
Formal Logic of Cellular Automata

Sukanta Das

Department of Information Technology
Indian Institute of Engineering Science and Technology
Shibpur, 711103, India
sukanta@it.iiests.ac.in

Mihir K. Chakraborty

School of Cognitive Science
Jadavpur University, Kolkata, 700032, India
mihirc4@gmail.com

This paper develops a formal logic, named LCA, targeting modeling of

one-dimensional binary cellular automata. We first develop the syntax
of LCA, then give semantics to LCA in the domain of all binary strings.

Then the elementary cellular automata and four-neighborhood binary
cellular automata are shown as models of the logic. These instances
point out that there are other models of LCA. Finally it is proved that

any one-dimensional binary cellular automaton is a model of the pro-
posed logic.

Keywords: cellular automata; formal logic; spatial rule; temporal rules;
evolution; derivation

Introduction1.

Although histories of cellular automata (CAs) and formal logic are
quite old, these two fields of mathematics and computer science did
not meet much during their journey. Few works are found in the liter-
ature that relate formal logic and other kinds of automata; see for
example [1] and a collected volume [2]. But such a relation between
CAs and formal logic is yet to be adequately studied. In particular,
whether the structure and dynamics of CAs can give birth to a new
formal logic has not been previously investigated. This paper attempts
to fulfill this need.

An effort has been taken in the recent past to study CAs using
propositional logic [3, 4]. The authors of these works have studied
one-dimensional binary CAs as models of propositional logic. On the
contrary, this paper develops a different formal logic that we name
LCA and shows that the one-dimensional binary CAs are models of

the proposed logic LCA.

Section 2 introduces some definitions and terminologies related to
CAs. The logic LCA is developed in Section 3. Here we first develop

https://doi.org/10.25088/ComplexSystems.30.2.187

mailto:sukanta@it.iiests.ac.in
mailto:mihirc4@gmail.com
https://doi.org/10.25088/ComplexSystems.30.2.187

the syntax of LCA and then give semantics of the logic LCA in the

domain of all binary strings. Section 4 proves that an elementary cellu-
lar automaton (ECA) is a model of the proposed logic, and evolution
of the ECA is nothing but a derivation of the logic in the domain of
binary strings. Another binary cellular automaton (CA), having four-
neighborhood dependency, is also shown as a model of the logic
(Section 4). Finally, we prove that any one-dimensional binary CA is
a model of the logic.

Definitions and Terminology2.

A CA is a quadruple (ℒ, , , f), where ℒ ⊆ ℤD
 is the D-dimen-

sional cellular space,  is the finite set of states,   v1, v2, … , vm

is the neighborhood vector of m distinct elements of ℒ that associates
one cell to its neighbors, and f :m →  is called the local rule of the
automaton [5]. During evolution, all the cells of a CA are updated
simultaneously. Generally, the neighbors of a cell are the nearest cells
surrounding the cell. However, when the neighborhood vector  is

given, then the neighbors of a cell at location v ∈ ℒ are at locations

v + vi ∈ ℒ for all i ∈ 1, 2, … , m. In this paper, nevertheless, we

consider the following:

D  1, ℒ  ℤ / nℤ,   0, 1,

  - lr, … , -1, 0, 1, … , rr.

That is, the CAs under consideration are finite, having two states per
cell, and each cell depends on itself and consecutive lr number of left

neighbors and consecutive rr number of right neighbors. They are

sometimes called left radius and right radius, respectively. Obviously,
m  lr + rr + 1. A widely studied class of these CAs is the elementary

cellular automata (ECAs) where lr  rr  1.

A configuration of a binary CA is a mapping c :ℒ → 0, 1. Let us

denote a set of all possible configurations of a CA of size n as

n  0, 1ℒ. So, n  2n, and for a configuration x ∈ n,

x  (x0x1… xn-1). Local rules of the CA induce the global transition

function G : n → n, which satisfies the following condition:

y  G(x), y ∈ n, where y  (yi)i∈ℒ and yi  fxi-lr
, … , xi, … , xi+rr

.

The local rules, especially for ECAs, are sometimes presented in tabu-
lar form (see Table 1), and the ECA rules are traditionally recognized

by the decimal equivalent of the outputs of the eight (23) arguments
of f. However, a CA rule can also be represented by a de Bruijn
graph�[6].

188 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

Arguments 111 110 101 100 011 010 001 000 Rule

of f (7) (6) (5) (4) (3) (2) (1) (0) #

(i) f 0 0 0 0 1 0 1 0 10

(ii) f 0 1 0 1 1 0 1 0 90

Table 1. ECA rules 10 and 90.

