
Clustering Using Cyclic Spaces of Reversible
Cellular Automata

Sukanya Mukherjee

Department of Computer Science and Engineering
Institute of Engineering and Management
Kolkata, West Bengal, 700091, India
sukanya.mukherjee@iemcal.com

Kamalika Bhattacharjee

Department of Computer Science and Engineering
National Institute of Technology
Tiruchirappalli, Tamil Nadu, 620015, India
kamalika.it@gmail.com

Sukanta Das

Department of Information Technology
Indian Institute of Engineering Science and Technology
Shibpur, West Bengal, 711103, India
sukanta@it.iiests.ac.in

This paper introduces a cycle-based clustering technique using the
cyclic spaces of reversible cellular automata (CAs). Traditionally, a clus-
ter consists of close objects, which in the case of CAs necessarily means
that the objects belong to the same cycle; that is, they are reachable
from each other. Each of the cyclic spaces of a cellular automaton (CA)
forms a unique cluster. This paper identifies CA properties based on
“reachability” that make the clustering effective. To do that, we first
figure out which CA rules contribute to maintaining the minimum
intracluster distance. Our CA is then designed with such rules to ensure
that a limited number of cycles exist in the configuration space. An iter-
ative strategy is also introduced that can generate a desired number of
clusters by merging objects of closely reachable clusters from a previous
level in the present level using a unique auxiliary CA. Finally, the perfor-
mance of our algorithm is measured using some standard benchmark
validation indices and compared with existing well-known clustering
techniques. It is found that our algorithm is at least on a par with the
best algorithms existing today on the metric of these standard valida-
tion indices.

Keywords: reversible cellular automata; reachability; large length cycle;
iterative level-wise clustering; connectivity; silhouette score; Dunn index

Introduction1.

A cluster is a collection of similar objects that are also close to each
other. The closeness between any two target objects is measured by

https://doi.org/10.25088/ComplexSystems.30.2.205

mailto:sukanya.mukherjee@iemcal.com
mailto:kamalika.it@gmail.com
mailto:sukanta@it.iiests.ac.in
https://doi.org/10.25088/ComplexSystems.30.2.205

the feature-based distances between them. The clustering technique is
a well-studied research topic [1–3] with the aim of effectively dis-
tributing the target objects (data records) among the clusters. A clus-
ter also establishes an intrinsic connection among the objects. This
connectivity leads us to think of cellular automata (CAs) as natural
clusters.

A clustering can be represented as a bijective function A :D⟶D,
where D is a (finite) domain of objects to be clustered. Two elements

x and y are close to each other with respect to A if Ak1 (x)  y,

Ak2 (y)  x for some k1, k2 ∈ ℕ. On the other hand, two elements x, z

are not close with respect to A if Ak(x) ≠ z (or, Ak′ (z) ≠ x) for some
k, k′ ∈ ℕ. In a cellular automaton (CA), a configuration space can be
represented as the union of disjoint cyclic subspaces where each cycle
connects configurations that are reachable from each other. This
“reachability” is the key to clustering with CAs because reachable
configurations form cycle(s). Therefore, CAs can act as a function
that maintains a bijective mapping among the configurations (target
objects) of a cycle (cluster). Two configurations (objects) are close to
each other if they are reachable; that is, if they are part of the same
cycle (cluster). Moreover, a change in the state of a CA cell is influ-
enced by its neighboring cells. This locality property influences the
gathering of similar objects. The number of state changes in a configu-
ration can only affect those configurations that are in the same cycle.
So the smallest change in a cell’s state within a cycle guarantees that
feature-based distances among the target objects of each cluster are as
small as possible. Therefore, similar objects in a CA are close to each
other and gathered into the same cycle. In this way, a (reversible) CA
can work as a natural clustering tool.

This paper uses reversible nonuniform CAs as the proposed model.
An object is represented by a set of features, so the CA used for clus-
tering is finite. Hereafter, if not otherwise mentioned, by “CA” we
mean a reversible nonuniform CA of finite size under null-boundary
conditions that uses Wolfram’s rules [4]. Moreover, each feature
value is to be mapped into a binary string. By appending all these
feature values in binary form, a binary string of length n is formed
that we call a useful configuration. For the same object, several useful
configurations can be formed if the ordering of features is changed.
This reordering of features for the given objects guides us to use differ-
ent CAs to cluster the same set of objects, depending on the useful
configuration.

Ideally, a CA of size n distributes 2n configurations among m
cycles where m ranges from 1 to 2n. To an extreme degree, a CA-
based clustering can attract all target objects into one cluster or dis-
tribute them among m clusters where the number of target objects is
m (≤2n)—neither of which is desirable for good clustering. Therefore,

206 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

a CA is said to be effective for clustering if the useful configurations
(objects) can be distributed among an optimal number of cycles
(clusters). Further, the feature-based distances among the reachable
configurations of each cluster have to be as small as possible, such
that the intracluster and intercluster isolation, based on feature space,
are lower and higher, respectively.

Any clustering technique is driven by two influencing factors: a
smaller intracluster distance and an optimal number of clusters. In
this paper, our primary target is to diagnose these features. Therefore,
the main objective of our basic model is to select CA rules for generat-
ing CAs that are capable of connecting the configurations that main-
tain the minimum possible Hamming distance (because binary CAs
are considered for this paper). This is possible if we can select those
rules that contribute a minimum change in the cell’s state value when
a transition occurs between configurations. To find significant rules,
we assign some rank to a CA rule based on its intrinsic self-replicating
property [5] (a cell restores its previous state). After assigning the
ranks, we figure out the proportion of significant rules for designing
an n-cell (nonuniform) CA for clustering. Here, n is determined based
on the number of features owned by the target objects, which is
always finite. However, consecutive configurations of a cycle main-
tain the minimum distance in the feature space if more significant
rules are applied in an n-cell CA; that is, the same cycle connects simi-
lar objects but it may increase the number of cycles. So clustering can
be viewed as an optimization problem where there is a tradeoff
between these two facets: the number of clusters and maintaining a
smaller intracluster distance among the objects. This guides us to
think about an intelligent arrangement of CA rules for generating an
n-cell candidate CA that is capable of maintaining a smaller intraclus-
ter distance among objects and generates an optimal number of clus-
ters. We use the framework of a related problem to ensure that a CA
has a limited number of cycles—CAs with large length cycles
(introduced in [6]). A scheme is developed to select significant rules
(Section 4.1) to guarantee that the configurations inside a cycle main-
tain the minimum possible Hamming distance for the candidate CA.
Next, the proportion of significant rules for designing an n-cell
(nonuniform) CA for clustering is evaluated to ensure an optimal
number of clusters (Sections 4.2 and 4.3).

Definitely, generating a CA for a fixed n maintaining a smaller
intracluster distance and a limited number of clusters is a very chal-
lenging problem; moreover, distributing the target objects among the
desired number of clusters is difficult to ensure. The inherent hardness
of this problem motivates us to take an iterative strategy that dis-
tributes the target objects into m clusters. The clusters of level i in the
proposed algorithm are generated by merging a set of clusters of level

Clustering Using Cyclic Spaces of Reversible Cellular Automata 207

https://doi.org/10.25088/ComplexSystems.30.2.205

http://archive.ics.uci.edu/ml/index.php
https://doi.org/10.25088/ComplexSystems.30.2.205

i - 1 that are closely reachable (Section 5). To measure the quality
(goodness) of clusters, some benchmark cluster validation indices
(internal) [7] are used. Section 6 presents the performance analysis of
our proposed cycle-based clustering algorithm on some real datasets
taken from the UC Irvine Machine Learning Repository
(archive.ics.uci.edu/ml/index.php). Finally, we compare our proposed
algorithm with some traditional benchmark clustering algorithms
such as centroid-based clusterings and hierarchical clusterings [1, 7].
Our results indicate that the performance of our CA-based clustering
technique is at least as good as the best known clustering algorithms
that exist today. This research also discovers that our CA-based clus-
tering scheme has the characteristic that the arrangement of clusters
remains fixed even if the ordering of the features of a given set of
objects is changed. This property is verified with real datasets.

Basics of Cellular Automata2.

In this paper, we use one-dimensional three-neighborhood n-cell CAs
under null boundary conditions, where each cell takes any of the

states S  0, 1. The next state of each cell is updated following an

elementary CA (ECA) rule. The present state of all cells at a given
time is called the configuration of the CA. The evolution of a CA is
determined by a global transition function G such that G :C → C

where C  0, 1n represents the configuration space. Hence, if the

next configuration of x  (xi)∀i∈n is y, then y  G(x) where x, y ∈ C,

y  (yi)∀i∈n and xi, yi are the present and next state values of cell i,

respectively. Therefore, yi  ℛi(xi-1, xi, xi+1) where ℛi is the rule cor-

responding to cell i and xi-1, xi, xi+1 is the neighborhood combina-

tion for cell i. This neighborhood combination is called the rule min
term (RMT) and is represented by its decimal equivalent

r  22⨯xi-1 + 21⨯xi + xi+1. A rule vector ℛ  (ℛ0, ℛ1, … , ℛn-1) of

length n is used to represent any arbitrary n-cell nonuniform CA,
where ℛi ≠ ℛj for some i and j.

Table 1 presents the rules in tabular form. Obviously, there are

28  256 distinct rules. These rules are traditionally named by their
decimal equivalents. Because we are using null boundary conditions,

x-1  xn  0. Therefore, y0  ℛ00, x0, x1 for the first cell and

yn-1  ℛn-1xn-2, xn-1, 0 for the last cell. So, for each of these termi-

nal cells, only 24  16 distinct rules are considered as valid. For these
rules, next state values for the present states (1, x0, x1) and (xn-2,

xn-1, 1), respectively, are undefined and marked as invalid (i) (see, for

example, the first row of Table 1).

208 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

http://archive.ics.uci.edu/ml/index.php

Present State 111 110 101 100 011 010 001 000 Rule

(i) next state i i i i 1 0 0 1 9 (ℛ0)

(ii) bext state 1 1 1 0 1 0 0 0 232 (ℛ1)

(iii) next state 0 1 0 1 1 0 1 0 90 (ℛ2)

(iv) next state i 0 i 1 i 1 i 0 20 (ℛ3)

Table 1. A four-cell CA (9, 232, 90, 20).

