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This  paper  introduces  a  cycle-based  clustering  technique  using  the
cyclic spaces of reversible cellular automata (CAs). Traditionally, a clus-
ter consists of close objects, which in the case of CAs necessarily means
that  the  objects  belong  to  the  same  cycle;  that  is,  they  are  reachable
from each other. Each of the cyclic spaces of a cellular automaton (CA)
forms  a  unique  cluster.  This  paper  identifies  CA  properties  based  on
“reachability”  that  make  the  clustering  effective.  To  do  that,  we  first
figure  out  which  CA  rules  contribute  to  maintaining  the  minimum
intracluster distance. Our CA is then designed with such rules to ensure
that a limited number of cycles exist in the configuration  space. An iter-
ative  strategy  is  also  introduced  that  can  generate  a  desired  number  of
clusters by merging objects of closely reachable clusters from a previous
level in the present level using a unique auxiliary CA. Finally, the perfor-
mance  of  our  algorithm  is  measured  using  some  standard  benchmark
validation  indices  and  compared  with  existing  well-known  clustering
techniques.  It  is  found  that  our  algorithm  is  at  least  on  a  par  with  the
best  algorithms  existing  today  on  the  metric  of  these  standard  valida-
tion indices. 

Keywords: reversible cellular automata; reachability; large length cycle; 
iterative level-wise clustering; connectivity; silhouette score; Dunn index

Introduction1.

A  cluster  is  a  collection  of  similar  objects  that  are  also  close  to  each
other.  The  closeness  between  any  two  target  objects  is  measured  by
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the  feature-based  distances  between  them.  The  clustering  technique  is
a  well-studied  research  topic  [1–3]  with  the  aim  of  effectively  dis-
tributing  the  target  objects  (data  records)  among  the  clusters.  A  clus-
ter  also  establishes  an  intrinsic  connection  among  the  objects.  This
connectivity  leads  us  to  think  of  cellular  automata  (CAs)  as  natural
clusters.

A  clustering  can  be  represented  as  a  bijective  function  A :D⟶D,
where D is a (finite)  domain of objects to be clustered. Two elements

x  and  y  are  close  to  each  other  with  respect  to  A  if  Ak1 (x)  y,

Ak2 (y)  x for some k1, k2 ∈ ℕ. On the other hand, two elements x, z

are  not  close  with  respect  to  A  if  Ak(x) ≠ z  (or,  Ak′ (z) ≠ x)  for  some
k, k′ ∈ ℕ. In a cellular automaton (CA), a configuration  space can be
represented as the union of disjoint cyclic subspaces where each cycle
connects  configurations  that  are  reachable  from  each  other.  This
“reachability”  is  the  key  to  clustering  with  CAs  because  reachable
configurations  form  cycle(s).  Therefore,  CAs  can  act  as  a  function
that  maintains  a  bijective  mapping  among  the  configurations  (target
objects)  of  a  cycle  (cluster).  Two  configurations  (objects)  are  close  to
each  other  if  they  are  reachable;  that  is,  if  they  are  part  of  the  same
cycle  (cluster).  Moreover,  a  change  in  the  state  of  a  CA  cell  is  influ-
enced  by  its  neighboring  cells.  This  locality  property  influences  the
gathering of similar objects. The number of state changes in a configu-
ration can only affect those configurations  that are in the same cycle.
So  the  smallest  change  in  a  cell’s  state  within  a  cycle  guarantees  that
feature-based distances among the target objects of each cluster are as
small as possible. Therefore, similar objects in a CA are close to each
other and gathered into the same cycle. In this way, a (reversible) CA
can work as a natural clustering tool. 

This paper uses reversible nonuniform CAs as the proposed model.
An object is represented by a set of features, so the CA used for clus-
tering  is  finite.  Hereafter,  if  not  otherwise  mentioned,  by  “CA”  we
mean  a  reversible  nonuniform  CA  of  finite  size  under  null-boundary
conditions  that  uses  Wolfram’s  rules  [4].  Moreover,  each  feature
value  is  to  be  mapped  into  a  binary  string.  By  appending  all  these
feature  values  in  binary  form,  a  binary  string  of  length  n  is  formed
that we call a useful configuration. For the same object, several useful
configurations  can  be  formed  if  the  ordering  of  features  is  changed.
This reordering of features for the given objects guides us to use differ-
ent  CAs  to  cluster  the  same  set  of  objects,  depending  on  the  useful
configuration. 

Ideally,  a  CA  of  size  n  distributes  2n  configurations  among  m
cycles  where  m  ranges  from  1  to  2n.  To  an  extreme  degree,  a  CA-
based  clustering  can  attract  all  target  objects  into  one  cluster  or  dis-
tribute  them  among  m  clusters  where  the  number  of  target  objects  is
m (≤2n)—neither of which is desirable for good clustering. Therefore,
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a  CA  is  said  to  be  effective  for  clustering  if  the  useful  configurations
(objects)  can  be  distributed  among  an  optimal  number  of  cycles
(clusters).  Further,  the  feature-based  distances  among  the  reachable
configurations  of  each  cluster  have  to  be  as  small  as  possible,  such
that the intracluster and intercluster isolation, based on feature space,
are lower and higher, respectively. 

Any  clustering  technique  is  driven  by  two  influencing  factors:  a
smaller  intracluster  distance  and  an  optimal  number  of  clusters.  In
this paper, our primary target is to diagnose these features. Therefore,
the main objective of our basic model is to select CA rules for generat-
ing  CAs  that  are  capable  of  connecting  the  configurations  that  main-
tain  the  minimum  possible  Hamming  distance  (because  binary  CAs
are  considered  for  this  paper).  This  is  possible  if  we  can  select  those
rules that contribute a minimum change in the cell’s state value when
a  transition  occurs  between  configurations.  To  find  significant  rules,
we assign some rank to a CA rule based on its intrinsic self-replicating
property  [5]  (a  cell  restores  its  previous  state).  After  assigning  the
ranks,  we  figure  out  the  proportion  of  significant  rules  for  designing
an n-cell (nonuniform) CA for clustering. Here, n is determined based
on  the  number  of  features  owned  by  the  target  objects,  which  is
always  finite.  However,  consecutive  configurations  of  a  cycle  main-
tain  the  minimum  distance  in  the  feature  space  if  more  significant
rules are applied in an n-cell CA; that is, the same cycle connects simi-
lar objects but it may increase the number of cycles. So clustering can
be  viewed  as  an  optimization  problem  where  there  is  a  tradeoff
between  these  two  facets:  the  number  of  clusters  and  maintaining  a
smaller  intracluster  distance  among  the  objects.  This  guides  us  to
think  about  an  intelligent  arrangement  of  CA  rules  for  generating  an
n-cell candidate CA that is capable of maintaining a smaller intraclus-
ter  distance  among  objects  and  generates  an  optimal  number  of  clus-
ters. We use the framework of a related problem to ensure that a CA
has  a  limited  number  of  cycles—CAs  with  large  length  cycles
(introduced  in  [6]).  A  scheme  is  developed  to  select  significant  rules
(Section 4.1) to guarantee that the configurations  inside a cycle main-
tain  the  minimum  possible  Hamming  distance  for  the  candidate  CA.
Next,  the  proportion  of  significant  rules  for  designing  an  n-cell
(nonuniform)  CA  for  clustering  is  evaluated  to  ensure  an  optimal
number of clusters (Sections 4.2 and 4.3). 

Definitely,  generating  a  CA  for  a  fixed  n  maintaining  a  smaller
intracluster  distance  and  a  limited  number  of  clusters  is  a  very  chal-
lenging  problem;  moreover,  distributing  the  target  objects  among  the
desired number of clusters is difficult  to ensure. The inherent hardness
of  this  problem  motivates  us  to  take  an  iterative  strategy  that  dis-
tributes the target objects into m clusters. The clusters of level i in the
proposed algorithm are generated by merging a set of clusters of level
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i - 1  that  are  closely  reachable  (Section  5).  To  measure  the  quality
(goodness)  of  clusters,  some  benchmark  cluster  validation  indices
(internal) [7] are used. Section 6 presents the performance analysis of
our  proposed  cycle-based  clustering  algorithm  on  some  real  datasets
taken  from  the  UC  Irvine  Machine  Learning  Repository
(archive.ics.uci.edu/ml/index.php).  Finally,  we  compare  our  proposed
algorithm  with  some  traditional  benchmark  clustering  algorithms
such  as  centroid-based  clusterings  and  hierarchical  clusterings  [1,  7].
Our  results  indicate  that  the  performance  of  our  CA-based  clustering
technique  is  at  least  as  good  as  the  best  known  clustering  algorithms
that exist today. This research also discovers that our CA-based clus-
tering  scheme  has  the  characteristic  that  the  arrangement  of  clusters
remains  fixed  even  if  the  ordering  of  the  features  of  a  given  set  of
objects is changed. This property is verified with real datasets. 

Basics of Cellular Automata2.

In  this  paper,  we  use  one-dimensional  three-neighborhood  n-cell  CAs
under  null  boundary  conditions,  where  each  cell  takes  any  of  the

states  S  0, 1.  The  next  state  of  each  cell  is  updated  following  an

elementary  CA  (ECA)  rule.  The  present  state  of  all  cells  at  a  given
time  is  called  the  configuration  of  the  CA.  The  evolution  of  a  CA  is
determined  by  a  global  transition  function  G  such  that  G :C → C

where  C  0, 1n  represents  the  configuration  space.  Hence,  if  the

next configuration  of x  (xi)∀i∈n  is y, then y  G(x) where x, y ∈ C,

y  (yi)∀i∈n  and  xi,  yi  are  the  present  and  next  state  values  of  cell  i,

respectively. Therefore, yi  ℛi(xi-1, xi, xi+1) where ℛi  is the rule cor-

responding  to  cell  i  and  xi-1, xi, xi+1  is  the  neighborhood  combina-

tion  for  cell  i.  This  neighborhood  combination  is  called  the  rule  min
term  (RMT)  and  is  represented  by  its  decimal  equivalent

r  22⨯xi-1 + 21⨯xi + xi+1.  A  rule  vector  ℛ  (ℛ0, ℛ1, … , ℛn-1)  of

length  n  is  used  to  represent  any  arbitrary  n-cell  nonuniform  CA,
where ℛi ≠ ℛj for some i and j.

