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In  this  paper,  a  self-modeling  mental  network  model  is  presented  for
cognitive  analysis  and  support  processes  for  a  human.  These  cognitive
analysis  and  support  processes  are  modeled  by  internal  mental  models.
At the base level, the model is able to perform the analysis and support
processes  based  on  these  internal  mental  models.  To  obtain  adaptation
of  these  internal  mental  models,  a  first-order  self-model  is  included  in
the  network  model.  In  addition,  to  obtain  control  of  this  adaptation,  a
second-order  self-model  is  included.  This  makes  the  network  model  a
second-order  self-modeling  network  model.  The  adaptive  network
model  is  illustrated  for  a  number  of  realistic  scenarios  for  a  supported
car driver.  

Introduction1.

To  describe  complex  cognitive  processes,  including  their  formation,
learning,  development  or  adaptation,  often  the  concept  of  (internal)
mental model is used; for example, [1–4]. The  focus here is on moni-
toring  and  assessing  the  performance  of  a  human  in  demanding  cir-
cumstances  and  generating  support  actions  whenever  needed.  As  an
example,  when  we  observe  that  a  driver  is  consuming  alcohol,  the
assessment  will  be  that  it  will  not  be  safe  to  start  driving.  Based  on
that, as a support action, starting the car will be blocked. Or if while
driving  it  is  observed  that  the  driver’s  steering  is  erratic,  this  will  be
assessed as a driving risk. Therefore as a support action in this case, it
will be proposed to slow down the car.   

In such analysis and support processes, two internal mental models
play  a  main  role:  an  analysis  model  to  determine  assessments  based
on  information  obtained  from  monitoring  and  a  support  model  to
determine  proper  support  actions,  taking  into  account  generated
assessments. In practice, such internal mental models usually are adap-
tive  in  order  to  improve  them  over  time.  Moreover,  some  form  of
control  is  applied.  The  interplay  of  these  three  types  of  processes
involving  the  mental  models  (applying  them,  adapting  them  and
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exerting  control)  forms  a  complex  and  adaptive  cognitive  process.
Modeling  such  a  complex  adaptive  cognitive  process  is  a  nontrivial
challenge. 

A  computational  model  for  the  considered  cognitive  processes  can
be  a  tool  to  study  how  humans  perform  them,  but  it  can  also  be  a
good  basis  for  an  AI-application  to  support  a  human.  Artificial  vari-
ants of such cognitive processes are currently being built into new gen-
erations of cars as automatic safety systems. 

This  paper  addresses  how  the  complex  cognitive  processes  consid-
ered  here  can  be  modeled  using  second-order  self-modeling  networks
[5]. The three elements mentioned (applying the mental models, adapt-
ing them and exerting control) are addressed by three levels in such a
self-modeling  network.  At  the  base  level  within  the  self-modeling
network  model,  the  internal  mental  models  are  modeled  and  exe-
cuted;  at  the  first  self-modeling  level,  the  adaptation  of  these  mental
models is modeled; and at the second self-modeling level, exerted con-
trol is modeled. 

The work presented in this paper extends the work described in [6]
by more than 55% in word count in the following ways: 

◼ The modeling methodology used and model details have been described
in much more detail (e.g., the new Section 3).

◼ The  network  model  in  [6]  only  addressed  adaptivity  of  the  excitability
of  network  nodes,  but  it  now  has  been  extended  by  adding  adaptivity
for  all  connections  both  on  the  first-order  adaptation  level  and  on  the
second-order adaptation level for control of the first-order adaptation. 

◼ The  extended  model  has  been  evaluated  by  simulation  experiments  of
realistic scenarios for twice as many cases. 

In  this  paper,  Section  2  briefly  introduces  self-modeling  networks.
Section  3  addresses  the  application  domain.  Section  4  presents  the
design  of  the  considered  self-modeling  network  model  and  Section  5
presents example simulation scenarios of it. Section 6 is a discussion. 

Network Models Using Self-Models   2.

In  this  section,  the  network-oriented  modeling  approach  used  from
[5, 7] is briefly summarized.   