If ℛi(xi-1, xi, xi+1)  xi in a CA, the corresponding RMT of rule ℛi
is called a self-replicating RMT. If all RMTs of a configuration x are
self-replicating, then its next configuration y is identical to it and they
form a cycle of length one. The number of self-replicating RMTs for a
rule plays a major role in cycle formation, determining the number
and lengths of cycles. Let x, y ∈ C be two configurations of the CA
G. Configuration y is reachable from configuration x if there exists an

l1 ∈ ℕ such that Gl1 (x)  y; otherwise y is not reachable from x.

Similarly, if x is also reachable from configuration y, then they are
reachable from each other and they are in the same cycle. These con-
figurations x and y are also called cyclic configurations. Let

Ci ⊆ C  0, 1
n

 be a set of configurations such that Gl(x)  x,

∀ x ∈ Ci, where l ∈ ℕ and Ci  l. Then, any x ∈ Ci is cyclic and

reachable from all configurations of Ci. This Ci that connects l config-

urations is called a cyclic space of the CA.
For instance, in Figure 1, configuration 1100 is reachable from con-

figuration 1111 but not reachable from configuration 0111. More-
over, the configurations 1100, 1110 and 1111 are reachable from one
another since they form a cyclic space of length three. A CA is called

Figure 1. Transition diagram of the four-cell reversible CA (9, 232, 90, 20).

reversible if all configurations are part of some cyclic space. Figure 1

Clustering Using Cyclic Spaces of Reversible Cellular Automata 209

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

represents a reversible CA. Therefore, the configuration space of any
reversible CA can be represented as a collection of cyclic spaces.

We use the methodology described in [8] to synthesize an n-cell
reversible CA. For ease of reference, the table describing the class
information of the participating rule ℛi, 0 ≤ i ≤ n - 1, is reproduced

here as Table 2. The generation of an n-cell reversible CA is guided by
the rule of cell i and the class information of the rule of cell i + 1 (see
[8] for more details). Example 1 illustrates the process of synthesis.

Example 1. Let us design a four-cell reversible CA. To select an
arbitrary ℛ0, the first column of Table 2(b) is taken into consider-

ation. Select rule 9 as ℛ0 from Table 2(b) (the third row and first

column of Table 2(b)). Since the class information of the rule next to
rule 9 is class III (the second column and third row of Table 2(b)), ℛ1
can be any rule from the pool of CA rules in class III from Table 2(a).
Select rule 232 as ℛ1 (the first column of Table 2(a) for rule 232 is

Class of ℛi ℛi Class of ℛi+1
I 51, 204, 60, 195 I

85, 90, 165, 170 II

102, 105, 150, 153 III

53, 58, 83, 92, 163, 172, 197, 202 IV

54, 57, 99, 108, 147, 156, 198, 201 V

86, 89, 101, 106, 149, 154, 166, 169 VI

II 15, 30, 45, 60, 75, 90, 105, 120, I

135, 150, 165, 180, 195, 210, 225, 240

III 51, 204, 15, 240 I

85, 105, 150, 170 II

90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV

27, 39, 78, 114, 141, 177, 216, 228 V

86, 89, 101, 106, 149, 154, 166, 169 VI

IV 60, 195 I

90, 165 IV

105, 150 V

V 51, 204 I

85, 170 II

102, 153 III

86, 89, 90, 101, 105, 106, VI

149, 150, 154, 165, 166, 169

VI 15, 240 I

105, 150 IV

90, 165 V

Table 2. (a) Class relationship of ℛi and ℛi+1.

210 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

Rules for ℛ0 Class of ℛ1

3, 12 I

5, 10 II

6, 9 III

Rule Class for ℛn-1 Rule Set for ℛn-1

I 17, 20, 65, 68

II 5, 20, 65, 80

III 5,17, 68, 80

IV 20, 65

V 17, 68

VI 5, 80

(b) First rule table. c) Last rule table.

Table 2. Rules to generate a reversible CA.

class III). Now, the third column and the row corresponding to
rule�232 in Table 2(a) is class IV; therefore, ℛ2 is to be selected from

class IV in the first column of Table 2(a). By repeating the same
process, we choose rule 90 as ℛ2. Therefore, rule ℛ3 is from class IV.

However, because this is the last rule, we need to select this rule
from�Table�2(c). Let ℛ3 be 20 (second column and fourth row

of�Table�2(c)). Therefore, the reversible CA is (9, 232, 90, 20) (see
Figure 1).

Next, our aim is to explain the significance of reversible CAs as a
clustering tool. First, we focus on how the cyclic spaces of reversible
CAs can be used as natural clusters. Next, we figure out the signifi-
cant CA rules for effective clustering. We also observe that two differ-
ent CAs of the same size can identically cluster a given dataset.

The Mapping between Cellular Automata and Clustering3.

We discussed earlier that clustering can also be viewed as a bijective
mapping where a set of target objects is exclusively in a unique cluster
if the objects are close. Since our focus is on using CAs for clustering,
each target object first needs to be mapped to a configuration. To do
that, data discretization should be done effectively.

The Encoding Technique3.1

Let   {X1, X2, … , Xk} be the set of target objects that are to be

distributed among m clusters and A1, A2, … , Ap are p distinct

attributes (features) of the objects, where each Aj represents a finite

set of t values. Depending on these values, the corresponding attribute
is called quantitative or qualitative. Since we use binary CAs as our
tool, each object (X) is converted into a binary string x (where

Clustering Using Cyclic Spaces of Reversible Cellular Automata 211

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

x ∈ 0, 1n and n ∈ ℕ). Now, let X  x1x2… xp where xj ∈ Aj. To

maintain a smaller intracluster distance based on the feature space,
the configurations having more similarity in their features’ space
(attributes’ values) should be reachable from each other. The Ham-
ming distance [1] is taken into consideration for measuring the simi-
larity. Next, we show the role of Hamming distance in designing the
encoded target objects.

If Aj is a quantitative attribute, the range can be partitioned into v

closed intervals such that Aj can be represented as an ordered (either

ascending or descending) list of elements. Frequency-based encoding
[9] is used for each Aj; therefore, each interval can be encoded as a

binary string of length v - 1 to maintain a minimum Hamming dis-
tance. Let the first interval be represented as a binary string such that

0v-1; the next interval is represented by 0v-21. Obviously, the Ham-

ming distance between 0v-1 and 0v-21 is one and the values repre-
sented by the first interval are closest to the second interval with
respect to other intervals. To maintain such a feature in the representa-
tion of the encoded objects, the encoding function M can be
designed�as

M(a)  0v-i1i-1 (1)

where a ∈ ai1
, aik
 and ai1

, aik
 is the ith interval of Aj. In this paper,

for each quantitative feature Aj, v is set to three; therefore, two bits

are needed to encode any value from Aj. Using equation (1), the three

intervals are represented as 00, 01 and 11.
By considering Aj as a qualitative attribute, M(a) (a ∈ Aj) can be

redesigned in the following manner: let Aj  {a1, a2, … , au}, then

each element of Aj is represented as a binary string of length u where

there is only one 1 at some unique position. Let a be the ith element
of Aj that has the value 1; then M(a) can be represented using

M(a)  0i-110u-i. (2)

So the Hamming distance between any pair of elements for such a
qualitative Aj is always fixed, that is, two.

Using the encoding techniques of quantitative and qualitative
attributes, a target object with p features (where pqn

 and pql
 are the

count of quantitative and qualitative attributes, respectively [2])
is�mapped to a configuration of an n-cell CA. Here, n can be com-
puted�as

n  v - 1 * pqn
 + u1 + u2 +⋯ + upql



212 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

where Ai  ui (∀ i) and Ai is a qualitative attribute. Assume that

v  3. In this way,  is mapped to a set of useful configurations for
clustering that is a proper subset of C. Let  denote the set of useful
configurations and M : →  such that M is surjective. Therefore,
 <  and the clustering operation is actually performed on a
smaller number of objects. Moreover, the maximum count of  can
also be computed. If all the attributes are quantitative, then

n  v - 1 * p; so  ≤ vp. Otherwise,  ≤ vpqn *∏i1

pql ui.

Example 2. Take a hypothetical set of books, where each book is identi-
fied by three attributes: number of pages, ratings by reviewers and
type of binding. The first two attributes are continuous, whereas the
last one is categorical. Table 3 shows the detailed encoding scheme
for 10 such objects into CA configurations. Here, the categorical
(qualitative) attribute values are encoded as 01 (hard) or 10 (soft).
The continuous (quantitative) attribute values are divided into three
subintervals to be represented by 00, 01 and 11, respectively. For

example, ratings values are divided into subintervals 2.6, 4, 4.5, 7

and 8, 9.5 depicted by 00, 01 and 11, respectively. Therefore, each

object is mapped to a six-bit string that can be shown as a configura-
tion of a six-cell CA.

Continous Attribute
Categorical
Attribute

Object
ID

Number of
Pages Encoding Ratings Encoding

Binding
Type Encoding

Encoded
CA

1 300 01 9 11 hard 01 011101

2 325 11 8 11 soft 10 111110

3 40 00 9.5 11 soft 10 001110

4 200 01 4 00 hard 01 010001

5 129 01 4.5 01 soft 10 010110

6 65 00 7 01 hard 01 000101

7 319 11 6.8 01 soft 10 110110

8 110 00 3 00 soft 10 000010

9 400 11 2.6 00 soft 10 110010

10 350 11 9.3 11 soft 10 111110

Table 3. Encoding a set of hypothetical books into CA configurations.

Example 2 mainly depicts the data encoding technique. Let  be
the set of target elements such that Ci⋂Cj  ∅ (∀ i, j and i ≠ j).

Now, each Ci can be formed using a unique cyclic space of a CA.

Next, we present how the inherent cyclic structure of CAs can con-
nect close objects naturally into the same cluster.

