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Gellular  automata  are  cellular  automata  with  the  properties  of  asyn-
chrony, Boolean totality and noncamouflage.  In distributed computing,
it  is  essential  to  determine  whether  problems  can  be  solved  by  self-
stable gellular automata. From any initial configuration,  self-stable gel-
lular  automata  converge  to  desired  configurations,  as  self-stability
implies  the  ability  to  recover  from  temporary  malfunctions  in  transi-
tions  or  states.  This  paper  shows  that  three  typical  problems  in
distributed computing, namely, solving a maze, distance-2 coloring and
spanning  tree  construction,  can  be  solved  with  self-stable  gellular
automata. 
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Introduction1.

Many  studies  have  been  conducted  to  implement  cellular  automata
using  physical  or  chemical  materials,  such  as  [1–3].  These  include
recent  efforts  to  implement  cellular  automata  by  reaction-diffusion
systems  in  porous  gels  [4].  One  motivation  for  implementing  cellular
automata  using  gels  is  to  develop  smart  materials  that  can
autonomously respond to external environments.  

The  term  gellular  automata  was  coined  in  [5],  where  the  diffusion
of DNA molecules is controlled by opening and closing holes between
cells.  Gellular  automata  were  later  formalized  as  cellular  automata
with  the  features  of  asynchrony,  Boolean  totality  and  noncamouflage
in  [6,  7],  where  two  types  of  DNA  molecules  were  assumed,  one  for
states of cells and the other for signals transmitting states. 

In the research in the latter direction, the computational universal-
ity of gellular automata was shown [6], and the computational power
of  gellular  automata  as  distributed  systems  was  investigated  in  [8].
Self-stability is a crucial factor in distributed computing. According to
[9],  self-stability  is  the  ability  of  a  system  to  converge  to  states  with
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desired conditions from any initial state. If gellular automata are self-
stable, they recover desired conditions even if temporary malfunctions
occur  in  transitions  or  states.  Smart  materials  are  expected  to  have
this property. 

In  our  previous  study,  we  developed  self-stable  gellular  automata
that  solved  a  maze  [10]  using  a  distributed  algorithm  similar  to  Lee’s
algorithm  [11],  under  the  restrictions  that  the  number  of  states  is
finite  and  state  transitions  are  asynchronous.  However,  this  system
takes time to detect undesired situations, such as loops. 

In this paper, we reconsider the transition rules and target configu-
rations of the gellular automata and present new transition rules that
can  solve  a  maze  in  a  relatively  short  time.  Moreover,  we  examine
two other typical problems in distributed computing: distance-2 color-
ing  and  spanning  tree  construction.  Like  solving  a  maze,  we  confirm
that  these  problems  can  be  solved  with  self-stable  gellular  automata
and explain how to design suitable systems for this purpose. 

There  are  many  studies  on  cellular  automata  solving  maze  prob-
lems,  such  as  [12,  13],  but  we  could  not  find  self-stable  ones  except
ours.  Self-stable  cellular  automata  for  k-coloring  are  proposed  by  a
very  recent  study  [14].  They  examined  k-coloring  by  deterministic
cellular  automata  and  probabilistic  ones,  and  suggest  a  different  self-
stabilizing algorithm for the number of colors k. However, typical dis-
tributed  problems  such  as  mazes  and  spanning  trees  are  not  dealt
with.  Also,  self-stability  is  defined  from  the  viewpoint  of  the  proba-
bilistic model in their paper, while it is defined  from the viewpoint of
the nondeterministic model in ours. 

The  gellular  automaton  for  solving  a  maze  and  others  are  demon-
strated  by  the  simulator  available  at  cell-sim-ca0d6.firebaseapp.com.
Select “New Maze” in “Simulation Target.” 

Solving a Maze2.

Definitions  2.1

In  this  paper,  a  two-dimensional  square  lattice  and  a  von  Neumann
neighborhood  are  assumed.  Each  cell  in  the  square  lattice  has  a  state
from the following set:

W, B, S, T0, T
*, T†, R ⋃ Pi

′, Pi
′′, Pi

*, Pi
† i  0, 1, 2, … , n - 1.

The states T0, T
*
 and T†

 are denoted T. The states Pi
′, Pi

′′, Pi
*
 and Pi

†

are  collectively  denoted  Pi.  If  i  is  arbitrary,  Pi  is  simply  denoted  P.

The  parameter  n  is  the  number  of  states  in  Pi  and  is  equal  to  five  in

this section.  
The  state  W  denotes  a  wall  of  a  maze,  which  does  not  make  any

transitions. The state B denotes a blank, which may make a transition

160 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021

https://cell-sim-ca0d6.firebaseapp.com/


to  P  or  R.  The  states  S  and  T  are  the  starting  point  and  the  terminal
point, respectively, and they do not make any transitions. The state R
indicates that it is reachable from the terminal point, and a path con-
sisting of P stretches over cells in R. 

The  superscripts  

′,  ′′,  *  and  †  are  used  for  detecting  junctions  by
rules  (9–21),  explained  later,  and  the  subscripts  i  are  used  for  direct-
ing paths. 

Definition 1 (transition rule). A transition rule consists of three compo-
nents:  the  current  state  of  a  cell  that  makes  a  transition,  a  condition
to be satisfied  by the neighboring cells and the next state that the cell
will take. 

Definition 2 (asynchrony,  Boolean  totality,  noncamouflage).  Cellular
automata  are  asynchronous  if  cells  make  transitions  asynchronously;
that  is,  each  cell  may  either  make  a  transition  by  following  a  transi-
tion  rule  or  do  nothing  at  each  step.  Cellular  automata  are  Boolean
totalistic if the conditions of transition rules depend only on neighbor-
ing cells being in a particular state, not on the direction or number of
cells. Cellular automata are noncamouflage  if no conditions of transi-
tion rules contain the current state of the cell that makes a transition. 

A  transition  rule  of  asynchronous  Boolean-totalistic  noncamou-
flage cellular automata is defined as follows:

s1(t1 ⋀… ⋀ tm ⋀ ¬ tm+1 ⋀… ⋀ ¬ tm+n) → s2.

In this rule, s1  is the current state, t1⋀…⋀ tm⋀¬ tm+1⋀…⋀ ¬ tm+n

is the condition, and s2 is the next state. This means that a cell in state

s1  whose neighborhood contains cells in states t1, … , tn  and does not

contain cells in states tm+1, … , tm+n  can make a transition to state s2.

