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This  paper  develops  a  formal  logic,  named  LCA,  targeting  modeling  of

one-dimensional  binary  cellular  automata.  We  first  develop  the  syntax
of LCA, then give semantics to LCA  in the domain of all binary strings.

Then  the  elementary  cellular  automata  and  four-neighborhood  binary
cellular  automata  are  shown  as  models  of  the  logic.  These  instances
point  out  that  there  are  other  models  of  LCA.  Finally  it  is  proved  that

any  one-dimensional  binary  cellular  automaton  is  a  model  of  the  pro-
posed logic. 
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Introduction1.

Although  histories  of  cellular  automata  (CAs)  and  formal  logic  are
quite  old,  these  two  fields  of  mathematics  and  computer  science  did
not meet much during their journey. Few works are found in the liter-
ature  that  relate  formal  logic  and  other  kinds  of  automata;  see  for
example  [1]  and  a  collected  volume  [2].  But  such  a  relation  between
CAs  and  formal  logic  is  yet  to  be  adequately  studied.  In  particular,
whether  the  structure  and  dynamics  of  CAs  can  give  birth  to  a  new
formal logic has not been previously investigated. This paper attempts
to fulfill this need.  

An  effort  has  been  taken  in  the  recent  past  to  study  CAs  using
propositional  logic  [3,  4].  The  authors  of  these  works  have  studied
one-dimensional binary CAs as models of propositional logic. On the
contrary,  this  paper  develops  a  different  formal  logic  that  we  name
LCA  and  shows  that  the  one-dimensional  binary  CAs  are  models  of

the proposed logic LCA. 

Section  2  introduces  some  definitions  and  terminologies  related  to
CAs.  The  logic  LCA  is  developed  in  Section  3.  Here  we  first  develop
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the  syntax  of  LCA  and  then  give  semantics  of  the  logic  LCA  in  the

domain of all binary strings. Section 4 proves that an elementary cellu-
lar automaton (ECA) is a model of the proposed logic, and evolution
of  the  ECA  is  nothing  but  a  derivation  of  the  logic  in  the  domain  of
binary  strings.  Another  binary  cellular  automaton  (CA),  having  four-
neighborhood  dependency,  is  also  shown  as  a  model  of  the  logic
(Section  4).  Finally,  we  prove  that  any  one-dimensional  binary  CA  is
a model of the logic. 

Definitions and Terminology2.

A  CA  is  a  quadruple  (ℒ, , , f),  where  ℒ ⊆ ℤD
 is  the  D-dimen-

sional  cellular  space,    is  the  finite  set  of  states,    v1, v2, … , vm

is the neighborhood vector of m distinct elements of ℒ that associates
one cell to its neighbors, and f :m →  is called the local rule of the
automaton  [5].  During  evolution,  all  the  cells  of  a  CA  are  updated
simultaneously. Generally, the neighbors of a cell are the nearest cells
surrounding  the  cell.  However,  when  the  neighborhood  vector    is

given,  then  the  neighbors  of  a  cell  at  location  v ∈ ℒ  are  at  locations

v + vi ∈ ℒ  for  all  i ∈ 1, 2, … , m.  In  this  paper,  nevertheless,  we

consider the following:  

D  1, ℒ  ℤ / nℤ,   0, 1,

  - lr, … , -1, 0, 1, … , rr.

That is, the CAs under consideration are finite,  having two states per
cell,  and  each  cell  depends  on  itself  and  consecutive  lr  number  of  left

neighbors  and  consecutive  rr  number  of  right  neighbors.  They  are

sometimes  called  left  radius  and  right  radius,  respectively.  Obviously,
m  lr + rr + 1.  A  widely  studied  class  of  these  CAs  is  the  elementary

cellular automata (ECAs) where lr  rr  1.  

A  configuration  of  a  binary  CA  is  a  mapping  c :ℒ → 0, 1.  Let  us

denote  a  set  of  all  possible  configurations  of  a  CA  of  size  n  as

n  0, 1ℒ.  So,  n  2n,  and  for  a  configuration  x ∈ n,

x  (x0x1… xn-1).  Local  rules  of  the  CA  induce  the  global  transition

function  G : n → n,  which  satisfies  the  following  condition:

y  G(x),  y ∈ n,  where  y  (yi)i∈ℒ  and  yi  fxi-lr
, … , xi, … , xi+rr

.

The local rules, especially for ECAs, are sometimes presented in tabu-
lar form (see Table 1), and the ECA rules are traditionally recognized

by  the  decimal  equivalent  of  the  outputs  of  the  eight  (23)  arguments
of  f.  However,  a  CA  rule  can  also  be  represented  by  a  de  Bruijn
graph�[6]. 
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Arguments 111 110 101 100 011 010 001 000 Rule 

of f  (7) (6) (5) (4) (3) (2) (1) (0) # 

(i) f  0 0 0 0 1 0 1 0 10 

(ii) f  0 1 0 1 1 0 1 0 90 

Table 1. ECA rules 10 and 90.  