Definition 1. Let Σ be a set of symbols and s ≥ 1 be a number. Then,
the de Bruijn graph is B(s, Σ)  (V, E), where V  Σs is the set of ver-

tices, and E  ax, xb a, b ∈ Σ, x ∈ Σs-1 is the set of edges.

Figure 1(a) shows B2, 0, 1, an example of a de Bruijn graph.

This graph (i.e., B2, 0, 1) can be used to represent ECAs: the edges

ax, xb represent the domain of the rule. Now, we need to label each

edge by fa, x, b to represent a CA with rule f. For clarity, however,

we label each edge by “axb  fa, x, b.” Figure 1(b) shows the

de Bruijn graph for ECA rule 90 (see Table 1).

(a) (b)

Figure 1. The de Bruijn graph of CA with rule 90. (a) The de Bruijn graph

B2, 0, 1. (b) De Bruijn graph for rule 90.

Definition 2. A cycle of length n in a de Bruijn graph is a sequence of
vertices (v1, v2, … , vn, vn+1), where vn+1  v1 and (vi, vi+1)  ei,

i ∈ 1, 2, … , n. We generally represent this sequence as

(e1, e2, … , en).

A cycle of length n in a de Bruijn graph corresponds to a configura-
tion of an n-cell CA. For example, the configuration 001 111 corre-
sponds to a cycle of length six in Figure 1. In fact, cycles in a
de Bruijn graph and configurations are synonymous in this context.
The successor of a configuration can be obtained from the de Bruijn

graph by replacing an edge by its label (i.e., fa, x, b).

Formal Logic of Cellular Automata 189

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.25088/ComplexSystems.30.2.187

There are six elementary circuits in the de Bruijn graph of an ECA.
Two of them are of length 1: (000) and (111), one is of length 2:
(010, 101), two are of length 3: (001, 010, 100) and (011, 110, 101),
and the rest are of length 4: (001, 011, 110, 100). Since cycles in a
de Bruijn graph represent configurations of some automata, these ele-
mentary circuits also correspond to some configurations.

Definition 3. A configuration is called homogeneous if it corresponds
to an elementary circuit of a de Bruijn graph.

Hence, there are six homogeneous configurations in ECAs. We gen-
erally represent these configurations by their minimal representations.
That is, the length of such a representative homogeneous configura-
tion is the length of its corresponding cycle in a de Bruijn graph. For
ECAs, the homogeneous configurations are: 0, 1, 01, 001, 011 and
0011. Obviously, all configurations of a CA are not homogeneous.
An arbitrary configuration of an n-cell CA, which corresponds to a
cycle of length n in the de Bruijn graph, is composed of some homoge-
neous configurations of smaller sizes. For example, the configuration
001 111 of a six-cell ECA is composed of two homogeneous configu-
rations: 1 and 0011 (see Figure 1).

Definition 4. Two configurations are called shift equivalent to each
other if and only if one can be obtained by left shifting the other.

For example, configurations 001111 and 100 111 are shift equiva-
lent to each other, because 001111 is the one-bit left shift of 100111.
Obviously, shift equivalent configurations are composed of the same
atomic configurations.

The Logic LCA 3.

A logic is mathematically defined as a pair (ℒ, ⊢), where ℒ is a set of
sentences of the logic, also called language, and ⊢ is a consequence
relation. To get the language ℒ, we need an alphabet and formation
rules that form sentences using symbols of the alphabet. Members of
ℒ are called well-formed formulas (wffs). One method of getting the
consequence relation (⊢) is natural deduction, which uses a set of infer-
ence rules to reach a conclusion [7]. We adopt the natural deduction
method for derivation of a wff from a given wff in the proposed LCA

logic. We next develop the syntax of LCA.

Syntax 3.1

Let us consider a finite set of symbols: P  {p0, p1, … , pN-1}, where

N is a natural number. These symbols are the members of the alpha-
bet of our logic. Apart from them, there are four more symbols: σ, *,

190 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

) and (in the alphabet. Hence, the alphabet consists of

σ *) (p0 p1…pN-1.

In the proposed logic, the members of P are atomic wffs. Since P is
finite, the number of atomic wffs is also finite. Other (non-atomic)
wffs are formed from the atomic wffs. We use other symbols of the
alphabet to get the non-atomic wffs. Following are the formation
rules of formulas.

All atomic wffs are wffs. 1.

If α is a wff, then (α) and σ(α) are wffs. 2.

If α and β are two wffs, then α * β and αβ are wffs. 3.