By  the  noncamouflage  property,  s1  does  not  appear  among

t1, … , tm+n. 

Definition 3 (configuration,  run,  step).  A  configuration  is  a  mapping
from cells at lattice points in a square lattice to states, and a run is an
infinite  sequence of configurations,  each of which, except for the first
one, is obtained by applying the transition rules to the previous config-
uration. A transition step is the process of transforming from configu-
ration  C1  to  configuration  C2,  which  is  obtained  by  having  each  cell

in  C1  make  a  single  transition  or  do  nothing.  Due  to  the  asynchrony

and possibility that several rules can be applied to a state, a configura-
tion sometimes has more than one next possible configuration.  In this
case, one of them is chosen nondeterministically.  

Definition 4 (passage, path,  loop, junction). A  passage is a  sequence of
neighboring cells, each of which is in state B, R or P. A maze is con-
nected  if  there  is  a  passage  from  the  starting  point  S  to  the  terminal
point T in the maze. 
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A  path  is  a  sequence  of  neighboring  cells  in  states
… , P0, P1, … , Pn-1, P0, … ,  where  the  indices  are  incremented  in

(ℤ / nℤ). 
If a path has both ends, that is, a head that is not adjacent to Pi-1

and  a  tail  that  is  not  adjacent  to  Pi+1,  we  say  that  the  path  is  maxi-

mal. If the head of a maximal path is adjacent to T and its tail is adja-
cent to S, the maximal path is called a solving path. 

If a path has no ends, it is called a loop. In particular, if a loop has
no junctions (described later), we call that loop pure. 

We say that a path has a junction if a cell in state Pi  in the path is

adjacent to two or more different cells in Pi-1 (or S if i  0) or two or

more in Pi+1  (or T). Such a cell in state Pi  is called an entrance in the

former case and an egress in the latter case.  

Definition 5 (solution).  A  solution  of  a  maze  is  a  configuration  in
which  there  is  only  one  maximal  path,  and  its  head  (tail)  is  adjacent
to the starting point S (the terminal point T, respectively). If the maze
is  connected,  there  are  solutions,  and  if  it  is  not  connected,  there  are
no solutions. Figure 1 shows an example of the solutions of the maze.

Figure 1. An example of solutions of a maze (black cells denote W).  

Definition 6  (fair  run).  A  run  R  is  fair  if  a  certain  configuration C
appears  in  R  infinitely  often,  and  any  configuration  C′

 that  can  be
obtained  from  C  by  a  transition  step  also  appears  in  R  infinitely
often.  

Throughout  this  paper,  we  assume  nondeterministic  models  of
computation.  In  probabilistic  models  such  as  Markov  processes,
probabilities of unfair runs are zero; that is, runs are fair with proba-
bility�1. 

Definition 7 (target  configuration,  self-stability).  Some  configurations
that are desirable (for a specific purpose) are defined as target configu-
rations.  Cellular  automata  are  self-stable  if,  in  any  fair  run  from  any
configuration,  a  target  configuration  appears  in  finite  steps,  and  only
target configurations appear after that.    

162 T. Hongu and M. Hagiya

Complex Systems, 30 © 2021



Definition  7 is generally adopted in the field  of distributed comput-
ing  [9].  Even  when  a  perturbation  occurs  in  a  target  configuration,  a
new  target  configuration  eventually  appears  if  cellular  automata  are
self-stable,  because  we  can  start  a  fair  run  from  the  resulting  nontar-
get configuration. 

Procedure for Solving a Maze2.2
Transition Rules2.2.1

We  introduce  21  transition  rules  of  gellular  automata  for  solving  a
maze:

BT0 → R 1 Pi
*(¬ Pi-1

′′ ) → Pi
′ 12

B(R) → R 2 Pi(Pi+1
′ ⋀ Pi+1

′′ ) → Pi
† 13

RS → P0
′ 3 PiT ⋀ Pi+1

′′  → Pi
† 14

R(Pi ⋀ ¬ Pi+2) → Pi+1
′ 4 Pi

′′Pi-1
†  → B 15

Pi¬ T ⋀ ¬ R ⋀ ¬ Pi+1 → B (5) Pi
†(¬ Pi+1

′′ ) → Pi
′ 16

Pi¬ S ⋀ ¬ Pi-1 → B 6 T0(Pi) → T* 17

Pi
′() → Pi

′′ (7) T*Pi
′ ⋀ Pj

′′ → T† 18

Pi
′′() → Pi

′ 8 Pi
′′T† → B 19

Pi(Pi-1
′ ⋀ Pi-1

′′ ) → Pi
* 9 T†(¬ P′′) → T0 20

P0S ⋀ Pn-1
′′  → P0

* 10 T*(¬ P) → T0 21

Pi
′′(Pi+1

* ) → B 11

Each  rule  is  actually  a  schema  of  rules  and  represents  a  number
of �definite  rules.  For  example,  rule  (4)  represents
R(Pi

′ ⋀ ¬ Pi+2
′ ⋀ ¬ Pi+2

′′ ) → Pi+1
′

 and  R(Pi
′′ ⋀ ¬ Pi+2

′ ⋀ ¬ Pi+2
′′ ) → Pi+1

′

for each i, because Pi
′
 and Pi

′′
 are collectively denoted by Pi. 

If  a  cell  in  state  B  is  adjacent  to  T0  or  R,  rules  (1–2)  change  its

state to R. In this way, we can detect all reachable cells from the ter-
minal  point  T.  Once  a  cell  in  state  B  adjacent  to  the  starting  point  S
makes  a  transition  to  R,  rules  (3–4)  generate  a  path  from  S  and
extend  it  while  making  as  few  loops  as  possible  by  preventing  the
path from joining an existing path. 
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Rules  (5–6)  are  intended  to  reduce  dead  ends  of  paths.  If  the  head
of  a  path  is  not  adjacent  to  T  and  cannot  stretch  any  more  because
there  are  no  neighboring  cells  in  state  R,  it  changes  back  to  state  B.
Similarly,  if  the  tail  of  a  path  is  not  adjacent  to  S,  it  changes  back  to
state B. 