Clustering Using Cyclic Spaces of Reversible Cellular Automata 213

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Natural Clusters: Cycles of Reversible Cellular Automata3.2

Since reversible CAs can also be represented as a bijective mapping,
the closeness property of clustering can be defined by the reachability
property of reversible CAs: two configurations x and y are said to be

close if x, y ∈ Ci ⊂  such that Gl1 (x)  y and Gl2 (y)  x for some l1,

l2. Similarly, if z is not reachable from x, then obviously, x is also not

reachable from z and they are also not close to each other because
x ∈ Ci and z ∈ Cj where i ≠ j. In this way, a CA can place a set of

close objects (configurations) into one cluster (cycle) that is not reach-
able from the remaining objects (configurations). Thus, the cyclic
spaces of CAs can be used as natural clusters.

Example 3. Consider clustering the following data objects (configur-
ations): 1100, 1110, 0100, 0110 and 0101. Each object is represented
by a four-bit binary string, so a binary CA of size four can act as a
clustering tool. We will use a four-bit CA (9, 232, 90, 20) for this pur-
pose. This CA distributes the objects among two clusters where the

first one represents 1100, 1110 because 1100 is reachable from

1110 and 1110 is also reachable from 1100. Similarly, the second

cluster is formed as 0100, 0110, 0101.

However, by changing the CA, the same data objects can be clus-
tered into different arrangements—the distribution of the target
objects as well as the number of clusters can be changed. For instance,
use the CA (9, 23, 90, 20) for clustering the same set of objects

1100, 1110, 0100, 0110, 0101. The only change in the latter CA

compared to the former is that ℛ1 is changed to 23 from 232. Fig-

ure�2 explains how the clustering is done using CA (9, 23, 90, 20). In
this CA, 0101 is separated from the remaining 2n - 1 configurations,
which form another cycle. Therefore, the target objects are distributed
into two clusters in the following way: the first cluster connects 1100,
1110, 0100 and 0110, whereas the second is formed by only 0101.
This shows that, even though both CAs make a minimal change in the
rule vector and form two clusters for the given objects, the arrange-
ment is different. For the CA (9, 232, 90, 20), 0100 and 0110 are in
the second cluster and it is separated from the other cluster consisting

of 1100, 1110, but using the CA (9, 23, 90, 20) all of these

objects—1100, 1110, 0100 and 0110 are in the same cluster. Because
a CA can be viewed as a unique bijective function, the connectivity
among the configurations can be changed even if a small change
occurs (at least one participating rule changes) in the given rule
sequence of the CA. For example, let x  x0x1… xi-1xixi+1… xn-1 be

a configuration of an n-cell CA G1 such that G1(x)  y1. Let ℛi be

the rule at cell i of the given CA such that ℛi(xi-1xixi+1)  x.

214 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

Consider another CA G2 of the same size n and let ℛi
′
 be the ith rule

of G2. If ℛi
′(xi-1xixi+1)  x′ ≠ x, then y1 ≠ y2 where G2(x)  y2. Defi-

nitely, y1 is reachable from x in one step using G1, whereas y1 is not

reachable from x in one step if we use G2. However, it may be

reached from x if G2
k(x)  y1 for some k ∈ ℕ. That is, x, y1 and y2

can be part of the same cyclic space. Since all configurations inside
the same cyclic space form the same cluster, similar clustering may be
formed even if different CAs are used.

Let G1 and G2 be two CAs and  be the set of target objects such

that  ⊂ C. Let the clustering done by G1 and G2 be

  C1
1⋃C2

1⋃⋯⋃Cm
1

 and   C1
2⋃C2

2⋃⋯⋃Cm
2 , respectively,

where Ci
j
 and Ci′

j
 are disjoint sets for any i ≠ i′. Now, two clusters Ci

1

and Cj
2

 are called identical clusters if Ci
1  Cj

2. If for each Ci
1

1 ≤ i ≤ m, there is an identical cluster Cj
2, then G1 and G2 are called

equivalent clustering CAs with respect to the set of target objects .

Figure 2. Transition diagram of the four-cell reversible CA (9, 23, 90, 20).

Example 4. Consider clustering the following data objects
(configurations): 0100, 1001, 0001, 1011 and 0101. For G1 use the

four-bit CA (9, 232, 90, 20) where C1
1  0100, 1001, 0001, 1011

and C2
1  0101. For G2 use the four-bit CA (9, 23, 90, 20) to get

the clusters C1
2  0100, 1001, 0001, 1011 and C2

2  0101. Since

C1
1  C1

2
 and C2

1  C2
2, each pair represents identical clusters and the

two CAs (9, 232, 90, 20) and (9, 23, 90, 20) are said to be equivalent
clustering CAs with respect to the given set of data objects

0100, 1001, 0001, 1011, 0101.

It is clear from the discussion that the same set of objects can be
distributed among clusters in multiple ways even if different CAs are
used—sometimes, in a similar arrangement among the clusters; some-
times, in the same number of clusters but different arrangements. It
can also be noted that the objects can be distributed among different

Clustering Using Cyclic Spaces of Reversible Cellular Automata 215

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

numbers of clusters using dissimilar arrangements. So, out of all those
possible arrangements, we need to figure out which is the most appro-
priate reversible CA for a given dataset. Such a CA contributes to
effective clusters. In the next section, the goal is to figure out the sig-
nificant CA rules for designing effective clustering.

Clustering Using Reversible Cellular Automata4.

A CA is significant for effective clustering if it maintains the following
necessary conditions: (i) all cells follow CA rules that contribute a rea-
sonable number of self-replicating RMTs and (ii) the number of cycles
is limited. First, the target is to identify CA rules that help reduce the
intracycle distance (Hamming distance) among the configurations
based on feature space by maintaining a reasonable number of self-
replicating RMTs.

Cellular Automata Rules That Maintain Minimum Intracluster
Distance

4.1

For our present objective, we need to select CA rules that make mini-
mal changes during state transition. Ideally, it is desired that
fi(xi-1, xi, xi+1)  xi for any value of i and any combination of

xi-1xixi+1. The intrinsic property of such an n-cell CA is that each cell

follows a special rule where all RMTs are self replicating—this is rule
204. However, an n-cell CA with only rule 204 is not effective
because the number of clusters is 2n where each object forms a unique
cluster. Therefore, we want to rank a rule based on the number of its
self-replicating RMTs when used in designing the rule vector of a
reversible CA. Our objective is to determine significant rules and the
proportion of high-ranked rules for designing clusters of objects that
maintain smaller intracluster distances. To detect such rules, we rank
each rule in Table 2. This rank determines how a rule can act as an
influencing factor for designing a cluster with more similar (less Ham-
ming distance) data.

Because balanced rules are used for reversible CAs, each rule
follows an even number of self-replicating RMTs (0, 2, 4, 6 and 8).
We rank these CA rules into five categories based on the contribution
of self-replicating RMTs (the contribution is measured by the ratio
of�the number of self-replicating RMTs with the total number of
RMTs). Table 4 presents the rank of rules depending on the number
of self-replicating RMTs. Column 1 of Table 4 refers to the rank of
the corresponding rule. We can see that rule 204 is ranked first, but it
was mentioned earlier that if rule 204 is applied to every cell of an
n-cell CA, then each target object belongs to a unique cycle. This also
means that rule 204 distributes similar objects into different clusters,

216 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

which is not desirable. Moreover, rule 51 is the least significant rule
for clustering, with a rank of 5. If rule 51 is applied at every cell of a
CA of size n, then each cluster considers only a pair of configurations
with Hamming distance n. Therefore, we need to select rule 204 for
as many cells as possible and the opposite strategy should be used for
rule 51. However, CAs with only rules 204 and 51 are not effective
for clustering. Hence, to design clusters of objects with a smaller intra-
cluster distance, we take the following strategy of choosing rules for
synthesizing a reversible CA:

Discard all rules with ranks 4 and 5 (i.e., less than four self-replicating
RMTs) from Table 2. Seventeen rules are discarded by this condition:
(51, 53, 58, 83, 163, 54, 57, 99, 147, 23, 43, 113, 178, 27, 39, 114,
177) reducing the rule space to 45.

1.

For the n - 2 nonterminal cell positions (cell 1 to cell n - 2), at most
50% of rules with rank 2 (six self-replicating RMTs) are to be selected.

2.

 Contribution of Self-

Rank ℛi Cell Position (i ∈) Replicating RMTs

1 12 0 100%

204 [1, n - 2]

68 n - 1

2 92, 172, 197, 202, [1, n - 2] 75%

108, 156, 198, 201,

77, 142, 212, 232,

78, 141, 216, 228

3 6, 9, 5, 10 0 50%

86, 89, 101, 106, [1, n - 2]

149, 154, 166, 169,

30, 45, 75, 120,

135, 180, 210, 225,

90, 105, 150, 165,

85, 170, 102, 153,

60, 195, 15, 240

5, 20, 65, 80 n - 1

4 53, 58, 83, 163, [1, n - 2] 25%

54, 57, 99, 147,

23, 43, 113, 178,

27, 39, 114, 177

5 3 0 0%

51 [1, n - 2]

17 n - 1

Table 4. Ranking of CA rules based on the number of self-replicating RMTs.

Clustering Using Cyclic Spaces of Reversible Cellular Automata 217

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Example 5 explains how this can be effective for maintaining a
smaller intracluster distance.

Example 5. Consider a hypothetical dataset where each object is identi-
fied by three quantitative features A1, A2 and A3. Since v  3, n  6.

Set the total number of target objects to 50. After encoding, let those
50 objects be mapped to 10 useful configurations and let the configu-
rations be: 111100, 111111, 111101, 011011, 011000, 011001,
001100, 001101, 001011 and 001001. A six-bit CA (6, 232, 60, 197,
105, 17) is designed using the given strategy to perform clustering on
those 10 configurations. Based on this CA, these 10 configurations
belong to six different cycles that result in the target objects being dis-
tributed over six clusters. The clustering is done in the given manner:
cluster 1 contains 111100 and 111111, whereas cluster 2 keeps the
configuration 111101; similarly, clusters 3 and 4 present the configu-

rations 011011, 011 000 and 011001, respectively. Cluster 5

refers to 001100, 001101 and cluster 6 has the configurations

001011 and 001001. Out of these six clusters, four of them store two
configurations in each cluster and each of the remaining two clusters
contains only one configuration. We can observe that each cluster
includes configurations where state values differ only at two posi-
tions—cells 5 and 6, meaning that target objects have close values
with respect to features 1 and 2. In this way, a smaller intracluster dis-
tance is maintained in the resultant clustering.