Definition 1. Let  Σ  be  a  set  of  symbols  and  s ≥ 1  be  a  number.  Then,
the de Bruijn graph is B(s, Σ)  (V, E), where V  Σs  is the set of ver-

tices, and E  ax, xb a, b ∈ Σ, x ∈ Σs-1 is the set of edges. 

Figure  1(a)  shows  B2, 0, 1,  an  example  of  a  de  Bruijn  graph.

This graph (i.e., B2, 0, 1) can be used to represent ECAs: the edges

ax, xb represent the domain of the rule. Now, we need to label each

edge by fa, x, b to represent a CA with rule f. For clarity, however,

we  label  each  edge  by  “axb  fa, x, b.”  Figure  1(b)  shows  the

de Bruijn graph for ECA rule 90 (see Table 1). 

(a) (b)

Figure 1. The  de  Bruijn  graph  of  CA  with  rule  90.  (a)  The  de  Bruijn  graph

B2, 0, 1. (b) De Bruijn graph for rule 90.      

Definition 2.  A  cycle  of  length  n  in  a  de  Bruijn  graph  is  a  sequence  of
vertices  (v1, v2, … , vn, vn+1),  where  vn+1  v1  and  (vi, vi+1)  ei,

i ∈ 1, 2, … , n.  We  generally  represent  this  sequence  as

(e1, e2, … , en). 

A cycle of length n in a de Bruijn graph corresponds to a configura-
tion  of  an  n-cell  CA.  For  example,  the  configuration  001 111  corre-
sponds  to  a  cycle  of  length  six  in  Figure  1.  In  fact,  cycles  in  a
de Bruijn  graph  and  configurations  are  synonymous  in  this  context.
The  successor  of  a  configuration  can  be  obtained  from  the  de  Bruijn

graph by replacing an edge by its label (i.e., fa, x, b). 
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There are six elementary circuits in the de Bruijn graph of an ECA.
Two  of  them  are  of  length  1:  (000)  and  (111),  one  is  of  length  2:
(010, 101), two are of length 3: (001, 010, 100) and (011, 110, 101),
and  the  rest  are  of  length  4:  (001,  011,  110,  100).  Since  cycles  in  a
de Bruijn graph represent configurations  of some automata, these ele-
mentary circuits also correspond to some configurations. 

Definition 3. A  configuration  is  called  homogeneous  if  it  corresponds
to an elementary circuit of a de Bruijn graph. 

Hence, there are six homogeneous configurations in ECAs. We gen-
erally represent these configurations  by their minimal representations.
That  is,  the  length  of  such  a  representative  homogeneous  configura-
tion  is  the  length  of  its  corresponding  cycle  in  a  de  Bruijn  graph.  For
ECAs,  the  homogeneous  configurations  are:  0,  1,  01,  001,  011  and
0011.  Obviously,  all  configurations  of  a  CA  are  not  homogeneous.
An  arbitrary  configuration  of  an  n-cell  CA,  which  corresponds  to  a
cycle of length n in the de Bruijn graph, is composed of some homoge-
neous  configurations  of  smaller  sizes.  For  example,  the  configuration
001 111 of a six-cell ECA is composed of two homogeneous configu-
rations: 1 and 0011 (see Figure 1). 

Definition 4. Two  configurations  are  called  shift  equivalent  to  each
other if and only if one can be obtained by left shifting the other. 

For example, configurations  001111 and 100 111 are shift equiva-
lent to each other, because 001111 is the one-bit left shift of 100111.
Obviously,  shift  equivalent  configurations  are  composed  of  the  same
atomic configurations. 

The Logic LCA  3.

A logic is mathematically defined  as a pair (ℒ, ⊢), where ℒ is a set of
sentences  of  the  logic,  also  called  language,  and  ⊢  is  a  consequence
relation.  To  get  the  language  ℒ,  we  need  an  alphabet  and  formation
rules  that  form  sentences  using  symbols  of  the  alphabet.  Members  of
ℒ  are  called  well-formed  formulas  (wffs).  One  method  of  getting  the
consequence relation (⊢) is natural deduction, which uses a set of infer-
ence  rules  to  reach  a  conclusion  [7].  We  adopt  the  natural  deduction
method for derivation of a wff from a given wff in the proposed LCA

logic. We next develop the syntax of LCA.  