Entrances  are  reduced  with  rules  (7–12).  First,  cells  in  state  Pi
′
 or

Pi
′′

 switch their states from Pi
′
 to Pi

′′
 or Pi

′′
 to Pi

′. Next, a cell adjacent

to  both  Pi
′
 and  Pi

′′
 finds  itself  being  an  entrance  and  makes  a  transi-

tion  to  state  Pi
*.  Then,  one  (or  more)  of  the  paths  joining  at  the

entrance  cell  disappears  gradually,  and  the  entrance  changes  back  to
state Pi

′. 

Figure  2  shows  the  procedure  for  reducing  entrances.  Egresses  are
also reduced with rules (13–16). 

Rules  (17–21)  restrict  the  number  of  paths  reaching  the  terminal
point T to fewer than one. If the terminal point T0  is adjacent to cells

in state P, it makes a transition to state T*, and no more cells in R are
generated  from  it.  As  in  the  case  of  junctions,  if  the  terminal  point  T
is adjacent to several cells in P, one (or more) of the paths joining at T
disappears gradually. 

Figure 2. Reduction of an entrance by rules (7–12).  

Self-Stability of Solving a Maze  2.2.2

An  initial  configuration  is  a  configuration  that  satisfies  all  of  the  fol-
lowing conditions:   

(I-1) There  is  just  one  starting  point  S  and  one  terminal  point  T,  and  these
are not adjacent. 

(I-2) The number of cells not in state W is finite.  

A target configuration is a configuration that does not satisfy condi-
tions  (I-1)  and  (I-2)  for  an  initial  configuration  or  that  satisfies  all  of
the following conditions:  

(T-1) If the maze is connected, there is only one solving path from S to T*. 

(T-2) There are no maximal paths except solving paths. 

(T-3) There are no cells in R adjacent to S, P or B. 
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(T-4) If  the  maze  is  not  connected,  there  is  a  cell  in  T0  not  adjacent  to  B

or�P. 

(T-5) There are no junctions; that is, there are no cells in Pi  adjacent to two

or more cells in Pi-1 (or S if i  0), or two or more in Pi+1 (or T). 

(T-6) There are no cells in Pi
*
 or Pi

†. 

We now prove that these gellular automata are self-stable. 

Theorem 1. (Self-Stability  of  Solving  a  Maze)  Gellular  automata  with
the  given  states,  transition  rules  and  conditions  of  target  configura-
tions are self-stable. 

First, we show that from any initial configuration,  a target configu-
ration  appears  after  a  finite  number  of  steps.  Second,  we  show  that
once a target configuration  appears, only target configurations  appear
afterward.

Lemma 1. Assume  that  from  any  initial  configuration,  a  target  con-
figuration  can  be  obtained  by  some  transition  steps.  Then  a  target
configuration appears in any fair run. 

Proof.  Assume  that  no  target  configuration  appears  in  a  fair  run.  As
the  cellular  space  is  finite,  the  number  of  possible  configurations  is
also  finite.  Therefore,  there  exists  a  configuration  C  that  appears  an
infinite  number of times in the run, and because of fairness, any con-
figurations that can be obtained from C, including a target configura-

tion, also appear in the run. This is a contradiction. □

To  prove  the  theorem,  we  first  show  that  we  can  obtain  a  target
configuration  from  any  initial  configuration  by  the  following  opera-
tions (i)–(iv) in order. 

We  spread  R  by  rules  (1–2)  until  they  can  no  longer  be  applied,  then
spread P by rules (3–4) until they can no longer be applied. 

(i)

By  applying  rules  (5–16),  we  remove  all  maximal  paths  except  solving
paths.  Then  there  are  only  solving  paths  without  junctions  and  pure
loops.  If  there  remain  cells  in  Pi

*
 or  Pi

†,  we  get  rid  of  them  by  applying

rules (8, 12, 16). 

(ii)

If the maze is connected and there are solving paths, we move to (iv). (iii)

If the maze is connected, but there are no solving paths because the
terminal  point  T  is  not  adjacent  to  P,  we  change  T  to  T0  by  applying

rules (20–21). We then spread R from T0  only on the passage that will

be a solving path without junctions. When R is adjacent to P in a pure
loop, we change all R on the passage to P by applying rules (3–4) and
remove the loop and the resulting path using rules (5–16). By repeating
this process, a single solving path is obtained. 

If  there  remain  cells  in  Pi
*
 or  Pi

†,  we  get  rid  of  them  using  rules  (8,

12,  16).  There  should  be  no  cells  in  R  adjacent  to  B,  S  and  P  because
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we spread R only on the passage of a solving path, and there should be
no junctions. 

If the maze is not connected, we also change T to T0, as above. We

then  spread  R  to  all  cells  reachable  from  T  while  removing  pure  loops
by  rules  (3–4),  (7–16).  Then  there  should  be  no  cells  in  R  adjacent  to
B,  S  and  P  and  no  junctions.  Moreover,  T0  should  not  be  adjacent  to

B, P. 

If there are two or more solving paths, we keep one and remove the oth-
ers  by  applying  rules  (17–21).  Because  there  are  no  junctions  in  the
paths,  we  can  remove  them  by  applying  rule  (5)  until  just  one  cell  is
adjacent to S. Finally, we change T to T*

 by rule (17).  

(iv)

Figure 3 shows the operations (i)–(iv). 

Figure 3. Procedure of the operation (i–iv).  
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We now show that only target configurations  appear after a target
configuration  is obtained. Table 1 shows the conditions satisfied  after
each transition step. 

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Initial State x x x x x x x x

operation (i) o o x x o x x x

operation (ii) o o o o x x x x

operation (iii) o o o o o o x x

operation (iv) o o o o o o o o

Table 1. Conditions of mazes satisfied after each operation.

(I) There are no cells in R adjacent to S, P. 

(II) There are no cells in B adjacent to R. 

(III) There are no junctions and no cells in Pi
*
 or Pi

†. 

(IV) There are no maximal paths except solving paths. 

(V) If the maze is unconnected, there is a cell in T0 not adjacent to B, P. 

(VI) If the maze is connected, there are solving paths. 

(VII) If the maze is connected, each of the cells in S or T has just one neigh-
boring cell in P. 

(VIII) If the maze is connected, there is a cell in T*. 