Table  1  presents  the  rules  in  tabular  form.  Obviously,  there  are

28  256  distinct  rules.  These  rules  are  traditionally  named  by  their
decimal  equivalents.  Because  we  are  using  null  boundary  conditions,

x-1  xn  0.  Therefore,  y0  ℛ00, x0, x1  for  the  first  cell  and

yn-1  ℛn-1xn-2, xn-1, 0 for the last cell. So, for each of these termi-

nal cells, only 24  16 distinct rules are considered as valid. For these
rules,  next  state  values  for  the  present  states  (1,  x0,  x1)  and  (xn-2,

xn-1, 1), respectively, are undefined  and marked as invalid (i) (see, for

example, the first row of Table 1).
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Present State 111 110 101 100 011 010 001 000 Rule 

(i) next state i i i i 1 0 0 1 9 (ℛ0)

(ii) bext state 1 1 1 0 1 0 0 0 232 (ℛ1)

(iii) next state 0 1 0 1 1 0 1 0 90 (ℛ2)

(iv) next state i 0 i 1 i 1 i 0 20 (ℛ3)

Table 1. A four-cell CA (9, 232, 90, 20). 

If ℛi(xi-1, xi, xi+1)  xi  in a CA, the corresponding RMT of rule ℛi
is called a self-replicating RMT. If all RMTs of a configuration  x are
self-replicating, then its next configuration  y is identical to it and they
form a cycle of length one. The number of self-replicating RMTs for a
rule  plays  a  major  role  in  cycle  formation,  determining  the  number
and  lengths  of  cycles.  Let  x, y ∈ C  be  two  configurations  of  the  CA
G. Configuration  y is reachable from configuration  x if there exists an

l1 ∈ ℕ  such  that  Gl1 (x)  y;  otherwise  y  is  not  reachable  from  x.

Similarly,  if  x  is  also  reachable  from  configuration  y,  then  they  are
reachable from each other and they are in the same cycle. These con-
figurations  x  and  y  are  also  called  cyclic  configurations.  Let

Ci ⊆ C  0, 1
n

 be  a  set  of  configurations  such  that  Gl(x)  x,

∀ x ∈ Ci,  where  l ∈ ℕ  and  Ci  l.  Then,  any  x ∈ Ci  is  cyclic  and

reachable from all configurations of Ci. This Ci that connects l config-

urations is called a cyclic space of the CA. 
For instance, in Figure 1, configuration 1100 is reachable from con-

figuration  1111  but  not  reachable  from  configuration  0111.  More-
over, the configurations  1100, 1110 and 1111 are reachable from one
another since they form a cyclic space of length three. A CA is called

Figure 1. Transition diagram of the four-cell reversible CA (9, 232, 90, 20).

reversible  if  all  configurations  are  part  of  some  cyclic  space.  Figure  1
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represents  a  reversible  CA.  Therefore,  the  configuration  space  of  any
reversible CA can be represented as a collection of cyclic spaces. 

We  use  the  methodology  described  in  [8]  to  synthesize  an  n-cell
reversible  CA.  For  ease  of  reference,  the  table  describing  the  class
information  of  the  participating  rule  ℛi,  0 ≤ i ≤ n - 1,  is  reproduced

here as Table 2. The generation of an n-cell reversible CA is guided by
the rule of cell i and the class information of the rule of cell i + 1 (see
[8] for more details). Example 1 illustrates the process of synthesis. 

Example 1.  Let  us  design  a  four-cell  reversible  CA.  To  select  an
arbitrary  ℛ0,  the  first  column  of  Table  2(b)  is  taken  into  consider-

ation.  Select  rule  9  as  ℛ0  from  Table  2(b)  (the  third  row  and  first

column of Table 2(b)). Since the class information of the rule next to
rule 9 is class III (the second column and third row of Table 2(b)), ℛ1
can be any rule from the pool of CA rules in class III from Table 2(a).
Select  rule  232  as  ℛ1  (the  first  column  of  Table  2(a)  for  rule  232  is

Class of ℛi ℛi Class of ℛi+1
I 51, 204, 60, 195 I

85, 90, 165, 170 II

102, 105, 150, 153 III

53, 58, 83, 92, 163, 172, 197, 202 IV

54, 57, 99, 108, 147, 156, 198, 201 V

86, 89, 101, 106, 149, 154, 166, 169 VI

II 15, 30, 45, 60, 75, 90, 105, 120, I

135, 150, 165, 180, 195, 210, 225, 240

III 51, 204, 15, 240 I

85, 105, 150, 170 II

90, 102, 153, 165 III

23, 43, 77, 113, 142, 178, 212, 232 IV

27, 39, 78, 114, 141, 177, 216, 228 V

86, 89, 101, 106, 149, 154, 166, 169 VI

IV 60, 195 I

90, 165 IV

105, 150 V

V 51, 204 I

85, 170 II

102, 153 III

86, 89, 90, 101, 105, 106, VI

149, 150, 154, 165, 166, 169

VI 15, 240 I

105, 150 IV

90, 165 V

Table 2. (a) Class relationship of ℛi and ℛi+1.
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Rules for ℛ0 Class of ℛ1

3, 12 I

5, 10 II

6, 9 III

Rule Class for ℛn-1 Rule Set for ℛn-1

I 17, 20, 65, 68

II 5, 20, 65, 80

III 5,17, 68, 80

IV 20, 65

V 17, 68

VI 5, 80

(b) First rule table. c) Last rule table.

Table 2. Rules to generate a reversible CA.

class  III).  Now,  the  third  column  and  the  row  corresponding  to
rule�232  in Table  2(a)  is  class IV;  therefore,  ℛ2  is  to  be selected  from

class  IV  in  the  first  column  of  Table  2(a).  By  repeating  the  same
process, we choose rule 90 as ℛ2. Therefore, rule ℛ3  is from class IV.

However,  because  this  is  the  last  rule,  we  need  to  select  this  rule
from�Table�2(c).  Let  ℛ3  be  20  (second  column  and  fourth  row

of�Table�2(c)).  Therefore,  the  reversible  CA  is  (9,  232,  90,  20)  (see
Figure 1). 

Next,  our  aim  is  to  explain  the  significance  of  reversible  CAs  as  a
clustering  tool.  First,  we  focus  on  how  the  cyclic  spaces  of  reversible
CAs  can  be  used  as  natural  clusters.  Next,  we  figure  out  the  signifi-
cant CA rules for effective clustering. We also observe that two differ-
ent CAs of the same size can identically cluster a given dataset. 

The Mapping between Cellular Automata and Clustering3.

We  discussed  earlier  that  clustering  can  also  be  viewed  as  a  bijective
mapping where a set of target objects is exclusively in a unique cluster
if the objects are close. Since our focus is on using CAs for clustering,
each target object first  needs to be mapped to a configuration.  To do
that, data discretization should be done effectively.

The Encoding Technique3.1

Let    {X1, X2, … , Xk}  be  the  set  of  target  objects  that  are  to  be

distributed  among  m  clusters  and  A1, A2, … , Ap  are  p  distinct

attributes  (features)  of  the  objects,  where  each  Aj  represents  a  finite

set of t values. Depending on these values, the corresponding attribute
is  called  quantitative  or  qualitative.  Since  we  use  binary  CAs  as  our
tool,  each  object  (X)  is  converted  into  a  binary  string  x  (where
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x ∈ 0, 1n  and  n ∈ ℕ).  Now,  let  X  x1x2… xp  where  xj ∈ Aj.  To

maintain  a  smaller  intracluster  distance  based  on  the  feature  space,
the  configurations  having  more  similarity  in  their  features’  space
(attributes’  values)  should  be  reachable  from  each  other.  The  Ham-
ming  distance  [1]  is  taken  into  consideration  for  measuring  the  simi-
larity.  Next,  we  show  the  role  of  Hamming  distance  in  designing  the
encoded target objects.

If Aj  is a quantitative attribute, the range can be partitioned into v

closed  intervals  such  that  Aj  can  be  represented  as  an  ordered  (either

ascending  or  descending)  list  of  elements.  Frequency-based  encoding
[9]  is  used  for  each  Aj;  therefore,  each  interval  can  be  encoded  as  a

binary  string  of  length  v - 1  to  maintain  a  minimum  Hamming  dis-
tance. Let the first  interval be represented as a binary string such that

0v-1;  the  next  interval  is  represented  by  0v-21.  Obviously,  the  Ham-

ming  distance  between  0v-1  and  0v-21  is  one  and  the  values  repre-
sented  by  the  first  interval  are  closest  to  the  second  interval  with
respect to other intervals. To maintain such a feature in the representa-
tion  of  the  encoded  objects,  the  encoding  function  M  can  be
designed�as 

M(a)  0v-i1i-1 (1)

where a ∈ ai1
, aik
 and ai1

, aik
 is the ith  interval of Aj. In this paper,

for  each  quantitative  feature  Aj,  v  is  set  to  three;  therefore,  two  bits

are needed to encode any value from Aj. Using equation (1), the three

intervals are represented as 00, 01 and 11.
By  considering  Aj  as  a  qualitative  attribute,  M(a)  (a ∈ Aj)  can  be

redesigned  in  the  following  manner:  let  Aj  {a1, a2, … , au},  then

each element of Aj  is represented as a binary string of length u where

there  is  only  one  1  at  some  unique  position.  Let  a  be  the  ith  element
of Aj that has the value 1; then M(a) can be represented using 

M(a)  0i-110u-i. (2)

So  the  Hamming  distance  between  any  pair  of  elements  for  such  a
qualitative Aj is always fixed, that is, two.

Using  the  encoding  techniques  of  quantitative  and  qualitative
attributes,  a  target  object  with  p  features  (where  pqn

 and  pql
 are  the

count  of  quantitative  and  qualitative  attributes,  respectively  [2])
is�mapped  to  a  configuration  of  an  n-cell  CA.  Here,  n  can  be  com-
puted�as 

n  v - 1 * pqn
 + u1 + u2 +⋯ + upql


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where Ai  ui  (∀ i)  and Ai  is  a  qualitative  attribute.  Assume  that

v  3.  In  this  way,    is  mapped  to  a  set  of  useful  configurations  for
clustering  that  is  a  proper  subset  of  C.  Let    denote  the  set  of  useful
configurations  and  M : →   such  that  M  is  surjective.  Therefore,
 <   and  the  clustering  operation  is  actually  performed  on  a
smaller  number  of  objects.  Moreover,  the  maximum  count  of    can
also  be  computed.  If  all  the  attributes  are  quantitative,  then

n  v - 1 * p; so  ≤ vp. Otherwise,  ≤ vpqn *∏i1

pql ui. 