Syntax  3.1

Let  us  consider  a  finite  set  of  symbols:  P  {p0, p1, … , pN-1},  where

N  is  a  natural  number.  These  symbols  are  the  members  of  the  alpha-
bet of our logic. Apart from them, there are four more symbols: σ, *,
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) and ( in the alphabet. Hence, the alphabet consists of  

σ * ) ( p0 p1…pN-1.

In the proposed logic, the members of P are atomic wffs. Since P is
finite,  the  number  of  atomic  wffs  is  also  finite.  Other  (non-atomic)
wffs  are  formed  from  the  atomic  wffs.  We  use  other  symbols  of  the
alphabet  to  get  the  non-atomic  wffs.  Following  are  the  formation
rules of formulas. 

All atomic wffs are wffs. 1.

If α is a wff, then (α) and σ(α) are wffs. 2.

If α and β are two wffs, then α * β and αβ are wffs. 3.

Nothing else is a well-formed formula. 4.

Example 1. Suppose there are only two symbols in P. Then, p0  and p1
are  the  atomic  wffs.  The  non-atomic  wffs  are  (p0),  σ(p0),  σ(σ(p0)),

p0 * p1, (p0 * p1), p0p1, σ(p0) * p1, σ(p0 *σ(p1)), σ(p0σ(p1)) and so�on.

The language of the logic ℒ consists of the formulas formed by the
given  formation  rules.  If  there  is  no  ambiguity,  we  can  drop  brackets
from  a  formula.  We  assume  an  abstract  binary  relation  (R)  over  the
set  of  all  wffs  (i.e.,  R ⊆ ℒ⨯ℒ)  as  reflexive,  symmetric  and  transitive.
That  is,  R  is  an  equivalence  relation.  In  the  language,  as  per  defini-
tion, there are some formulas of the form σσ⋯σ

k times

α⋯). We will rep-

resent this formula as σk(α). Similarly, a formula of the form αα⋯α
k times

 is

represented as αk. 

Definition 5. We say a formula is in normal form if it is in the form 

σk1 p1
′ *σk2 p2

′ *⋯σkl (pl
′)⋯

where p1
′ , p2

′ , … , pl
′ ∈ P and k1, k2, … , kl ≥ 0.  

Let  us  now  state  the  rules  of  the  logic.  In  our  logic,  there  are  two
classes of rules: one class is called spatial rules, and the other is called
temporal rules, on account of their intended interpretation. 

Spatial Rules  

Following are the spatial rules of our logic.  

◼ SR1: 
(α)

σk-iσi(α)
 

where k and i are two natural numbers with k ≥ i. 

◼ SR2: 
(αβ)

(α)*(β)

provided R(α, β) holds. 
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◼ SR3: 
(α * β)

(αβ)

◼ SR4: 1
(α)

α
, 2

α

(α)

The  first  rule  introduces  σ  in  a  wff  α  by  replacing  α  with

σk-iσi(α).  The  second  rule  introduces  *  in  a  wff.  Similarly,  SR4(2)

introduces  brackets  in  a  wff.  These  rules,  namely  SR1,  SR2  and

SR4(2),  are  called introduction  rules.  On  the  other  hand,  SR3  and

SR4(1) eliminate * and brackets, respectively. These are called elimina-

tion rules. 

Temporal Rules

There is a set of n temporal rules to transform n atomic wffs. 

◼ TRi: For each i ∈ 0, 1, … , N - 1

(pi)

(αi)

where αi is an arbitrary but fixed wff.  

We  can  test  whether  a  wff  is  derivable  in  the  logic  from  a  given  wff
using the spatial and temporal rules.  

Definition 6. Derivation in the logic: For two wffs α and β, we say α ⊢ β

if  and  only  if  there  is  a  sequence  of  wffs  α1(  α),  α2, … , αk(  β)

such  that  αi  (1 < i ≤ k)  is  obtained  from  αi-1  by  the  application  of

any of the rules. 

Example 2. Let  us  assume  that  α  and  β  are  two  wffs.  The  following
illustrates  a  derivation  of  β  from  α  in  this  logic.  The  left column
indicates  the  rule(s)  applied  on  a  previous  wff  to  get  the  current  one
in the right column: 

given wff α

SR4(2) (α)

SR2, assuming α ≡ βγ and

R(β, γ) holds

(β) * (γ)

SR2, assuming β ≡ p1
′ p1

′
 and 

R(p1
′ , p1

′ ) holds where p1
′ ∈ P,

and SR1

(p1
′ ) * (p1

′ ) * σ3(σ(γ))

SR4(2) (p1
′ ) * (p1

′ ) * σ3((σ(γ)))

SR2, assuming σ(γ) ≡ p2
′ γ′ and 

R(p2
′ , γ′) holds where p2

′ ∈ P

(p1
′ ) * (p1

′ ) * σ3((p2
′ ) * (γ′))