After  (iv),  all  of  the  conditions  (I–VIII)  are  satisfied.  We  can  see
that  the  conditions  of  the  target  configurations  are  satisfied.  (T-1)
holds because of (III), (VI), (VII), (VIII). (T-2), (T-3), (T-4), (T-5) and
(T-6) hold because of (IV), (II), (V), (III) and (III). (In fact, if and only
if all of the conditions (I–VIII) are satisfied, all of the conditions of tar-
get  configurations  (T-1–T-6)  are  satisfied.)  Then  only  rules  (7–8)  can
be  applied  to  cells  under  target  configurations,  and  they  continue  to
satisfy (T-1–T-6). Therefore, after the first,  only target configurations
appear. 

Distance-2 Coloring  3.

Definitions  3.1

The  space  of  cellular  automata  for  solving  the  distance-2  coloring
problem  is  the  same  as  that  for  solving  a  maze.  A  state  of  a  cell  is

either W, which represents a wall, or a pair c, conf of a color state c

and a conflict  state conf. Cells whose state is a pair c, conf are called

colored.  
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A  color  state c  is  either ci
′
 or ci

′′ i  1, 2, … , n,  and  cells  whose

color  state  is  ci
′
 or  ci

′′
 are  considered  to  have  the  same  color  i.  They

are  sometimes  collectively  denoted  by  ci  or  c,  as  in  the  case  of

automata for solving a maze. The parameter n is the number of colors
used, which is 13 in this section. A conflict  state conf is a list of 0 or

1,  such  as  0, 1, 0, … , 1,  whose  length  is  n.  The  ith  element  is  1  if

there  are  two  or  more  neighboring  cells  in  the  color  i  and  is  0  other-
wise. A cell in the color i may change its color if conf[i] of any neigh-
boring cell is 1 or it has a neighboring cell in the same color i. 

Definition 8. (distance-2  coloring)  A  colored  cell  is  called  unsafe  if
there  is  a  neighboring  cell  in  the  same  color  as  the  cell  or  a  pair  of
neighboring  cells  in  the  same  color,  and  safe  otherwise.  A  configura-
tion is called distance-2 colored if there are no unsafe cells.  

The color of any cell in a distance-2 colored configuration  is differ-
ent from those of the cells within a distance of two cells from it. 

Figure 4 shows distance-2 coloring with five  colors. Cells with dif-
ferent  letters  have  different  colors.  Panel  (a)  shows  a  distance-2  col-
ored  configuration,  but  panel  (b)  does  not  because  there  are  colored
cells  adjacent  to  two  cells  in  R.  (Note  that  cells  W  adjacent  to  more
than two cells in the same color are allowed.) 

(a) (b)

Figure 4. An example of distance-2 coloring of cells.  

Procedure for Distance-2 Coloring3.2

In this section, we introduce the transition rules and the proof of self-
stability of the automata for distance-2 coloring.  

Transition Rules3.2.1

The automata for distance-2 coloring have the following seven transi-
tion  rules.  The  symbol  *  expresses  an  arbitrary  color  state  or  conflict
state.  The  symbol  conf [i]j  is  a  conflict  state  such  that  conf[i]  j,

that is, [ * , … , * , j, * , … , *], where the ith  element is replaced by j:
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ci
′, conf() → ci

′′, conf 1

ci
′′, conf() → ci

′, conf 2

ci, conf [j]0cj
′, * ⋀ cj

′′, * → ci, conf [j]1 3

ci, conf [j]1¬ cj
′′, * → ci, conf [j]0 4

ci
′, conf((ci

′′, *)) → cj
′, conf (5)

ci
′′, conf((ci

′, *)) → cj
′′, conf 6

ci
′′, conf1 * , conf2 [i]1 → cj

′, conf1. (7)

These transition rules work as follows. 

◼ (1–2):  They  switch  the  color  states  of  cells  from  ci
′
 to  ci

′′
 or  ci

′′
 to  ci

′
 to

enable  cells  to  recognize  whether  there  are  two  or  more  neighboring
cells in the same color.

◼ (3–4):  If  a  cell  has  two  or  more  neighboring  cells  in  the  same  color  i,

they change confi of the cell from 0 to 1. If not, they change it from 1
to 0. 

◼ (5–6):  If  a  cell  is  adjacent  to  cells  in  the  same  color,  they  change  the
color of the cell to an arbitrary one. 

◼ (7): If a cell is in a color state ci
′′

 and there is a neighboring cell whose

confi is 1, they change its color to an arbitrary one.  

Self-Stability of Distance-2 Coloring    3.2.2

An  initial  configuration  is  a  configuration  in  which  the  number  of
cells not in state W is finite.  A target configuration  is a configuration
that  does  not  satisfy  the  above  condition  for  initial  configurations  or
that satisfies all of the following conditions: 

(T-1) There  are  no  colored  cells  whose  colors  are  the  same  as  one  of  their
neighboring cells. 

(T-2) There are no colored cells that are adjacent to two  or more neighbor-
ing cells with the same color. 

(T-3) There are no colored cells whose conflict states are not 0, 0, … , 0. 

Now we show that these gellular automata are self-stable. 

Theorem 2 (Self-Stability  of  Distance-2  Coloring).  Gellular  automata
with the above states, transition rules and conditions of target configu-
rations are self-stable. 

As  in  the  case  of  solving  a  maze,  we  consider  the  following
operations:
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(i) If there is a cell such that confi  1 for some i and there is at most one

neighboring cell of color i, we change its confi from 1 to 0 by applying
rule (4). 

(ii) If a cell and one of its neighboring cells are the same color, we change its
color according to rules (5–6). Also, if two or more neighboring cells of
a  cell  are  the  same  color  i,  we  first  make  both  ci

′
 and  ci

′′
 appear  in  the

neighboring  cells  by  rules  (1–2).  Then  its  confi  is  changed  to  1  by
rule�(3)  and  finally,  we  change  ci

′′
 by  rule  (7).  In  both  cases,  we  choose

the color to which the cell changes, except the color of neighboring cells
and that of the cells to which they are adjacent. As the number of colors
we  cannot  choose  is  at  most  12  (as  in  Figure  5),  which  is  less  than  the
number  of  colors,  13,  we  can  always  choose  one,  and  the  number  of
unsafe cells decreases. 

(iii) By repeating (i–ii), we can change all of the unsafe cells to safe ones and

their conflict states to 0, 0, … , 0.  

A  target  configuration  is  obtained  through  the  operations  (i–iii).
Then only rules (1–2) can be applied to cells in target configurations,
which  does  not  change  conditions  (T-1–T-3).  Therefore,  after  the
first, only target configurations appear. 

Figure 5. 12-cells.  

