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Managing diversity is a challenging problem for organizations and gov-
ernments. Diversity in a population may be of two kinds—acquired and
innate. The former refers to diversity acquired by pre-existing social or
organizational environments, attracting employees or immigrants
because of their wealth and opportunities. Innate diversity, on the other
hand, refers to a collection of pre-existing communities having to inter-
act with one another and to build an overarching social or organiza-
tional identity. While acquired diversity has a prior element of common
identity, innate diversity needs to build a common identity from a num-
ber of disparate regional or local identities. Diversity in any large popu-
lation may have different extents of acquired and innate elements. In
this paper, innate and acquired diversity are modeled in terms of two
factors, namely: insularity and homophily, respectively. Insularity is the
tendency of agents to act cooperatively only with others from the same
community, which is often the primary challenge of innate diversity;
while homophily is the tendency of agents to prefer members from their
own community to start new social or business connections, which is
often the primary challenge in acquired diversity. The emergence of net-
work structure is studied when insularity and homophily are varied. In
order to promote cooperation in a diverse population, the role played
by a subset of agents called “global” agents who are not affected by
homophily and insularity considerations is also studied. Simulation
results show several interesting emergent properties. While the global
agents are shown to acquire high betweenness, they are by no means
the wealthiest or the most powerful in the network. However, the pres-
ence of global agents is important for the regional agents whose own
wealth prospects increase because of their interaction with global
agents.

Keywords: diversity; multi-agent systems; networks and prisoner’s
dilemma

Introduction1.

Diversity is an administrative ideal for building a vibrant society or
organization. Diversity may be of several kinds, such as linguistic,
gender, ethnicity or race. A diverse population is made up of several
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subgroups or local identities, each of which represents its own unique
perspective on several issues. As a result, the collective insight from a
diverse population tends to be rich and nuanced, resulting in several
forms of collective benefits [1–5].

Yet at the same time, diversity also brings its own challenges. Man-
aging diverse subgroups greatly increases strategic and operational
costs. In addition, disparate local identities often conflict with one
another on several issues, contributing to increased social strife [1, 4,
6]. Against this backdrop, studying the dynamics of diverse popula-
tions is a problem of increasing relevance that is being tackled using
computational modeling.

Diversity in a population can be of two extreme kinds: acquired
and innate. Acquired diversity refers to a pre-existing social or organi-
zational framework, which attracts a large immigrant population
because of its wealth and opportunities. This is typically the case with
rich, inclusive countries like the US, Canada, Australia and different
countries of Europe, or with large multinational corporations. These
countries and organizations had an existing sense of national or orga-
nizational structure, practices, identity and cultural framework in
place before they became an attractive destination for incoming immi-
grants or employees. In such cases, despite the diversity, a common
sense of prior identity permeates across the population that is a result
of the immigrants’ or employees’ conscious decision to affiliate with
the country or the organization.

However, immigrants in such an environment also often experience
a loss of their own sense of former cultural identity over time. Their
cultural imports often get reduced to exotic or esoteric expressions of
mere ornamental value. This often leads immigrants to seek to associ-
ate and develop relationships with others of their own kind, so as to
be able to express their own ethnic identity and worldview at deeper
levels. This forms cultural subgroups and hyphenated identities like
for example, African-Americans, Asian-Americans, Indian-Americans,
etc. Such a tendency to seek out and associate with others who are
similar to us is called homophily.

The other kind of diversity is innate diversity. Here, the population
is comprised of several pre-existing communities with their local cul-
tures, identities and practices that have existed for a long time, and
that need to work together to build an overarching social, cultural,
national or organizational framework. This kind of diversity is charac-
teristic of the European Union trying to build an overarching identity
across the disparate cultures of Europe; or the diverse nation of India,
comprised of several regional cultures, languages and worldviews. In
business settings, cooperative movements of farmers and small
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businesses, or trade unions across several small businesses, have to
contend with innate diversity.

In such populations, local identities or “regionalism” tend to be
much stronger than the global identity. Regional subgroups fight to
preserve their local cultural identity and often overtly resist implemen-
tation of a common identity or worldview across the population.
Activists who fight to preserve regional identities often call such a pop-
ulation the “rainbow” model of diversity [7] where different regional
subcultures collectively form a rich, collective culture, yet retaining
their distinct regional identities, without blending into one another.

The challenge with innate diversity is to create an overarching
framework of unity or oneness that enables the disparate subgroups
to trust and act cooperatively with one another. Strong regionalism
leads to entrenchment and distrust across the disparate subcultures.
Entrenched communities lead to clustered network models that end
up with a large diameter, and greater costs for transactions and book-
keeping, lower overall trust across entrenched clusters, and greater
levels of distortion in information spread. Entrenched networks also
typically have low connectivity and are not resilient against targeted
attacks or even large-scale random failures [8–11].