Nothing else is a well-formed formula. 4.

Example 1. Suppose there are only two symbols in P. Then, p0 and p1
are the atomic wffs. The non-atomic wffs are (p0), σ(p0), σ(σ(p0)),

p0 * p1, (p0 * p1), p0p1, σ(p0) * p1, σ(p0 *σ(p1)), σ(p0σ(p1)) and so�on.

The language of the logic ℒ consists of the formulas formed by the
given formation rules. If there is no ambiguity, we can drop brackets
from a formula. We assume an abstract binary relation (R) over the
set of all wffs (i.e., R ⊆ ℒ⨯ℒ) as reflexive, symmetric and transitive.
That is, R is an equivalence relation. In the language, as per defini-
tion, there are some formulas of the form σσ⋯σ

k times

α⋯). We will rep-

resent this formula as σk(α). Similarly, a formula of the form αα⋯α
k times

 is

represented as αk.

Definition 5. We say a formula is in normal form if it is in the form

σk1 p1
′ *σk2 p2

′ *⋯σkl (pl
′)⋯

where p1
′ , p2

′ , … , pl
′ ∈ P and k1, k2, … , kl ≥ 0.

Let us now state the rules of the logic. In our logic, there are two
classes of rules: one class is called spatial rules, and the other is called
temporal rules, on account of their intended interpretation.

Spatial Rules

Following are the spatial rules of our logic.

◼ SR1:
(α)

σk-iσi(α)

where k and i are two natural numbers with k ≥ i.

◼ SR2:
(αβ)

(α)*(β)

provided R(α, β) holds.

Formal Logic of Cellular Automata 191

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.25088/ComplexSystems.30.2.187

◼ SR3:
(α * β)

(αβ)

◼ SR4: 1
(α)

α
, 2

α

(α)

The first rule introduces σ in a wff α by replacing α with

σk-iσi(α). The second rule introduces * in a wff. Similarly, SR4(2)

introduces brackets in a wff. These rules, namely SR1, SR2 and

SR4(2), are called introduction rules. On the other hand, SR3 and

SR4(1) eliminate * and brackets, respectively. These are called elimina-

tion rules.

Temporal Rules

There is a set of n temporal rules to transform n atomic wffs.

◼ TRi: For each i ∈ 0, 1, … , N - 1

(pi)

(αi)

where αi is an arbitrary but fixed wff.

We can test whether a wff is derivable in the logic from a given wff
using the spatial and temporal rules.

Definition 6. Derivation in the logic: For two wffs α and β, we say α ⊢ β

if and only if there is a sequence of wffs α1( α), α2, … , αk( β)

such that αi (1 < i ≤ k) is obtained from αi-1 by the application of

any of the rules.

Example 2. Let us assume that α and β are two wffs. The following
illustrates a derivation of β from α in this logic. The left column
indicates the rule(s) applied on a previous wff to get the current one
in the right column:

given wff α

SR4(2) (α)

SR2, assuming α ≡ βγ and

R(β, γ) holds

(β) * (γ)

SR2, assuming β ≡ p1
′ p1

′
 and

R(p1
′ , p1

′) holds where p1
′ ∈ P,

and SR1

(p1
′) * (p1

′) * σ3(σ(γ))

SR4(2) (p1
′) * (p1

′) * σ3((σ(γ)))

SR2, assuming σ(γ) ≡ p2
′ γ′ and

R(p2
′ , γ′) holds where p2

′ ∈ P

(p1
′) * (p1

′) * σ3((p2
′) * (γ′))

SR1 (p1
′) * (p1

′) * σ3(p2
′) * σσ2(γ′)

assuming σ2(γ′) ≡ p3
′ ∈ P (p1

′) * (p1
′) * σ3((p2

′) * (σ(p3
′)))

temporal rules (α1) * (α1) * σ
3((α2) * (σ(α3)))

(1)

192 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

 

SR3 and assuming α2 ≡ p1
′ (α1) * (α1) * σ

3((p1
′)(σ(α3)))

SR4(2) ((α1) * (α1)) * σ
3((p1

′)(σ(α3)))

SR3 ((α1)(α1))σ
3((p1

′)(σ(α3)))

temporal rule ((α1)(α1))σ
3((α1)(σ(α3)))

SR4(1) (α1)(α1)σ
3((α1)(σ(α3)))

SR4(1) α1α1σ
3(α1σ(α3))

β assuming β ≡ α1α1σ
3(α1σ(α3))

However, there may exist more than one derivation of a formula β

from another formula α. Some of these derivations are in the standard
form as defined next.