Minimum Coloring4.

5-Coloring4.1

Self-stability is proved in the case of n  13 in Section 3. On the other
hand, the cellular space can be colored according to distance-2 color-
ing within five  colors as shown in Figure 6. Each number corresponds
to a respective color. 

In  fact,  in  the  case  of  n  5,  gellular  automata  with  the  above
states, transition rules and conditions of target configurations  are self-
stable.  At  first,  as  in  Figure  6,  we  determine  the  allocation  of  colors
according  to  distance-2  coloring  (called  ideal  allocation  hereafter).
Then,  a  target  configuration  can  be  obtained  by  operations  (i–iii).
However, we should revise process (ii) as follows. 

(ii') As  with  (ii),  we  can  determine  the  cell  to  be  colored.  Here,  we  choose
the  color  just  corresponding  to  the  color  of  the  cell  in  the  ideal
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allocation.  Then  the  coloring  allocation  gradually  approaches  the  ideal
allocation;  that  is,  the  number  of  the  cells  that  are  at  the  same  coordi-
nate  in  both  allocations  but  have  different  colors  decreases.  (Note  that
the  operation  may  end  before  the  coloring  allocation  accords  with  the
ideal allocation, but it satisfies the conditions of target configurations.)  

Of  course,  we  can  see  that  only  target  configurations  can  be
obtained after one appears similar to n  13. 

Figure 6. An example of 5-coloring.  

4-Coloring  4.2

We need at least five  colors for distance-2 coloring because if there is
a cell in state C that is surrounded by cells in state C, all of these five
cells  should  have  different  colors.  However,  according  to  [15],
2-distance  coloring  of  graph  G  is  achieved  within  k  colors  such  that

k  degreeG + 1.  That  implies  that  initial  configurations  in  which

there  are  no  cells  surrounded  by  cells  in  the  state  C  can  be  colored
with  four  colors.  Then  with  a  similar  method  to  5-coloring,  we  can
color such a configuration.  

Spanning Tree  5.

Definitions  5.1

The  space  of  cellular  automata  for  spanning  tree  construction  is  the
same  as  that  for  solving  a  maze.  A  state  of  a  cell  is  either  W,  which

represents a wall, or a pair P, C, which should belong to a spanning

tree. Here P is called a tree state and C is called a color-conflict  state.
A tree state P is one of the following set:  

ri, ticj, licj i  0, 1, … , m - 1, j  1, 2, … , n.

A  cell  whose  tree  state  is  ri,  ticj  or  licj  is  called  a  root,  an  inner

node  or  a  leaf  of  a spanning  tree.  The  index  i  is  called  a  wave  index,
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and cj  is called a parent color. If i or j is arbitrary, ri  is denoted r, and

ticj  is  denoted  by  ti,  tcj  and  t  (and  similarly  for  licj).  A  color-

conflict state C is a pair of a color state and a conflict  state, similar to
the  case  of  distance-2  coloring.  The  parameter  m  is  the  number  of ri,

which is six in this section.  

Definition 9 (parent, child). In the following explanation, cells in T  are
denoted as Ti in order to distinguish different cells. 

If  a  parent  color  of  a  cell  T0  is  the  same  as  a  color  of  one  of  its

neighboring  cells  T1,  then  T1  is  a  parent  of  T0,  and  T0  is  a  child  of

T1.  A  cell  in  state  T2  is  called  an  ascendant  of  T0  only  when  T2  is  a

parent of T0  or (respectively) an ascendant of T0. Then T0  is called a

descendant of T2. 

If there is a sequence of neighboring cells T  and it contains T0  and

T3,  T3  is  reachable  from  T0.  (Note  that  T0  itself  is  also  reachable

from T0.)  

Definition 10 (path,  loop).  A  path  is  a  sequence  of  neighboring  cells
whose states are aligned regularly like this: 

ti0
cj0

, cj1
, conf0, ti1

cj1
cj2

, conf1, ti2
cj2

cj3
, conf2,

… , tik-2
cjk-2

cjk-1
, confk-2, tik-1

cjk-1
cjk

, confk-1.

The  beginning  of  the  sequence  can  be  a  root,  and  the  end  of  the
sequence  can  be  a  leaf.  That  is,  a  path  is  a  sequence  of  neighboring
cells such that:  

◼ The tree state of each cell, except both ends of the sequence, is an inner
node. 

◼ Cells  except  the  beginning  of  the  sequence  satisfy  the  following
condition:
(1)  The  parent  color  of  the  cell  is  equivalent  to  the  color  of  the  next
cell. 

◼ Cells except for the end of the sequence satisfy the following condition:
(2) The color of each cell is equivalent to the parent color of the previ-
ous cell. 

Assume  that  the  sequence  T0, … , Tn  is  a  path.  If  T0  and  Tn  are

inner nodes and a color of Tn  is the same as a parent color of T0, the

path is called a loop. If the path is not a loop and the beginning (end)
of  the  path  T0  (Tn)  has  no  neighboring  cell  that  can  be  a  parent

(child), the cell T1  (Tn) is called a head (a tail, respectively). If a path

has both ends, a head and a tail, we say a path is maximal. Notably,
if  there  is  a  maximal  path  whose  head  is  a  root  and  whose  tail  is  a
leaf, the maximal path is a branch path. 
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A path has a junction when a cell in T in the path has two or more
parents or two or more children. Such a cell in T is called an entrance
in the former and an egress in the latter case, respectively.  

If  a  tree  state  of  a  cell  is  ticj  or  licj,  it  points  to  a  neighboring

cell whose color is j as its parent. In this manner, we can define  a par-
ent-child  relation  in  the  cellular  space  if  the  parent  of  each  cell  is
uniquely  determined.  Figure  7  shows  an  example  of  the  construction
of a spanning tree. 

Figure 7. An example of a spanning tree construction.  