SR1 (p1
′ ) * (p1

′ ) * σ3(p2
′ ) * σσ2(γ′)

assuming σ2(γ′) ≡ p3
′ ∈ P (p1

′ ) * (p1
′ ) * σ3((p2

′ ) * (σ(p3
′ )))

temporal rules (α1) * (α1) * σ
3((α2) * (σ(α3)))

(1)
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 

SR3 and assuming α2 ≡ p1
′ (α1) * (α1) * σ

3((p1
′ )(σ(α3)))

SR4(2) ((α1) * (α1)) * σ
3((p1

′ )(σ(α3)))

SR3 ((α1)(α1))σ
3((p1

′ )(σ(α3)))

temporal rule ((α1)(α1))σ
3((α1)(σ(α3)))

SR4(1) (α1)(α1)σ
3((α1)(σ(α3)))

SR4(1) α1α1σ
3(α1σ(α3))

β assuming β ≡ α1α1σ
3(α1σ(α3))

However, there may exist more than one derivation of a formula β

from another formula α. Some of these derivations are in the standard
form as defined next. 

Definition 7. In  a  derivation,  if  the  rules  are  applied  in  the  following
sequence  and  the  normal  form  of  the  given  wff  is  obtained  at  some
steps, then the derivation is called a derivation in standard form. 

◼ First use introduction rules. 

◼ Obtain normal form.

◼ Use temporal rules. 

◼ Use elimination rules. 

Observe that the derivation of Example 2 is not a derivation in the
standard form. 

Semantics  3.2

Let us now give semantics to the wffs of the logic in a domain D of all
binary strings except the empty string. Elements of D will be denoted

as  a,  b  and  so  forth  where  a  a0a1…aj-1,  b  b0b1…bk-1  and

j, k ≥ 1 are the  lengths of the strings.  Members of P are  some special
binary  strings.  We  interpret  σ  as  a  unary  operator  and  *  as  a  binary
operator in the domain D. We also define a relation, corresponding to
R,  in  D.  However,  we  use  the  same  symbols  for  the  operators  and
relations in the semantic domain.  

Definition 8.  Let  b  b0b1…bl-1  be  a  string  of  length  l ≥ 1.  Then,

we  define  σ0b  b,  and  σkb  σσ⋯σ
k number

b  bibi+1…bl-1b0…bi-1

where k ≡ imod l. 

For  example,  if  b  0 110 101011,  then  σ2b  1 010101 101.

Here  the  length  of  b  is  10.  Hence,  σ20b  σ0b  b.  Similarly,

σ21b  σ1b  1 101010 110. 

Definition 9. Let  us  consider  two  binary  strings  a  a0a1…aj-1  and

b  b0b1…bk-1 with j, k ≥ 1. For two non-negative integers r and l,
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the relation Ra, b holds if and only if the r-prefixes and the l-suffixes

of  the  two  sequences  are  equal.  That  is, (a0a1…ar-1)  b0b1…br-1

and aj-laj-l+1…aj  bk-lbk-l+1…bk. Here the indices of a and b are

the mod j and mod k indices, respectively. 

Let us consider that r  l  1. When a  b  0 (or 1) then Ra, b

holds. In fact, for any binary string a, R(a, a) holds. If a  01 011 and

b  0111, then also Ra, b holds. But, if a  0 and b  0111, Ra, b

does not hold. This relation shows the following properties. 

◼ Reflexive: For any a ∈ D, R(a, a) holds. 

◼ Symmetric: For any a, b ∈ D, if Ra, b holds, then Rb, a also holds. 

◼ Transitive: For any a, b, c ∈ D, if Ra, b and Rb, c hold, then R(a, c)

holds. 

Hence,  R  is  an  equivalence  relation.  This  relation  is  used  to  define
the other operator *. 

Definition 10.  Let  a  a0a1…aj-1  and  b  b0b1…bk-1  be  two

strings.  If  Ra, b  holds,  then  a * b  a0a1…aj-1b0b1…bk-1.  That

is, * is a partial operator. 

To  illustrate  the  functioning  of  this  operator,  assume  that

l  r  1.  Since  R0, 0  holds,  0 * 0  00.  As  another  example,  con-

sider  that  a  0101  and  b  0011.  Then,  a * b  01 010 011  as

Ra, b  holds.  However,  we  cannot  use  this  *  operator  for  two  arbi-

trary strings. For example, if a  1011 and b  11 000, then a * b is

undefined,  because  Ra, b  does  not  hold.  This  makes  the  *  a  condi-

tional concatenation operator. 
Thus,  the  interpretation  of  the  language  of  the  logic  is  given  in  a

structure  (D, σ, *)  called  the  semantic  domain  of  the  language.  Let
v :ℒ ↦ D be a valuation function that interprets the wffs of the logic.
For the atomic wffs, the following conditions are to be satisfied:

For any p, p′ ∈ P, v(p) ≠ v(p′) when p ≠ p′. 1.