A characteristic property leading to entrenchment is insularity.
This is the property of an agent to only trust other members from the
same community, and by default, distrust connection requests coming
from members of other communities.

Any large and diverse population would contain a mix of innate
and acquired elements. Varying degrees of innate and acquired diver-
sity lead to different kinds of emergent properties.

In this paper, we model diversity in a population in terms of
homophily and insularity. To differentiate between the two similar
concepts, we note the following. Homophily is a characteristic dis-
played by an agent in initiating a new social connection, while insular-
ity is a characteristic displayed by an agent when responding to a
social connection request. We study how varying degrees of insularity
and homophily affect the emergent network structure.

A common approach to managing diversity is to create a
“globalized” subculture. This represents a subset of the population
that is trained to adopt the larger worldview of the diverse country or
organization and be resilient against homophily and insularity consid-
erations. We study the role played by such a group of globalized
agents and observe how the proportion of their population affects the
overall network structure, distribution in payoff and power across the
population.
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Related Literature2.

The idea of acquired and innate diversity is more popularly known as
“melting pots” and “salad bowls.” The term melting pot was coined
by Israel Zangwill in 1907, who wrote a play with the same name
(The Melting Pot (play) en.wikipedia.org/wiki/The_Melting_Pot
_(play)). The play portrayed America as the great cultural melting pot
having the ability to create a society free of ethnic divisions and
hatred. The metaphor of a salad bowl came much later, when soci-
eties were studied along multiple points of view like communities,
markets and energy, cultural differences and their effect on housing
prices or investments.

Homophily [12–14] and insularity [15, 16] have also been studied
in the field of social psychology and are identified as important char-
acteristics of populations. Our assertion is that these two characteris-
tics form the foundations of diversity in populations, and studying
network structures at various extents of the two characteristics would
give us important insights into managing diversity.

Agent-based architectures have been an attractive paradigm for
modeling societies and culture. They have been used to study emer-
gent properties of societies based on individual agent-level characteris-
tics. Some of the work using agent-based architectures has been done
by [17–21] to build generic utility-based models of societies. These
agent-based models can also be used to simulate multiple scenarios in
the emergent societies, such as power dynamics and distribution of
various metrics.

Convention formation is also a relevant area in this context. Emer-
gence of conventions is studied using agent-based network models by
Airiau et al. [22, 23], using multiple interactions among agents over
time. It is found that the convention formation process is faster when
the agents have the ability to reorganize their neighborhood based on
the payoffs they get when interacting with their neighbors.

Group formation in networks has been addressed in detail in
[24–26], where emergent groups in a network are studied in detail. In
most of these works, it is found to be beneficial for agents to interact
with other agents belonging to the same group or congregation, as it
involves greater trust and familiarity. Another interesting takeaway is
that although the overall network keeps changing dynamically at an
individual level, it is found that the global properties of the network
remain more or less the same.

Network creation has also been addressed from a game theoretic
point of view to compute the Nash equilibrium of the emergent net-
works [27, 28]. In some cases, the network remains the same and the
agents evolve their strategies over time [9], while in other cases the
agents change their connections, leading to different emergent
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networks [27, 28]. The network structure has an impact on individual
agents and on the resultant network as well [29].

Game theory is useful for modeling interactions among the agents.
For example, game theoretic concepts to build models of heteroge-
neous networks have been used [30, 31]. They prove the existence of
Nash equilibrium in different conditions. Also they have some vari-
ants of evolutionary models, which are used to study the dynamics of
populations of agents over multiple generations. Based on the payoffs
of their interactions, the agents decide which connections to make or
break and which actions to perform.

Diversity is useful in a variety of contexts like networks, teams and
problem solving, like predictive analysis and information and prefer-
ence aggregation [32–34]. It can be of various kinds, like diversity of
paradigms, heuristics, interpretations, values, processes and so on,
apart from the usual interpretations of diversity, like diversity in
terms of identity and cognitive ability. Diversity needs to be sustained,
especially in heterogeneous networks in order to advocate pro-social
behavior, for example, by encouraging social and economic interac-
tions among people belonging to diverse groups [35].

To the best of our knowledge, the literature surveyed is relevant to,
or is closest to, our model of diversity. In our proposed model, we use
a combination of game theory and network analysis to model the
dynamics of innate and acquired diversity. The underlying question
pertains to studying how varying levels of insularity and homophily,
as well as varying proportions of a globalized subgroup, affect the
prospects of regional subgroups as well as the population as a whole.

Approach and Model3.