Procedure for Spanning Tree Construction    5.2
Transition Rules  5.2.1

In  order  to  construct  a  spanning  tree  by  the  following  rules,  dis-
tance-2  coloring  is  required  to  be  achieved.  If  the  rules  (1–7)  for
distance-2 coloring are written in such a form:  

s1(t1 ⋀… ⋀ tm ⋀ ¬ tm+1 ⋀… ⋀ ¬ tm+n) → s2

then the rules (1′–7′) for spanning tree construction are needed:  

(P, s1)(( * , t1) ⋀… ⋀ ( * , tm) ⋀ ¬ ( * , tm+1) ⋀… ⋀ ¬ ( * , tm+n)) → (P, s2

In addition to these seven rules, there are 24 more rules, that is, 31
rules in all for spanning tree construction:
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ticj, ck, conf¬ (t[ck], *) ⋀ ¬

l[ck], *

→ licj, ck, conf 8

licj, ck, conf((t[ck], *)) → ticj, ck, conf 9

licj, ck, confl[ck], * → ticj, ck, conf 10

These  rules  mean  that  an  inner  node  that  does  not  have  any  child
makes a transition to a leaf, and a leaf that has children makes a tran-
sition to an inner node:

ticj, C( * , (ck, *)) ⋀ ¬  * , cj, * → ti[ck], C

j ≠ k

11

licj, C( * , (ck, *)) ⋀ ¬  * , cj, * → li[ck], C j ≠ k. 12

If  a  cell  has  no  neighbors  whose  colors  are  the  same  as  its  parent
color,  the  parent  color  is  changed  to  one  of  the  colors  of  the  neigh-
bors.  These  are  used  to  let  all  the  reachable  cells  from  a  root  merge
with the spanning tree:

ti-1cj, Cri, cj, * → ticj, C i  0, 2, 4 13

ti-1cj, Cti[ck], cj, * → ticj, C i  0, 2, 4 14

li-1cj, Cri, cj, * → licj, C i  0, 2, 4 15

li-1cj, Cti[ck], cj, * → licj, C i  0, 2, 4 16

licj, C() → li+1cj, C i  0, 2, 4 17

ti-1[ch], cj,ticj, ( * , *) ⋀ ¬ lkcj, ( * , *) ⋀ ¬ tkcj, ( * , *)

→ ti[ch], cj, i  1, 3, 5; i ≠ k 18

ti-1[ch], cj,licj, ( * , *) ⋀ ¬ lkcj, ( * , *) ⋀ ¬ tkcj, ( * , *)

→ ti[ch], cj, i  1, 3, 5; i ≠ k 19

ri-1, cj,ticj, ( * , *) ⋀ ¬ lkcj, ( * , *) ⋀ ¬ tkcj, ( * , *)

→ ri, cj, i  1, 3, 5; i ≠ k 20

ri-1, cj,licj, ( * , *) ⋀ ¬ lkcj, ( * , *) ⋀ ¬ tkcj, ( * , *)

→ ri, cj, i  1, 3, 5; i ≠ k 21

ri, C () → ri+1, C i  1, 3, 5 22

To  confirm  whether  a  spanning  tree  is  constructed,  waves  are
generated  alternately  from  a  root  to  leaves  (from  parents  to  children)
and from leaves to a root (from children to parents). Wave indices are
incremented  in  (ℤ /mℤ),  such  as  … , 4, 5, 0, 1, 2, … .  In
rules�(13–22), the index i is incremented. Wave index 0 is propagated
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from a root by changing the wave indices of cells from 5 to 0. When
it  reaches  each  leaf,  its  wave  index  is  changed  from  5  to  0,  and
instantly 0 to 1, then wave index 1 is propagated from a leaf by chang-
ing the wave indices of cells from 0 to 1. (If a cell has several children,
it can be changed if all children have been changed.) When it reaches
the root, its wave index is changed 0 to 1, and instantly 1 to 2, Wave
indices 2, 3, 4 and 5 are propagated as well. Therefore, the wave from
a  root  has  an  even  number  index,  and  the  wave  from  leaves  has  an
odd number index. If a spanning tree is constructed, it does not have
a loop, and all the cells reachable from a root are in branch paths. 

Figure  8  shows  the  transitions  of  the  wave  index.  The  root  of  the
spanning tree, which is denoted by a gray cell, changes its wave index
from 0 to 2 by applying rules (13–22) to each cell. 

If  a  spanning  tree  is  constructed  correctly,  there  are  no  pairs  of
adjacent cells in T  the difference of whose wave indices is three, such
as  0  and  3,  or  2  and  5.  We  call  such  a  pair  an  unsafe  pair.  If  the
difference is two, such as 0 and 2, or 3 and 5, we call a pair an unsta-
ble pair:

ri, cj, *¬ lcj, C ⋀ ¬ tcj, C → ri+1, cj, *. (23)

 Note that the smaller difference is considered. For instance, the differ-
ence of a pair (0,5) is one, since this is not an unstable or unsafe pair.

Figure 8. Transitions of wave index of the root from 0 to 2.  
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If  a  root  does  not  have  any  child,  sometimes  waves  are  not  propa-
gated.  Then  the  root  doubles  as  a  leaf,  that  is,  increments  its  own
wave index: 

ti[ck], Crj, (ck, *) → tj[ck], C  i - j ≥ 2 24

ti[ck], Ctj[ch], (ck, *) → tj[ck], C  i - j ≥ 2 25

li[ck], Ctj[ch], (ck, *) → lj[ck], C  i - j ≥ 2. 26

If  there  is  an  unstable  or  unsafe  pair  of  cells  that  are  in  a  parent-
child  relation,  a  wave  index  of  one  of  the  pair  is  changed  to  be  the
same number as that of the parent. 

Figure  9  shows  the  application  of  rules  (24–26)  to  the  descendant
cells of the root. They are applied so that the root and its descendant
cells have the same wave index: 

ti[ck], Crj, (ch, *) → tj[ch], C  i - j ≥ 3; k ≠ h 27

ti[ck], Ctjcg, (ch, *) → tj[ch], C  i - j ≥ 3; k ≠ h 28

li[ck], Ctjcg, (ch, *) → lj[ch], C  i - j ≥ 3; k ≠ h 29

ti[ck], Cljcg, (ch, *) → tj[ch], C  i - j ≥ 3; k ≠ h 30

li[ck], Cljcg, (ch, *) → lj[ch], C  i - j ≥ 3; k ≠ h. 31

Figure 9. Application of the rules (24–26).  

Moreover,  if  there  is  an  unsafe  pair  of  cells,  not  only  the  wave
index but also the parent color of one of them is changed. The aim is
to join them in branch paths. 

Figure  10  shows  how  to  take  external  cells  into  the  tree.  At  first,
wave indices of cells in the tree are changed by rules (13–22) to make
an  unsafe  pair,  and  then  external  cells  in  this  pair  are  taken  into  the
tree by rules (27–31). These details are described in Section 5.2.2. 
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Figure 10. Application of rules (27–31).  

