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Proximity  measures  on  graphs  are  extensively  used  for  solving  various
problems in network analysis, including community detection. Previous
studies  have  considered  proximity  measures  mainly  for  networks  with-
out  attributes.  However,  attribute  information,  node  attributes  in  par-
ticular,  allows  a  more  in-depth  exploration  of  the  network  structure.
This paper extends the definition  of a number of proximity measures to
the  case  of  attributed  networks.  To  take  node  attributes  into  account,
attribute  similarity  is  embedded  into  the  adjacency  matrix.  Obtained
attribute-aware proximity  measures are numerically studied  in the con-
text of community detection in real-world networks. 
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Introduction1.

Networks  can  model  a  wide  variety  of  real-world  systems  [1]  from
the  fields  of  computer  science,  biology,  economy,  social  science  and
others. Graphs are a natural way to represent networks: nodes repre-
sent  objects,  and  edges  represent  connections  between  them.  In  this
paper,  the terms “graph” and “network” are used interchangeably.   

Many  real-world  networks  exhibit  community  structure,  where
nodes  are  divided  into  groups  called  communities  or  clusters.  Nodes
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in a group are densely connected, while few edges connect nodes from
different groups. The problem of extracting such groups is called com-
munity  detection  or  clustering.  Community  detection  is  an  active
field,  and  many  methods  have  been  proposed  to  solve  this  problem.
Some  community  detection  methods  use  the  notion  of  proximity  or
distance measure on the set of graph nodes. 

A  proximity  (or  distance)  measure  on  a  graph  is  a  function  that
shows  proximity  (or  distance)  between  pairs  of  its  nodes.  One  of  the
simplest measures of this kind is the shortest path distance. However,
there  are  plenty  of  other  measures  on  the  set  of  graph  nodes  [2–4].
Many  proximity  measures  are  defined  with  the  help  of  kernels  on
graphs  (i.e.,  positive  semidefinite  matrices)  [5].  In  this  paper,  the
term  “proximity  measure”  is  used  in  a  broader  sense  than  in  [5],
namely,  we  do  not  require  them  to  satisfy  the  triangle  inequality  for
proximities. 

In previous studies, kernels on graphs have been considered mainly
for  networks  without  attributes.  However,  nodes  in  real-world  net-
works  are  often  associated  with  attributes  describing  their  personal
features.  Node  attributes  play  an  important  role  in  the  emergence  of
communities, so taking them into account can provide a better under-
standing of the network community structure. 

A number of algorithms for community detection in attributed net-
works  have  been  proposed  in  recent  years.  Surveys  [6,  7]  provide  a
comprehensive  review  of  existing  methods,  some  of  which  are  dis-
cussed  in  Section  2.  However,  kernel-based  community  detection  has
not yet been considered in the context of attributed networks. 

This  paper  extends  the  definition  of  several  well-studied  proximity
measures  to  the  case  of  networks  with  node  attributes.  Node
attributes  information  is  embedded  into  proximity  measures  using  a
number of attribute similarity measures. The obtained attribute-aware
proximity  measures  are  then  applied  for  community  detection  in  sev-
eral real-world networks. 

The  results  show  that  proximity  measures  based  on  attribute  and
structural  information  generally  outperform  both  plain  proximity
measures and pure attribute similarity measures in solving community
detection  tasks.  On  the  other  hand,  the  variation  of  the  ratio  of
attribute  and  structural  information  shows  that  for  some  networks,
attribute information is enough to detect the community structure. 

This  paper  is  an  extended  version  of  the  paper  [8]  presented  at
Complex  Networks  2020.  Compared  to  the  conference  paper,  we
search  for  the  optimal  ratio  of  the  attribute  and  structural  informa-
tion and provide new numerical results. 

442 R. Aynulin  and P.  Chebotarev

Complex Systems, 30 © 2021



Related Work     2.

This section consists of two parts. First, we discuss proximity and dis-
tance  measures  on  the  set  of  graph  nodes  and  related  studies.  In  the
second part, we provide a brief overview of previously proposed meth-
ods for community detection in attributed networks.  

Measures on the Set of Graph Nodes  2.1

Until  the  1960s,  the  shortest  path  distance  was  the  only  widely  used
measure on the set of graph nodes [9]. Deza and Deza [2, Chapter 15]
review an assortment of measures on the set of graph nodes suggested
in  recent  decades,  including  the  physics-inspired  electric  metric  [10]
(also known as resistance distance) and many others.  