Definition 7. In a derivation, if the rules are applied in the following
sequence and the normal form of the given wff is obtained at some
steps, then the derivation is called a derivation in standard form.

◼ First use introduction rules.

◼ Obtain normal form.

◼ Use temporal rules.

◼ Use elimination rules.

Observe that the derivation of Example 2 is not a derivation in the
standard form.

Semantics 3.2

Let us now give semantics to the wffs of the logic in a domain D of all
binary strings except the empty string. Elements of D will be denoted

as a, b and so forth where a  a0a1…aj-1, b  b0b1…bk-1 and

j, k ≥ 1 are the lengths of the strings. Members of P are some special
binary strings. We interpret σ as a unary operator and * as a binary
operator in the domain D. We also define a relation, corresponding to
R, in D. However, we use the same symbols for the operators and
relations in the semantic domain.

Definition 8. Let b  b0b1…bl-1 be a string of length l ≥ 1. Then,

we define σ0b  b, and σkb  σσ⋯σ
k number

b  bibi+1…bl-1b0…bi-1

where k ≡ imod l.

For example, if b  0 110 101011, then σ2b  1 010101 101.

Here the length of b is 10. Hence, σ20b  σ0b  b. Similarly,

σ21b  σ1b  1 101010 110.

Definition 9. Let us consider two binary strings a  a0a1…aj-1 and

b  b0b1…bk-1 with j, k ≥ 1. For two non-negative integers r and l,

Formal Logic of Cellular Automata 193

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.25088/ComplexSystems.30.2.187

the relation Ra, b holds if and only if the r-prefixes and the l-suffixes

of the two sequences are equal. That is, (a0a1…ar-1)  b0b1…br-1

and aj-laj-l+1…aj  bk-lbk-l+1…bk. Here the indices of a and b are

the mod j and mod k indices, respectively.

Let us consider that r  l  1. When a  b  0 (or 1) then Ra, b

holds. In fact, for any binary string a, R(a, a) holds. If a  01 011 and

b  0111, then also Ra, b holds. But, if a  0 and b  0111, Ra, b

does not hold. This relation shows the following properties.

◼ Reflexive: For any a ∈ D, R(a, a) holds.

◼ Symmetric: For any a, b ∈ D, if Ra, b holds, then Rb, a also holds.

◼ Transitive: For any a, b, c ∈ D, if Ra, b and Rb, c hold, then R(a, c)

holds.

Hence, R is an equivalence relation. This relation is used to define
the other operator *.

Definition 10. Let a  a0a1…aj-1 and b  b0b1…bk-1 be two

strings. If Ra, b holds, then a * b  a0a1…aj-1b0b1…bk-1. That

is, * is a partial operator.

To illustrate the functioning of this operator, assume that

l  r  1. Since R0, 0 holds, 0 * 0  00. As another example, con-

sider that a  0101 and b  0011. Then, a * b  01 010 011 as

Ra, b holds. However, we cannot use this * operator for two arbi-

trary strings. For example, if a  1011 and b  11 000, then a * b is

undefined, because Ra, b does not hold. This makes the * a condi-

tional concatenation operator.
Thus, the interpretation of the language of the logic is given in a

structure (D, σ, *) called the semantic domain of the language. Let
v :ℒ ↦ D be a valuation function that interprets the wffs of the logic.
For the atomic wffs, the following conditions are to be satisfied:

For any p, p′ ∈ P, v(p) ≠ v(p′) when p ≠ p′. 1.

For any p, p′ ∈ P, v(p) ≠ σk(v(p′)) for any k ∈ ℕ. 2.

For any p, p′, p′′ ∈ P, v(p) ≠ v(p′) * v(p′′).3.

Example 3. Let P  {p0, p1, p2, p3}. The valuation to the atomic wffs

as 0, 01, 001 and 010 cannot work, because 010  σ001. Another

set of strings 0, 00, 01 and 001 also cannot be a valuation to the
atomic wffs, because 00  0 * 0. On the other hand, the set of strings

0, 01, 001, 011 can be a valuation to P, because the above condi-

tions are satisfied by v(P).

194 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

The valuation function uses the following definition to interpret
non-atomic wffs of the logic in D.

v((α))  (v(α)) 1.

v(σ(α))  σ(v(α)) 2.

v(α * β)  v(α) * v(β) 3.

v(αβ)  v(α)v(β) 4.

Example 4. Let us consider α  ((p1) * (p1)) * σ
3((p2) * (σ(p3))).