Example 2. Take a hypothetical set of books, where each book is identi-
fied  by  three  attributes:  number  of  pages,  ratings  by  reviewers  and
type  of  binding.  The  first  two  attributes  are  continuous,  whereas  the
last  one  is  categorical.  Table  3  shows  the  detailed  encoding  scheme
for  10  such  objects  into  CA  configurations.  Here,  the  categorical
(qualitative)  attribute  values  are  encoded  as  01  (hard)  or  10  (soft).
The  continuous  (quantitative)  attribute  values  are  divided  into  three
subintervals  to  be  represented  by  00,  01  and  11,  respectively.  For

example,  ratings  values  are  divided  into  subintervals  2.6, 4,  4.5, 7

and  8, 9.5  depicted  by  00,  01  and  11,  respectively.  Therefore,  each

object is mapped to a six-bit string that can be shown as a configura-
tion of a six-cell CA. 

Continous Attribute
Categorical
Attribute

Object
ID

Number of 
Pages Encoding Ratings Encoding

Binding
Type Encoding

Encoded
CA

1 300 01 9 11 hard 01 011101

2 325 11 8 11 soft 10 111110

3 40 00 9.5 11 soft 10 001110

4 200 01 4 00 hard 01 010001

5 129 01 4.5 01 soft 10 010110

6 65 00 7 01 hard 01 000101

7 319 11 6.8 01 soft 10 110110

8 110 00 3 00 soft 10 000010

9 400 11 2.6 00 soft 10 110010

10 350 11 9.3 11 soft 10 111110

Table 3. Encoding a set of hypothetical books into CA configurations.

Example  2  mainly  depicts  the  data  encoding  technique.  Let    be
the  set  of  target  elements  such  that  Ci⋂Cj  ∅  (∀ i, j  and  i ≠ j).

Now,  each  Ci  can  be  formed  using  a  unique  cyclic  space  of  a  CA.

Next,  we  present  how  the  inherent  cyclic  structure  of  CAs  can  con-
nect close objects naturally into the same cluster. 
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Natural Clusters: Cycles of Reversible Cellular Automata3.2

Since  reversible  CAs  can  also  be  represented  as  a  bijective  mapping,
the closeness property of clustering can be defined  by the reachability
property of reversible CAs: two configurations  x and y are said to be

close if x, y ∈ Ci ⊂  such that Gl1 (x)  y and Gl2 (y)  x for some l1,

l2. Similarly, if z is not reachable from x, then obviously, x is also not

reachable  from  z  and  they  are  also  not  close  to  each  other  because
x ∈ Ci  and  z ∈ Cj  where  i ≠ j.  In  this  way,  a  CA  can  place  a  set  of

close objects (configurations)  into one cluster (cycle) that is not reach-
able  from  the  remaining  objects  (configurations).  Thus,  the  cyclic
spaces of CAs can be used as natural clusters.

Example 3.  Consider  clustering  the  following  data  objects  (configur-
ations): 1100, 1110, 0100, 0110 and 0101. Each object is represented
by  a  four-bit  binary  string,  so  a  binary  CA  of  size  four  can  act  as  a
clustering tool. We will use a four-bit CA (9, 232, 90, 20) for this pur-
pose.  This  CA  distributes  the  objects  among  two  clusters  where  the

first  one  represents  1100, 1110  because  1100  is  reachable  from

1110  and  1110  is  also  reachable  from  1100.  Similarly,  the  second

cluster is formed as 0100, 0110, 0101. 

However,  by  changing  the  CA,  the  same  data  objects  can  be  clus-
tered  into  different  arrangements—the  distribution  of  the  target
objects as well as the number of clusters can be changed. For instance,
use  the  CA  (9,  23,  90,  20)  for  clustering  the  same  set  of  objects

1100, 1110, 0100, 0110, 0101.  The  only  change  in  the  latter  CA

compared  to  the  former  is  that  ℛ1  is  changed  to  23  from  232.  Fig-

ure�2 explains how the clustering is done using CA (9, 23, 90, 20). In
this  CA,  0101  is  separated  from  the  remaining  2n - 1  configurations,
which form another cycle. Therefore, the target objects are distributed
into two clusters in the following way: the first  cluster connects 1100,
1110,  0100  and  0110,  whereas  the  second  is  formed  by  only  0101.
This shows that, even though both CAs make a minimal change in the
rule  vector  and  form  two  clusters  for  the  given  objects,  the  arrange-
ment  is  different.  For  the  CA  (9,  232,  90,  20),  0100  and  0110  are  in
the second cluster and it is separated from the other cluster consisting

of  1100, 1110,  but  using  the  CA  (9,  23,  90,  20)  all  of  these

objects—1100, 1110, 0100 and 0110 are in the same cluster. Because
a  CA  can  be  viewed  as  a  unique  bijective  function,  the  connectivity
among  the  configurations  can  be  changed  even  if  a  small  change
occurs  (at  least  one  participating  rule  changes)  in  the  given  rule
sequence  of the  CA.  For example,  let  x  x0x1… xi-1xixi+1… xn-1  be

a  configuration  of  an  n-cell  CA  G1  such  that  G1(x)  y1.  Let  ℛi  be

the  rule  at  cell  i  of  the  given  CA  such  that  ℛi(xi-1xixi+1)  x.
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Consider  another  CA  G2  of  the  same  size  n  and  let  ℛi
′
 be  the  ith  rule

of G2. If ℛi
′(xi-1xixi+1)  x′ ≠ x, then y1 ≠ y2 where G2(x)  y2. Defi-

nitely, y1  is reachable from x in one step using G1, whereas y1  is not

reachable  from  x  in  one  step  if  we  use  G2.  However,  it  may  be

reached  from  x  if  G2
k(x)  y1  for  some  k ∈ ℕ.  That  is,  x,  y1  and  y2

can  be  part  of  the  same  cyclic  space.  Since  all  configurations  inside
the same cyclic space form the same cluster, similar clustering may be
formed even if different CAs are used. 

Let G1  and G2  be two CAs and  be the set of target objects such

that   ⊂ C.  Let  the  clustering  done  by  G1  and  G2  be

  C1
1⋃C2

1⋃⋯⋃Cm
1

 and    C1
2⋃C2

2⋃⋯⋃Cm
2 ,  respectively,

where Ci
j
 and Ci′

j
 are disjoint sets for any i ≠ i′. Now, two clusters Ci

1

and  Cj
2

 are  called  identical  clusters  if  Ci
1  Cj

2.  If  for  each  Ci
1

1 ≤ i ≤ m, there is an identical cluster Cj
2, then G1  and G2  are called

equivalent clustering CAs with respect to the set of target objects . 

Figure 2. Transition diagram of the four-cell reversible CA (9, 23, 90, 20).

Example 4.  Consider  clustering  the  following  data  objects
(configurations):  0100,  1001,  0001,  1011  and  0101.  For  G1  use  the

four-bit  CA  (9,  232,  90,  20)  where  C1
1  0100, 1001, 0001, 1011

and  C2
1  0101.  For  G2  use  the  four-bit  CA  (9,  23,  90,  20)  to  get

the  clusters  C1
2  0100, 1001, 0001, 1011  and  C2

2  0101.  Since

C1
1  C1

2
 and  C2

1  C2
2,  each  pair  represents  identical  clusters  and  the

two CAs (9, 232, 90, 20) and (9, 23, 90, 20) are said to be equivalent
clustering  CAs  with  respect  to  the  given  set  of  data  objects

0100, 1001, 0001, 1011, 0101. 

It  is  clear  from  the  discussion  that  the  same  set  of  objects  can  be
distributed  among  clusters  in  multiple  ways  even  if  different  CAs  are
used—sometimes, in a similar arrangement among the clusters; some-
times,  in  the  same  number  of  clusters  but  different  arrangements.  It
can  also  be  noted  that  the  objects  can  be  distributed  among  different
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numbers of clusters using dissimilar arrangements. So, out of all those
possible arrangements, we need to figure  out which is the most appro-
priate  reversible  CA  for  a  given  dataset.  Such  a  CA  contributes  to
effective clusters. In the next section, the goal is to figure  out the sig-
nificant CA rules for designing effective clustering. 

Clustering Using Reversible Cellular Automata4.

A CA is significant  for effective clustering if it maintains the following
necessary conditions: (i) all cells follow CA rules that contribute a rea-
sonable number of self-replicating RMTs and (ii) the number of cycles
is limited. First, the target is to identify CA rules that help reduce the
intracycle  distance  (Hamming  distance)  among  the  configurations
based  on  feature  space  by  maintaining  a  reasonable  number  of  self-
replicating RMTs.

Cellular Automata Rules That Maintain Minimum Intracluster 
Distance

4.1

For our present objective, we need to select CA rules that make mini-
mal  changes  during  state  transition.  Ideally,  it  is  desired  that
fi(xi-1, xi, xi+1)  xi  for  any  value  of  i  and  any  combination  of

xi-1xixi+1. The intrinsic property of such an n-cell CA is that each cell

follows a special rule where all RMTs are self replicating—this is rule
204.  However,  an  n-cell  CA  with  only  rule  204  is  not  effective
because the number of clusters is 2n where each object forms a unique
cluster. Therefore, we want to rank a rule based on the number of its
self-replicating  RMTs  when  used  in  designing  the  rule  vector  of  a
reversible  CA.  Our  objective  is  to  determine  significant  rules  and  the
proportion  of  high-ranked  rules  for  designing  clusters  of  objects  that
maintain  smaller  intracluster  distances.  To  detect  such  rules,  we  rank
each  rule  in  Table  2.  This  rank  determines  how  a  rule  can  act  as  an
influencing  factor for designing a cluster with more similar (less Ham-
ming distance) data.