Distinction between Network Characteristics and 

Network States     

2.1

The following is a crucial distinction for network models:  

◼ Network  characteristics  (such  as  connection  weights  and  excitability
thresholds)  have  values  (their  strengths)  and  determine  (e.g.,  cognitive)
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processes  and  behavior  in  an  implicit,  automatic  manner.  They  can  be
considered  to  provide  an  embodiment  view  on  the  network.  In  princi-
ple,  these  characteristics  by  themselves  may  not  be  directly  accessible
nor  observable  for  network  states  (or  a  person:  usually  you  do  not  see
or feel a specific connection in your brain). 

◼ Network  states  (such  as  sensor  states,  sensory  representation  states,
preparation states and emotion states) have values (their activation lev-
els) and are explicit  representations that may be accessible for network
states  or  a  person  and  can  be  handled  or  manipulated  explicitly.  They
can  be  considered  to  provide  an  informational  view  on  the  network;
usually  the  states  are  assumed  to  have  a  certain  informational  content.
In  principle,  for  the  case  of  a  mental  network,  states  may  be  accessible
or observable for a person: you may see (mental image), feel (emotion)
or note in some other way a specific state in your brain. 

Following [5, 8], a temporal-causal network model is characterized
by (here X and Y denote nodes of the network, also called states): 

◼ Connectivity  characteristics.  Connections  from  a  state  X  to  a  state  Y
and their weights ωX,Y .

◼ Aggregation  characteristics.  For  any  state  Y,  some  combination  func-
tion  cY ( ..)  defines  the  aggregation  that  is  applied  to  the  impacts

ωX,YX(t) on Y from its incoming connections from states X.

◼ Timing characteristics. Each state Y  has a speed factor ηY  defining  how

fast it changes for given impact. 

The  following  difference  (or  differential)  equations  that  are  used
for  simulation  purposes  and  also  for  analysis  of  temporal-causal  net-
works  incorporate  these  network  characteristics  ωX,Y ,  cY( ..),  ηY  in  a

standard numerical format: 

Y(t + Δt)  Y(t) + ηYcY ωX1,Y
X1(t), … , ωXk,Y

Xk(t) - Y(t)Δt (1)

for any state Y  and where X1  to Xk  are the states from which Y  gets

its  incoming  connections.  Here  the  overall  combination  function

cY( ..)  for  state  Y  is  the  weighted  average  of  available  basic  combina-

tion  functions  cj( ..)  by  specified  weights  γj,Y  (and  parameters  π1,j,Y ,

π2,j,Y  of cj( ..)) for Y:  

cYV1, … , Vk 

γ1,Yc1V1, … , Vk +⋯ + γm,YcmV1, … , Vk

γ1,Y +⋯ + γm,Y

. (2)

Such equations (1), (2) and the ones in Table  1 are hidden in the dedi-
cated  software  environment;  see  [9,  Chapter  9].  Within  the  software
environment  described  there,  a  large  number  of  around  40  useful
basic  combination  functions  are  included  in  a  combination  function
library;  see  Table  1  for  the  first  two  of  them:  these  are  the  ones  used
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in this paper.  These  concepts enable us to design network models and
their  dynamics  in  a  declarative  manner,  based  on  mathematically
defined  functions  and  relations.  How  it  works  is  that  the  network
characteristics ωX,Y , γj,Y , π1,j,Y , π2,j,Y , ηY  that define  the design of the

network  model  are  given  as  input  to  the  dedicated  software  environ-
ment, and hidden within this environment the difference equations (1)
are  executed  for  all  states,  thus  generating  simulation  graphs  as
output.  

Notation Formula Parameters

Euclidean eucln, λV1, … , Vk
V1
n+⋯+Vk

nn

λ
 

order n > 0
scaling factor λ > 0

advanced 

logistic sum
alogistic

σ,τV1, … , Vk


1

1+e-σV1+⋯+Vk-τ
-

1

1+eστ
1 + e-στ

steepness σ > 0
excitability 

threshold τ

Table 1. Basic combination functions from the library used in the model pre-
sented here.