Assume that v(p1)  01, v(p2)  0 and v(p3)  001. Now, v(α) can

be obtained in the following way:

v(α)  v((p1) * (p1)) * σ
3((p2) * (σ(p3)))

 v((p1) * (p1)) * vσ
3((p2) * (σ(p3)))

 (v(p1) * v(p1)) * vσ
3((p2) * (σ(p3)))

 (v(p1) * v(p1)) * σ
3(v(p2) * v(σ(p3)))

 (v(p1) * v(p1)) * σ
3(v(p2) *σ(v(p3)))

 01 * 01 * σ30 *σ001

 0101 * σ30 *σ001

 0101 * σ30 * 010

 0101 * σ30010

 0101 * 0001

 01 010 001

Depending upon the number of atomic wffs and the valuation func-
tion v, there may be some strings that are not v(α) for any wff α. Let
us now interpret the rules of the logic in D.

◼ SR1: From the string v(α), the string vσk-iσi(α) can be obtained,

where k is the length of v(α) and i ≤ k is a non-negative integer.

◼ SR2: When R(v(α), v(β)) holds, then v(αβ) can be replaced by v(α) * v(β).

◼ SR3: From the string v(α * β), the string v(α)v(β) can be obtained.

◼ SR4: v((α)) [resp. v(α)] can be replaced by v(α) [resp. v((α))].

◼ TRi: For each i ∈ 0, 1, … , N - 1, v(pi) can be replaced by v(αi), where

αi is an arbitrary but fixed wff of the logic.

Similarly, we can interpret a derivation of the logic (see Defini-
tion�6) in D. A derivation of the logic in the domain D is the sequence
v(α1), v(α2), … , v(αk) of strings such that the string v(αi) (1 < i ≤ k)

Formal Logic of Cellular Automata 195

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.25088/ComplexSystems.30.2.187

is obtained from the string v(αi-1) by application of any of the given

rules. In such a case, we say that the string v(αk) is semantically

derived from v(α1).

Definition 11. For two wffs α and β, if v(α) ⊢ v(β) for two semantic
derivations, then the derivations are called equivalent to each other.

Example 5. Let us consider the derivation of Example 2. We interpret
the formulas of the example in the semantic domain. Assume that
v(p1)  0, v(p2)  01 and v(p3)  001 and let α1, α2 and α3 be given

values 01, 00 and 0010, respectively. That is, the temporal rules in
the semantic domain are

TR1 :
0

01
TR2 :

01

00
TR3 :

001

0010
.

Consider that v(α)  01 010001 and v(β)  0 000 100000. Deriva-
tion of v(β) is the following:

given wff 01010001

SR4(2) (01010001)

SR2 (0101)*(0001)

SR2 and SR1 (01)*(01)*(σ3σ0001

definition of σ (01)*(01)*(σ30010

SR4(2) (01)*(01)*σ30010

SR2 (01)*(01)*(σ30 * 010)

SR1 (01)*(01)*σ30 * σσ2010

definition of σ (01)*(01)*σ30 * σ001

TR2, TR1 and TR3 (00)*(00)*σ301 * σ0010

SR3 ((00)*(00))*σ301σ0010

SR4(2) ((00)*(00))*σ301σ0010

SR3 ((00)(00))σ301σ0010

TR2 ((00)(00))σ300σ0010

SR4(1) and definition of σ 0000σ3000100

SR4(1) 0000σ3000 100

definition of σ 0000100000

(2)

Hence 01 010001 ⊢ 0 000100 000. That is, 0 000100 000 is deriv-
able from 01 010001 in this logic. Observe that equation (2) is noth-
ing but the interpretation of the derivation of Example 2 in D. There
may be other examples following the same semantic derivation.

196 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

However, the derivation in equation (2) is not in the standard
form. The following theorem states that it is possible to reduce v(α)
into v(β) where β is in normal form.

Theorem 1. For any wff α, v(α) is reducible to v(β) where β is a wff in
normal form.

Proof. If α  p or α  σk(p) for some p ∈ P and k ≥ 1, then the proof
trivially follows.

Otherwise, we can identify v(p) as a substring of v(α) for some
p ∈ P. Then by suitably applying SR1 and Definition 8, we can get

v(α)  σk1 (v(α′)), where α′
 has v(p) as its prefix. Since α′

 is obtained
by using only formation rules and atomic wffs, we can write

α  p * α′′, where α′′ is a wff. Hence, v(α)  σk1 (v(p) * v(α′′)).