Example 5 shows that the above-mentioned scheme can guarantee
distributing similar objects into the same cluster but it cannot restrict
the number of clusters (cycles). Next, we focus on the design of CAs
with a limited number of cycles.

Designing Cellular Automata with Optimal Number of Clusters4.2

It is obvious from the discussion so far that the consecutive configura-
tions of a cycle maintain the minimum distance in feature space if
more significant rules are used in an n-cell CA. That is, the same cycle
connects similar objects. However, it may increase the number of
cycles. So, there is a tradeoff between these two aspects of the cluster-
ing technique—maintaining a smaller number of cycles (clusters) and
a smaller intracluster distance among the objects; that is, configura-
tions with smaller Hamming distances are in the same cycle. In this
section, we discuss a technique to generate CAs with a limited num-
ber of cycles; that is, more configurations can be placed on the same
cycle. This requirement matches the problem of generating CAs with
a large number of cycles, as studied in [6]. For ease of understanding,
we briefly recall the idea.

A CA is expected to have a large cycle length if its rules depend on
both the left and right neighbors. To measure this dependence, a

218 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

parameter P, called the degree of dependence on both of the neigh-
bors, is defined to determine how much a cell depends on its neigh-
bors for updating its state. For a rule ℛi, P(ℛi)  Pr(ℛi) * Pl(ℛi). Here,

Pr(ℛi) (resp. Pl(ℛi)) is the degree of right (resp. left) dependence,

defined as the ratio of the number of combinations of values of xi and

xi-1 (resp. xi+1) for which the next state function on xi depends on

xi-1 (resp. xi+1). Evidently, P(ℛi) can take values 0, 0.25, 0.5 or 1.

Based on these values, the rules of reversible CAs are classified into
four categories: completely dependent, partially dependent (P  0.5),
weakly dependent (P  0.25), and independent (P  0) (see Table 5).
It is observed that in a CA with large cycle lengths, a majority of the
participating rules are from the completely dependent category, some
are from the partially dependent category and a few are from the
weakly dependent category, whereas none are from the independent
category. See [6] for a more detailed discussion.

Category ℛi

completely dependent 90, 165, 150, 105

partially dependent 30, 45, 75, 120, 135, 180, 210, 225, 86,
89, 101, 106, 149, 154, 166, 169

weakly dependent 92, 172, 197, 202, 108, 156, 198, 201, 77,
142, 212, 232, 78, 141, 216, 228, 53, 58,
83, 163, 54, 57, 99, 147, 23, 43, 113, 178,
27, 39, 114, 177

independent 51, 85, 170, 102, 153, 60, 195, 15, 240, 204

(a) Categories of reversible CA rules.

Category ℛ0 ℛn-1

completely dependent 5, 6, 9, 10 5, 20, 65,80

independent 3, 12 17, 68

(b) Categories of ℛ0 and ℛn-1.

Table 5. Categories of reversible CA rules on the parameter P.

Obviously, following the strategy mentioned in Section 4.1,
16�rules from the weakly dependent category and all 10 rules from
the independent category are rejected for clustering purposes because
they produce more pairs of configurations with high Hamming dis-
tances. So the remaining 36 (for cell 1 to n - 2) rules are significant
for designing CAs that result in effective clustering. These are the
16�rules of the weakly dependent category with rank 2 and the rules
of completely dependent and partially dependent categories with
rank�3. In the next section we proceed to our clustering technique.

Clustering Using Cyclic Spaces of Reversible Cellular Automata 219

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Cycle-Based Clustering 4.3

As already discussed, the clusters are nothing but the cycles of CAs,
so we call our CA-based clustering technique cycle-based clustering.
Such clustering not only maintains the cycles of the configurations
with smaller Hamming distances, but also ensures that the number of
cycles in the CA does not grow exponentially with CA size. More-
over, the synthesis scheme of generating significant CAs also works
with a reduced ruleset. The steps of our proposed clustering technique
using such a CA are stated as follows:

◼ Step 1. Based on the types of attributes (equation (1) for quantitative
and equation (2) for qualitative), the target objects of  are encoded
into the set of n-bit useful configurations that is denoted by .

◼ Step 2. Randomly choose an arbitrary CA ℛ of size n that maintains
rules at all cells from a set of rank 3 that are either completely depen-
dent or partially dependent and at most one rule from the weakly
dependent category with rank 2.

◼ Step 3. Let the set of remaining objects (configurations) to be clustered
be ′. Initially, ′  . Set k  1.

◼ Step 4. Let Ck represent those configurations that are close to xi such

that Ck ⊂ ′
 and xi ∈ ′. Set Ck  Ck ⋃ xi and ′  ′ \Ck. Increment k

by 1.

◼ Step 5. Continue step 4 until all the configurations are clustered such
that ′  ∅ and C1 ⋂ C2 ⋂⋯⋂ Cm  ∅, where m is the number of

clusters.

We illustrate the process using an example.

Example 6. Consider the Iris dataset from UCI Machine Learning
repository (archive.ics.uci.edu/ml/index.php, see Table 6) where

  {X1, X2, … , X150}; that is,   150. There are four quantita-

tive attributes pqn
; therefore, n can be computed as n  2 *pqn

 

2 * 4  8 and using the encoding function (mentioned in equa-
tion�(1)), each target object is mapped to a useful configuration and
ultimately, these 150 are represented by only 24 configurations. Here,
 can be represented as {x1, x2, … , x24}, where,

x1  00110000, x2  10111011, x3  00000000, x4  11001110,

x5  10110000, x6  10101111, x7  00100000, x8  11111011,

x9  11001010, x10  10111111, x11  10001011,

x12  10001110, x13  00001010, x14  10001010,

x15  11101010, x16  11001111, x17  10101010,

x18  11111111, x19  11111010, x20  11101110,

x21  11101111, x22  10101011, x23  10001111 and

x24  00001011.

220 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

http://archive.ics.uci.edu/ml/index.php

Name p pqn

pql
Target
Objects CA Size (n)

Objects with
Missing Terms

Iris 4 4 0 150 8 0

User Knowledge
Modeling

5 5 0 403 10 0

BuddyMove 6 6 0 249 12 0

Seed 7 7 0 210 14 0

StoneFlakes 8 8 0 79 16 6

Heart failure clinical
records

12 12 0 299 19 0

Wholesale Customers 8 6 2 440 16 0

Table 6. Description of real datasets used for the proposed CA-based cluster-
ing technique.

Consider ℛ as (10, 45, 156, 86, 90, 165, 150, 65) by following the
strategy mentioned in step 2. Initially, ′   and let m  1. Let
x1  00 110000 ∈ ′ be taken to figure out which remaining configu-

rations from ′ are close to x1. Out of 23 configurations, only config-

uration 00100000 is close to x1. Therefore, C1  {x1, x7} and ′ is

updated to ′\C1 such that ′  22. Next, x2  10111011 is chosen

from ′; we can see that the configurations 00000000, 00001010,
10101111 and 10001011 are close to x2. Therefore, cluster C2 con-

sists of five configurations {x2, x3, x13, x6, x11} and ′ is updated ��o

′ \C2 such that ′  17. In the same way, the remaining 17 configu-

rations of ′ are distributed among two clusters such that one clus-
ter is C3 {x19, x9, x15, x17, x4, x21, x23, x18, x24, x16, x12, x22, x10}

and another is C4  {x5, x8, x14, x20}. Therefore, these 150 target

objects represented by 24 configurations are distributed among four
clusters by our algorithm.

Example 6 confirms that our clustering technique not only main-
tains a smaller intracluster distance, but it is also capable of distribut-
ing the target objects among a limited number of clusters. Therefore,
the cycle-based clustering is an effective technique for clustering. How-
ever, sometimes, there is a requirement that the target objects be dis-
tributed among a desired number of clusters. To deal with that issue,
we modify our proposed technique by introducing the use of multiple
CAs; the revised technique is an iterative level-wise approach that
uses multiple levels and cycle-based clustering at every level.

Iterative Cycle-Based Clustering for a Desired Number of Clusters5.

It has already been established that CAs can perform effective cluster-
ing using their cyclic space, but sometimes it is difficult to find a CA

Clustering Using Cyclic Spaces of Reversible Cellular Automata 221

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

that can distribute the objects into a desired number of clusters. To
solve this problem, we opt for a level-wise iterative clustering tech-
nique where at every level the number of clusters is reduced to reach
either the desired number of clusters or the optimal number of
clusters for the given dataset. So, we reformulate our technique for
clustering using the candidate CAs. It was already reported that any
arbitrary CA is not acceptable as a candidate; the participating CAs
must follow the conditions discussed in Sections 4.1 and 4.2:

◼ Property 1. Participating CAs of size n maintain rules at all cells from a
subset of rank 3 and at most one rule from rank 2.

◼ Property 2. Our technique converges by merging the clusters. To do
that, a hierarchy of levels has to be maintained.

◼ Property 3. Only closely reachable clusters of level i - 1 are to be
merged to generate the updated clusters of level i.

Let M() be the set of encoded target objects where M() ⊂ C and
  {X1, X2, … , Xk} is the set of target objects. For any particular

ordering of the features, these encoded target objects are a set of use-
ful configurations . Let M()    k′ where k′ ≤ k. At any level,
a useful configuration x ∈  is a member of a distinct cluster c (a set
of encoded target objects) such that ⋃c  .

Let mi be the number of primary clusters at level i. For level 0, the

primary clusters are c1
0, c2

0, … , cm0

0 , where each cluster is a singleton

set. Therefore, k′  m0. In general, for any level i, the primary clus-

ters are c1
i , c2

i , … , cmi

i . To form these primary clusters of level i from

level i - 1, a CA of size n is selected uniformly random without
replacement from a pool of candidate CAs maintaining Property 1.
This process is maintained at every level i. Such a CA is named an
auxiliary CA. This CA plays a major role in clustering. First, we need
to compute the number of auxiliary clusters of such a CA, which the
target configurations k′ strictly belong to.