Self-Models Representing Network Characteristics by 

Network States    

2.2

The  self-modeling  network  modeling  approach  is  inspired  by  the
more  general  idea  of  self-referencing  or  “mise  en  abyme,”  sometimes
also  called  “the  Droste  effect”  after  the  famous  Dutch  chocolate
brand  that  has  been  using  this  effect  in  packaging  and  advertising  of
their products since 1904. For some examples, see Figure 1. For more
explanation,  see  for  example,  [10].  This  effect  occurs  in  art  when
within  artwork  a  small  copy  of  the  same  artwork  is  included.  This
can  be  applied  graphically  in  paintings  or  photographs,  or  in
sculptures.  Also,  it  is  sometimes  used  within  literature  (story-within-
the-story),  theater  (theater-within-the-theater)  or  movies  (movie-
within-the-movie). 

This idea is applied to network models as follows. As indicated ear-
lier,  “network  characteristics”  and  “network  states”  are  two  distinct
concepts for a network. Self-modeling is a way to relate these distinct
concepts to each other in an interesting and useful way: 

◼ A self-model is making the implicit network characteristics (such as con-
nection weights and excitability thresholds) explicit by adding states for
these  characteristics;  thus  the  network  gets  an  internal  self-model  of
part of the network structure of itself. 

◼ In this way,  different self-modeling levels can be created where network
characteristics  from  one  level  relate  to  explicit  network  states  at  the
next level. By iteration, an arbitrary number of self-modeling levels can
be modeled, covering second-order or higher-order effects. 
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Figure 1. Three  examples  of  the  mise  en  abyme  or  Droste  effect.  (Images
from: www.hollandwinkel.nl/en/droste-cacao-verpleegster-250-g.html,
michel.parpere.pagesperso-orange.fr/pedago/voc/mise%20en%20abyme.htm,
www.instagram.com/p/CCYmVLMpGPo.)  

Self-modeling  networks  can  be  recognized  both  in  physical  and
mental domains. For example: 

◼ In the physical domain, in the brain, information about the characteris-
tics of the network of causal relations between activation states of neu-
rons is, for example, represented in physical configurations  for synapses
(e.g.,  connection  weights),  neurons  (e.g.,  excitability  thresholds)  and/or
chemical substances (e.g., neurotransmitters).

◼ In the mental domain, a person can create mental states in the form of
representations  of  his  or  her  own  (personal)  characteristics,  thus  form-
ing  a  subjective  self-model  (acquired  by  experiences);  for  example,  of
being very sensitive to pain or to critical feedback or of having an anger
issue.

Adding  a  self-model  for  a  temporal-causal  network  is  done  in  the
way that for some of the states Y of the base network and some of the
network  structure  characteristics  for  connectivity,  aggregation  and
timing  (in  particular,  some  from  ωX,Y ,  γi,Y ,  πi,j,Y ,  ηY),  additional  net-

work  states  WX,Y ,  Ci,Y ,  Pi,j,Y ,  HY  (self-model  states)  are  introduced

(see the blue upper plane in Figure 2 and further): 

Connectivity self-model(a)

Aggregation self-model (b)

◼ Self-model states Pi,j,Y  are added representing aggregation character-

istics, in particular,  combination function parameters πi,j,Y .

Timing self-model (c)

◼ Self-model  states  WXi,Y
 are  added  representing  connectivity  charac-

teristics, in particular,  connection weights ωXi,Y
.
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◼ Self-model states Cj,Y  are added representing aggregation character-

istics, in particular,  combination function weights γi,Y .

◼ Self-model  states  HY  are  added  representing  timing  characteristics,

in particular,  speed factors ηY .

The  notations  WX,Y ,  Ci,Y ,  Pi,j,Y ,  HY  for  the  self-model  states  indi-

cate  the  referencing  relation  with  respect  to  the  characteristics  ωX,Y ,

γi,Y ,  πi,j,Y ,  ηY :  here  W  refers  to  ω,  C  refers  to  γ,  P  refers  to  π,  and  H

refers  to  η,  respectively.  For  the  processing,  these  self-model  states
define  the  dynamics  of  state  Y  in  a  canonical  manner  according  to
equation (1) whereby ωX,Y , γi,Y , πi,j,Y , ηY  are replaced by the state val-

ues of WX,Y , Ci,Y , Pi,j,Y , HY  at time t, respectively.  