If α′′  p′, then the proof directly follows. If α′′  σk2 (p′) for

some p′ ∈ P and k2 ≥ 1, then α  σk1 v(p) * vσk2 (p′). Hence the

proof follows. However, if α′′ is another non-atomic wff, then using
the given rationale, we can identify v(p′′) for some p′′ ∈ P in v(α′′).
Hence, we get

v(α)  σk1 v(p) * vσk2 v(p′) *σk2 (v(p′′) *⋯).

Now let us assume

β  σk1 p *σk2 p′ *σk2 (p′′ *⋯).

Obviously v(α)  v(β). Here, β is in normal form. □

In the derivation of Example 5, we see that 01 010 001 is reducible

to 01 * 01 * σ30 * σ001. Considering γ ≡ (p1) * (p1) * σ
3((p2) *

(σ(p3)))), we get from Example 5 that v(γ)  v01 * 01 *

σ30 * σ001. Here γ is in normal form. Although the deriva-

tion of Example 5 is not in standard form, we can slightly modify it
to get a derivation in standard form. If we apply the temporal rules
consecutively and use SR4(2) before them, then the resultant deriva-

tion becomes a derivation in standard form. In fact, for every deriva-
tion, there exists an equivalent derivation in standard form.

Proposition 1. For every semantic derivation in D, there exists an equiv-
alent semantic derivation in the standard form.

Cellular Automata Are Models of the Logic 4.

We begin this section with the following definition.

Formal Logic of Cellular Automata 197

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.25088/ComplexSystems.30.2.187

Definition 12. A derivation is called evolution if the derivation uses at
least one temporal rule.

A model is an interpretation of a formal logic. This section shows
that one-dimensional binary CAs are models of the logic LCA. We

first establish that ECAs are models of our logic, then extend the
argument to show that four-neighborhood binary CAs are also mod-
els of the logic. Finally, we conclude that any binary CA is a model of
the logic.

Elementary Cellular Automaton as a Model of the Logic 4.1

An ECA is a model of the logic LCA via some valuation in the seman-

tic domain (D, σ, *). To show this, we have to interpret the semantic
domain in the domain of ECAs. Table 2 is for that purpose.

The Logic LCA Semantic Domain ECAs

— 0 and 1 states of a cell

— l and r left and right radii

(where lr  rr  1)

α v(α) ∈ 0, 1n a configuration of size n

pi, where v(pi)  0, 1, 01, elementary circuits

i  0, 1, …5 001, 011, 0011 of a de Bruijn graph

pi
k
 vpi

k a homogeneous configuration

of size n where n  k⨯ pi

σk(α) σk(v(α)) configuration σk(v(α)) is

shift equivalent to α

α * β v(α) * v(β) v(α)v(β)

(when R(α, β) holds) (when R(v(α), v(β)) holds)

αβ v(α)v(β) v(α)v(β)

Table 2. Interpretation of the semantic domain of LCA.

Using the given interpretation, we get that the set of configurations
n of an n-cell ECA is the valuation of some wffs of the logic. As the

CAs are the dynamical systems that evolve with time, evolution of a
CA can be understood as a derivation of the logic in the semantic
domain. Such a derivation is an evolution in the logic.

Proposition 2. Evolution of an ECA is an evolution in the semantic
domain of the logic LCA.

Proof. To prove the theorem, we show that for a configuration

a ∈ n, a ⊢G(a) where G(a) ∈ n. Here a and G(a) are two elements

of the semantic domain (D, σ, *). Observe that a configuration of

198 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

any length is composed with the elementary circuits of a de Bruijn
graph (see Figure 1(a)). We also get a similar result from Theorem 1.
So, we can write the following:

a  σk1 v(pi) *σ
k2 vpj *⋯σkl (v(pk))⋯

where v(pi), vpj,… , v(pk) ∈ 0, 1, 01, 001, 011, 0011 and k1,k2,…,

kl ≥ 0. For a given ECA, let us define the temporal rules TRi where

v(αi)  G(v(pi))

for i  0, 1, … , 5. Now if we apply the temporal rules on the new for-
mat of a, we get the following string:

σk1 αi *σ
k2 αj *⋯σki (αk)⋯.

Next if we apply the elimination rules, we get a bit string, which is
the next configuration of a. In our logic, this is a derivation, that is,
a ⊢G(a), where temporal rules are used. Hence, the next configuration
of a configuration of an ECA is an evolution in the semantic domain

of the logic. □

To illustrate the evolution of an ECA as an evolution in the seman-
tic domain of the logic, we first need to fix the automaton. Let us con-
sider ECA 90 from Table 1. For this rule, we need to fix TR0 to TR5

in the semantic domain, which are the following:

TR0 :
0

0
TR1 :

1

0
TR2 :

01

00

TR3 :
001

110
TR4 :

011

011
TR5 :

0011

1111

Now in the case of ECA 90 of size 16,

G(a)  1 110010 001011 010

 when

a  0 011110 101110 001.