For any p, p′ ∈ P, v(p) ≠ σk(v(p′)) for any k ∈ ℕ. 2.

For any p, p′, p′′ ∈ P, v(p) ≠ v(p′) * v(p′′).3.

Example 3. Let  P  {p0, p1, p2, p3}.  The  valuation  to  the  atomic  wffs

as  0,  01,  001  and  010  cannot  work,  because  010  σ001.  Another

set  of  strings  0,  00,  01  and  001  also  cannot  be  a  valuation  to  the
atomic wffs, because 00  0 * 0. On the other hand, the set of strings

0, 01, 001, 011  can  be  a  valuation  to  P,  because  the  above  condi-

tions are satisfied by v(P). 
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The  valuation  function  uses  the  following  definition  to  interpret
non-atomic wffs of the logic in D. 

v((α))  (v(α)) 1.

v(σ(α))  σ(v(α)) 2.

v(α * β)  v(α) * v(β) 3.

v(αβ)  v(α)v(β) 4.

Example 4. Let  us  consider  α  ((p1) * (p1)) * σ
3((p2) * (σ(p3))).

Assume  that  v(p1)  01,  v(p2)  0  and  v(p3)  001.  Now,  v(α)  can

be obtained in the following way: 

v(α)  v((p1) * (p1)) * σ
3((p2) * (σ(p3)))

 v((p1) * (p1)) * vσ
3((p2) * (σ(p3)))

 (v(p1) * v(p1)) * vσ
3((p2) * (σ(p3)))

 (v(p1) * v(p1)) * σ
3(v(p2) * v(σ(p3)))

 (v(p1) * v(p1)) * σ
3(v(p2) *σ(v(p3)))

 01 * 01 * σ30 *σ001

 0101 * σ30 *σ001

 0101 * σ30 * 010

 0101 * σ30010

 0101 * 0001

 01 010 001

Depending upon the number of atomic wffs and the valuation func-
tion v, there may be some strings that are not v(α) for any wff α. Let
us now interpret the rules of the logic in D. 

◼ SR1:  From  the  string  v(α),  the  string  vσk-iσi(α)  can  be  obtained,

where k is the length of v(α) and i ≤ k is a non-negative integer. 

◼ SR2: When R(v(α), v(β)) holds, then v(αβ) can be replaced by v(α) * v(β). 

◼ SR3: From the string v(α * β), the string v(α)v(β) can be obtained. 

◼ SR4: v((α)) [resp. v(α)] can be replaced by v(α) [resp. v((α))]. 

◼ TRi: For each i ∈ 0, 1, … , N - 1, v(pi) can be replaced by v(αi), where

αi is an arbitrary but fixed wff of the logic. 

Similarly,  we  can  interpret  a  derivation  of  the  logic  (see  Defini-
tion�6) in D. A derivation of the logic in the domain D is the sequence
v(α1), v(α2), … , v(αk)  of  strings  such  that  the  string  v(αi)  (1 < i ≤ k)
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is  obtained  from  the  string  v(αi-1)  by  application  of  any  of  the  given

rules.  In  such  a  case,  we  say  that  the  string  v(αk)  is  semantically

derived from v(α1). 

Definition 11. For  two  wffs  α  and  β,  if  v(α) ⊢ v(β)  for  two  semantic
derivations, then the derivations are called equivalent to each other. 

Example 5.  Let  us  consider  the  derivation  of  Example  2.  We  interpret
the  formulas  of  the  example  in  the  semantic  domain.  Assume  that
v(p1)  0, v(p2)  01 and v(p3)  001 and let α1, α2  and α3  be given

values  01,  00  and  0010,  respectively.  That  is,  the  temporal  rules  in
the semantic domain are 

TR1 :
0

01
TR2 :

01

00
TR3 :

001

0010
.

Consider  that  v(α)  01 010001  and  v(β)  0 000 100000.  Deriva-
tion of v(β) is the following:  

given wff 01010001

SR4(2) (01010001)

SR2 (0101)*(0001)

SR2 and SR1 (01)*(01)*(σ3σ0001

definition of σ (01)*(01)*(σ30010

SR4(2) (01)*(01)*σ30010

SR2 (01)*(01)*(σ30 * 010)

SR1 (01)*(01)*σ30 * σσ2010

definition of σ (01)*(01)*σ30 * σ001

TR2, TR1 and TR3 (00)*(00)*σ301 * σ0010

SR3 ((00)*(00))*σ301σ0010

SR4(2) ((00)*(00))*σ301σ0010

SR3 ((00)(00))σ301σ0010

TR2 ((00)(00))σ300σ0010

SR4(1) and definition of σ 0000σ3000100

SR4(1) 0000σ3000 100

definition of σ 0000100000 

(2)

Hence  01 010001 ⊢ 0 000100 000.  That  is,  0 000100 000  is  deriv-
able from 01 010001 in this logic. Observe that equation (2) is noth-
ing but the interpretation of the derivation of Example 2 in D. There
may be other examples following the same semantic derivation. 
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However,  the  derivation  in  equation  (2)  is  not  in  the  standard
form.  The  following  theorem  states  that  it  is  possible  to  reduce  v(α)
into v(β) where β is in normal form. 