Our model of the diverse population comprises a set of agents A,

where A  n. Of these agents, a subset G ⊆ A of agents represents

“global” agents, who associate themselves with the global identity—

that of the entire network. The term gp  G  A, also called perc-

global, represents the proportion of global agents in the population.
The rest of the agents R  A\G are called “regional” or “local”

agents, who associate themselves with one from a set of regional iden-
tity labels, called Rl. A labeling function ρ :R → Rl is defined, which

associates a local identity with every regional agent.
Each agent may make up to k connections with other agents. A

connection represents a social or business relationship, potentially
leading to mutual value addition. Since each such relationship is
expensive to initiate and maintain, the term k represents a cost
constraint.
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A relationship is represented as an iterated prisoner’s dilemma
(IPD) game [36]. The game matrix used in our experiments is shown
in Table 1.

Player 1

Cooperate Defect

Player 2 Cooperate (3, 3) -2, 5
Defect 5, -2 -1, -1

Table 1. Payoff matrix of prisoner’s dilemma.

The prisoner’s dilemma represents a situation where participating
agents have two options: act cooperatively, or “defect.” There is a
clear collective good to be achieved by acting cooperatively. However,
the game also provides a temptation—where an agent can reap a
much higher reward by defecting, as long as the other agent is cooper-
ating. In such cases, while the defecting agent obtains a high payoff,
the cooperating agent suffers a penalty. When both agents defect,
there is a collective penalty. This is also called the price of anarchy
(PoA).

When this game is played as a one-off transaction, a decision to
defect emerges as the dominant strategy for any player.

The prisoner’s dilemma is one of the most studied games in game
theory that accentuates the dilemma between optimizing for one’s
own prospects versus working toward a global good. While the
prisoner’s dilemma has no rationale for cooperation when played as a
one-off transaction, it can be shown that cooperation can emerge
when this game is played in an iterated fashion between the same set
of players [36, 37]. IPD brings an element of memory into the game,
where knowledge about the opponent’s past choices may affect the
other player’s future choices. As a result, strategies in IPD need to con-
sider future repercussions of a particular choice, in addition to its cur-
rent expected payoff.

Future repercussions are modeled using a decay parameter indi-
cating the importance attached to expected payoffs over time:δ, 0 ≤ δ < 1. Hence if the expected payoff for player i were to remain
ui for the rest of the game, the overall payoffs factoring future reper-

cussions would be:

ui
*  lim

n→∞
j0

n δjui  ui

1 - δ . (1)
Given such a formulation, it is shown that a strategy based on

reciprocity, called tit-for-tat (TFT) emerges as a stable strategy that is
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both cooperative as well as resilient [36]. The TFT strategy is detailed
as follows:

Begin by offering cooperation in the first iteration.1.

For subsequent iterations, choose the choice made by the other player
in the previous iteration.

2.

Global agents implement the TFT strategy when they interact with
any player. Among regional agents, the TFT strategy is somewhat
modified to account for insularity. A parameter called ip or insularity-

prob, models the extent of insularity in a regional society. This repre-
sents the proportion of the regional population that is insular. Every
agent in a given regional population is marked as either “insular” or

“open-minded” with a probability ip and 1 - ip, respectively.
Insular agents implement the following modified version of the

TFT strategy (called “distrustful TFT” or DTFT) when they interact
with other agents:

If another agent interacting with me belongs to the same regional group
as me, then:

1.

◼ Begin by offering cooperation for the first iteration;

Else◼ Choose the distrustful choice of defect.

For subsequent iterations, choose the choice made by the other player
in the previous iteration.

2.

There are a variety of strategies that have been studied for IPD.
However, TFT and DTFT represent stable and resilient strategies that
are also compact. They do not need to store and process a large
amount of information to make a decision, and other agents do not
have a dominant counter strategy even when they know the TFT or
DTFT choices of any given agent.

The limit to which an iterated game is played is called an “epoch”
(denoted by the symbol τ). After an epoch, if the overall payoff
accrued by an agent is negative, it means that the business or social
connection was not beneficial. In such cases, it ends its existing con-
nection and searches for a new connection.

A subtle difference between the formulation of evolutionary games
and that of the presented model may be noted. In evolutionary games,
agents evolve their strategies after an epoch, based on the accrued
payoffs across different strategies. In this case, we allow the network
topology to evolve instead, until the topology reaches a state of
equilibrium.

This process of rewiring the network is described as follows:

Searching for new connections is influenced by the levels of
homophily latent in the population. This is represented by the symbol

hp (0 ≤ hp ≤ 1 or homophily-prob. With probability hp an agent
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connects randomly with other agents from their own group. And with

a probability 1 - hp they connect “rationally” to any agent in the

population based on the logic of preferential attachment. Preferential
attachment is based on the degree of the target node. A connection is

proposed to node v with a probability: dv  ∑vdv, where dv is the

degree of the node v. The degree of a node is used as a marker for the
local influence or bargaining power possessed by the corresponding
agent.