Because  balanced  rules  are  used  for  reversible  CAs,  each  rule
follows  an  even  number  of  self-replicating  RMTs  (0,  2,  4,  6  and  8).
We rank these CA rules into five  categories based on the contribution
of  self-replicating  RMTs  (the  contribution  is  measured  by  the  ratio
of�the  number  of  self-replicating  RMTs  with  the  total  number  of
RMTs).  Table  4  presents  the  rank  of  rules  depending  on  the  number
of  self-replicating  RMTs.  Column  1  of  Table  4  refers  to  the  rank  of
the corresponding rule. We can see that rule 204 is ranked first,  but it
was  mentioned  earlier  that  if  rule  204  is  applied  to  every  cell  of  an
n-cell CA, then each target object belongs to a unique cycle. This also
means  that  rule  204  distributes  similar  objects  into  different  clusters,
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which  is  not  desirable.  Moreover,  rule  51  is  the  least  significant  rule
for clustering, with a rank of 5. If rule 51 is applied at every cell of a
CA of size n, then each cluster considers only a pair of configurations
with  Hamming  distance  n.  Therefore,  we  need  to  select  rule  204  for
as many cells as possible and the opposite strategy should be used for
rule  51.  However,  CAs  with  only  rules  204  and  51  are  not  effective
for clustering. Hence, to design clusters of objects with a smaller intra-
cluster  distance,  we  take  the  following  strategy  of  choosing  rules  for
synthesizing a reversible CA: 

Discard all rules with ranks 4 and 5 (i.e., less than four self-replicating
RMTs)  from  Table  2.  Seventeen  rules  are  discarded  by  this  condition:
(51,  53,  58,  83,  163,  54,  57,  99,  147,  23,  43,  113,  178,  27,  39,  114,
177) reducing the rule space to 45. 

1.

For  the  n - 2  nonterminal  cell  positions  (cell  1  to  cell  n - 2),  at  most
50% of rules with rank 2 (six self-replicating RMTs) are to be selected. 

2.

  Contribution of Self-

Rank ℛi  Cell Position (i ∈) Replicating RMTs 

1 12 0 100% 

204 [1, n - 2]

68 n - 1

2 92, 172, 197, 202, [1, n - 2] 75% 

108, 156, 198, 201,

77, 142, 212, 232,

78, 141, 216, 228

3 6, 9, 5, 10 0 50%

86, 89, 101, 106, [1, n - 2] 

149, 154, 166, 169,

30, 45, 75, 120,

135, 180, 210, 225,

90, 105, 150, 165,

85, 170, 102, 153, 

60, 195, 15, 240 

5, 20, 65, 80 n - 1 

4 53, 58, 83, 163, [1, n - 2] 25% 

54, 57, 99, 147,

23, 43, 113, 178,

27, 39, 114, 177

5 3 0 0% 

51 [1, n - 2]

17 n - 1 

Table 4. Ranking of CA rules based on the number of self-replicating RMTs. 
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Example  5  explains  how  this  can  be  effective  for  maintaining  a
smaller intracluster distance. 

Example 5. Consider a hypothetical dataset where each object is identi-
fied  by three quantitative features A1, A2  and A3. Since v  3, n  6.

Set the total number of target objects to 50. After encoding, let those
50 objects be mapped to 10 useful configurations  and let the configu-
rations  be:  111100,  111111,  111101,  011011,  011000,  011001,
001100, 001101, 001011 and 001001. A six-bit CA (6, 232, 60, 197,
105, 17) is designed using the given strategy to perform clustering on
those  10  configurations.  Based  on  this  CA,  these  10  configurations
belong to six different cycles that result in the target objects being dis-
tributed over six clusters. The clustering is done in the given manner:
cluster  1  contains  111100  and  111111,  whereas  cluster  2  keeps  the
configuration  111101; similarly, clusters 3 and 4 present the configu-

rations  011011, 011 000  and  011001,  respectively.  Cluster  5

refers  to  001100, 001101  and  cluster  6  has  the  configurations

001011 and 001001. Out of these six clusters, four of them store two
configurations  in  each  cluster  and  each  of  the  remaining  two  clusters
contains  only  one  configuration.  We  can  observe  that  each  cluster
includes  configurations  where  state  values  differ  only  at  two  posi-
tions—cells  5  and  6,  meaning  that  target  objects  have  close  values
with respect to features 1 and 2. In this way, a smaller intracluster dis-
tance is maintained in the resultant clustering. 

Example  5  shows  that  the  above-mentioned  scheme  can  guarantee
distributing similar objects into the same cluster but it cannot restrict
the  number  of  clusters  (cycles).  Next,  we  focus  on  the  design  of  CAs
with a limited number of cycles. 

Designing Cellular Automata with Optimal Number of Clusters4.2

It is obvious from the discussion so far that the consecutive configura-
tions  of  a  cycle  maintain  the  minimum  distance  in  feature  space  if
more significant  rules are used in an n-cell CA. That is, the same cycle
connects  similar  objects.  However,  it  may  increase  the  number  of
cycles. So, there is a tradeoff between these two aspects of the cluster-
ing  technique—maintaining  a  smaller  number  of  cycles  (clusters)  and
a  smaller  intracluster  distance  among  the  objects;  that  is,  configura-
tions  with  smaller  Hamming  distances  are  in  the  same  cycle.  In  this
section,  we  discuss  a  technique  to  generate  CAs  with  a  limited  num-
ber  of  cycles;  that  is,  more  configurations  can  be  placed  on  the  same
cycle.  This  requirement  matches  the  problem  of  generating  CAs  with
a large number of cycles, as studied in [6]. For ease of understanding,
we briefly recall the idea.

A CA is expected to have a large cycle length if its rules depend on
both  the  left  and  right  neighbors.  To  measure  this  dependence,  a
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parameter  P,  called  the  degree  of  dependence  on  both  of  the  neigh-
bors,  is  defined  to  determine  how  much  a  cell  depends  on  its  neigh-
bors for updating its state. For a rule ℛi, P(ℛi)  Pr(ℛi) * Pl(ℛi). Here,

Pr(ℛi)  (resp.  Pl(ℛi))  is  the  degree  of  right  (resp.  left)  dependence,

defined  as the ratio of the number of combinations of values of xi and

xi-1  (resp.  xi+1)  for  which  the  next  state  function  on  xi  depends  on

xi-1  (resp.  xi+1).  Evidently,  P(ℛi)  can  take  values  0,  0.25,  0.5  or  1.

Based  on  these  values,  the  rules  of  reversible  CAs  are  classified  into
four  categories:  completely  dependent,  partially  dependent  (P  0.5),
weakly dependent (P  0.25), and independent (P  0) (see Table 5).
It is observed that in a CA with large cycle lengths, a majority of the
participating  rules  are  from  the  completely  dependent  category,  some
are  from  the  partially  dependent  category  and  a  few  are  from  the
weakly  dependent  category,  whereas  none  are  from  the  independent
category. See [6] for a more detailed discussion. 

Category ℛi 

completely dependent 90, 165, 150, 105

partially dependent 30, 45, 75, 120, 135, 180, 210, 225, 86, 
89, 101, 106, 149, 154, 166, 169 

weakly dependent 92, 172, 197, 202, 108, 156, 198, 201, 77, 
142, 212, 232, 78, 141, 216, 228, 53, 58, 
83, 163, 54, 57, 99, 147, 23, 43, 113, 178, 
27, 39, 114, 177

independent 51, 85, 170, 102, 153, 60, 195, 15, 240, 204

(a) Categories of reversible CA rules.

Category ℛ0 ℛn-1 

completely dependent 5, 6, 9, 10 5, 20, 65,80 

independent 3, 12 17, 68

(b) Categories of ℛ0 and ℛn-1.

Table 5. Categories of reversible CA rules on the parameter P.

Obviously,  following  the  strategy  mentioned  in  Section  4.1,
16�rules  from  the  weakly  dependent  category  and  all  10  rules  from
the  independent  category  are  rejected  for  clustering  purposes  because
they  produce  more  pairs  of  configurations  with  high  Hamming  dis-
tances.  So  the  remaining  36  (for  cell  1  to  n - 2)  rules  are  significant
for  designing  CAs  that  result  in  effective  clustering.  These  are  the
16�rules  of  the  weakly  dependent  category  with  rank  2  and  the  rules
of  completely  dependent  and  partially  dependent  categories  with
rank�3. In the next section we proceed to our clustering technique. 
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Cycle-Based Clustering 4.3

As  already  discussed,  the  clusters  are  nothing  but  the  cycles  of  CAs,
so  we  call  our  CA-based  clustering  technique  cycle-based  clustering.
Such  clustering  not  only  maintains  the  cycles  of  the  configurations
with smaller Hamming distances, but also ensures that the number of
cycles  in  the  CA  does  not  grow  exponentially  with  CA  size.  More-
over,  the  synthesis  scheme  of  generating  significant  CAs  also  works
with a reduced ruleset. The steps of our proposed clustering technique
using such a CA are stated as follows:

◼ Step  1.  Based  on  the  types  of  attributes  (equation  (1)  for  quantitative
and  equation  (2)  for  qualitative),  the  target  objects  of    are  encoded
into the set of n-bit useful configurations that is denoted by . 

◼ Step  2.  Randomly  choose  an  arbitrary  CA  ℛ  of  size  n  that  maintains
rules  at  all  cells  from  a  set  of  rank  3  that  are  either  completely  depen-
dent  or  partially  dependent  and  at  most  one  rule  from  the  weakly
dependent category with rank 2. 

◼ Step 3. Let the set of remaining objects (configurations)  to be clustered
be ′. Initially, ′  . Set k  1. 

◼ Step  4.  Let  Ck  represent  those  configurations  that  are  close  to xi  such

that Ck ⊂ ′
 and xi ∈ ′. Set Ck  Ck ⋃ xi  and ′  ′ \Ck. Increment k

by 1. 

◼ Step  5.  Continue  step  4  until  all  the  configurations  are  clustered  such
that  ′  ∅  and C1 ⋂ C2 ⋂⋯⋂ Cm  ∅,  where  m  is  the  number  of

clusters. 

We illustrate the process using an example. 

Example 6.  Consider  the  Iris  dataset  from  UCI  Machine  Learning
repository  (archive.ics.uci.edu/ml/index.php,  see  Table  6)  where

  {X1, X2, … , X150};  that  is,    150.  There  are  four  quantita-

tive  attributes  pqn
;  therefore,  n  can  be  computed  as  n  2 *pqn

 

2 * 4  8  and  using  the  encoding  function  (mentioned  in  equa-
tion�(1)),  each  target  object  is  mapped  to  a  useful  configuration  and
ultimately, these 150 are represented by only 24 configurations.  Here,
 can be represented as {x1, x2, … , x24}, where,

x1  00110000, x2  10111011, x3  00000000, x4  11001110, 

x5  10110000, x6  10101111, x7  00100000, x8  11111011, 

x9  11001010, x10  10111111, x11  10001011, 

x12  10001110, x13  00001010, x14  10001010, 

x15  11101010, x16  11001111, x17  10101010, 

x18  11111111, x19  11111010, x20  11101110, 

x21  11101111, x22  10101011, x23  10001111 and 

x24  00001011. 
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Name p pqn

 

pql  
Target 
Objects CA Size (n) 

Objects with
Missing Terms

Iris 4 4 0 150 8 0

User Knowledge 
Modeling 

5 5 0 403 10 0

BuddyMove 6 6 0 249 12 0

Seed 7 7 0 210 14 0

StoneFlakes 8 8 0 79 16 6

Heart failure clinical 
records 

12 12 0 299 19 0

Wholesale Customers 8 6 2 440 16 0

Table 6. Description of real datasets used for the proposed CA-based cluster-
ing technique. 