Theorem 1. For any wff α, v(α) is reducible to v(β) where β is a wff in
normal form. 

Proof. If α  p or α  σk(p) for some p ∈ P and k ≥ 1, then the proof
trivially follows. 

Otherwise,  we  can  identify  v(p)  as  a  substring  of  v(α)  for  some
p ∈ P.  Then  by  suitably  applying  SR1  and  Definition  8,  we  can  get

v(α)  σk1 (v(α′)),  where  α′
 has  v(p)  as  its  prefix.  Since  α′

 is  obtained
by  using  only  formation  rules  and  atomic  wffs,  we  can  write

α  p * α′′, where α′′ is a wff. Hence, v(α)  σk1 (v(p) * v(α′′)). 

If  α′′  p′,  then  the  proof  directly  follows.  If  α′′  σk2 (p′)  for

some  p′ ∈ P  and  k2 ≥ 1,  then  α  σk1 v(p) * vσk2 (p′).  Hence  the

proof  follows.  However,  if  α′′  is  another  non-atomic  wff,  then  using
the  given  rationale,  we  can  identify  v(p′′)  for  some  p′′ ∈ P  in  v(α′′).
Hence, we get 

v(α)  σk1 v(p) * vσk2 v(p′) *σk2 (v(p′′) *⋯).

Now let us assume  

β  σk1 p *σk2 p′ *σk2 (p′′ *⋯).

Obviously v(α)  v(β). Here, β is in normal form. □

In the derivation of Example 5, we see that 01 010 001 is reducible

to 01 * 01 * σ30 * σ001. Considering γ ≡ (p1) * (p1) * σ
3((p2) *

(σ(p3)))),  we  get  from  Example  5  that  v(γ)  v01 * 01 *

σ30 * σ001.  Here  γ  is  in  normal  form.  Although  the  deriva-

tion  of  Example  5  is  not  in  standard  form,  we  can  slightly  modify  it
to  get  a  derivation  in  standard  form.  If  we  apply  the  temporal  rules
consecutively  and  use  SR4(2)  before  them,  then  the  resultant  deriva-

tion  becomes  a  derivation  in  standard  form.  In  fact,  for  every  deriva-
tion, there exists an equivalent derivation in standard form. 

Proposition 1. For every semantic derivation in D, there exists an equiv-
alent semantic derivation in the standard form. 

Cellular Automata Are Models of the Logic  4.

We begin this section with the following definition.  
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Definition 12. A  derivation  is  called  evolution  if  the  derivation  uses  at
least one temporal rule. 

A  model  is  an  interpretation  of  a  formal  logic.  This  section  shows
that  one-dimensional  binary  CAs  are  models  of  the  logic  LCA.  We

first  establish  that  ECAs  are  models  of  our  logic,  then  extend  the
argument  to  show  that  four-neighborhood  binary  CAs  are  also  mod-
els of the logic. Finally, we conclude that any binary CA is a model of
the logic. 

Elementary Cellular Automaton as a Model of the Logic    4.1

An ECA is a model of the logic LCA  via some valuation in the seman-

tic domain (D, σ, *). To show this, we have to interpret the semantic
domain in the domain of ECAs. Table 2 is for that purpose.  

The Logic LCA Semantic Domain ECAs

— 0 and 1 states of a cell

— l and r left and right radii

(where lr  rr  1)

α v(α) ∈ 0, 1n a configuration of size n

pi, where v(pi)  0, 1, 01, elementary circuits

i  0, 1, …5 001, 011, 0011 of a de Bruijn graph

pi
k
 vpi

k a homogeneous configuration 

of size n where n  k⨯ pi

σk(α) σk(v(α)) configuration σk(v(α)) is 

shift equivalent to α 

α * β v(α) * v(β) v(α)v(β)

(when R(α, β) holds) (when R(v(α), v(β)) holds) 

αβ v(α)v(β) v(α)v(β)

Table 2. Interpretation of the semantic domain of LCA.

Using the given interpretation, we get that the set of configurations
n  of an n-cell ECA is the valuation of some wffs of the logic. As the

CAs  are  the  dynamical  systems  that  evolve  with  time,  evolution  of  a
CA  can  be  understood  as  a  derivation  of  the  logic  in  the  semantic
domain. Such a derivation is an evolution in the logic. 