Global agents are not affected by the homophily probability. While
they can end existing connections based on their accrued payoffs,
their new connections are always based on preferential attachment.

We can see that when all the agents end up with a net positive pay-
off from all their relationships, the network topology is in a state of
equilibrium, which is Pareto optimal. At this point, none of the agents
can change their strategies/connections without hurting their neigh-
bors. We stop the simulation at this stage. Measurements and interpre-
tations are performed after the network has reached equilibrium.

The overall simulation model in the form of pseudocode is pre-
sented in Algorithm 1. Based on the simulation model given, the fol-
lowing metrics are computed:

◼ num-epochs: Number of epochs after which equilibrium is reached.

◼ modularity (mod p): Modularity measures the amount of segregation or

community structure in the population. It is defined based on the num-
ber of in-community links versus the number of across-community
links. This is calculated as:

Q  
i1
c eii - ai

2,
where i iterates over all the communities, which in the case of our
experiments is four: global agents and the three regional groups. The
fraction of edges eii is where both ends of the edge are part of the same

community i, and ai is the fraction of ends of edges that are attached to

vertices in community i, that is, either it is an in-edge or an out-edge
with respect to community i.◼ bet-cen (β): Betweenness centrality of an agent is calculated as the
proportion of shortest paths between all pairs of agents that pass
through the current agent. Formally betweenness of a node v is
given by:

βv  ∀s≠v ∀t≠v
σst(v)σst ,

where σst is the set of all shortest paths between s and t, and σst(v) is
the set of all shortest paths between s and t passing through v.

354 J. Deshmukh, S. Srinivasa and S. Mandyam

Complex Systems, 30 © 2021



Generate n agents1.

Mark each agent as “global” with a probability gp2.

Assign a label chosen uniformly at random from Rl to each of the

agents not marked “global”

3.

For each non-global agent, mark agent with label “insular” with proba-
bility ip

4.

Global agents and non-insular regional agents adopt strategy TFT5.

Insular agents adopt strategy DTFT6.

Every agent connects with k agents7.

while TRUE do8.

Agents play IPD with all their neighbors for τ iterations9.

count  010.

for each agent a do11.

let neighbor be the set of neighbors of agent a12.

if payoff from neighbor[i] < 0 then13.

count  count + 114.

if agent a is global then15.

Disconnect with neighbor[i]16.

Connect using preferential attachment with any random agent17.

else18.

Disconnect with neighbor[i]19.

With probability hp within the group and with probability1 - hp connect preferentially to any random agent

20.

end21.

end22.

end23.

if count  0 then24.

System reached equilibrium25.

Update all metrics and plots26.

STOP27.

end28.

end29.

Algorithm 1. Pseudocode of model.

The terms βg and βr represent the average betweenness centrality of

global and regional agents, respectively. Similarly βc and βd represent

the average betweenness centrality of cooperating (non-insular)
regional agents and defecting (insular) regional agents, respectively.
These group-level betweenness centrality measures are useful to charac-
terize the relative importance of groups with respect to each other. Simi-
larly, payoffg and payoffr represent the average payoffs of global and

regional agents, respectively.
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◼ Dominance over neighborhood (DON): DON represents a new central-
ity measure indicating local influence, proposed by [38]. A standardized
version of the measure, with certain parameters fixed, is expressed as:

DONi  1 + 1

nρ 
j∈N(i) ln

di
dj . (2)

Here, di represents the degree of node i and Ni represents the set of

neighbors of node i. The distribution of DON values in a network can
be shown to represent a “fair” allocation of a conserved resource (in
our case, attention) among agents in a network, and is shown to be a
generalized form of the Shapley value [39, 40]. The term ρ is a scaling
parameter to produce the best dispersion in the distribution of DON
values. The sum of DON values over all agents is n and yields a bal-
ance property. The log sum of ratios of the degrees ensures that DON
has a high positive value whenever its degree is high, and additionally,
the degree of its neighbors is low. This captures the notion of domi-
nance of node over its neighbors, which is used in our study as a mea-
sure of the bargaining power of an agent.

Normalizing the values of DON by dividing by n yields a distribu-
tion of power or influence values that sums to 1. The entropy of this
distribution presents an insight into how bargaining power is dis-
tributed across the population. This is calculated as follows:

HDON  -
i

DONi

n
* log2 DONi

n
. (3)

Smaller values of entropy imply the emergence of power centers of
influence, while larger values indicate a more even distribution of bar-
gaining power in the population.

Experiments and Results4.