An example of an aggregation self-model state Pi,j,Y  for a combina-

tion  function  parameter  πi,j,Y  is  for  the  excitability  threshold  τY  of

state  Y,  which  is  the  second  parameter  of  the  logistic  sum  combina-

tion  function;  then  Pi,j,Y  is  usually  indicated  by  TY ,  which  refers  to

threshold  τY .  Such  aggregation  self-model  states  TY  will  play  an

important  role  in  the  network  model  addressed  in  the  following,  as
will  connectivity  self-model  states  WX,Y ,  referring  to  connection

weights  ωX,Y .  Similarly,  self-model  states  HY  can  be  added  that  refer

to the speed factor ηY  of Y. 

As  the  outcome  of  the  addition  of  a  self-model  is  also  a  temporal-
causal  network  model  itself,  as  has  been  proven  in  [9,  Chapter  10],
this  construction  can  easily  be  applied  iteratively  to  obtain  multiple
orders  of  self-models.  This  is  applied  by  adding  second-order  self-
model states HWTY

 representing the adaptive speed factors (i.e., adap-

tive  learning  rates  in  this  case)  for  all  first-order  self-model  states  TY

and WX,Y , which in turn represent the adaptive threshold τY  of Y  and

the  adaptive  connection  weights  ωX,Y  of  all  incoming  connections

of Y. 

Modeling the Adaptation  Principles Used   3.

In  this  section,  it  will  be  shown  how  the  modeling  approach  for  self-
modeling  network  models  described  in  Section  2  has  been  applied  to
model  the  adaptation  principles  of  first-  and  second-order  used  here.
When  self-models  are  changing  over  time  in  a  proper  manner,  this
offers  a  useful  method  to  model  any  adaptation  principle.  This  does
not  only  apply  to  first-order  adaptive  networks,  but  also  to  second-
order adaptive networks, modeling control by using second-order self-
models.
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First-Order Self-Models for the First-Order Adaptation  

Principles Used   

3.1

Within cognitive neuroscience literature, two types of first-order adap-
tation  are  considered,  one  for  connection  weights  and  one  for  intrin-
sic neuronal properties; for example, as described in [11, p. 30]:  

Quote 1. Learning-related  cellular  changes  can  be  divided  into  two
general  groups:  modifications  that  occur  at  synapses  and  modifica-
tions  in  the  intrinsic  properties  of  the  neurons.  While  it  is  commonly
agreed that changes in strength of connections between neurons in the
relevant  networks  underlie  memory  storage,  ample  evidence  suggests
that  modifications  in  intrinsic  neuronal  properties  may  also  account
for learning-related behavioral changes.  

In  this  paper,  for  these  two  types  of  adaptivity,  two  first-order
adaptation principles are considered: Hebbian learning for connection
weights  and  excitability  modulation  for  the  excitability  threshold  of
states. 

The Hebbian Learning Adaptation  Principle  

A well-known adaptation principle of the first  type (addressing adap-
tive  connectivity)  is  Hebbian  learning  [12,  p.  62],  which  can  be
explained by:  

Quote 2. When  an  axon  of  cell  A  is  near  enough  to  excite  B  and
repeatedly  or  persistently  takes  part  in  firing  it,  some  growth  process
or metabolic change takes place in one or both cells such that A’s  effi-
ciency,  as one of the cells firing B, is increased.  

This is sometimes simplified  (neglecting the phrase “one  of the cells
firing B”) to [13, 14]:  

Quote 3. What fires together,  wires together.   