Avrachenkov  et  al.  [5]  analytically  and  numerically  study  the
properties  of  several  proximity  measures,  including  PageRank,
Communicability, Walk,  Heat and a number of logarithmic measures.
In  [11],  the  authors  review  nine  kernels  on  graphs  and  numerically
compare  them  in  the  context  of  link  prediction  and  semi-supervised
classification. 

Sommer  et  al.  [12]  compare  the  Randomized  Shortest  Path,  Free
Energy,  Sigmoid  Commute  Time,  Corrected  Commute  Time  and
Logarithmic  Forest  measures  in  application  to  community  detection
in  15  datasets.  According  to  the  results  of  experiments,  the  best-
performing measures are Randomized Shortest Path and Free Energy.  

In  [13,  14],  the  authors  propose  to  transform  proximity  measures
using  simple  mathematical  functions  like  the  logarithm.  Experimental
results  show  that  such  transformations  improve  the  effectiveness  of
proximity measures in application to community detection. 

Community Detection in Attributed  Networks  2.2

Classically,  community  detection  methods  used  only  structural
information  and  ignored  node  attributes  (see,  e.g.,  [15]).  Recently,  a
number  of  methods  that  use  both  types  of  information  have  been
proposed.  

The  SA-Cluster  algorithm  is  presented  in  [16].  This  algorithm  cre-
ates an attribute node for all the values of all the attributes. If a node
has  an  attribute  value  specified  in  an  attribute  node,  an  edge  is  cre-
ated  between  this  node  and  this  attribute  node.  After  the  creation  of
new  edges,  the  algorithm  estimates  the  distance  between  nodes  using

a  random  walk  model.  The  k-medoids  method  is  then  used  to  detect
communities.  Ruan  et  al.  [17]  propose  the  CODICIL  method.  The
idea  of  this  method  is  as  follows:  an  additional  edge  (a  content  edge)
is  created  between  nodes  with  similar  attributes.  The  resulting  graph
with  additional  edges  is  then  clustered  using  the  Multi-level  Regular-
ized Markov Clustering and Metis algorithms. 
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In  [18],  the  authors  propose  a  weight  modification–based  method
for community detection in attributed networks. For each edge in the
network,  its  weight  is  changed  to  the  matching  coefficient  (i.e.,  the
number of common attribute values) between the nodes connected by
this  edge.  After  the  weight  modification,  the  network  is  clustered
using  the  Spectral,  Karger’s  Min-Cut,  and  MajorClust  algorithms.
Yang  et  al.  [19]  present  the  CESNA  method,  which  assumes  that  the
attributed  network  is  generated  by  a  probabilistic  model.  Maximum-
likelihood  estimation  on  this  model  allows  detection  of  communities
in the network. 

For a thorough survey of various techniques for community detec-
tion  in  attributed  networks,  we  refer  to  [6,  7].  According  to  the
classification  suggested  in  [7],  our  method  belongs  to  the  class  of
weight-based methods. 

Preliminaries  3.

Definitions  3.1

An  undirected  weighted  attributed  graph  G  (V, E, F)  is  considered,
where  V  (V  n)  is  the  set  of  nodes,  E  (E  m)  is  the  set  of  edges,

and  F  is  the  tuple  of  attribute  (or  feature)  vectors  fi.  d  attributes  are

associated with each of the n nodes, so F  f1, … , fn, where fi ∈ d.

We consider networks with binary attributes.  

The  adjacency  matrix  A  aij  of  a  graph  is  a  square  matrix  with

aij  equal to the weight of the edge i, j if nodes i and j are connected,

and  equal  to  zero  otherwise.  Sometimes  the  cost  matrix  C  cij  can

also be defined  for the graph G with elements cij  equal to the cost of

following this edge. If the cost is not defined  independently,  it can be
taken as the inverse to the weight: cij  1 / aij. 