Consider ℛ as (10, 45, 156, 86, 90, 165, 150, 65) by following the
strategy  mentioned  in  step  2.  Initially,  ′    and  let  m  1.  Let
x1  00 110000 ∈ ′ be taken to figure  out which remaining configu-

rations from ′  are close to x1. Out of 23 configurations,  only config-

uration  00100000  is  close  to  x1.  Therefore,  C1  {x1, x7}  and  ′  is

updated to ′\C1  such that ′  22. Next, x2  10111011 is chosen

from  ′;  we  can  see  that  the  configurations  00000000,  00001010,
10101111  and  10001011  are  close  to  x2.  Therefore,  cluster  C2  con-

sists  of  five  configurations  {x2, x3, x13, x6, x11}  and  ′  is  updated ��o

′ \C2 such that ′  17. In the same way, the remaining 17 configu-

rations  of  ′  are  distributed  among  two  clusters  such  that  one  clus-
ter  is  C3 {x19, x9, x15, x17, x4, x21, x23, x18, x24, x16, x12, x22, x10}

and  another  is  C4  {x5, x8, x14, x20}.  Therefore,  these  150  target

objects  represented  by  24  configurations  are  distributed  among  four
clusters by our algorithm. 

Example  6  confirms  that  our  clustering  technique  not  only  main-
tains a smaller intracluster distance, but it is also capable of distribut-
ing  the  target  objects  among  a  limited  number  of  clusters.  Therefore,
the cycle-based clustering is an effective technique for clustering. How-
ever,  sometimes,  there  is  a  requirement  that  the  target  objects  be  dis-
tributed among a desired number of clusters. To deal with that issue,
we modify our proposed technique by introducing the use of multiple
CAs;  the  revised  technique  is  an  iterative  level-wise  approach  that
uses multiple levels and cycle-based clustering at every level. 

Iterative Cycle-Based Clustering for a Desired Number of Clusters5.

It has already been established that CAs can perform effective cluster-
ing  using  their  cyclic  space,  but  sometimes  it  is  difficult  to  find  a  CA
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that  can  distribute  the  objects  into  a  desired  number  of  clusters.  To
solve  this  problem,  we  opt  for  a  level-wise  iterative  clustering  tech-
nique  where  at  every  level  the  number  of  clusters  is  reduced  to  reach
either  the  desired  number  of  clusters  or  the  optimal  number  of
clusters  for  the  given  dataset.  So,  we  reformulate  our  technique  for
clustering  using  the  candidate  CAs.  It  was  already  reported  that  any
arbitrary  CA  is  not  acceptable  as  a  candidate;  the  participating  CAs
must follow the conditions discussed in Sections 4.1 and 4.2:

◼ Property 1. Participating CAs of size n maintain rules at all cells from a
subset of rank 3 and at most one rule from rank 2. 

◼ Property  2.  Our  technique  converges  by  merging  the  clusters.  To  do
that, a hierarchy of levels has to be maintained. 

◼ Property  3.  Only  closely  reachable  clusters  of  level  i - 1  are  to  be
merged to generate the updated clusters of level i. 

Let M() be the set of encoded target objects where M() ⊂ C and
  {X1, X2, … , Xk}  is  the  set  of  target  objects.  For  any  particular

ordering of the features, these encoded target objects are a set of use-
ful configurations  . Let M()    k′  where k′ ≤ k. At any level,
a  useful  configuration  x ∈   is  a  member  of  a  distinct  cluster  c  (a  set
of encoded target objects) such that ⋃c  . 

Let mi  be the number of primary clusters at level i. For level 0, the

primary  clusters  are  c1
0, c2

0, … , cm0

0 ,  where  each  cluster  is  a  singleton

set.  Therefore,  k′  m0.  In  general,  for  any  level  i,  the  primary  clus-

ters are c1
i , c2

i , … , cmi

i . To form these primary clusters of level i from

level  i - 1,  a  CA  of  size  n  is  selected  uniformly  random  without
replacement  from  a  pool  of  candidate  CAs  maintaining  Property  1.
This  process  is  maintained  at  every  level  i.  Such  a  CA  is  named  an
auxiliary CA. This CA plays a major role in clustering. First, we need
to  compute  the  number  of  auxiliary  clusters  of  such  a  CA,  which  the
target configurations k′ strictly belong to. 

Definition 1. Let x be a useful configuration and G :C ↦ C be an auxil-
iary CA. If x ∈ Cj  where Cj ⊂ C is a cyclic space of G, then x strictly

belongs to the auxiliary cluster Cj. 

Let the useful configurations  strictly belong to m′
 number of auxil-

iary  clusters  C1
i , C2

i , … , Cm′
i

 of  level  i.  Our  second  step  is  to  follow

Property  2,  that  is,  merge  the  primary  clusters  c1
i-1, c2

i-1, … , cm0

i-1
 of

level  i - 1  using  these  auxiliary  clusters  to  get  the  resultant  primary
clusters of level i where mi ≤ mi-1. However, these clusters cannot be

merged  arbitrarily;  a  pair  of  primary  clusters  can  be  merged  depend-
ing on their degree of membership of participation. 
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Definition 2. Let  cj
i-1

 be  a  primary  cluster  of  level  i - 1  where

cj
i-1  vj. Let Ct

i
 be an auxiliary cluster of level i. The degree of mem-

bership of participation of cj
i-1

 in Ct
i , denoted by μCt

i , cj
i-1, is defined

as  the  availability  of  configurations  of  cj
i-1

 in  Ct
i .  It  is  computed  as

vj
′  vj  where  vj

′
 refers  to  the  count  of  useful  configurations  from  pri-

mary cluster cj
i-1

 in auxiliary cluster Ct
i . 

The configurations of cj
i-1

 can strictly belong to more than one aux-

iliary cluster. Similarly, Ct
i
 can possess useful configurations  from dif-

ferent  clusters  of  level  i - 1.  Let  cl
i-1

 and  cj
i-1

 be  two  primary  clusters

of level i - 1. These two clusters may be merged if they are necessarily
closely reachable (Property 3). 

Definition 3. Let  cj
i-1,  cl

i-1
 and  cs

i-1
 be  the  clusters  whose  members

strictly belong to Ct
i . Now, clusters cj

i-1
 and cl

i-1
 are said to be closely

reachable in Ct
i
 if 

μCt
i , cj

i-1 - μCt
i , cl

i-1 < μCt
i , cj

i-1 - μCt
i , cs

i-1.

Therefore,  for  every  Ct
i ,  we  can  get  pairs  of  closely  reachable  clus-

ters.  The  degree  of  participation  plays  a  vital  role  for  selecting  the
closely  reachable  clusters,  which  are  then  merged.  Next,  we  discuss
the algorithm in detail. 

Let  c1
0, c2

0, … , cm0

0
 (resp.  c1

i-1, c2
i-1, … , cmi-1

i-1 )  be  the  primary  clusters  of

level  0  (resp.  i - 1)  where  the  count  of  clusters  is  m0  (resp.  mi-1).  Also

let  C1
1, C2

1, … , Cm′
1

 (resp.  C1
i , C2

i , … , Cm′
i )  be  the  auxiliary  clusters  of

level  1  (resp.  i)  where  the  count  of  auxiliary  clusters  is  m′.  For  all  t,

1 ≤ t ≤ m′, compute μCt
1, cj

0 (resp. μCt
i , cj

i-1). For any given cj
0
 (resp.

cj
i-1), find  the auxiliary cluster of level 1 (resp. i) in which it has maxi-

mum  participation,  that  is,  its  degree  of  participation  is  maximum.
Obviously,  for  some  value  of  t,  maximum  participation  of  cj

0
 (resp.

cj
i-1) is in Ct

1
 (resp. Ct

i . 

1.

Let  Ct1
1

 (resp.  Ct1
i )  be  the  auxiliary  cluster  having  maximum  configura-

tions  belonging  in  cj
0

 (resp.  cj
i-1).  Therefore,  cj

0
 (resp.  cj

i-1)  can  merge

with  some  of  the  clusters  that  have  also  participated  in Ct1
1

 (resp. Ct1
i ).

However,  only  those  clusters  are  to  be  merged  with  cj
0

 (resp.  cj
i-1)  that

are closely reachable to cj
0
 (resp. cj

i-1). Hence, a new primary cluster cj
1

(resp.  cj
i)  is  formed  as  cj

i  cj
i-1 ⋃ cl

i-1
 if  and  only  if

μCt1
i , cj

i-1 - μCt1
i , cl

i-1 < μCt1
i , cj

i-1 - μCt1
i , cs

i-1,  for  any  s ≠ l

where  cs
i-1

 is  another  participating  cluster  in  Ct1
i

 and

2.
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maxμCt
i , cj

i-1(∀t)  μCt1
i , cj

i-1.  Therefore,  the  newly  generated  cluster

cj
i
 constitutes  a  set  of  useful  configurations,  out  of  which  some  strictly

belong to a cluster (cycle) of the auxiliary CA of level i. 

If for any primary cluster cj
0
 (resp. cj

i-1) there is no closely reachable pri-

mary  cluster  in  all  auxiliary  clusters,  then  the  new  primary  cluster  of
level i is cj

i  cj
i-1. Therefore, mi ≤ mi-1. 

3.

The algorithm stops when we reach the optimal number of clusters (m).
The  test  of  optimality  is  determined  either  by  arriving  at  the  desired
number of clusters given by the user or if mi  mi-1  after a fixed  num-

ber of attempts.

4.