All the experiments have been done using NetLogo
(ccl.northwestern.edu/netlogo). The network of agents is initialized as
discussed in Section 3, and Table 3 shows the initial values of the
input parameters. The network is updated until it reaches equilib-
rium, that is, when all the agents get a positive payoff from all their
neighbors and cannot change their strategies/connections without
hurting others. At equilibrium, all the metrics defined in Section 3 are
measured and reported. We conduct 500 independent runs for each of
the network configurations in order to minimize the effect of outliers.
We then take the mean value of the scores across all the runs. Error
bars in all the graphs depict standard error.

In all the network visualizations, the color of the agent represents
the group it belongs to. Regional agents are represented in different
colors: red, green and dark blue; while global agents are shown in
cyan blue. The shape of the agents also represents their characteristic.
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A circle represents a regional “open-minded” (non-insular) agent that
plays TFT. The triangle represents regional insular agents that play
DTFT and the squares represent global agents that are not affected by
homophily or insularity. Network visualizations are for one sample
run of the case being discussed. The networks are plotted using spring
layout [41] where the links in the graph act as springs and the agents
connected by a link repel each other. All the spring layout–related
hyperparameters remain the same across all the plots.

conf epochs mod p βg βr βc βd payoffg payoffr

glo 0%
LILH 4.24 0.22 - 87.16 102.60 26.03 - 7289.66

LIHH 3.12 0.56 - 109.59 123.86 52.48 - 5387.37

HILH 11.13 0.57 - 107.06 369.93 45.57 - 17851.21

HIHH 4.15 0.65 - 96.73 252.63 57.55 - 6956.79

glo 20%
LILH 4.58 0.19 66.24 91.87 108.90 25.09 7055.11 7969.64

LIHH 3.59 0.48 79.20 108.56 124.39 45.49 3943.50 6659.00

HILH 11.81 0.52 59.20 114.64 411.72 45.22 13332.32 19558.17

HIHH 7.18 0.63 191.80 130.86 429.15 60.37 4735.78 13323.76

glo 80%
LILH 5.02 0.07 83.74 97.95 119.38 13.49 8758.00 8437.12

LIHH 3.73 0.21 89.63 100.64 124.61 10.68 6113.55 7167.35

HILH 8.01 0.15 80.55 92.25 352.41 34.66 14341.43 7920.86

HIHH 6.25 0.27 92.85 75.37 340.07 13.61 10426.93 9438.20

Table 2. Metrics at four extremes: all scores presented are averaged over 500
independent runs.

Parameter Value# of agents 100# of regional identities Rl 3# of edges per agent k 3

epoch length (τ) 50 ticks

insularity-prob [0.2 0.8] (two extreme cases)
homophily-prob [0.2 0.8] (two extreme cases)

Table 3. Initial values of input parameters.

Simulation runs are performed for different “cases,” where each
case represents a specific diversity configuration for the population.
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Each such case is also characterized by one or more hypotheses,
which are tested on the simulation runs. The different cases are intro-
duced below.

Case A: No Global Agents4.1

The first case we study is of a population that contains only regional
identities, that is: G  {}, in order to see how critical the population
of global agents is to keep a diverse population together.

Hypothesis (HA1): Fostering a subculture of “global” agents in a
diverse population is critical for keeping the population functioning
as one network.

In order to test this hypothesis, first we build a network model
with only regional agents. Insularity and homophily probability of the
regional agents are varied, and simulation runs are conducted for all
four extremes and the resultant network structures. These extreme
cases correspond to the following: LILH, LIHH, HILH, HIHH, repre-
senting combinations of low and high values of insularity and
homophily, respectively. A low value is represented as a probability of
0.2 and a high value is represented as a probability of 0.8. Resultant
network structures for all the four extremes are shown in Figure 1. In
the case of LILH where both insularity and homophily are low, the
network forms a tightly knit melting pot. But when either insularity
or homophily increases, the network segregates into regional clusters,
with the open-minded agents from each cluster forming the bridges to
other clusters. The modularity values in either of these cases are signif-
icantly higher than in the LILH case (shown in Table 2, first section).

When both homophily and insularity are high (HIHH), the net-
work disintegrates into disparate clusters with little or no interaction
between the clusters.

Inference: Without the presence of global agents, there is more
responsibility on regional cooperators. And in the absence of suffi-
cient regional cooperators, the population can actually cease to func-
tion as a single network.

Hypothesis (HA2): The non-insular agents earn a higher payoff
than insular agents since they play the central role of holding the net-
work together in the absence of global agents.

Figure 2 shows the relative payoffs of non-insular and insular
agents obtained at equilibrium. Non-insular agents end up with
higher payoffs than insular agents in all four configurations. And
interestingly, their payoffs are significantly higher in the case of HILH
configurations comprised of a large number of insular agents, where
they play the most prominent role.
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(a) HILH (b) HIHH

(c) LILH (d) LIHH

Figure 1. Sample network graphs with only regional agents, where colors
represent the type of agent and shape represents the strategy of the agent (see
the text).