Self-Stability of Spanning Tree Construction    5.2.2

An  initial  configuration  is  a  configuration  that  satisfies  all  of  the  fol-
lowing conditions:  

(I-1) There is just one root. 

(I-2) The number of cells not in state W is finite.  

A target configuration  is a configuration  that satisfies  all of the fol-
lowing conditions:  

(T-1) There  are  no  cells  in  state  T  that  are  reachable  from  a  root  and  in  a
loop. 

(T-2) There are no cells in state T that are reachable from a root and not in
any branch path. 

(T-3) All the branch paths have at most one interference pair: a pair of adja-
cent  cells  in  a  branch  path  that  are  in  a  parent-child  relation  and
whose difference of the wave indices is 1 in (ℤ /mℤ), such as 5 and 0,
0 and 1. 

(T-4) If the wave index of a root is 1 (3, 5), those of all its descendant cells
are also 1 (3, 5). 

(T-5) All cells in state T reachable from a root are in valid tree states; that is,
a cell that does not have parents is a root, cells that have both parents
and  children  are  inner  nodes,  and  cells  that  do  not  have  children  are
leaves. 

We now prove that, if distance-2 coloring is achieved, (T-1) is satis-
fied whenever (T-2) is satisfied.
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Lemma 2. If distance-2 coloring is achieved, there are no entrances.  

Proof.  Given  the  conditions  of  distance-2  coloring,  there  are  no  cells
whose two or more neighboring cells are the same color. If a cell is an
entrance; that is, it has two or more parents, these are the same color,

which contradicts the above. □

Assume  that  distance-2  coloring  is  achieved  and  there  is  a  loop
in �one-half  of  a  branch  path;  the  path  is  in  the  form  of

(r, *), … , Tk, … , Tk, … , l, *. It has an entrance, which contradicts

the above. Thus we can show that (T-1) is satisfied  whenever (T-2) is
satisfied. 

We  also  show  there  are  no  unsafe  pairs  of  cells  reachable  from  a
root in the target configuration. 

Lemma 3.  There  are  no  unsafe  pairs  of  cells  reachable  from  a  root  in
target configurations.  

Proof.  Because  of  (T-2)  and  (T-3),  the  difference  between  the  wave
indices  of  cells  that  are  reachable  from  a  root  and  a  root  is  at  most
one.  Thus  the  wave  indices  of  cells  appearing  in  a  configuration  are
one  more  than  that  of  the  root,  the  same  as  that  of  the  root  or  one
less than that of the root. Therefore, the difference of the wave index

of all the reachable cells is at most two. □

Then  we  show  that  for  gellular  automata  under  these  transition
rules,  the  initial  configurations  and  the  target  configurations  are  self-
stable.  At  first,  we  obtain  a  target  configuration  from  any  initial
configuration. Then we show no configurations  except target configu-
rations  appear  after  that.  Now  the  following  operations  (i–iii)  are
performed. 

(i) First, distance-2 coloring is achieved by rule (1′–7′) in the same manner
as Section 3.2.2. 

(ii) Next,  we  apply  rules  (11–12)  so  that  all  the  cells  except  a  root  have  a
parent.  After  that,  we  also  apply  rules  (8–10),  as  these  are  no  longer
applied now, to set leaves in a correct position of paths. Then, we make
the root and all of its descendant cells have the same wave index with-
out changing the parent-child relation by the following operations: Sup-
pose cells in a path from the root to the first  interference pair have the
same  wave  index.  If  a  difference  between  wave  indices  of  a  parent  and
a child of the first interference pair is  

one  (the  parent  is  one  greater  than  the  child),  if  the  index  of  the
parent is 0, 2 or 4, the wave can be propagated from the root to the
leaves by rules (13–16). If not, the index of the root is also 1, 3 or 5,
so  indices  of  the  parent  cell  and  all  its  ascendant  cells  can  be
changed  to  2,  4  or  0  by  rules  (13–14),  (22),  then  rules  (24–26)  can
be applied to the child without changing the parent-child relation. 

(a)
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one (the parent is one less than the child), if the index of the parent
is 0, 2 or 4, the wave can be propagated from the leaves to the root
by  rules  (18–21).  If  not,  the  index  of  the  root  is  also  1,  3  or  5,  so
indices  of  the  parent  cell  and  all  its  ascendant  cells  can  be  changed
to 2, 4 or 0 by rules (13–14), (22). 

(b)

two  or  more,  the  wave  index  of  the  child  can  be  changed  to  the
same number as that of the parent by rules (24–26). 

(c)

This  is  repeated  until  the  root  and  its  descendant  cells  have  the  same
wave index. In such a case, we call the wave index the tree wave index. 

Figure 11 shows the procedure of operation (ii)-(a), (b). The procedure
in the case (c) is described in Figure 10.

Figure 11. (continues)
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Figure 11. Procedure of operation (ii).

(iii) Then,  we  can  optionally  change  the  tree  wave  index  by  applying
rules�(13–22). If there is a pair of cells in which one is in a branch path
and  the  other  is  not,  we  change  the  tree  wave  index  by  rules  (13–22)
(or  rule  (23)  if  the  root  has  no  children)  so  that  the  difference  of  the
wave  indices  of  them  is  three,  change  the  parent  color  and  the  wave
index of the latter cell to those of the former cell by rules (27–31), and
repeat  (ii)  so  that  a  root  and  all  the  descendants  have  the  same  wave
index. This is repeated until the root and all of the cells reachable from
the root are in branch paths and have the same index. 

Table 2 shows the conditions satisfied after each operation. 

(I) (II) (III) (IV) (V) (VI)

Initial State x x x x x x 

operation (i) o x x x x x 

operation (ii) o o o x x x 

operation (iii) o o o o o o 

Table 2. Conditions of a spanning tree satisfied after each operation.  

(I) No  cell  is  adjacent  to  more  than  two  cells  that  have  the  same  color
(distance-2 colored). 

(II) Root and all its descendant cells have the same wave index.

(III) All descendant cells of a root are in valid tree states. 

(IV) No cells in T are reachable from a root and not in any branch path. 

(V) Root  and  all  cells  in  T  reachable  from  the  root  have  the  same  wave
index. 

(VI) All cells in T reachable from a root are in valid tree states. 