Input: A set of target objects   X1, X2, … , Xk, number of quantitative 

and qualitative attributes pqn  and pql  respectively, optimal number 

of clusters (m) and an auxiliary CA space
Output: The clusters {c1

v , c2
v , … , cm

v } 

Step 1. Set n ← 2 * pqn  + u1 + u2 +⋯ + upql
 ;

foreach j  1 to k do Encode Xj into an n-bit binary string ;

Let  M()  be  the  set  of  encoded  target  objects  {x1, x2, … , xk′ }  where

M()  k′ ; 
Step 2. Construct a set of n-cell CAs R from the given auxiliary CA space ; 

Step 3. Set m0 ← k′, i ← 1 and z ← 1 ;

for j  1 to m0 do

Set cj
0 ← xj ; // Initialize primary clusters of level 0 

Step 4. while (mi ≠ mi-1) || (mi ≠ m) do

Select ℛ ∈ R and Set R ← R  {ℛ} // Auxiliary CA is selected randomly
at uniform without replacement

Generate auxiliary clusters C1
i , C2

i , … , Cm′
i

 for the CA ℛ ;

Initialize a matrix Aatjm′⨯mi-1
 to 0 ;

for t  1 to m′
 do

for j  1 to mi-1 do Set atj ← μCt
i , cj

i-1

foreach j  1 to mi-1 do

// For each of the primary clusters of previous level
Let at′j  maximum of atj where 1 ≤ t ≤ m′; // Find the

auxiliary cluster with maximum participation of cj
i-1

for j1  1 to mi-1)&& j1 ≠ j do

Find at′j′   maximum of atj1  such that at′j′ ≠ 0;

if no such at′j′  exists then continue ;

else
Set cz

i ← cji-1 ⋃ cj′
i-1

 and z ← z + 1 ;

Mark cj
i-1

 and cj′
i-1

 as modified ;

Remove row t′ from A ;
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foreach unmodified clusters cy
i-1

 do

Set  cz
i ← cy

i-1
 and  z ← z + 1  ;  // move  the  unmodified  primary

 cluster(s) of previous level i - 1 to get a new primary clus-
ter of level i and update cluster number

Set mi ← z and i ← i + 1 ; 

Step 5. Report c1
i , c2

i , … , cmi

i
 as the final clusters at level i and

Exit ; 

Algorithm 1. Iterative level-wise cycle-based clustering.

Example 7.  Consider  the  Iris  dataset  (archive.ics.uci.edu/ml/index.php,
see  Table  6)  where    {X1, X2, … , X150}  and  each  object  has  four

quantitative  pqn
 and  no  qualitative  attributes  pql

.  Hence,  the  size  of

the CA for this dataset is n  2 * 4  8. Now, let the desired number
of  clusters  m  be  two.  Using  the  encoding  technique,  we  get
M()  {x1, x2, … , x24}. 

Initially,  24  primary  clusters  exist  at  level  0  such  that

c1
0  {x1}, c2

0  {x2}, … , c24
0  {x24},  where  m0  24.  Since  m0 ≠ m,

we select an auxiliary CA ℛ from the set of candidate CAs (satisfying
Property  1)  uniformly  random  without  replacement.  Let

ℛ  9, 169, 150, 150, 165, 105, 165, 20.  This  CA  generates  four

auxiliary clusters: C1
0, C2

0, C3
0, C4

0
 (see Example 6). 

Next,  we  find  the  degree  of  participation  of  each  cj
0

 in  these  clus-

ters.  Since  we  are  at  level  1,  μC1
1, cj1

0   100%  ∀ j1 ∈ 1, 3, 4, 22,

13, 14,  μC2
1, cj2

0   100%  ∀ j2 ∈ 2, 5, 6, 7, 8, 9, 10, 11, 12, 15,

17, 19, 20, 21, 23, 24,  μC3
1, c16

0   100%  and  μC4
1, c18

0   100%.

So  we  can  merge  the  closely  reachable  primary  clusters  of  level  0  to

form  the  primary  clusters  of  level  1.  Here,  auxiliary  cluster  C1
1

 has

maximum (and equal) participation of primary clusters c1
0, c3

0, c4
0, c22

0 ,

c13
0

 and c14
0 . Similarly, C2

1
 has maximum participation of c2

0, c5
0, c6

0, c7
0,

c8
0, c9

0, c10
0 , c11

0 , c12
0 , c15

0 , c17
0 , c19

0 , c20
0 , c21

0 , c23
0

 and c24
0 . Therefore, the

newly generated primary cluster of level 1 is

c1
1  c1

0⋃ c3
0⋃ c4

0⋃ c22
0 ⋃ c13

0 ⋃ c14
0 .

Similarly, c2
1
 can be generated. For the remaining two auxiliary clus-

ters,  new  primary  clusters  are  formed  as  c3
1  c16

0
 and  c4

1  c18
0 .  Since

the  number  of  primary  clusters  at  level  1  (m1)  is  4 ≠ m,  we  move

from level 1 to level 2. 
At level 2, let the selected auxiliary CA be (6, 232, 90, 90, 165, 90,

90,  20).  This  CA  generates  six  auxiliary  clusters,  C1
2,  C2

2,  C3
2,  C4

2,  C5
2
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and  C6
2.  Like  level  1,  here  we  also  compute  the  maximum  participa-

tion  of  each  primary  cluster  of  level  1  in  auxiliary  cluster  Ct
2,

1 ≤ t ≤ 6.  It  is  found  that  μC1
2, c1

1  16%,  μC2
2, c1

1  33%,

μC2
2, c2

1  62%, μC2
2, c3

1  100%, μC3
2, c1

1  16%, μC3
2, c2

1  12%,

μC3
2, c4

1  100%,  μC4
2, c1

1  33%,  μC5
2, c2

1  18%  and

μC6
2, c2

1  6%.  Hence,  we  can  merge c2
1

 and c3
1

 with  respect  to  the

closeness  in  the  auxiliary  cluster  C2
2.  Similarly,  c1

1
 and  c4

1
 can  be

merged  with  respect  to  C3
2.  Hence,  the  newly  generated  primary  clus-

ters of level 2 are

c1
2  v2

1⋃ c3
1  2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 19,

20, 21, 23, 24

and 

c2
2  c1

1⋃ c4
1  1, 3, 4, 22, 13, 14, 18.

Therefore,  at  this  level,  m2  2.  Since  the  desired  number  of  clusters

is already achieved, the algorithm exits. 

Hence,  our  algorithm  can  generate  the  required  clusters  and  also
gives  a  direction  for  an  optimal  number  of  clusters.  Our  technique
uses  v  auxiliary  CAs  if  the  optimal  number  of  clusters  is  achieved  at
level v. Note also that the optimal number of clusters can be achieved
using a set of v1 CAs, v2 CAs and so on. Now, our interest is to figure

out that set of bijective functions (CAs) that gives the best-quality clus-
ters  among  those  possible  in  the  set  of  CAs.  An  extensive  experiment
is performed in the next section on real datasets using these CAs and
the results are reported. 

Results and Discussion6.

This  section  reports  the  performance  of  our  proposed  iterative
cycle-based  clustering  algorithm  on  some  real  datasets
(archive.ics.uci.edu/ml/index.php). To check the quality of the clusters
generated  using  our  algorithm,  we  use  the  benchmark  validation
indices silhouette score, Dunn index and connectivity [1, 10]. The set
of  bijective  functions  (auxiliary  CAs)  with  the  smallest  connectivity
score and highest Dunn and silhouette index scores generates the best
quality  clusters.  Next,  we  introduce  the  real  datasets  used  in  this
paper.

We  use  seven  datasets:  Iris,  User  Knowledge  Modeling,  Buddy-
Move, Seed, StoneFlakes, Heart failure clinical records and Wholesale
Customers.  Each  of  them  has  mostly  quantitative  attributes.  Table  6
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reports the details about these datasets. In this table, column 1 gives
the names of the datasets and columns 2, 3 and 4 refer to the total
number of attributes p, number of quantitative attributes pqn

and the

count of qualitative attributes pql
, respectively. Column 5 shows the

number of target objects that are to be distributed among m clusters
using an n-cell CA. Here, n (see column 6 for reference) is computed
based on pqn

and pql
(n > p) (see Section 3). Column 7 refers to the

number of objects with missing terms for each dataset.
For analyzing the performance of our iterative clustering technique,

we first need to check whether the target objects are distributed
among the desired number of clusters; thereafter, the cluster quality is
evaluated based on the validation indices scores that can be computed
using the package clValid in R (see [7] for a detailed description  of
the package). In this paper, the desired number of clusters is two. Sec-
tion 6.1 reports the results of these experiments, taking a fixed order-
ing of features for each of the datasets.

Experiment on Real Datasets6.1

Table 7 presents the effectiveness of our technique. This effectiveness
is ensured based on validation indices scores and if each of the
datasets is distributed into the same desired number of clusters, which
is two.

In Table 7, column 3 refers to the optimal scores of the validation
indices—connectivity, silhouette score and Dunn index. Columns 4
and 5 represent the number of levels used to get the optimal results
for each dataset and the corresponding ordered list of auxiliary CAs
where any CAi is exclusively used for a particular level i. For exam-

ple, the optimal scores for all three validation indices in the Iris
dataset are achieved while clustering is completed in level 2.
Moreover, the same set of auxiliary CAs is used for all three cases.
The best scores are also found for all three indices using the same set
of auxiliary CAs in the BuddyMove dataset. For the other datasets,
the same set of CAs was used to produce the best quality clusters with
respect to two validation indices.