Figure 2. Average payoffs of insular and non-insular regional agents with 0%
global agents.

What Keeps a Vibrant Population Together? 359

https://doi.org/10.25088/ComplexSystems.30.3.347



Inference: In HILH, the non-insular agents play a critical role in
connecting the network together into a single unit, and they have
higher payoffs in that configuration both as compared to other net-
work configurations as well as higher payoffs than insular agents in
the same configuration.

Case B: Small (20%) Ratio of Global Agents4.2

In the second case, we introduce a small number (20%) of agents who
are trained with the “global” identity, in order to understand their
role. Figure 3 shows the network configurations at equilibrium for
low (0.2) and high (0.8) values of homophily and insularity.

(a) HILH (b) HIHH

(c) LILH (d) LIHH

Figure 3. Sample network graphs with both global (20%) and regional
agents, where colors represents the type of agent and shape represents the
strategy of the agent, as described in the text.

Hypothesis (HB1): In a diverse population with increasing insular-
ity and homophily, global agents play a central role in keeping the net-
work functioning as one unit.

In Table 2, in row HIHH of 20% global agents, we observe that
global agents have average betweenness centrality of 191.8, whereas
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regional agents have an average betweenness centrality of 130.86.
This shows that global agents play the central role of holding the
agents together, especially in the case of HIHH, where the network
gets split into multiple parts in the absence of global agents.

Inference: Global agents have significantly higher betweenness cen-
trality than regional agents in HIHH configuration.

Hypothesis (HB2): Global agents play a central role in keeping the
network together, and hence they have the highest payoffs.

In Figure 4, the average payoffs of global and local agents are com-
pared across all four network configurations. We find that the aver-
age payoff of global agents is always lower than that of regional
agents in all the configurations! The payoff for both regional and
global agents is highest in the case of HILH. Although HILH takes
longer to reach equilibrium, we observed that even average per epoch
payoff (not reported separately as it follows similar trends as overall
average payoffs) for both global and regional agents is also the high-
est in case of HILH.

Inference: We fail to find support for HB2 in the test runs. Con-
trary to the hypothesis, we found that global agents get an overall
lower payoff as compared to regional agents in all network configura-
tions, despite their critical role of holding the network together.

Figure 4. Average global versus regional payoffs.

Hypothesis (HB3): Since global agents play a central role in keep-
ing the network together, they will have high bargaining power on
average.

Figure 5 shows the scatter plot of DON versus payoff at equilib-
rium for one sample run of simulation in HIHH configuration with
20% global agents. The x axis represents the DON values of agents
and the y axis represents the payoffs of the agents. Both DON and
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payoff values have been normalized to lie in the range 0, 1. Blue

dots represent global agents, red dots represent regional defectors and
green dots represent regional cooperators. All the global agents
appear in the lower-left corner of the graph, indicating that despite
their high betweenness, global agents also do not enjoy high bargain-
ing power! Regional, non-insular agents fare much better in terms of
their payoffs and bargaining power, as compared to global agents.

Figure 5. DON versus payoff of agents in HIHH with ρ  0.1 and 20%
global agents.

Inference: Again contrary to the hypothesis, we found that regional
cooperators have a higher DON and payoff as compared to all other
categories of agents. Global agents have both lower payoff and DON,
especially when their ratio is less. Regional defectors have similar
DON values, but with higher payoffs.

Case B suggests that with a small number of global agents, not
only does the population function as one network, the regional sub-
groups also thrive. The non-insular agents from regional subgroups
end up having the highest payoffs and bargaining power, while the
global agents play the critical role of keeping the network functioning
as one unit. The only caveat is that there is no rational incentive for
any agent to be trained into the global agent worldview, since global
agents end up being highly stressed (due to their high betweenness)
and yet fare lower in payoffs and bargaining power than the regional
cooperating leaders.

Case C: High (80%) Ratio of Global Agents4.3

In the next case, we introduce a large number (80%) of agents who
are trained with the “global” identity, in order to understand what
happens when the global identity becomes so powerful so as to mask
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regional identities. Figure 6 shows the network configurations at equi-
librium for low (0.2) and high (0.8) values of homophily and
insularity.

(a) HILH (b) HIHH

(c) LILH (d) LIHH

Figure 6. Sample network graphs with high (80%) global agents, where col-
ors represent the type of agent and shape represents the strategy of the agent,
as described in the text.

Hypothesis (HC1): High percentage of global agents in a network
will be good for regional agents.