Definition 1. Let x be a useful configuration and G :C ↦ C be an auxil-
iary CA. If x ∈ Cj where Cj ⊂ C is a cyclic space of G, then x strictly

belongs to the auxiliary cluster Cj.

Let the useful configurations strictly belong to m′
 number of auxil-

iary clusters C1
i , C2

i , … , Cm′
i

 of level i. Our second step is to follow

Property 2, that is, merge the primary clusters c1
i-1, c2

i-1, … , cm0

i-1
 of

level i - 1 using these auxiliary clusters to get the resultant primary
clusters of level i where mi ≤ mi-1. However, these clusters cannot be

merged arbitrarily; a pair of primary clusters can be merged depend-
ing on their degree of membership of participation.

222 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

Definition 2. Let cj
i-1

 be a primary cluster of level i - 1 where

cj
i-1  vj. Let Ct

i
 be an auxiliary cluster of level i. The degree of mem-

bership of participation of cj
i-1

 in Ct
i , denoted by μCt

i , cj
i-1, is defined

as the availability of configurations of cj
i-1

 in Ct
i . It is computed as

vj
′  vj where vj

′
 refers to the count of useful configurations from pri-

mary cluster cj
i-1

 in auxiliary cluster Ct
i .

The configurations of cj
i-1

 can strictly belong to more than one aux-

iliary cluster. Similarly, Ct
i
 can possess useful configurations from dif-

ferent clusters of level i - 1. Let cl
i-1

 and cj
i-1

 be two primary clusters

of level i - 1. These two clusters may be merged if they are necessarily
closely reachable (Property 3).

Definition 3. Let cj
i-1, cl

i-1
 and cs

i-1
 be the clusters whose members

strictly belong to Ct
i . Now, clusters cj

i-1
 and cl

i-1
 are said to be closely

reachable in Ct
i
 if

μCt
i , cj

i-1 - μCt
i , cl

i-1 < μCt
i , cj

i-1 - μCt
i , cs

i-1.

Therefore, for every Ct
i , we can get pairs of closely reachable clus-

ters. The degree of participation plays a vital role for selecting the
closely reachable clusters, which are then merged. Next, we discuss
the algorithm in detail.

Let c1
0, c2

0, … , cm0

0
 (resp. c1

i-1, c2
i-1, … , cmi-1

i-1) be the primary clusters of

level 0 (resp. i - 1) where the count of clusters is m0 (resp. mi-1). Also

let C1
1, C2

1, … , Cm′
1

 (resp. C1
i , C2

i , … , Cm′
i) be the auxiliary clusters of

level 1 (resp. i) where the count of auxiliary clusters is m′. For all t,

1 ≤ t ≤ m′, compute μCt
1, cj

0 (resp. μCt
i , cj

i-1). For any given cj
0
 (resp.

cj
i-1), find the auxiliary cluster of level 1 (resp. i) in which it has maxi-

mum participation, that is, its degree of participation is maximum.
Obviously, for some value of t, maximum participation of cj

0
 (resp.

cj
i-1) is in Ct

1
 (resp. Ct

i .

1.

Let Ct1
1

 (resp. Ct1
i) be the auxiliary cluster having maximum configura-

tions belonging in cj
0

 (resp. cj
i-1). Therefore, cj

0
 (resp. cj

i-1) can merge

with some of the clusters that have also participated in Ct1
1

 (resp. Ct1
i).

However, only those clusters are to be merged with cj
0

 (resp. cj
i-1) that

are closely reachable to cj
0
 (resp. cj

i-1). Hence, a new primary cluster cj
1

(resp. cj
i) is formed as cj

i  cj
i-1 ⋃ cl

i-1
 if and only if

μCt1
i , cj

i-1 - μCt1
i , cl

i-1 < μCt1
i , cj

i-1 - μCt1
i , cs

i-1, for any s ≠ l

where cs
i-1

 is another participating cluster in Ct1
i

 and

2.

Clustering Using Cyclic Spaces of Reversible Cellular Automata 223

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

maxμCt
i , cj

i-1(∀t)  μCt1
i , cj

i-1. Therefore, the newly generated cluster

cj
i
 constitutes a set of useful configurations, out of which some strictly

belong to a cluster (cycle) of the auxiliary CA of level i.

If for any primary cluster cj
0
 (resp. cj

i-1) there is no closely reachable pri-

mary cluster in all auxiliary clusters, then the new primary cluster of
level i is cj

i  cj
i-1. Therefore, mi ≤ mi-1.

3.

The algorithm stops when we reach the optimal number of clusters (m).
The test of optimality is determined either by arriving at the desired
number of clusters given by the user or if mi  mi-1 after a fixed num-

ber of attempts.

4.

Input: A set of target objects   X1, X2, … , Xk, number of quantitative

and qualitative attributes pqn and pql respectively, optimal number

of clusters (m) and an auxiliary CA space
Output: The clusters {c1

v , c2
v , … , cm

v }

Step 1. Set n ← 2 * pqn  + u1 + u2 +⋯ + upql
 ;

foreach j  1 to k do Encode Xj into an n-bit binary string ;

Let M() be the set of encoded target objects {x1, x2, … , xk′ } where

M()  k′ ;
Step 2. Construct a set of n-cell CAs R from the given auxiliary CA space ;

Step 3. Set m0 ← k′, i ← 1 and z ← 1 ;

for j  1 to m0 do

Set cj
0 ← xj ; // Initialize primary clusters of level 0

Step 4. while (mi ≠ mi-1) || (mi ≠ m) do

Select ℛ ∈ R and Set R ← R  {ℛ} // Auxiliary CA is selected randomly
at uniform without replacement

Generate auxiliary clusters C1
i , C2

i , … , Cm′
i

 for the CA ℛ ;

Initialize a matrix Aatjm′⨯mi-1
 to 0 ;

for t  1 to m′
 do

for j  1 to mi-1 do Set atj ← μCt
i , cj

i-1

foreach j  1 to mi-1 do

// For each of the primary clusters of previous level
Let at′j  maximum of atj where 1 ≤ t ≤ m′; // Find the

auxiliary cluster with maximum participation of cj
i-1

for j1  1 to mi-1)&& j1 ≠ j do

Find at′j′  maximum of atj1 such that at′j′ ≠ 0;

if no such at′j′ exists then continue ;

else
Set cz

i ← cji-1 ⋃ cj′
i-1

 and z ← z + 1 ;

Mark cj
i-1

 and cj′
i-1

 as modified ;

Remove row t′ from A ;

224 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

foreach unmodified clusters cy
i-1

 do

Set cz
i ← cy

i-1
 and z ← z + 1 ; // move the unmodified primary

 cluster(s) of previous level i - 1 to get a new primary clus-
ter of level i and update cluster number

Set mi ← z and i ← i + 1 ;

Step 5. Report c1
i , c2

i , … , cmi

i
 as the final clusters at level i and

Exit ;

Algorithm 1. Iterative level-wise cycle-based clustering.

Example 7. Consider the Iris dataset (archive.ics.uci.edu/ml/index.php,
see Table 6) where   {X1, X2, … , X150} and each object has four

quantitative pqn
 and no qualitative attributes pql

. Hence, the size of

the CA for this dataset is n  2 * 4  8. Now, let the desired number
of clusters m be two. Using the encoding technique, we get
M()  {x1, x2, … , x24}.

Initially, 24 primary clusters exist at level 0 such that

c1
0  {x1}, c2

0  {x2}, … , c24
0  {x24}, where m0  24. Since m0 ≠ m,

we select an auxiliary CA ℛ from the set of candidate CAs (satisfying
Property 1) uniformly random without replacement. Let

ℛ  9, 169, 150, 150, 165, 105, 165, 20. This CA generates four

auxiliary clusters: C1
0, C2

0, C3
0, C4

0
 (see Example 6).

Next, we find the degree of participation of each cj
0

 in these clus-

ters. Since we are at level 1, μC1
1, cj1

0   100% ∀ j1 ∈ 1, 3, 4, 22,

13, 14, μC2
1, cj2

0   100% ∀ j2 ∈ 2, 5, 6, 7, 8, 9, 10, 11, 12, 15,

17, 19, 20, 21, 23, 24, μC3
1, c16

0   100% and μC4
1, c18

0   100%.

So we can merge the closely reachable primary clusters of level 0 to

form the primary clusters of level 1. Here, auxiliary cluster C1
1

 has

maximum (and equal) participation of primary clusters c1
0, c3

0, c4
0, c22

0 ,

c13
0

 and c14
0 . Similarly, C2

1
 has maximum participation of c2

0, c5
0, c6

0, c7
0,

c8
0, c9

0, c10
0 , c11

0 , c12
0 , c15

0 , c17
0 , c19

0 , c20
0 , c21

0 , c23
0

 and c24
0 . Therefore, the

newly generated primary cluster of level 1 is

c1
1  c1

0⋃ c3
0⋃ c4

0⋃ c22
0 ⋃ c13

0 ⋃ c14
0 .