The following derivation shows that G(a) can be obtained from a:

given wff 0011110101110001

SR42 (0011110101110001)

SR2 (00111101)*(01110001)

SR42 ((00111101))*((01110001))

SR2 ((001111)*(01))*((0111)*(0001))

SR1 ((σ3σ3001 111 * 01 * σ2σ20111 * σ3σ0001

definition of σ ((σ3111 001 * 01 * σ21101 * σ30010

SR2 ((σ311 * 1001 * 01 * σ21 * 101 * σ30 * 010

Formal Logic of Cellular Automata 199

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.25088/ComplexSystems.30.2.187

SR2 ((σ31 * 1 * 1001 * 01 *

σ21 * 101 * σ30 * 010

SR1 σ31 * 1 * σ3σ1001 * 01 * σ2

1 * σ2σ101 * σ30 * σσ2010

definition of σ σ31 * 1 * σ30011 * 01 *

σ21 * σ2011 * σ30 * σ001

TR0–TR5 σ30 * 0 * σ31111 * 00 *

σ20 * σ2011 * σ30 * σ110

SR3 σ300σ3111100σ20σ2011σ30σ110

SR41 σ300σ3111100σ20σ2011σ30σ110

definition of σ σ3001 11100σ20101σ30101

SR41,

definition of σ

1 110010 001 011010

Therefore, a ⊢G(a) in the semantic domain of our logic. This is true
for any a ∈ n and for any n ≥ 1. Hence the proposed logic can

express the evolution of the ECA.

Four-Neighborhood Binary Cellular Automaton: Another Model 4.2

We now show that another class of binary CAs where lr  1 and

rr  2 are also models of the logic LCA. In this class of CAs, each cell

depends on the present states of its immediate left neighbor, two right
neighbors and of itself to go to its next state. For such CAs, we con-
sider a valuation function such that v(P) is the following:

v(P)  0, 1, 01, 001, 011, 0001, 0011, 0111, 00 011, 00 111,

001 101, 000 111, 001 011, 0 001 101, 0 010 111,
0 001 011, 0 011 101, 00 011101, 00 010111.

We give a meaning similar to the one we have given for ECAs to
the symbols and others of the proposed logic in the domain of these
CAs. The only exceptions here are l  lr  1, r  rr  2 and the num-

ber of elements of v(P) is 19. We can see a similar result, noted below,
for these CAs.

Proposition 3. Evolution of a one-dimensional four-neighborhood
binary CA is an evolution in the semantic domain of the logic.

We omit the proof, as it is very similar to that of Proposition 2. We
next show an example derivation in support of the result. For that, let
us take a CA with the following rule:

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110

1 0 1 1 1 1 0 1 1 0

0101 0100 0011 0010 0001 0000

1 0 0 1 1 0

200 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

For this CA, there are 19 temporal rules, as the cardinality of P is
19. We next fix the temporal rules TR0 to TR18 for the CA:

TR1:
0

0
 TR2:

1

1
 TR3:

01

11
 TR4:

001

010

TR5:
011

101
 TR6:

0001

1110
 TR7:

0011

0001
 TR8:

0111

1101

TR9:
00 011

11 001
 TR10:

00 111

00 101
 TR11:

001 101

000 110
 TR12:

000 111

110 101

TR13:
001 011

011 101
 TR14:

0 001101

1 100110
 TR15:

0 010111

0 111101
 TR16:

0 001011

1 111101

TR17:
0 011101

0 010110
 TR18:

00 011101

11 010110
 TR19:

00 010111

11 111101

Now consider a configuration a  0011 110101 110001 of size
16 (this was used in Derivation 2), and for the given CA,
G(a)  0 011011 111011 110. The following steps show that
a ⊢G(a):

given wff 0011110101110001

SR42 (0011110101110001)

SR2 (001111010111)*(0001)

SR1 (σ9σ7001 111010 111 * 0001

definition of σ (σ9111 010111 001 * 0001

SR42 (σ9111 010111 001 * 0001

SR2 (σ9111 010 * 111 001 * 0001

SR1, SR2 (σ9σ3σ3111 010 * 1 * 11 001 * 0001

definition of σ (σ9σ3010 111 * 1 * 11 001 * 0001

SR1 (σ9σ301 * 0111 * 1 * σ3σ211 001 *

0001

definition of σ (σ9σ301 * 0111 * 1 * σ300 111 * 0001

TR3, TR8, TR2,

TR10, TR6

(σ9σ311 * 1101 * 1 * σ300 101 * 1110

SR3 (σ9σ31111011σ300 1011110

SR41 σ9σ3111 1011σ300 1011110

definition of σ,

SR41

σ9101 111101 0011110

definition of σ 0011011111011110

(3)

Therefore, evolution of the CA is a derivation of the proposed
logic.