Figure 6 shows the four extreme resultant network configurations,
with 80% global agents. We observe that in HIHH and HILH config-
urations, some of the regional agents might get completely discon-
nected from the network. In LIHH configurations, although they are
a part of the larger group, they cluster together with other regional
agents of their type. Also as shown in Table 2, when the number of
global agents is very high, high levels of homophily (and low insular-
ity) is the only case when the regional agents are better off than the
global agents. A large percentage of global agents is not good for the
prospects of regional agents specifically in high insularity configura-
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tions, and they risk getting alienated from the network. The small
number of cooperators that act as a bridge between the regional
agents and global agents are single-point failures because if they fail,
then the whole community that was connected via them to the bigger
network gets disconnected.

Inference: Hypothesis HC1 fails to be supported by the test runs.
Having a large number of global agents might be detrimental for the
regional agents, as they may get disconnected or completely sidelined
in the network.

When the number of global agents is small, they play critical roles
in keeping the network together, but end up having lower payoffs
and bargaining power. With high numbers of global agents, there is a
risk of alienating regional identities. This leads us to the question of
what would be the “ideal” proportion of global agents in a diverse
population.

Case D: Varying Ratio of Global Agents4.4

In this case, we vary the proportion of global agents to see how the
resultant change in demographics affects the prospects of both global
agents and regional agents.

Hypothesis (HD1): As the number of global agents increases in
HIHH, their payoffs increase.

Figure 7 shows the payoff trends of global and regional agents as
the percentage of global agents increases in HIHH configuration. We
observe that average payoffs of global agents monotonically increase,
whereas average payoffs of regional agents increase until the network
has around 45% global agents and then the average payoff starts
decreasing. At 75% global agents, both global and regional agents
have the same average payoffs, after which global agents have higher
payoff than regional agents.

Figure 7. Average global versus regional payoffs with varying global agents in
HIHH.
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Inference: It is beneficial for regional cultures to participate in a
diverse network until the proportion of global agents is about 45% of
the overall population. After this point, an increase in the ratio of
global agents is detrimental for regional agents in terms of payoff. But
a truly “equal” society (solely in terms of payoffs) that includes the
welfare of the global agents too happens when the percentage of
global agents is about 75%.

Hypothesis (HD2): As the number of global agents increases, bar-
gaining power is more evenly spread across the population.

In Figure 8, for the HIHH configuration, we observe that with an
increasing percentage of global agents, entropy of DON or bargaining
power of global agents monotonically increases, whereas the bargain-
ing power of local agents monotonically decreases. An increase in
entropy of DON values indicates a more even distribution of bargain-
ing power, while decreasing entropy indicates emergence of power
centers. Increasing entropy of global agents indicates that with increas-
ing population of global agents, they evenly spread their influence
over the network. In contrast, among the regional agents, bargaining
power tends to get concentrated in a few power centers, as the per-
centage of global agents increases.

Inference: In a population with high levels of insularity and
homophily, increasing the proportion of global agents tends to create
flatter power structures among global agents, but also tends to create
hierarchical power centers among the regional populations.

Figure 8. Entropy of DON in HIHH with ρ  0.1.

Case E: Generic Results4.5

Hypothesis (HE1): Populations with high insularity take longer to
reach equilibrium.
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In Figure 9, we observe that across different levels of global agents,
it takes longer to reach equilibrium in configurations where insularity
is high. HILH takes the longest to attain equilibrium among all four
configurations, followed by HIHH for cases where the percentage of
global agents is nonzero. Another interesting point to note in Figure 9
is that LIHH reaches equilibrium faster than even LILH! LILH is like
the perfect melting pot with people cooperating and trusting others
and open to making new connections with others, whereas in LIHH
some agents are not open to making connections with others, yet it
reaches equilibrium faster. But this equilibrium would be in the form
of segregated regional clusters, which results in a much lower overall
payoff (depicted in Figure 4) as compared to LILH.

Inference: Insularity defers the network from attaining equilibrium
faster than homophily. Homophily might actually speed up the pro-
cess of equilibrium in LIHH.

Figure 9. Average number of epochs to reach equilibrium in all four configura-
tions where A represents 0% global agents, B represents 20% global agents
and C represents 80% global agents.

Hypothesis (HE2): There are significant differences in resultant
network characteristics of high insularity and high homophily config-
urations.

In the observed betweenness centrality of cooperators and defec-
tors, we find that there is a much higher difference among the two in
the case of HILH configuration than the LIHH configuration. This
shows that cooperating agents play a more central role in HILH as
compared to LIHH, and that the network is more evenly spread in the
case of LIHH as compared to HILH. Also betweenness centrality of
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global agents lies in between the betweenness centrality of defectors
and cooperators.

Inference: Insularity and homophily lead to characteristically differ-
ent emergent networks, and these concepts are not interchangeable
with one another.

Discussion and Conclusion5.