Similarly, c2
1
 can be generated. For the remaining two auxiliary clus-

ters, new primary clusters are formed as c3
1  c16

0
 and c4

1  c18
0 . Since

the number of primary clusters at level 1 (m1) is 4 ≠ m, we move

from level 1 to level 2.
At level 2, let the selected auxiliary CA be (6, 232, 90, 90, 165, 90,

90, 20). This CA generates six auxiliary clusters, C1
2, C2

2, C3
2, C4

2, C5
2

Clustering Using Cyclic Spaces of Reversible Cellular Automata 225

https://doi.org/10.25088/ComplexSystems.30.2.205

http://archive.ics.uci.edu/ml/index.php
https://doi.org/10.25088/ComplexSystems.30.2.205

and C6
2. Like level 1, here we also compute the maximum participa-

tion of each primary cluster of level 1 in auxiliary cluster Ct
2,

1 ≤ t ≤ 6. It is found that μC1
2, c1

1  16%, μC2
2, c1

1  33%,

μC2
2, c2

1  62%, μC2
2, c3

1  100%, μC3
2, c1

1  16%, μC3
2, c2

1  12%,

μC3
2, c4

1  100%, μC4
2, c1

1  33%, μC5
2, c2

1  18% and

μC6
2, c2

1  6%. Hence, we can merge c2
1

 and c3
1

 with respect to the

closeness in the auxiliary cluster C2
2. Similarly, c1

1
 and c4

1
 can be

merged with respect to C3
2. Hence, the newly generated primary clus-

ters of level 2 are

c1
2  v2

1⋃ c3
1  2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 19,

20, 21, 23, 24

and

c2
2  c1

1⋃ c4
1  1, 3, 4, 22, 13, 14, 18.

Therefore, at this level, m2  2. Since the desired number of clusters

is already achieved, the algorithm exits.

Hence, our algorithm can generate the required clusters and also
gives a direction for an optimal number of clusters. Our technique
uses v auxiliary CAs if the optimal number of clusters is achieved at
level v. Note also that the optimal number of clusters can be achieved
using a set of v1 CAs, v2 CAs and so on. Now, our interest is to figure

out that set of bijective functions (CAs) that gives the best-quality clus-
ters among those possible in the set of CAs. An extensive experiment
is performed in the next section on real datasets using these CAs and
the results are reported.

Results and Discussion6.

This section reports the performance of our proposed iterative
cycle-based clustering algorithm on some real datasets
(archive.ics.uci.edu/ml/index.php). To check the quality of the clusters
generated using our algorithm, we use the benchmark validation
indices silhouette score, Dunn index and connectivity [1, 10]. The set
of bijective functions (auxiliary CAs) with the smallest connectivity
score and highest Dunn and silhouette index scores generates the best
quality clusters. Next, we introduce the real datasets used in this
paper.

We use seven datasets: Iris, User Knowledge Modeling, Buddy-
Move, Seed, StoneFlakes, Heart failure clinical records and Wholesale
Customers. Each of them has mostly quantitative attributes. Table 6

226 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

http://archive.ics.uci.edu/ml/index.php

reports the details about these datasets. In this table, column 1 gives
the names of the datasets and columns 2, 3 and 4 refer to the total
number of attributes p, number of quantitative attributes pqn

and the

count of qualitative attributes pql
, respectively. Column 5 shows the

number of target objects that are to be distributed among m clusters
using an n-cell CA. Here, n (see column 6 for reference) is computed
based on pqn

and pql
(n > p) (see Section 3). Column 7 refers to the

number of objects with missing terms for each dataset.
For analyzing the performance of our iterative clustering technique,

we first need to check whether the target objects are distributed
among the desired number of clusters; thereafter, the cluster quality is
evaluated based on the validation indices scores that can be computed
using the package clValid in R (see [7] for a detailed description of
the package). In this paper, the desired number of clusters is two. Sec-
tion 6.1 reports the results of these experiments, taking a fixed order-
ing of features for each of the datasets.

Experiment on Real Datasets6.1

Table 7 presents the effectiveness of our technique. This effectiveness
is ensured based on validation indices scores and if each of the
datasets is distributed into the same desired number of clusters, which
is two.

In Table 7, column 3 refers to the optimal scores of the validation
indices—connectivity, silhouette score and Dunn index. Columns 4
and 5 represent the number of levels used to get the optimal results
for each dataset and the corresponding ordered list of auxiliary CAs
where any CAi is exclusively used for a particular level i. For exam-

ple, the optimal scores for all three validation indices in the Iris
dataset are achieved while clustering is completed in level 2.
Moreover, the same set of auxiliary CAs is used for all three cases.
The best scores are also found for all three indices using the same set
of auxiliary CAs in the BuddyMove dataset. For the other datasets,
the same set of CAs was used to produce the best quality clusters with
respect to two validation indices.

Dataset m Optimal Score
Number
of Levels Auxiliary CA

Iris 2 Silhouette0.6867,
Dunn0.3389,
Connectivity0.0000

2 CA0: (10, 75, 166, 105, 105,

166, 150, 20)
CA1: (6, 166, 165, 154, 105,

165, 165, 65)

Table 7. (continues)

Clustering Using Cyclic Spaces of Reversible Cellular Automata 227

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Dataset m Optimal Score
Number
of Levels Auxiliary CA

User
Knowledge
Modeling

2 Silhouette0.186714,
Dunn0.1508426,
Connectivity
3.667857

3 CA0: (6, 166, 105, 165, 165,

150, 154, 150, 165, 65)
CA1: (10, 180, 169, 165, 90,

90, 165, 165, 149, 80)
CA2: (5, 180, 165, 225, 86,

105, 90, 105, 154, 80)
4 CA0: (6, 169, 90, 169, 90,

169, 150, 150, 90, 80)
CA1: (9, 228, 154, 105, 105,

89, 90, 106, 105, 65)
CA2: (9, 105, 135, 172, 90,

165, 90, 90, 90, 20)
CA3: (5, 45, 89, 90, 169,

165, 101, 150, 90, 20)

Buddymove 2 Silhouette0.4763,
Dunn0.3146,
Connectivity2.9289

4 CA0: (10, 135, 197, 150,

169, 105, 105, 101, 105,
105, 86, 80)
CA1: (9, 150, 30, 198, 154,

150, 165, 165, 90, 105, 105,
86, 80)
CA2: (9, 166, 105, 150, 101,

150, 90, 90, 105, 86, 105,
20)
CA3: (6, 105, 30, 202, 90,

150, 105, 105, 105, 166,
105, 65)

Seed 2 Silhouette0.528,
Dunn0.09,
Connectivity3.91

2 CA0: (9, 228, 169, 165, 101,

90, 90, 90, 154, 150, 150,
105, 105, 20)
CA1: (5, 105, 89, 105, 105,

105, 150, 150, 150, 150,
165, 165, 165, 20)

4 CA0: (5, 120, 197, 150, 86,

165, 106, 165, 166, 105, 90,
105, 166, 5)
CA1: (5, 210, 165, 180, 202,

165, 150, 101, 90, 90, 105,
165, 165, 65)
CA2: (10, 120, 90, 105, 172,

150, 86, 150, 105, 154, 150,
165, 165, 65)
CA3: (5, 120, 172, 165, 150,

149, 150, 150, 169, 150,
105, 166, 105, 20)

Table 7. (continues)

228 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

Dataset m Optimal Score
Number
of Levels Auxiliary CA

StoneFlakes 2 Silhouette0.376,
Dunn0.1805,
Connectivity3.5123

3 CA0: (6, 86, 165, 149, 165,

89, 165, 90, 90, 101, 105,
90, 150, 169, 150, 65)
CA1: (10, 135, 154, 165,

165, 150, 165, 90, 105, 106,
165, 154, 150, 150, 154, 5)
CA2: (10, 105, 166, 150,

150, 149, 150, 150, 165,
165, 154, 150, 90, 105, 86,
80)

4 CA0: (6, 166, 105, 105, 89,

90, 165, 165, 166, 150, 150,
150, 90, 106, 150, 20)
CA1: (6, 166, 150, 165, 165,

105, 105, 90, 169, 105, 90,
150, 89, 105, 165, 65)
CA2: (5, 210, 92, 105, 149,

90, 150, 105, 90, 165, 105,
106, 105, 165, 165, 65)
CA3: (5, 165, 92, 150, 165,

90, 169, 105, 105, 89, 105,
90, 150, 89, 150, 20)

Wholesale
Customer

2 Silhouette0.5257,
Connectivity
3.7329, Dunn
0.0508

3 CA0: (10, 45, 149, 105, 165,

90, 150, 101, 90, 149, 165,
106, 90, 150, 150, 65)

CA1: (9, 78, 165, 105, 90,

165, 105, 90, 90, 86, 105,
105, 154, 150, 90, 65)
CA2: (9, 154, 165, 150, 90,

150, 150, 90, 150, 86, 105,
90, 150, 86, 150, 20)

2 CA0: (6, 149, 150, 90, 150,

105, 90, 90, 165, 150, 90,
169, 165, 90, 105, 20)
CA1: (5, 210, 150, 228, 86,

105, 90, 105, 89, 90, 105,
105, 165, 90, 90, 20)

3 CA0: (6, 216, 149, 150, 150,

169, 150, 150, 106, 105, 90,
90, 90, 150, 169, 5)
CA1: (6, 89, 150, 165, 90,

90, 165, 90, 150, 101, 150,
105, 89, 90, 90, 5)
CA2: (10, 150, 197, 165, 90,

165, 90, 150, 154, 165, 106,
105, 165, 105, 101, 5)

Table 7. (continues)

Clustering Using Cyclic Spaces of Reversible Cellular Automata 229

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Dataset m Optimal Score
Number
of Levels Auxiliary CA

Heart
failure
clinical
records

2 Silhouette0.6885,
Dunn0.0945,
Connectivity3.1718

2 CA0: (9, 154, 90, 166, 105,

105, 154, 105, 150, 106,
150, 90, 150, 154, 90, 86,
165, 90, 5)
CA2: (9, 212, 165, 105, 166,

165, 101, 105, 150, 169,
150, 150, 105, 150, 90, 90,
105, 154, 80)

2 CA0: (5, 135, 166, 165, 165,

105, 165, 90, 90, 90, 165,
105, 89, 105, 150, 165, 150,
90, 20)
CA1: (9, 149, 150, 105, 169,

90, 89, 150, 90, 150, 106,
90, 89, 90, 166, 165, 86,
105, 20)

Table 7. Performance of our clustering algorithm on available datasets (see
Table 6).

Next, we show that our algorithm can produce similar clusters
even if the order of the features is changed. This claim is verified by
extensive experimentation on the real datasets used here.