Dataset m Optimal Score
Number
of Levels Auxiliary CA

Iris 2 Silhouette0.6867,
Dunn0.3389,
Connectivity0.0000

2 CA0: (10, 75, 166, 105, 105,

166, 150, 20)
CA1: (6, 166, 165, 154, 105,

165, 165, 65)

Table 7. (continues)
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Dataset m Optimal Score
Number
of Levels Auxiliary CA

User
Knowledge
Modeling

2 Silhouette0.186714,
Dunn0.1508426,
Connectivity
3.667857

3 CA0: (6, 166, 105, 165, 165,

150, 154, 150, 165, 65)
CA1: (10, 180, 169, 165, 90,

90, 165, 165, 149, 80)
CA2: (5, 180, 165, 225, 86,

105, 90, 105, 154, 80)
4 CA0: (6, 169, 90, 169, 90,

169, 150, 150, 90, 80)
CA1: (9, 228, 154, 105, 105,

89, 90, 106, 105, 65)
CA2: (9, 105, 135, 172, 90,

165, 90, 90, 90, 20)
CA3: (5, 45, 89, 90, 169,

165, 101, 150, 90, 20)

Buddymove 2 Silhouette0.4763,
Dunn0.3146,
Connectivity2.9289

4 CA0: (10, 135, 197, 150,

169, 105, 105, 101, 105,
105, 86, 80)
CA1: (9, 150, 30, 198, 154,

150, 165, 165, 90, 105, 105,
86, 80)
CA2: (9, 166, 105, 150, 101,

150, 90, 90, 105, 86, 105,
20)
CA3: (6, 105, 30, 202, 90,

150, 105, 105, 105, 166,
105, 65)

Seed 2 Silhouette0.528,
Dunn0.09,
Connectivity3.91

2 CA0: (9, 228, 169, 165, 101,

90, 90, 90, 154, 150, 150,
105, 105, 20)
CA1: (5, 105, 89, 105, 105,

105, 150, 150, 150, 150,
165, 165, 165, 20)

4 CA0: (5, 120, 197, 150, 86,

165, 106, 165, 166, 105, 90,
105, 166, 5)
CA1: (5, 210, 165, 180, 202,

165, 150, 101, 90, 90, 105,
165, 165, 65)
CA2: (10, 120, 90, 105, 172,

150, 86, 150, 105, 154, 150,
165, 165, 65)
CA3: (5, 120, 172, 165, 150,

149, 150, 150, 169, 150,
105, 166, 105, 20)

Table 7. (continues)
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Dataset m Optimal Score
Number
of Levels Auxiliary CA

StoneFlakes 2 Silhouette0.376,
Dunn0.1805,
Connectivity3.5123

3 CA0: (6, 86, 165, 149, 165,

89, 165, 90, 90, 101, 105,
90, 150, 169, 150, 65)
CA1: (10, 135, 154, 165,

165, 150, 165, 90, 105, 106,
165, 154, 150, 150, 154, 5)
CA2: (10, 105, 166, 150,

150, 149, 150, 150, 165,
165, 154, 150, 90, 105, 86,
80)

4 CA0: (6, 166, 105, 105, 89,

90, 165, 165, 166, 150, 150,
150, 90, 106, 150, 20)
CA1: (6, 166, 150, 165, 165,

105, 105, 90, 169, 105, 90,
150, 89, 105, 165, 65)
CA2: (5, 210, 92, 105, 149,

90, 150, 105, 90, 165, 105,
106, 105, 165, 165, 65)
CA3: (5, 165, 92, 150, 165,

90, 169, 105, 105, 89, 105,
90, 150, 89, 150, 20)

Wholesale
Customer

2 Silhouette0.5257,
Connectivity
3.7329, Dunn
0.0508

3 CA0: (10, 45, 149, 105, 165,

90, 150, 101, 90, 149, 165,
106, 90, 150, 150, 65)

CA1: (9, 78, 165, 105, 90,

165, 105, 90, 90, 86, 105,
105, 154, 150, 90, 65)
CA2: (9, 154, 165, 150, 90,

150, 150, 90, 150, 86, 105,
90, 150, 86, 150, 20)

2 CA0: (6, 149, 150, 90, 150,

105, 90, 90, 165, 150, 90,
169, 165, 90, 105, 20)
CA1: (5, 210, 150, 228, 86,

105, 90, 105, 89, 90, 105,
105, 165, 90, 90, 20)

3 CA0: (6, 216, 149, 150, 150,

169, 150, 150, 106, 105, 90,
90, 90, 150, 169, 5)
CA1: (6, 89, 150, 165, 90,

90, 165, 90, 150, 101, 150,
105, 89, 90, 90, 5)
CA2: (10, 150, 197, 165, 90,

165, 90, 150, 154, 165, 106,
105, 165, 105, 101, 5)

Table 7. (continues)
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Dataset m Optimal Score
Number
of Levels Auxiliary CA

Heart
failure
clinical
records

2 Silhouette0.6885,
Dunn0.0945,
Connectivity3.1718

2 CA0: (9, 154, 90, 166, 105,

105, 154, 105, 150, 106,
150, 90, 150, 154, 90, 86,
165, 90, 5)
CA2: (9, 212, 165, 105, 166,

165, 101, 105, 150, 169,
150, 150, 105, 150, 90, 90,
105, 154, 80)

2 CA0: (5, 135, 166, 165, 165,

105, 165, 90, 90, 90, 165,
105, 89, 105, 150, 165, 150,
90, 20)
CA1: (9, 149, 150, 105, 169,

90, 89, 150, 90, 150, 106,
90, 89, 90, 166, 165, 86,
105, 20)

Table 7. Performance of our clustering algorithm on available datasets (see
Table 6).

Next, we show that our algorithm can produce similar clusters
even if the order of the features is changed. This claim is verified by
extensive experimentation on the real datasets used here.

Experimentation on Datasets after Reordering Features6.2

Every target object is represented by its p feature values if it owns p
distinct features A1, A2, … , Ap. Generally, an object is independent

of the order of its features. But because CAs are used, the mapping of
a target object to a useful configuration can be changed if the features
are in a different order. However, if we can get two sets of auxiliary

CAs R1 and R2 that cluster the given set of target objects in a similar
fashion irrespective of the order of the elements, then we call the set

of auxiliary CAs R1 and R2 equivalent auxiliary CA spaces. Tables 8
and 9 show that our iterative level-wise clustering algorithm also sup-
ports the reordering of features.

Let us first take the Iris dataset where each object is represented by
the attributes A1, A2, A3 and A4. Since we use CAs, each object is

mapped to a configuration. Until now, the experiment on this dataset

has used the feature ordering A1, A2, A3, A4. However, by changing

the ordering of the features, we can get 4 !  24 distinct combina-

tions. Some of them are A2, A3, A1, A4, A3, A4, A2, A1, and so

on. Evidently, when the order of features is changed, the correspond-
ing useful configuration is also changed. Therefore, another set  of
CAs can be used for clustering that set of useful configurations. The
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desired number of clusters is two. Table 8 reports the result of this
experiment on all possible orderings. From Table 8, it can be con-
cluded that the count of clusters and the arrangement of clusters
remain the same even after altering the order of the features. Table 8
also shows that several different sets of auxiliary CAs exist that pro-
duce the same clusters. For instance,

R1  5, 165, 101, 165, 89, 165, 106, 80

R2  9, 90, 90, 101, 150, 105, 106, 80,

9, 141, 86, 90, 150, 105, 165, 20

and

R3  10, 150, 108, 105, 165, 166, 105, 65,

6, 165, 165, 78, 106, 165, 90, 80

are three sets of auxiliary CAs for the given order of features

A1, A2, A3, A4, A1, A2, A4, A3 and A3, A4, A2, A1, respectively.

These R1, R2 and R3 form equivalent clustering of the objects; hence
these are equivalent auxiliary CA spaces. Moreover, it is observed
that each of them produces the best clusters with the same Silhouette
score, Dunn index and Connectivity value.

Order of

Features Set of Auxiliary CAs Level

〈A1, A2, A3, A4〉 CA0: (5, 165, 101, 165, 89, 165, 106, 80) 1

〈A1, A2, A4, A3〉 CA0: (9, 90, 90, 101, 150, 105, 106, 80) 2

CA1: (9, 141, 86, 90, 150, 105, 165, 20)

〈A1, A3, A2, A4〉 CA0: (10, 105, 156, 86, 105, 150, 166, 80) 2

CA1: (10, 180, 169, 165, 86, 150, 90, 65)

〈A1, A4, A2, A3〉 CA0: (10, 165, 101, 105, 90, 105, 106, 80) 2

CA1: (5, 90, 105, 149, 150, 165, 90, 20)

〈A2, A1, A3, A4〉 CA0: (10, 105, 198, 150, 90, 106, 150, 20) 2

CA1: (9, 166, 90, 169, 105, 105, 166, 80)

〈A2, A1, A4, A3〉 CA0: (6, 86, 90, 165, 150, 105, 166, 80) 3

CA1: (9, 150, 120, 198, 165, 165, 106, 80)

CA2: (10, 90, 169, 165, 169, 150, 90, 65)

〈A2, A3, A1, A4〉 CA0: (10, 75, 166, 90, 166, 90, 106, 80) 3

CA1: (9, 89, 90, 165, 90, 106, 150, 20)

CA2: (6, 78, 150, 165, 86, 90, 89, 80)

〈A2, A4, A1, A3〉 CA0: (5, 135, 105, 90, 142, 150, 106, 80) 2

CA1: (9, 86, 165, 86, 165, 105, 105, 65)

Table 8. (continues)
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Order of

Features Set of Auxiliary CAs Level

〈A3, A1, A2, A4〉 CA0: (10, 150, 172, 90, 165, 105, 169, 5) 4

CA1: (10, 180, 90, 165, 150, 101, 105, 65)

CA2: (6, 106, 150, 150, 106, 90, 86, 80)

CA3: (10, 30, 172, 105, 105, 105, 165, 65)

〈A3, A1, A4, A2〉 CA0: (6, 216, 150, 90, 169, 105, 90, 65) 3

CA1: (10, 150, 156, 89, 165, 150, 105, 65)

CA2: (6, 212, 90, 90, 150, 106, 105, 65)

〈A3, A2, A1, A4〉 CA0: (6, 105, 120, 105, 101, 90, 106, 80) 3

CA1: (6, 169, 90, 150, 105, 150, 166, 80)

CA2: (9, 232, 90, 105, 165, 150, 90, 65)

〈A3, A2, A4, A1〉 CA0: (6, 105, 120, 105, 101, 90, 106, 80) 3

CA1: (6, 169, 90, 150, 105, 150, 166, 80)

CA2: (9, 232, 90, 105, 165, 150, 90, 65)

〈A3, A4, A1, A2〉 CA0: (10, 30, 92, 105, 105, 105, 165, 65) 3

CA1: (6, 216, 105, 105, 165, 105, 105, 80)

CA2: (10, 120, 198, 169, 165, 105, 150, 65)

〈A3, A4, A2, A1〉 CA0: (10, 150, 108, 105, 165, 166, 105, 65) 2

CA1: (6, 165, 165, 78, 106, 165, 90, 80)

〈A4, A1, A2, A3〉 CA0: (6, 90, 212, 150, 106, 90, 89, 5) 3

CA1: (10, 180, 149, 105, 150, 86, 105, 65)

CA2: (5, 105, 154, 165, 101, 165, 166, 80)

〈A4, A1, A3, A2〉 CA0: (10, 30, 172, 105, 166, 165, 101, 80) 2

CA1: (9, 228, 150, 150, 105, 101, 150, 65)

〈A4, A2, A1, A3〉 CA0: (6, 228, 86, 105, 150, 149, 105, 65) 4

CA1: (6, 90, 232, 90, 150, 154, 150, 65)

CA2: (10, 120, 86, 90, 150, 165, 169, 5)

CA3: (9, 78, 166, 105, 105, 86, 150, 65)

〈A4, A2, A3, A1〉 CA0: (6, 212, 150, 105, 90, 150, 105, 20) 2

CA1: (10, 210, 149, 90, 89, 105, 90, 20)

〈A4, A3, A2, A1〉 CA0: (6, 216, 105, 165, 90, 150, 165, 20) 1

〈A4, A3, A1, A2〉 CA0: (10, 120, 166, 150, 150, 165, 105, 20) 2

CA1: (10, 120, 166, 150, 150, 165, 105, 20)

Table 8. Performance on reordering of features of Iris dataset where m  2;
for any feature ordering (column 1), there exist auxiliary CAs (column 2) that
generate the set of clusters with same scores of validation indices (Silhouette
0.6867, Dunn0.3389, Connectivity0.0000) as given in Table 7.