The set of experiments presented in this paper presents various facets
of diversity in populations. While some aspects of the experiments
can be inferred from individual agent behavior, simulation results
show complexities and insights that are not directly apparent. The pri-
mary insight in this paper was to model diversity in terms of two
underlying elements: insularity and homophily. Insularity is seen in
homogeneous populations that are forced to interact and become part
of a larger heterogeneous group. It is characterized by distrust of the
“other,” resulting in close-knit groups. Some examples include incom-
ing refugee populations that relocated as a group and have been
forced out of their original dwellings and are compelled to coexist in
an alien culture.

In contrast to insularity, homophily is more pronounced in popu-
lations with acquired diversity comprising of willing immigrants.
Here, immigrant subgroups have much less distrust of the other, given
their conscious choice to be part of the diverse population. However,
they may prefer establishing connections within their subgroup due to
higher familiarity with each other. Examples include intra-ethnic
business relationships and marriages among immigrants in a diverse
country.

Insularity and homophily are characteristically different. In case A
(Section 4.1), we can see that although insularity and homophily both
result in a segregated population, they are not symmetric. High
homophily and low insularity (representing acquired diversity) results
in segregated clusters, with several intercluster links among the differ-
ent communities. But with high insularity, the number of intercluster
links is far smaller (reducing to zero as homophily increases). High
insularity has much more drastic variation in betweenness centrality
of insular and non-insular agents as compared to high homophily.

Similarly, HILH configurations take the longest amount of time to
achieve equilibrium. Yet, HILH results in the highest average per-
epoch payoff for all regional groups, including global agents. Our
best explanation for this is that this configuration represents a bal-
anced interplay between an ethnic group being conservative (high
insularity) as well as open-minded (low homophily).
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Yet another insight from the experiments was the critical nature of
global agents in keeping the population together. In cases of both
high homophily and high insularity, the global agents formed the criti-
cal link between disparate communities. However, despite their cen-
tral role (in terms of betweenness) in the population, in case B
(Section 4.2), they were neither the richest nor the most powerful of
all the different groups. With a small percentage of global agents act-
ing as the social glue, the biggest beneficiaries are the regional agents
who interface between the global backbone and regional clusters.

It would be interesting to model evolutionary dynamics to under-
stand how demographic changes may manifest due to variations in
payoffs and bargaining power. Would the lower payoffs and bargain-
ing power for global agents create a disincentive for a global agent to
continue with a global worldview? Or would the high payoffs and bar-
gaining power obtained by open-minded regional agents encourage
other regional agents to become less insular? We relegate such ques-
tions to future research directions for this work.

Yet another insight from this paper in case C (Section 4.3), is that
while global agents form the social glue to keep the network together
even when there are high levels of insularity and homophily, too high
a percentage of global agents may itself contribute to fragmentation
of the network. Combining this with case D (Section 4.4), we see that
an increase in the number of global agents increases the prospects of
regional agents up to a point, after which their payoffs start reducing.
In addition, we also see that increasing the percentage of global
agents only increases power disparity among the regional clusters,
resulting in a small number of power centers, when homophily and
insularity levels are high.

This might serve as a cautionary note in showing that it is possible
to go overboard with efforts toward integration and assimilation,
which may ironically lead to more fragmentation and alienation.
Cases C and D (Sections 4.3 and 4.4) only reinforce the challenging
nature of diversity management, calling for nuanced approaches that
balance between assimilation and retention of regional identities.

Real-World Examples of Managing Diversity5.1

In this paper, we looked at insularity and homophily in population
and the role of global agents who do not act based on these aspects.
These factors are not just modeled in the context of simulations but
are observed in the real world as well. As discussed, insularity and
homophily are related to social trust. Social trust is of two types: gen-
eralized trust and particularized trust [42]. Particularized trust is trust-
ing people of a specific community or group, which is characteristic
of both homophily and insularity. Generalized trust is trusting people
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irrespective  of  their  association  with  groups,  which  is  similar  to  the
behavior of global agents in our model. Our simulations show the cru-
cial  role  played  by  global  agents,  and  it  has  also  been  shown  that
generalized trust (which is similar to global agents) is positively associ-
ated  with  physical  health,  happiness  and  life  satisfaction  in  societies
[43].  Similar  to  our  argument  that  managing  diversity  cannot  be  a
one-size-fits-all  approach  but  rather  requires  a  nuanced  approach,
Hamamura  et  al.,  [43]  find  that  managing  generalized  trust  requires
different  measures  in  developed  versus  developing  societies.  There
have  been  studies  to  check  how  welfare  benefits  contribute  to  form
high  generalized  trust  in  Nordic  countries  like  Finland  [44].  General-
ized  trust  (similar  to  global  agents)  is  crucial  both  at  the  individual
and community level and can build expansive communities [42, 45]. 
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