The  node  degree  is  the  sum  of  the  weights  of  the  edges  connected

to this node. The  degree matrix D  diag(A · 1) is the diagonal matrix

that  contains  degrees  of  all  the  nodes  on  the  main  diagonal;

1  (1, … , 1)T .  Given  A  and  D,  L  D -A  is  the  Laplacian  matrix,

and P  D-1A is the Markov matrix. 
Any  function  κ :V(G)V(G)    that  shows  proximity,  similarity

or  distance  between  the  nodes  of  G  will  be  referred  to  as  a  measure
on the node set of G. A  kernel  on G is a proximity measure that can
be  represented  by  a  positive  semidefinite  matrix  K  (or  Gram  matrix),

with kij  showing closeness between nodes i and j. For more details on

measures and kernels on graphs, see [5]. 

444 R. Aynulin  and P.  Chebotarev

Complex Systems, 30 © 2021



Community Detection Algorithms   3.2

Community  detection  algorithms  allow  the  community  structure  of  a
network  to  be  detected.  In  this  paper,  we  consider  two  algorithms:

k-means and Spectral.  

The  k-means  algorithm  [20]  is  used  to  detect  communities  based
on  the  node  attributes.  For  community  detection  based  on  the  net-
work structure and node attributes, we use the version of the Spectral

algorithm  presented  in  [21].  This  method  applies  the  k-means  algo-
rithm  to  the  eigenvectors  of  the  Laplacian  matrix.  For  a  thorough
review of the Spectral algorithm, see [22].

Proximity Measures    3.3

In  this  paper,  we  consider  five  proximity  measures  that  have  proven
to be efficient  in the context of community detection in previous stud-
ies (e.g., [5, 12]):  

◼ Communicability (C) [23, 24]: KC  ∑n0
∞ αnAn / n !  expαA, α > 0; 

◼ Heat (H) [25]: KH  ∑n0
∞ αn-Ln / n !  exp-αL, α > 0; 

◼ PageRank (PR) [11, 26]: KPR  I - αP-1, 0 < α < 1; 

◼ Free energy (FE) [27]. Given a Markov matrix P, a cost matrix C and a

parameter  α,  the  matrix  W  is  defined  as  W  exp-αC ◦P  (where  the

“◦”  symbol  is  the  elementwise  multiplication).  Then,  we  can  define

Z  I -W
-1

 and S  ZC ◦W ÷ Z (where the “÷” symbol is the ele-

mentwise  division).  The  distance  matrix  is  then  equal  to

ΔFE  Φ + ΦT  / 2,  where  Φ  logZ / α.  Finally,  KFE
 is  calculated  from

ΔFE using the transformation K  -1 / 2HΔH; 

◼ Sigmoid  corrected  commute  time  (SCCT)  [12,  28].  First,  the  corrected

commute  time  (CCT)  kernel  is  defined  as  KCCT  HD-1/2 

MI -M
-1MD-1/2H,  where  H  I - 1 · 1T  / n,  M  D-1/2A - d · dT  /

volGD-1/2,  d  contains  the  elements  on  the  main  diagonal  of  the

degree matrix D, volG  ∑ij1
n aij. Finally,  the elements of the sigmoid

corrected  commute-time  kernel  KSCCT
 are  defined  as  Kij

SCCT 

1 / 1+exp-αKij
CCT / σ,  where  σ  stands  for  the  standard  deviation  of

the KCCT
 elements, and α is a positive parameter.  

Quality Evaluation of Community Detection  3.4

For  the  community  detection  quality  evaluation,  the  adjusted  Rand
index  (ARI)  is  used.  ARI  was  introduced  in  [29],  and  [30]  presented
its  advantages  over  some  other  quality  indices.  ARI  takes  the  values
ranging from zero to one, and the larger the value, the better.   

ARI measures the agreement between two partitions of n elements.
In  the  case  of  community  detection,  one  partition  is  the  ground-truth

Extending Proximity Measures to Attributed Networks for Community Detection 445

https://doi.org/10.25088/ComplexSystems.30.4.441

https://doi.org/10.25088/ComplexSystems.30.4.441


community  assignment,  and  the  other  partition  is  the  community
assignment according to a clustering algorithm. 

ARI is an enhanced version of the Rand index. Let a be the number
of  pairs  of  elements  that  are  in  the  same  communities  in  both  parti-

tions,  and b  the  number  of  pairs  of  elements  that  are  in  different
communities in both partitions. Then,  the Rand index is calculated as
follows:

a + b

n

2

.