Experimentation on Datasets after Reordering Features6.2

Every target object is represented by its p feature values if it owns p
distinct features A1, A2, … , Ap. Generally, an object is independent

of the order of its features. But because CAs are used, the mapping of
a target object to a useful configuration can be changed if the features
are in a different order. However, if we can get two sets of auxiliary

CAs R1 and R2 that cluster the given set of target objects in a similar
fashion irrespective of the order of the elements, then we call the set

of auxiliary CAs R1 and R2 equivalent auxiliary CA spaces. Tables 8
and 9 show that our iterative level-wise clustering algorithm also sup-
ports the reordering of features.

Let us first take the Iris dataset where each object is represented by
the attributes A1, A2, A3 and A4. Since we use CAs, each object is

mapped to a configuration. Until now, the experiment on this dataset

has used the feature ordering A1, A2, A3, A4. However, by changing

the ordering of the features, we can get 4 !  24 distinct combina-

tions. Some of them are A2, A3, A1, A4, A3, A4, A2, A1, and so

on. Evidently, when the order of features is changed, the correspond-
ing useful configuration is also changed. Therefore, another set of
CAs can be used for clustering that set of useful configurations. The

230 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

desired number of clusters is two. Table 8 reports the result of this
experiment on all possible orderings. From Table 8, it can be con-
cluded that the count of clusters and the arrangement of clusters
remain the same even after altering the order of the features. Table 8
also shows that several different sets of auxiliary CAs exist that pro-
duce the same clusters. For instance,

R1  5, 165, 101, 165, 89, 165, 106, 80

R2  9, 90, 90, 101, 150, 105, 106, 80,

9, 141, 86, 90, 150, 105, 165, 20

and

R3  10, 150, 108, 105, 165, 166, 105, 65,

6, 165, 165, 78, 106, 165, 90, 80

are three sets of auxiliary CAs for the given order of features

A1, A2, A3, A4, A1, A2, A4, A3 and A3, A4, A2, A1, respectively.

These R1, R2 and R3 form equivalent clustering of the objects; hence
these are equivalent auxiliary CA spaces. Moreover, it is observed
that each of them produces the best clusters with the same Silhouette
score, Dunn index and Connectivity value.

Order of

Features Set of Auxiliary CAs Level

〈A1, A2, A3, A4〉 CA0: (5, 165, 101, 165, 89, 165, 106, 80) 1

〈A1, A2, A4, A3〉 CA0: (9, 90, 90, 101, 150, 105, 106, 80) 2

CA1: (9, 141, 86, 90, 150, 105, 165, 20)

〈A1, A3, A2, A4〉 CA0: (10, 105, 156, 86, 105, 150, 166, 80) 2

CA1: (10, 180, 169, 165, 86, 150, 90, 65)

〈A1, A4, A2, A3〉 CA0: (10, 165, 101, 105, 90, 105, 106, 80) 2

CA1: (5, 90, 105, 149, 150, 165, 90, 20)

〈A2, A1, A3, A4〉 CA0: (10, 105, 198, 150, 90, 106, 150, 20) 2

CA1: (9, 166, 90, 169, 105, 105, 166, 80)

〈A2, A1, A4, A3〉 CA0: (6, 86, 90, 165, 150, 105, 166, 80) 3

CA1: (9, 150, 120, 198, 165, 165, 106, 80)

CA2: (10, 90, 169, 165, 169, 150, 90, 65)

〈A2, A3, A1, A4〉 CA0: (10, 75, 166, 90, 166, 90, 106, 80) 3

CA1: (9, 89, 90, 165, 90, 106, 150, 20)

CA2: (6, 78, 150, 165, 86, 90, 89, 80)

〈A2, A4, A1, A3〉 CA0: (5, 135, 105, 90, 142, 150, 106, 80) 2

CA1: (9, 86, 165, 86, 165, 105, 105, 65)

Table 8. (continues)

Clustering Using Cyclic Spaces of Reversible Cellular Automata 231

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Order of

Features Set of Auxiliary CAs Level

〈A3, A1, A2, A4〉 CA0: (10, 150, 172, 90, 165, 105, 169, 5) 4

CA1: (10, 180, 90, 165, 150, 101, 105, 65)

CA2: (6, 106, 150, 150, 106, 90, 86, 80)

CA3: (10, 30, 172, 105, 105, 105, 165, 65)

〈A3, A1, A4, A2〉 CA0: (6, 216, 150, 90, 169, 105, 90, 65) 3

CA1: (10, 150, 156, 89, 165, 150, 105, 65)

CA2: (6, 212, 90, 90, 150, 106, 105, 65)

〈A3, A2, A1, A4〉 CA0: (6, 105, 120, 105, 101, 90, 106, 80) 3

CA1: (6, 169, 90, 150, 105, 150, 166, 80)

CA2: (9, 232, 90, 105, 165, 150, 90, 65)

〈A3, A2, A4, A1〉 CA0: (6, 105, 120, 105, 101, 90, 106, 80) 3

CA1: (6, 169, 90, 150, 105, 150, 166, 80)

CA2: (9, 232, 90, 105, 165, 150, 90, 65)

〈A3, A4, A1, A2〉 CA0: (10, 30, 92, 105, 105, 105, 165, 65) 3

CA1: (6, 216, 105, 105, 165, 105, 105, 80)

CA2: (10, 120, 198, 169, 165, 105, 150, 65)

〈A3, A4, A2, A1〉 CA0: (10, 150, 108, 105, 165, 166, 105, 65) 2

CA1: (6, 165, 165, 78, 106, 165, 90, 80)

〈A4, A1, A2, A3〉 CA0: (6, 90, 212, 150, 106, 90, 89, 5) 3

CA1: (10, 180, 149, 105, 150, 86, 105, 65)

CA2: (5, 105, 154, 165, 101, 165, 166, 80)

〈A4, A1, A3, A2〉 CA0: (10, 30, 172, 105, 166, 165, 101, 80) 2

CA1: (9, 228, 150, 150, 105, 101, 150, 65)

〈A4, A2, A1, A3〉 CA0: (6, 228, 86, 105, 150, 149, 105, 65) 4

CA1: (6, 90, 232, 90, 150, 154, 150, 65)

CA2: (10, 120, 86, 90, 150, 165, 169, 5)

CA3: (9, 78, 166, 105, 105, 86, 150, 65)

〈A4, A2, A3, A1〉 CA0: (6, 212, 150, 105, 90, 150, 105, 20) 2

CA1: (10, 210, 149, 90, 89, 105, 90, 20)

〈A4, A3, A2, A1〉 CA0: (6, 216, 105, 165, 90, 150, 165, 20) 1

〈A4, A3, A1, A2〉 CA0: (10, 120, 166, 150, 150, 165, 105, 20) 2

CA1: (10, 120, 166, 150, 150, 165, 105, 20)

Table 8. Performance on reordering of features of Iris dataset where m  2;
for any feature ordering (column 1), there exist auxiliary CAs (column 2) that
generate the set of clusters with same scores of validation indices (Silhouette
0.6867, Dunn0.3389, Connectivity0.0000) as given in Table 7.

However, it is not always necessary that the exact same cluster be
formed for every possible reordering. They can be almost similar,
which can be indicated by having nearly the same score in the
validation indices (see the result of the Seed dataset in Table 9). For

232 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

example, for the BuddyMove dataset in Table 9, each of three distinct
feature orders can be clustered using equivalent auxiliary CA spaces
giving exactly the same value on the three validation indices.
Whereas, for the StoneFlakes dataset, equivalent auxiliary CA spaces
can be found with respect to Dunn index and Connectivity for the

two orderings A1, A2, A3, A4, A5, A6, A7, A8 and A4, A5, A6, A7,

A8, A1, A2, A3. Now, we can compare our algorithm with some

existing well-known techniques.

Order of Set of Scores of
Dataset Features Auxiliary CAs Level Indices
BuddyMove 〈A1, A2, A3,

A4, A5, A6〉

CA0: (10, 210, 156, 106,

90, 106, 150, 150, 105,
165, 86, 80)

5 Silhouette
0.4763

CA1: (10, 165, 201, 154,

165, 169, 90, 154, 150,
165, 165, 20)

Dunn
0.3146

CA2: (5, 135, 86, 105,

105, 165, 90, 89, 150,
150, 105, 5)

Connectivity
2.9289

CA3: (5, 30, 89, 90, 105,

165, 86, 165, 101, 165,
166, 80)
CA4: (9, 166, 165, 169,

105, 90, 150, 89, 150,
105, 149)

〈A2, A4, A3,

A1, A6, A5〉

CA0: (9, 86, 105, 90, 105,

149, 165, 86, 105, 90,
165, 65)

1

〈A3, A4, A1,

A2, A5, A6〉

CA0: (5, 135, 172, 150,

154, 105, 150, 90, 150,
105, 89, 80)

3

CA1: (6, 90, 105, 120, 92,

90, 165, 90, 150, 106,
105, 65)
CA2: (9, 149, 90, 101, 90,

106, 90, 90, 105, 105,
105, 80)

StoneFlakes 〈A1, A2, A3, A4,

A5, A6, A7, A8〉

CA0: (6, 86, 165, 149,

165, 89, 165, 90, 90, 101,
105, 90, 150, 169, 150,
65)

3 Silhouette
0.376

CA1: ((10, 135, 154, 165,

165, 150, 165, 90, 105,
106, 165, 154, 150, 150,
154, 5))
CA2: (5, 30, 166, 165,

165, 150, 90, 65)

Table 9. (continues)

Clustering Using Cyclic Spaces of Reversible Cellular Automata 233

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Order of Set of Scores of
Dataset Features Auxiliary CAs Level Indices
StoneFlakes 〈A4, A5, A6, A7,

A8, A1, A2, A3〉

CA0: (6, 142, 105, 101,

165, 166, 90, 169, 105,
105, 166, 90, 89, 90, 86,
80)

2 Silhouette
0.3377

CA1: (6, 89, 105, 165, 90,

105, 154, 165, 150, 165,
169, 165, 89, 150, 165,
65)

〈A1, A2, A3, A4,

A5, A6, A7, A8〉

CA0: (6, 166, 105, 105,

89, 90, 165, 165, 166,
150, 150, 150, 90, 106,
150, 20)