However, it is not always necessary that the exact same cluster be
formed for every possible reordering. They can be almost similar,
which can be indicated by having nearly the same score in the
validation indices (see the result of the Seed dataset in Table 9). For
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example, for the BuddyMove dataset in Table 9, each of three distinct
feature orders can be clustered using equivalent auxiliary CA spaces
giving exactly the same value on the three validation indices.
Whereas, for the StoneFlakes dataset, equivalent auxiliary CA spaces
can be found with respect to Dunn index and Connectivity for the

two orderings A1, A2, A3, A4, A5, A6, A7, A8 and A4, A5, A6, A7,

A8, A1, A2, A3. Now, we can compare our algorithm with some

existing well-known techniques.

Order of Set of Scores of
Dataset Features Auxiliary CAs Level Indices
BuddyMove 〈A1, A2, A3,

A4, A5, A6〉

CA0: (10, 210, 156, 106,

90, 106, 150, 150, 105,
165, 86, 80)

5 Silhouette
0.4763

CA1: (10, 165, 201, 154,

165, 169, 90, 154, 150,
165, 165, 20)

Dunn
0.3146

CA2: (5, 135, 86, 105,

105, 165, 90, 89, 150,
150, 105, 5)

Connectivity
2.9289

CA3: (5, 30, 89, 90, 105,

165, 86, 165, 101, 165,
166, 80)
CA4: (9, 166, 165, 169,

105, 90, 150, 89, 150,
105, 149)

〈A2, A4, A3,

A1, A6, A5〉

CA0: (9, 86, 105, 90, 105,

149, 165, 86, 105, 90,
165, 65)

1

〈A3, A4, A1,

A2, A5, A6〉

CA0: (5, 135, 172, 150,

154, 105, 150, 90, 150,
105, 89, 80)

3

CA1: (6, 90, 105, 120, 92,

90, 165, 90, 150, 106,
105, 65)
CA2: (9, 149, 90, 101, 90,

106, 90, 90, 105, 105,
105, 80)

StoneFlakes 〈A1, A2, A3, A4,

A5, A6, A7, A8〉

CA0: (6, 86, 165, 149,

165, 89, 165, 90, 90, 101,
105, 90, 150, 169, 150,
65)

3 Silhouette
0.376

CA1: ((10, 135, 154, 165,

165, 150, 165, 90, 105,
106, 165, 154, 150, 150,
154, 5))
CA2: (5, 30, 166, 165,

165, 150, 90, 65)

Table 9. (continues)
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Order of Set of Scores of
Dataset Features Auxiliary CAs Level Indices
StoneFlakes 〈A4, A5, A6, A7,

A8, A1, A2, A3〉

CA0: (6, 142, 105, 101,

165, 166, 90, 169, 105,
105, 166, 90, 89, 90, 86,
80)

2 Silhouette
0.3377

CA1: (6, 89, 105, 165, 90,

105, 154, 165, 150, 165,
169, 165, 89, 150, 165,
65)

〈A1, A2, A3, A4,

A5, A6, A7, A8〉

CA0: (6, 166, 105, 105,

89, 90, 165, 165, 166,
150, 150, 150, 90, 106,
150, 20)

4 Dunn
0.1805

CA1: (6, 166, 150, 165,

165, 105, 105, 90, 169,
105, 90, 150, 89, 105,
165, 65)

Connectivity
3.5123

CA2: (5, 210, 92, 105,

149, 90, 150, 105, 90,
165, 105, 106, 105, 165,
165, 65)
CA3: (5, 165, 92, 150,

165, 90, 169, 105, 105,
89, 105, 90, 150, 89, 150,
20)

〈A4, A5, A6, A7,

A8, A1, A2, A3〉

CA0: (9, 166, 150, 165,

105, 149, 165, 90, 90,
150, 150, 165, 165, 105,
86, 5)

1

Seed 〈A1, A2, A3, A4,

A5, A6, A7〉

CA0: (9, 228, 169, 165,

101, 90, 90, 90, 154, 150,
150, 105, 105, 20)

2 Silhouette
0.5288

CA1: (5, 105, 89, 105,

105, 105, 150, 150, 150,
150, 165, 165, 165, 20)

〈A1, A2, A5, A6,

A7, A3, A4〉

CA0: (10, 225, 198, 149,

150, 90, 105, 89, 150, 90,
90, 90, 165, 65)

4 Silhouette
0.5282

CA1: (6, 77, 165, 90, 150,

106, 150, 90, 150, 150,
150, 90, 90, 65)
CA2: (9, 169, 90, 106,

150, 105, 150, 105, 105,

89, 105, 105, 154, 80)
CA3: (9, 101, 105, 150,

149, 105, 165, 105, 169,
105, 165, 165, 90, 65)

Table 9. (continues)
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Order of Set of Scores of
Dataset Features Auxiliary CAs Level Indices
Seed 〈A1, A2, A3, A4,

A5, A6, A7〉

CA0: (5, 120, 197, 150,

86, 165, 106, 165, 166,
105, 90, 105, 166, 5)

4 Dunn0.09

CA1: (5, 210, 165, 180,

202, 165, 150, 101, 90,
90, 105, 165, 165, 65)

Connectivity
3.91

CA2: (10, 120, 90, 105,

172, 150, 86, 150, 105,
154, 150, 165, 165, 65)
CA3: (5, 120, 172, 165,

150, 149, 150, 150, 169,
150, 105, 166, 105, 20)

〈A1, A2, A5, A6,

A7, A3, A4〉

CA0: (5, 75, 154, 150, 90,

105, 106, 150, 165, 90,
105, 166, 150, 65)

3 Dunn0.08

CA1: (9, 86, 105, 105,

166, 165, 154, 90, 166,
150, 90, 165, 165, 65)

Connectivity
3.76

CA2: (6, 86, 150, 105, 89,

90, 101, 90, 105, 90, 105,
150, 165, 65)

Table 9. Performance of other datasets on different ordering of features
where m  2.

Comparison of Clustering Techniques on the Same Dataset6.3

To judge the efficiency of our iterative clustering model, we need to
compare the results of the validation indices achieved by our tech-
nique with the existing benchmark clustering algorithms. Here, we
use five benchmark clustering algorithms: K-means (centroid-based
clustering) [7], hierarchical (agglomerative hierarchical clustering) [7],
DIANA (divisive hierarchical clustering) [7], PAM (partitioning
around medoids) (centroid-based clustering) [7] and SOTA (self-
organizing tree algorithm) (unsupervised network with a divisive hier-
archical clustering) [7] using the implementation in R [7]. Table 10
reports the results of this comparison. From the experiments, it can be
noted that, among the existing algorithms, the optimal silhouette
score for the StoneFlakes dataset is found by K-means, DIANA and
SOTA. Whereas the best connectivity score for the Heart failure clini-
cal records dataset is achieved by using the K-means and DIANA
algorithms. However, the hierarchical algorithm forms clusters most
effectively by overall performance on all datasets. Further, Table 10
shows that the validation indices scores obtained by our algorithm
can compete with the best scores obtained by the benchmark algo-
rithms. Hence, our algorithm is one of the best algorithms existing
today for clustering any kind of dataset.
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Dunn Silhouette

Dataset Algorithm Connectivity Index Score

Iris Hierarchical 0.0000 0.3389 0.6867

K-means 6.1536 0.0765 0.6810

DIANA 6.1536 0.0765 0.6810

PAM 3.9623 0.0811 0.6858

SOTA 11.5016 0.0349 0.6569

CA-based clustering 0.0000 0.3389 0.6867

User Knowledge Hierarchical 3.0540 0.1970 0.2589

Modeling K-means 50.3321 0.0943 0.2063

DIANA 68.7329 0.0297 0.2066

PAM 102.8329 0.0537 0.1934

SOTA 64.1060 0.0321 0.2042

CA-based clustering 3.6678 0.1508 0.1867

BuddyMove Hierarchical 2.9290 0.3146 0.4764

K-means 35.2032 0.0485 0.3079

DIANA 34.3694 0.0658 0.3020

PAM 38.3802 0.0485 0.3055

SOTA 44.4111 0.0518 0.3134

CA-based clustering 2.9289 0.3146 0.4763

Seed Hierarchical 8.7861 0.1065* 0.5248

K-means 21.3698 0.0548 0.5229

DIANA 19.1714 0.0544 0.5218

PAM 20.6762 0.0404 0.5175

SOTA 16.0179 0.0361 0.5049

CA-based clustering 3.91 0.09 0.528

StoneFlakes Hierarchical 2.9290 0.3176* 0.2937

K-means 4.9488 0.1735 0.4875

DIANA 4.9488 0.1735 0.4875

PAM 7.9762 0.1693 0.4827

SOTA 4.9488 0.1735 0.4875

CA-based clustering 3.5123 0.1805 0.376

Heart failure Hierarchical 5.7536 0.1506 0.7862

clinical records K-means 1.8635 0.0079 0.5829

DIANA 1.8635 0.0079 0.5829

PAM 3.5020 0.0036 0.4630

SOTA 5.0972 0.0035 0.5302

CA-based clustering 3.1718 0.0945 0.6885

Wholesale Hierarchical 2.9290 0.3853 0.7957

Customers K-means 30.0881 0.0178 0.5115

DIANA 27.1242 0.0313 0.5806

PAM 41.6647 0.0167 0.3819

SOTA 43.8266 0.0061 0.3699

CA-based clustering 3.7329 0.0508 0.5257

Table 10. Comparison of clustering techniques based on internal validation
indices for each of the available datasets of Table 6. Here, m = 2 for all
entries except those marked with * for which m = 6.
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