ARI  transforms  the  Rand  index  in  such  a  manner  that  it  will  have  a
value close to zero for random partitions:  

ARI 
index - expected index

max index - expected index
.

Proximity-Based Community Detection in Attributed  Networks    4.

A  proximity  measure  matrix  K  is  used  as  an  input  to  community
detection algorithms. In order to take node attributes into account for
community  detection,  we  should  consider  attributes  during  proximity
calculation.  

As  we  saw  in  Section  3.3,  proximity  measures  are  functions  of  the
adjacency matrix. Thus,  attributes should be embedded into the adja-
cency  matrix.  This  can  be  achieved  by  modifying  edge  weights  based
on the attributes in the following way: 

aij
s  βaij + (1 - β)sij, (1)

where β ∈ [0, 1] and sij  sfi, fj is the similarity between nodes i and

j calculated using some attribute similarity measure. An attribute simi-

larity  measure,  as  the  name  suggests,  quantifies  the  level  of  similarity
between the attribute vectors of two nodes.  

The  coefficient  β  allows  a  tradeoff  between  the  impact  of  the  net-
work  structure  and  attributes  on  the  resulting  weight.  In  the  case
when  β  0,  the  attributed  adjacency  matrix  As

 shows  only  the  simi-
larity  according  to  attributes,  while  with  β  1  it  represents  only  the
network structure and coincides with the adjacency matrix. Given As,
the  attributed  versions  of  the  preceding  proximity  measures  can  be
derived and applied for community detection. 

Let  fi  fi
1, … , fi

d  and  fj  fj
1, … , fj

d  be  the  attribute  vectors  of

nodes  i  and  j,  respectively.  In  this  paper,  we  consider  five  attribute

similarity measures: 
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◼ Matching coefficient (MC) [31]: 

sMCfi, fj 
∑
k1
d fi

k  fj
k

d
.

(x)  is  the  indicator  function  that  equals  one  if  the  condition  x  is  sat-
isfied,  and  zero  otherwise.  The  MC  is  generally  used  for  discrete
attributes  (especially  binary)  since  equality  is  rare  for  continuous
attributes:  

◼ Cosine similarity (CS) [32, Chapter 2]: 

sCSfi, fj 
fi · fj

fi2fj2

;

◼ Extended Jaccard similarity (JS) [32, Chapter 2]: 

sJSfi, fj 
fi · fj

fi2
2
+fj2

2
- fi · fj

;

◼ Manhattan similarity (MS) [33]: 

sMSfi, fj 
1

1 + fi - fj1

;

◼ Euclidean similarity (ES) [33]: 

sESfi, fj 
1

1 + fi - fj2

.

Experimental Methodology  5.

To  test  the  effectiveness  of  the  attribute-aware  proximity  measures,
we perform a number of experiments on real-world datasets. For each
of  the  datasets,  communities  are  detected  using  multiple  methods.

First,  the  k-means  algorithm  is  applied,  which  deals  only  with  node
attributes  and  ignores  the  network  structure.  Then,  communities  are
detected  using  the  Spectral  algorithm  in  combination  with  five  prox-
imity  measures  of  Section  3.  Finally,  each  dataset  is  clustered  using
the Spectral algorithm in combination with attribute-aware proximity
measures.  The  quality  of  produced  communities  is  evaluated  each
time using the ARI.  

Since there is a parameter in the definition  of each of the proximity
measures, we also search for the optimal parameter.  In the results, we
use the optimal parameters while estimating the community detection
quality.  
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Experiments are performed on the following datasets: 

◼ WebKB  [34,  35]:  a  dataset  of  computer  science  department  webpages
at  several  universities.  Each  webpage  has  a  binary  feature  vector

(d  1703) that shows the presence or absence of words from a special
vocabulary.  There  are  five  classes  that  describe  types  of  the  webpages.
The dataset contains four unweighted graphs that correspond to Univer-

sity  of  Washington  (n  230,  m  446),  University  of  Wisconsin

(n  265,  m  530),  Cornell  University  (n  195,  m  304)  and  Uni-

versity of Texas  at Austin (n  187, m  328). 