4 Dunn
0.1805

CA1: (6, 166, 150, 165,

165, 105, 105, 90, 169,
105, 90, 150, 89, 105,
165, 65)

Connectivity
3.5123

CA2: (5, 210, 92, 105,

149, 90, 150, 105, 90,
165, 105, 106, 105, 165,
165, 65)
CA3: (5, 165, 92, 150,

165, 90, 169, 105, 105,
89, 105, 90, 150, 89, 150,
20)

〈A4, A5, A6, A7,

A8, A1, A2, A3〉

CA0: (9, 166, 150, 165,

105, 149, 165, 90, 90,
150, 150, 165, 165, 105,
86, 5)

1

Seed 〈A1, A2, A3, A4,

A5, A6, A7〉

CA0: (9, 228, 169, 165,

101, 90, 90, 90, 154, 150,
150, 105, 105, 20)

2 Silhouette
0.5288

CA1: (5, 105, 89, 105,

105, 105, 150, 150, 150,
150, 165, 165, 165, 20)

〈A1, A2, A5, A6,

A7, A3, A4〉

CA0: (10, 225, 198, 149,

150, 90, 105, 89, 150, 90,
90, 90, 165, 65)

4 Silhouette
0.5282

CA1: (6, 77, 165, 90, 150,

106, 150, 90, 150, 150,
150, 90, 90, 65)
CA2: (9, 169, 90, 106,

150, 105, 150, 105, 105,

89, 105, 105, 154, 80)
CA3: (9, 101, 105, 150,

149, 105, 165, 105, 169,
105, 165, 165, 90, 65)

Table 9. (continues)

234 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

Order of Set of Scores of
Dataset Features Auxiliary CAs Level Indices
Seed 〈A1, A2, A3, A4,

A5, A6, A7〉

CA0: (5, 120, 197, 150,

86, 165, 106, 165, 166,
105, 90, 105, 166, 5)

4 Dunn0.09

CA1: (5, 210, 165, 180,

202, 165, 150, 101, 90,
90, 105, 165, 165, 65)

Connectivity
3.91

CA2: (10, 120, 90, 105,

172, 150, 86, 150, 105,
154, 150, 165, 165, 65)
CA3: (5, 120, 172, 165,

150, 149, 150, 150, 169,
150, 105, 166, 105, 20)

〈A1, A2, A5, A6,

A7, A3, A4〉

CA0: (5, 75, 154, 150, 90,

105, 106, 150, 165, 90,
105, 166, 150, 65)

3 Dunn0.08

CA1: (9, 86, 105, 105,

166, 165, 154, 90, 166,
150, 90, 165, 165, 65)

Connectivity
3.76

CA2: (6, 86, 150, 105, 89,

90, 101, 90, 105, 90, 105,
150, 165, 65)

Table 9. Performance of other datasets on different ordering of features
where m  2.

Comparison of Clustering Techniques on the Same Dataset6.3

To judge the efficiency of our iterative clustering model, we need to
compare the results of the validation indices achieved by our tech-
nique with the existing benchmark clustering algorithms. Here, we
use five benchmark clustering algorithms: K-means (centroid-based
clustering) [7], hierarchical (agglomerative hierarchical clustering) [7],
DIANA (divisive hierarchical clustering) [7], PAM (partitioning
around medoids) (centroid-based clustering) [7] and SOTA (self-
organizing tree algorithm) (unsupervised network with a divisive hier-
archical clustering) [7] using the implementation in R [7]. Table 10
reports the results of this comparison. From the experiments, it can be
noted that, among the existing algorithms, the optimal silhouette
score for the StoneFlakes dataset is found by K-means, DIANA and
SOTA. Whereas the best connectivity score for the Heart failure clini-
cal records dataset is achieved by using the K-means and DIANA
algorithms. However, the hierarchical algorithm forms clusters most
effectively by overall performance on all datasets. Further, Table 10
shows that the validation indices scores obtained by our algorithm
can compete with the best scores obtained by the benchmark algo-
rithms. Hence, our algorithm is one of the best algorithms existing
today for clustering any kind of dataset.

Clustering Using Cyclic Spaces of Reversible Cellular Automata 235

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.25088/ComplexSystems.30.2.205

Dunn Silhouette

Dataset Algorithm Connectivity Index Score

Iris Hierarchical 0.0000 0.3389 0.6867

K-means 6.1536 0.0765 0.6810

DIANA 6.1536 0.0765 0.6810

PAM 3.9623 0.0811 0.6858

SOTA 11.5016 0.0349 0.6569

CA-based clustering 0.0000 0.3389 0.6867

User Knowledge Hierarchical 3.0540 0.1970 0.2589

Modeling K-means 50.3321 0.0943 0.2063

DIANA 68.7329 0.0297 0.2066

PAM 102.8329 0.0537 0.1934

SOTA 64.1060 0.0321 0.2042

CA-based clustering 3.6678 0.1508 0.1867

BuddyMove Hierarchical 2.9290 0.3146 0.4764

K-means 35.2032 0.0485 0.3079

DIANA 34.3694 0.0658 0.3020

PAM 38.3802 0.0485 0.3055

SOTA 44.4111 0.0518 0.3134

CA-based clustering 2.9289 0.3146 0.4763

Seed Hierarchical 8.7861 0.1065* 0.5248

K-means 21.3698 0.0548 0.5229

DIANA 19.1714 0.0544 0.5218

PAM 20.6762 0.0404 0.5175

SOTA 16.0179 0.0361 0.5049

CA-based clustering 3.91 0.09 0.528

StoneFlakes Hierarchical 2.9290 0.3176* 0.2937

K-means 4.9488 0.1735 0.4875

DIANA 4.9488 0.1735 0.4875

PAM 7.9762 0.1693 0.4827

SOTA 4.9488 0.1735 0.4875

CA-based clustering 3.5123 0.1805 0.376

Heart failure Hierarchical 5.7536 0.1506 0.7862

clinical records K-means 1.8635 0.0079 0.5829

DIANA 1.8635 0.0079 0.5829

PAM 3.5020 0.0036 0.4630

SOTA 5.0972 0.0035 0.5302

CA-based clustering 3.1718 0.0945 0.6885

Wholesale Hierarchical 2.9290 0.3853 0.7957

Customers K-means 30.0881 0.0178 0.5115

DIANA 27.1242 0.0313 0.5806

PAM 41.6647 0.0167 0.3819

SOTA 43.8266 0.0061 0.3699

CA-based clustering 3.7329 0.0508 0.5257

Table 10. Comparison of clustering techniques based on internal validation
indices for each of the available datasets of Table 6. Here, m = 2 for all
entries except those marked with * for which m = 6.

236 S. Mukherjee, K. Bhattacharjee and S. Das

Complex Systems, 30 © 2021

References

[1] D. Xu and Y. A Tian, “A Comprehensive Survey of Clustering
Algorithms,” Annals of Data Science, 2(2), 2015 pp. 165–193.
doi:10.1007/s40745-015-0040-1.

[2] A. K. Jain, M. N. Murty and P. J. Flynn, “Data Clustering: A Review,”
ACM Computing Surveys, 31(3), 1999 pp. 264–323.
doi:10.1145/331499.331504.

[3] R. Xu and D. Wunsch II, “Survey of Clustering Algorithms,” IEEE
Transactions on Neural Networks, 16(3), 2005 pp. 645–678.
doi:10.1109/TNN.2005.845141.

[4] S. Wolfram, Theory and Applications of Cellular Automata: Including
Selected Papers, 1983–1986, Singapore: World Scientific, 1986.

[5] N. Naskar, S. Adak, P. Maji and S. Das, “Synthesis of Non-uniform
Cellular Automata Having Only Point Attractors,” in Proceedings of

11th International Conference on Cellular Automata for Research and
Industry (ACRI 2014), Kraków, Poland, 2014 (J. Was, G. C. Sirakoulis
and S. Bandini, eds.), Cham, Switzerland: Springer, 2014 pp. 105–114.
doi:10.1007/978-3-319-11520-7_12.

[6] S. Adak, S. Mukherjee and S. Das, “Do There Exist Non-linear Maxi-

mal Length Cellular Automata? A Study,” in Proceedings of 13th Inter-
national Conference on Cellular Automata for Research and Industry
(ACRI 2018), Como, Italy, 2018 (G. Mauri, S. El Yacoubi, A. Dennun-
zio, K. Nishinari and L. Manzoni, eds.) Cham, Switzerland: Springer,
2018 pp. 289–297. doi:10.1007/978-3-319-99813-8_26.

[7] G. Brock, V. Pihur, S. Datta and S. Datta, “clValid: an R Package for
Cluster Validation,” Journal of Statistical Software, 25(4), 2008
pp.�1–22. doi:10.18637/jss.v025.i04.

[8] S. Das, “Theory and Applications of Nonlinear Cellular Automata in
VLSI Design,” Ph.D. thesis, Bengal Engineering and Science University,
Shibpur, India, 2006.

[9] J. Dougherty, R. Kohavi and M. Sahami, “Supervised and Unsupervised
Discretization of Continuous Features,” in Machine Learning Proceed-
ings 1995: Proceedings of the Twelfth International Conference on
Machine Learning, Tahoe City, CA, 1995 (A. Prieditis and S. Russell,
eds.), San Francisco: Morgan Kaufmann, 1995 pp. 194–202.
doi:10.1016/B978-1-55860-377-6.50032-3.

[10] V. Estivill-Castro, “Why So Many Clustering Algorithms: A Position
Paper,” ACM Special Interest Group on Knowledge Discovery in Data
Explorations Newsletter, 4(1), 2002 pp. 65–75.
doi:10.1145/568574.568575.

Clustering Using Cyclic Spaces of Reversible Cellular Automata 237

https://doi.org/10.25088/ComplexSystems.30.2.205

https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1145/331499.331504
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1007/978-3-319-11520-7_12
https://doi.org/10.1007/978-3-319-99813-8_26
https://dx.doi.org/10.18637/jss.v025.i04
https://doi.org/10.1016/B978-1-55860-377-6.50032-3
https://doi.org/10.1145/568574.568575
https://doi.org/10.25088/ComplexSystems.30.2.205

