

https://doi.org/10.25088/ComplexSystems.30.2.159

https://doi.org/10.1007/978-3-030-19311-9_21
https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1007/11861201_65
https://doi.org/10.1007/978-3-319-26662-6_27
https://doi.org/10.1007/978-3-030-30806-3_10
https://hal.archives-ouvertes.fr/hal-01279943
https://doi.org/10.25088/ComplexSystems.30.2.159