◼ CiteSeer  [36]:  a  citation  graph  of  machine  learning  papers  with  3312
nodes  and  4732  edges.  Nodes  are  divided  into  one  of  six  classes  (the

topic  of  the  paper).  A  binary  attribute  vector  (d  3703),  which  indi-
cates  the  presence  or  absence  of  words  from  a  dictionary,  is  associated
with each of the nodes. 

◼ Cora  [36]:  a  citation  graph  of  machine  learning  papers  with  2708
nodes  and  5429  edges.  As  in  the  CiteSeer  dataset,  nodes  are  divided
into classes according to the topic of the paper (the number of classes is

seven)  and  a  binary  attribute  vector  (d  1433)  is  associated  with  each
of the nodes. 

Results  6.

In  this  section,  results  of  the  experiments  with  a  balanced  version  of
the  attribute-aware  proximity  measures  (β  1 / 2  in  equation  (1))  are
presented.  

Figure  1  shows  the  average  rank  and  standard  deviation  for  the
attribute  similarity  measures  combined  with  the  network  information

in  the  framework  of  the  Spectral  algorithm  and  k-means  applied  to
the  attribute  information  only.  The  rank  is  averaged  over  the  six
graphs discussed earlier.  There  are five  subfigures,  one for each of the
proximity  measures.  The  horizontal  axis  represents  the  average  rank
and  standard  deviation,  while  the  vertical  axis  shows  the  used

attribute  similarity  measure  (or  just  k-means  if  the  network  structure
was  ignored).  “No”  on  the  horizontal  axis  stands  for  the  network
proximity measure that does not use any attribute information. 

As  can  be  seen  in  the  figure,  node  attributes  information  improves
the  quality  of  community  detection  for  all  the  proximity  measures:
the  plain  proximity  measure,  “No”,  has  one  of  the  lowest  ranks  on
each  of  the  subfigures.  Not  all  of  the  attribute  similarity  measures
have  shown  a  good  community  detection  quality.  For  example,  the
Euclidean  similarity  (ES)  and  the  matching  coefficient  (MC)  have
worsened  the  effectiveness  of  some  of  the  proximity  measures.  How-
ever,  the  cosine  similarity  (CS)  and  the  Jaccard  similarity  (JS)  always
improve the results in comparison with the plain proximity measure. 
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When  the  cosine  similarity  or  the  Jaccard  similarity  is  used,  the

attribute-aware  proximity  measures  also  outperform  the  k-means
method.  Therefore,  with  a  good  attribute  similarity  measure  (accor-
ding to our experiments, CS or JS), the attribute-aware proximity mea-

sures perform better than both the k-means method, which deals only
with attributes, and plain proximity measures, which use only the net-
work structure. 

Table  1  shows  the  best-performing  pairs  of  a  proximity  measure
and  an  attribute  similarity  measure.  The  indisputable  leader  is  free
energy paired with the cosine similarity measure. 

Figure 1. Average  rank  and  standard  deviation  for  attribute  similarity  mea-

sures and k-means.  

Nmber Proximity Measure Similarity Measure Average Rank 

1 FE CS 2.833 

2 FE JS 6.333 

3 communicability CS 6.667 

4 SCCT JS 7.333 

5 SCCT CS 7.667 

6 communicability JS 8.333 

7 PR CS 8.333 

8 heat CS 8.667 

Table 1. The  best-performing  pairs  of  proximity  measure  and  similarity
measure.  

Varying  Attribute-Relation  Ratio  7.

The  coefficient  β  in  equation  (1)  denotes  the  ratio  between  attribute
and  relation  (graph  structure)  information  in  the  resulting  attributed
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adjacency  matrix  As.  In  this  section,  we  analyze  the  effectiveness  of
community detection when various values of β are used.  

For the coefficient  search, we consider the most promising proxim-
ity and similarity measures according to the results of the previous sec-
tion. The  cosine similarity and extended Jaccard similarity are used as
similarity  measures,  and  the  free  energy  and  communicability  mea-
sures are used as proximity measures. 