Proposition 2.  Evolution  of  an  ECA  is  an  evolution  in  the  semantic
domain of the logic LCA. 

Proof.  To  prove  the  theorem,  we  show  that  for  a  configuration

a ∈ n,  a ⊢G(a)  where  G(a) ∈ n.  Here  a  and  G(a)  are  two  elements

of  the  semantic  domain  (D, σ, *).  Observe  that  a  configuration  of
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any  length  is  composed  with  the  elementary  circuits  of  a  de  Bruijn
graph (see Figure 1(a)). We also get a similar result from Theorem 1.
So, we can write the following: 

a  σk1 v(pi) *σ
k2 vpj *⋯σkl (v(pk))⋯

where  v(pi), vpj,… , v(pk) ∈ 0, 1, 01, 001, 011, 0011  and  k1,k2,…,

kl ≥ 0. For a given ECA, let us define the temporal rules TRi where  

v(αi)  G(v(pi))

for i  0, 1, … , 5. Now if we apply the temporal rules on the new for-
mat of a, we get the following string:  

σk1 αi *σ
k2 αj *⋯σki (αk)⋯.

Next  if  we  apply  the  elimination  rules,  we  get  a  bit  string,  which  is
the  next  configuration  of  a.  In  our  logic,  this  is  a  derivation,  that  is,
a ⊢G(a), where temporal rules are used. Hence, the next configuration
of  a  configuration  of  an  ECA  is  an  evolution  in  the  semantic  domain

of the logic. □

To illustrate the evolution of an ECA as an evolution in the seman-
tic domain of the logic, we first need to fix the automaton. Let us con-
sider ECA 90 from Table 1. For this rule, we need to fix  TR0  to TR5

in the semantic domain, which are the following: 

TR0 :
0

0
TR1 :

1

0
TR2 :

01

00

TR3 :
001

110
TR4 :

011

011
TR5 :

0011

1111

Now in the case of ECA 90 of size 16, 

G(a)  1 110010 001011 010

 when 

a  0 011110 101110 001.

The following derivation shows that G(a) can be obtained from a:    

given wff 0011110101110001

SR42 (0011110101110001)

SR2 (00111101)*(01110001)

SR42 ((00111101))*((01110001))

SR2 ((001111)*(01))*((0111)*(0001))

SR1 ((σ3σ3001 111 * 01 * σ2σ20111 * σ3σ0001

definition of σ ((σ3111 001 * 01 * σ21101 * σ30010

SR2 ((σ311 * 1001 * 01 * σ21 * 101 * σ30 * 010
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SR2 ((σ31 * 1 * 1001 * 01 *

σ21 * 101 * σ30 * 010

SR1 σ31 * 1 * σ3σ1001 * 01 * σ2

1 * σ2σ101 * σ30 * σσ2010

definition of σ σ31 * 1 * σ30011 * 01 *

σ21 * σ2011 * σ30 * σ001

TR0–TR5 σ30 * 0 * σ31111 * 00 *

σ20 * σ2011 * σ30 * σ110

SR3 σ300σ3111100σ20σ2011σ30σ110

SR41 σ300σ3111100σ20σ2011σ30σ110

definition of σ σ3001 11100σ20101σ30101

SR41, 

definition of σ

1 110010 001 011010

Therefore, a ⊢G(a) in the semantic domain of our logic. This is true
for  any  a ∈ n  and  for  any  n ≥ 1.  Hence  the  proposed  logic  can

express the evolution of the ECA. 

Four-Neighborhood Binary Cellular Automaton: Another Model  4.2

We  now  show  that  another  class  of  binary  CAs  where  lr  1  and

rr  2 are also models of the logic LCA. In this class of CAs, each cell

depends on the present states of its immediate left neighbor, two right
neighbors  and  of  itself  to  go  to  its  next  state.  For  such  CAs,  we  con-
sider a valuation function such that v(P) is the following:  

v(P)  0, 1, 01, 001, 011, 0001, 0011, 0111, 00 011, 00 111,

001 101, 000 111, 001 011, 0 001 101, 0 010 111,
0 001 011, 0 011 101, 00 011101, 00 010111.

We  give  a  meaning  similar  to  the  one  we  have  given  for  ECAs  to
the  symbols  and  others  of  the  proposed  logic  in  the  domain  of  these
CAs. The only exceptions here are l  lr  1, r  rr  2 and the num-

ber of elements of v(P) is 19. We can see a similar result, noted below,
for these CAs. 

Proposition 3.  Evolution  of  a  one-dimensional  four-neighborhood
binary CA is an evolution in the semantic domain of the logic. 