After (iii), all of the conditions (I–VI) are satisfied.  (T-2) is satisfied
if and only if (IV) is satisfied,  and according to Lemma 2, (T-1) is also
satisfied.  Moreover,  (T-3)  and  (T-4)  are  satisfied  if  (V)  is  satisfied,
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and  (T-5)  is  satisfied  if  (VI)  is  satisfied.  Thus  a  target  configuration
appears by these operations. 

Then we consider which rules can be applied in the target configu-
rations,  and  whether  they  can  make  the  other  configurations  appear.
Since rules (3′–7′) are not applied if a configuration  is distance-2 col-
ored, and rules (8–28) do not change the color-conflict  states of cells,
(3′–7′) cannot be applied to target configurations.  Also (1′–2′) do not
affect  the  conditions  of  target  configurations,  thus  we  do  not  need  to
consider these rules. Besides, only cells reachable from a root affect all
the  conditions  of  target  configurations,  so  we  do  not  consider  the
application of rules to unreachable cells from a root. 

◼ (8–10) They cannot be applied because of (T-5). 

◼ (11–12)  Since  all  cells  reachable  from  a  root  are  in  branch  paths
because of (T-2), they cannot be applied. 

◼ (13–22) They can be applied. 

◼ (23)  Since  all  the  cells  reachable  from  a  root  are  in  branch  paths
because of (T-2), it can be applied only when the root is not adjacent to
any  cells  in  state  T.  In  this  case,  other  rules  we  consider,  (8–21),
(24–33), cannot be applied, and (23) does not change the conditions of
target  configurations  in  that  case.  (Rule  (22)  can  be  applied,  but  it  is
included in (23) when there is no T adjacent to the root.) Thus only tar-
get configurations appear, so we do not consider this rule after that. 

◼ (24–26)  Because  of  (T-3),  the  difference  of  wave  indices  of  reachable
cells  in  parent-child  relation  is  one  at  most,  then  they  cannot  be
applied. 

◼ (27–31) Because of (T-3) and Lemma 3, they cannot be applied. 

Then,  except  (1′–2′),  only  rules  (13–22)  can  be  applied  to  cells  in
target  configurations.  They  only  change  the  wave  indices,  so  (T-1),
(T-2) and (T-5) are satisfied. 

When (T-4) is considered, the wave index of a root can be changed
to 1 (3, 5) by rules (20–21). This can be applied only when the wave
indices  of  all  the  adjacent  cells  are  0  (2,  4).  Because  of  (T-3),  then,
those  of  all  of  the  descendant  cells  of  the  root  are  0  (2,  4),  and  rules
(13–19),  (22)  cannot  be  applied  at  the  same  time.  Thus  (T-4)  is  also
satisfied. 

Then let us consider (T-3). There are seven patterns of two branch
paths satisfying the conditions of target configurations,  like Figure 12,
and  we  show  no  patterns  make  transitions  to  configurations  except
target configurations. 

The  index  of  a  root  is  1,  3  or  5,  and  all  the  reachable  cells  have  the
same index.

(a)
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The  index  of  a  root  is  0,  2  or  4,  and  all  the  reachable  cells  have  the
same index.

(b)

The index of a root is 0, 2 or 4, and each branch path has one interfer-
ence pair such that the index of the parent is one more than that of the
child. 

(c)

The index of a root is 0, 2 or 4, and each branch path has one interfer-
ence  pair  such  that  the  index  of  the  parent  is  one  less  than  that  of  the
child. 

(d)

The  index  of  a  root  is  0,  2  or  4,  and  only  one  of  the  branch  paths  has
one interference pair such that the index of the parent is one more than
that of the child. 

(e)

The  index  of  a  root  is  0,  2  or  4,  and  only  one  of  the  branch  paths  has
one  interference  pair  such  that  the  index  of  the  parent  is  one  less  than
that of the child. 

(f)

The index of a root is 0, 2 or 4, and each branch path has one interfer-
ence pair such that the index of one parent is one more than that of the
child, and the index of the other parent is one less than that of the child.

(g)

Figure 12. All the patterns of two branch paths.  
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Then  we  consider  whether  these  patterns  make  transitions  to  con-
figurations except for target configurations. 

In this case, only rule (22) can be applied, which does not change (T-3). (a)

In this case, only rule (17) can be applied, which does not change (T-3). (b)

In  this  case,  rules  (13–16)  can  be  applied  only  to  the  children  of  the
interference pairs, so it does not change (T-3). 

(c)

In this case, rules (13–16) can be applied only to the parents of the inter-
ference  pairs.  If  the  parents  of  these  pairs  have  several  children,  they
can be applied only when all of the children have the same index that is
one more than that of the parent, so two or more interference pairs are
not generated in one branch path. Thus it does not change (T-3). 

(d)

Consider  when  rules  (13–16)  (or  (18–21))  and  rule  (17)  are  applied  at
the same time. Junction cells cannot be leaves since junctions have chil-
dren,  and  not  all  the  children  of  the  junction  cells  have  the  same  index
in  this  case.  Then  the  junction  does  not  make  a  transition,  there  is  a
pair  of  cells  the  difference  of  which  is  two  or  more,  therefore  interfer-
ence pairs are not generated. Thus it does not change (T-3). 

(e-f)

Similar  to  the   case  (e-f),  the  junction  does  not  make  a  transition  until
all of the children have the same index. Thus it does not change (T-3). 

(g)

Therefore (T-3) is also satisfied.  By the above, only target configu-
rations appear after it appears. 

Conclusion6.

In  this  paper,  we  showed  how  to  construct  gellular  automata  that
solve  three  problems:  solving  a  maze,  distance-2  coloring  and  span-
ning  tree  construction.  As  self-stable  gellular  automata  can  recover
from  malfunctions  of  states  and  transitions,  materials  that  contain
them are able to form structures like blood vessels or neural networks
that can repair themselves following external damage or environmen-
tal changes.  

By  adding  and  changing  some  states  and  transition  rules,  we  can
also  design  gellular  automata  for  solving  other  problems.  For
instance,  gellular  automata  that  solve  the  Hamiltonian  circuit  prob-
lem can be constructed by modifying those for a maze. The actual con-
struction  of  these  gellular  automata  remains  for  future  studies.  We
also plan to improve the automata by decreasing the number of states
and  transition  rules  and  reducing  the  number  of  steps  required  for
them to converge to a target configuration. 
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