Similar  to  the  previous  section,  we  detect  communities  in  WebKB,
CiteSeer and Cora datasets using the Spectral algorithm and attribute-
aware  proximity  measures.  We  employ  the  following  values  of  β:
0,  0.1,  0.2,  0.4,  0.5,  0.6,  0.8,  0.9,  1.  With  β  0,  elements  of  the
attributed adjacency matrix As

 involve only similarity by attributes. 
Figure 2 presents the results of searching for the optimal coefficient

β  for  six  attributed  networks.  Each  subfigure  contains  four  plots  for
various  combinations  of  attribute  similarity  and  proximity  measures:
cosine  similarity  and  free  energy  (CS,  FE),  cosine  similarity  and  com-
municability  (CS,  C),  extended  Jaccard  similarity  and  free  energy  (JS,
FE), and extended Jaccard similarity and communicability (JS, C). 

The  x  axis  shows  the  values  of  the  varying  coefficient  β,  while  the
value of ARI is plotted on the y axis. 

Figure 2. Searching for the optimal β.  
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As  can  be  seen,  the  optimal  value  of  β  depends  on  the  dataset  as
well  as  the  proximity  and  similarity  measures.  However,  a  common
pattern  can  be  identified.  Even  a  small  amount  of  attribute  informa-
tion  (changing  β  from  1  to  0.9)  significantly  improves  the  ARI  score.
This  further  underscores  the  importance  of  attributes  for  community
detection. 

Moreover,  for  networks  in  the  WebKB  dataset,  the  top  or  close  to
top ARI score can be achieved without using graph structure informa-
tion at all (β  0). This  means that for these graphs, using hyperlinks
between  the  webpages  in  the  present  way  does  not  improve  the  qual-
ity of community detection. Paying more attention to the graph struc-
ture starts to sharply reduce quality after some low value of β. 

On  the  contrary,  for  CiteSeer  and  Cora  datasets,  the  graph  struc-
ture is significant  for detecting communities. Only when attributes are
not used at all (β  1) does the ARI value drastically decrease. 

Thus,  the  optimal  β  strongly  depends  on  the  dataset.  For  some
datasets,  the  graph  structure  is  more  important  for  determining  the
community  structure  than  attributes.  For  others,  including  WebKB,
using  the  structural  information  in  the  present  way  does  not  assist  in
community detection. 

The  latter  result  is  easy  to  interpret.  The  types  of  webpages  to  be
recognized  on  WebKB  networks  are:  faculty  (member),  staff,  student,
research  project  and  course.  In  contrast  to  CiteSeer  and  Cora,  where
an edge/arc between nodes (papers) reflects  semantic similarity,  which
is typical of papers in the same category,  the situation with WebKB  is
radically  different.  For  instance,  a  faculty  member’s  webpage  usually
links  to  courses  and  projects,  as  well  as  Ph.D.  and  graduate  students,
rather  than  to  other  faculties.  From  a  student  webpage,  typical  links
are to courses and advisors rather than to other students or staff mem-
bers, and so on. 

A  general  conclusion  might  be  that  in  community  detection  tasks,
the  semantics  of  network  links  is  of  paramount  importance.  In  some
networks,  the  density  of  intraclass  connections  is  much  higher  than
that  of  interclass  ones;  other  networks  resemble  multipartite  graphs
whose  edges  mainly  connect  different  classes;  some  networks  like
WebKB  have specific  link patterns. Taking  such patterns into account
may  improve  the  accuracy  of  community  detection,  while  ignoring
them can degrade the results. Further research should suggest alterna-
tive  approaches  to  combining  attribute  and  topological  information
to  reveal  the  structure  of  semantically  complex  networks,  such  as
those in the WebKB  collection. 
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Conclusion  8.

In this study,  we extended the definitions  of proximity measures such
as  communicability,  heat,  PageRank,  free  energy  and  sigmoid  cor-
rected  commute  time  to  attributed  networks.  Node  attributes  were
embedded  into  the  proximity  measures  using  five  attribute  similarity
measures: the matching coefficient,  the cosine similarity,  the extended
Jaccard similarity,  the Manhattan similarity and the Euclidean similar-
ity.  The  obtained  attribute-aware  proximity  measures  were  applied
for community detection in attributed networks.  

The  experiments  on  the  real-world  datasets  showed  that  node
attributes  information  provides  a  better  understanding  of  the  com-
munity  structure  and  improves  the  quality  of  community  detection.
Moreover,  for  some  networks,  attribute  information  is  enough  for
community  detection.  The  best-performing  attribute  similarity  mea-
sures  in  the  experiments  were  the  cosine  similarity  and  extended
Jaccard similarity.  
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