We omit the proof, as it is very similar to that of Proposition 2. We
next show an example derivation in support of the result. For that, let
us take a CA with the following rule:

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110

1 0 1 1 1 1 0 1 1 0

0101 0100 0011 0010 0001 0000

1 0 0 1 1 0
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For  this  CA,  there  are  19  temporal  rules,  as  the  cardinality  of  P  is
19. We next fix the temporal rules TR0 to TR18 for the CA: 

TR1:
0

0
 TR2:

1

1
 TR3:

01

11
 TR4:

001

010
 

TR5:
011

101
 TR6:

0001

1110
 TR7:

0011

0001
 TR8:

0111

1101
 

TR9:
00 011

11 001
 TR10: 

00 111

00 101
 TR11:

001 101

000 110
 TR12:

000 111

110 101
 

TR13:
001 011

011 101
 TR14: 

0 001101

1 100110
 TR15:

0 010111

0 111101
 TR16:

0 001011

1 111101
 

TR17:
0 011101

0 010110
 TR18: 

00 011101

11 010110
 TR19:

00 010111

11 111101
 

Now  consider  a  configuration  a  0011 110101 110001  of  size
16  (this  was  used  in  Derivation  2),  and  for  the  given  CA,
G(a)  0 011011 111011 110.  The  following  steps  show  that
a ⊢G(a): 

given wff 0011110101110001

SR42 (0011110101110001)

SR2 (001111010111)*(0001)

SR1 (σ9σ7001 111010 111 * 0001

definition of σ (σ9111 010111 001 * 0001

SR42 (σ9111 010111 001 * 0001

SR2 (σ9111 010 * 111 001 * 0001

SR1, SR2 (σ9σ3σ3111 010 * 1 * 11 001 * 0001

definition of σ (σ9σ3010 111 * 1 * 11 001 * 0001

SR1 (σ9σ301 * 0111 * 1 * σ3σ211 001 *

0001

definition of σ (σ9σ301 * 0111 * 1 * σ300 111 * 0001

TR3, TR8, TR2,

TR10, TR6

(σ9σ311 * 1101 * 1 * σ300 101 * 1110

SR3 (σ9σ31111011σ300 1011110

SR41 σ9σ3111 1011σ300 1011110

definition of σ,

SR41

σ9101 111101 0011110

definition of σ 0011011111011110 

(3)

Therefore,  evolution  of  the  CA  is  a  derivation  of  the  proposed
logic. 
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A General Result  4.3

We  have  shown  that  two  types  of  binary  CAs,  ECAs  and  four-neigh-
borhood  CAs,  are  the  models  in  the  semantic  domain  of  the  logic

LCA. Indeed, this logic can model any binary CA under the interpreta-

tion of symbols given in the previous two subsections. Following is an
important result of our work. 

Theorem 2. Any one-dimensional binary CA is a model in the semantic
domain of LCA.

Proof.  Given  a  one-dimensional  binary  CA,  consider  the  number  of
elements in P as the number of elementary circuits in the correspond-
ing  de  Bruijn  graph  and  choose  v(P)  as  the  homogeneous  configura-
tions  with  minimal  length  of  the  CA.  Next  consider  that  l  lr  and

r  rr.  Now,  a  configuration  of  size  n  corresponds  to  a  cycle  in  the

de Bruijn graph of length n (see Definition 2), which is obviously com-
posed  of  one  or  more  elementary  circuits.  This  configuration  is  also
an element in the semantic domain of the logic. So, using Theorem 1,
a configuration a can be represented as the following: 

a  σk1 v(pi) *σ
k2 vpj *⋯σkl (v(pk))⋯

where pi, pj, … , pk ∈ P and k1, k2, … , kl ≥ 0.  

Let us now define α0, α1, … of temporal rules considering 

αi  G(pi).

Now apply the temporal rules to transform it, and then use the elimi-

nation rules (SR3  and SR41) and definition  of σ. The transformed a

is then G(a). That is, after giving an interpretation to the symbols and
others  in  the  domain  of  an  arbitrary  one-dimensional  binary  CA,  we
can  get  that  its  evolution  is  nothing  but  an  evolution  in  the  logic.

Hence the proof. □

Conclusion  5.

We have developed a logical language for one-dimensional binary cel-
lular  automata  (CAs),  called  LCA.  After  developing  the  syntax  of  the

logic,  we  have  given  an  interpretation  in  the  domain  of  all  binary
strings,  and  then  we  have  shown  that  binary  CAs  are  the  models  of
the  logic.  Although  this  work  concentrates  on  finite  CAs,  the  stated
construction can easily be extended to the infinite  CAs. This work can
be  further  extended  to  show  that  any  one-dimensional  CA  (binary
and nonbinary) can be a model of the logic LCA.  
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