Formal Logic of Cellular Automata 201

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.25088/ComplexSystems.30.2.187

A General Result 4.3

We have shown that two types of binary CAs, ECAs and four-neigh-
borhood CAs, are the models in the semantic domain of the logic

LCA. Indeed, this logic can model any binary CA under the interpreta-

tion of symbols given in the previous two subsections. Following is an
important result of our work.

Theorem 2. Any one-dimensional binary CA is a model in the semantic
domain of LCA.

Proof. Given a one-dimensional binary CA, consider the number of
elements in P as the number of elementary circuits in the correspond-
ing de Bruijn graph and choose v(P) as the homogeneous configura-
tions with minimal length of the CA. Next consider that l  lr and

r  rr. Now, a configuration of size n corresponds to a cycle in the

de Bruijn graph of length n (see Definition 2), which is obviously com-
posed of one or more elementary circuits. This configuration is also
an element in the semantic domain of the logic. So, using Theorem 1,
a configuration a can be represented as the following:

a  σk1 v(pi) *σ
k2 vpj *⋯σkl (v(pk))⋯

where pi, pj, … , pk ∈ P and k1, k2, … , kl ≥ 0.

Let us now define α0, α1, … of temporal rules considering

αi  G(pi).

Now apply the temporal rules to transform it, and then use the elimi-

nation rules (SR3 and SR41) and definition of σ. The transformed a

is then G(a). That is, after giving an interpretation to the symbols and
others in the domain of an arbitrary one-dimensional binary CA, we
can get that its evolution is nothing but an evolution in the logic.

Hence the proof. □

Conclusion 5.

We have developed a logical language for one-dimensional binary cel-
lular automata (CAs), called LCA. After developing the syntax of the

logic, we have given an interpretation in the domain of all binary
strings, and then we have shown that binary CAs are the models of
the logic. Although this work concentrates on finite CAs, the stated
construction can easily be extended to the infinite CAs. This work can
be further extended to show that any one-dimensional CA (binary
and nonbinary) can be a model of the logic LCA.

202 S. Das and M. K. Chakraborty

Complex Systems, 30 © 2021

References

[1] N. Bedon, “Logic and Branching Automata,” Logical Methods in Com-
puter Science, 11(4), 2015 pp. 1–38. doi:10.2168/LMCS-11(4:2)2015.

[2] J. Flum, E. Gradel and T. Wilke (eds.), Logic and Automata: History
and Perspectives, Amsterdam: Amsterdam University Press, 2008.

[3] T. Ishida, S. Inokuchi and Y. Kawahara, “Cellular Automata and For-
mulae on Monoids,” Cellular Automata (ACRI 2014) (J. W�s, G. C. Sir-
akoulis and D. Bandini, eds.), Cham, Switzerland: Springer, 2014
pp.�55–64. doi:10.1007/978-3-319-11520-7_7.

[4] T. Ishida, S. Inokuchi and Y. Kawahara, “Propositional Logic and Cellu-
lar Automata on Monoids,” Journal of Cellular Automata, 12(1–2),
2016 pp. 27–45.

[5] K. Bhattacharjee, N. Naskar, S. Roy and S. Das, “A Survey of Cellular
Automata: Types, Dynamics, Non-uniformity and Applications,” Natu-
ral Computing, 19, 2018 pp. 433–461. doi:10.1007/s11047-018-9696-8.

[6] K. Sutner, “De Bruijn Graphs and Linear Cellular Automata,” Complex
Systems, 5(1), 1991 pp. 19–30.
content.wolfram.com/uploads/sites/13/2018/02/05-1-3.pdf.

[7] D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Stockholm:
Almqvist & Wiksell, 1965.

Formal Logic of Cellular Automata 203

https://doi.org/10.25088/ComplexSystems.30.2.187

https://doi.org/10.2168/LMCS-11(4:2)2015
https://doi.org/10.1007/978-3-319-11520-7_7
https://doi.org/10.1007/s11047-018-9696-8
https://content.wolfram.com/uploads/sites/13/2018/02/05-1-3.pdf
https://doi.org/10.25088/ComplexSystems.30.2.187