Within  a  self-modeling  network,  this  can  be  modeled  by  using  a
connectivity  self-model  based  on  self-model  states  WX,Y  representing

connection  weights  ωX,Y .  These  self-model  states  need  incoming  and

outgoing  connections  to  let  them  function  within  the  network.  To
incorporate  the  “firing  together”  part,  for  the  self-model’s  connectiv-
ity,  incoming  connections  from  X  and  Y  to  WX,Y  are  used;  see  Fig-

ure 2  (upward  arrows  in  blue).  These  upward  connections  have
weight 1 here. Also  a connection from WX,Y  to itself with weight 1 is

used to model persistence of the learnt effect; in pictures they are usu-
ally  left  out.  In  addition,  an  outgoing  connection  from  WX,Y  to  state

Y  is  used  to  indicate  where  this  self-model  state  WX,Y  has  its  effect;

see Figure 2 (pink downward arrow). The downward connection indi-
cates that the value of WX,Y  is actually used for the connection weight
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of  the  connection  from  X  to  Y.  For  the  aggregation  characteristics  of
the self-model, one of the options for a learning rule is defined  by the

combination  function  hebb
μ
V1, V2, W  from  Table  2;  note  that

hebb
μ
V1, V2, W is a similar variant of Hebbian learning for connec-

tions  with  negative  weights.  For  more  options  of  Hebbian  learning
combination  functions  and  further  mathematical  analysis  of  their
limit behavior,  see, for example [5, Chapter 14]. 

Figure 2. Connectivity characteristics of the self-model for the Hebbian learn-
ing adaptation principle. 

Name and Self-
Model State Combination Functions

Variables  and 

Parameters

Hebbian learning 

WX,Y  

hebb
μ
V1, V2, W 

V1V21 -W + μW

 

hebbneg
μ
V1, V2, W 

-V11 - V21 +W + μW

V1, V2 activation levels 

of connected states W 

activation level of self-
model state WX,Y  for 

connection weight ω, 
persistence factor 

excitability 

modulation TY  

alogistic
σ,τV1, … , Vk V1, … , Vk impacts 

from base states

exposure 
accelerates 
adaptation HWTY

 

alogistic
σ,τV1, … , Vk V1, … , Vk impacts 

from base states and 

first-order self-model 
states

Table 2. Combination  functions  for  self-models  modeling  first-  and  second-
order adaptation principles used here.  

The Excitability Modulation Adaptation  Principle  

Although  connectivity  adaptation  is  often  addressed  in  the  literature,
other  characteristics  can  also  be  made  adaptive,  such  as  excitability
thresholds.  For  example,  the  following  quote  indicates  that  synaptic
activity relates to long-lasting modifications  in excitability of neurons
[11, p. 30]: 
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Quote 4. Long-lasting  modifications  in  intrinsic  excitability  are  mani-
fested in changes in the neuron’s  response to a given extrinsic current
(generated by synaptic activity or applied via the recording electrode). 

For  more  literature  on  this  form  of  learning  or  adaptation  (called
here the excitability modulation adaptation principle), see [9, 15–19].
As  here  the  adaptation  depends  on  activation  of  the  base  states  of  a
state  Y  and  the  states  X,  Z  from  which  it  gets  its  incoming  connec-
tions,  this  can  be  modeled  in  a  self-modeling  network  in  a  similar

form as earlier using a self-model state TY , as shown in Figure 3. 

Figure 3. Connectivity characteristics of a self-model for the excitability mod-
ulation adaptation principle. 

In this case, based on literature such as [9, 11, 15–18] it is assumed
that exposure enhances excitability,  which means that it decreases the

excitability  threshold.  To  achieve  this,  for  the  self-model  state  TY  a

monotonically increasing combination function can be used, while the

connection  weights  from  X,  Y,  Z  to  TY  are  negative;  examples  of

monotonically  increasing  combination  functions  are  the  logistic  sum
functions  and  the  Euclidean  function  (with  odd  order  n)  from

Table 1.  In  this  case,  the  (pink)  downward  connection  from  TY  to  Y

indicates  that  the  value  of  TY  is  used  for  the  threshold  value  of  the

logistic sum function of base state Y. 

Second-Order Self-Model for the Second-Order 
Adaptation Principle    

3.2

The  first-order  adaptation  principles  discussed  in  Section  3.1  refer  to
forms of plasticity. It was shown how they can be described by a first-
order  self-model  for  connectivity  or  aggregation  characteristics  of  the
base  network,  in  particular  for  the  connection  weights  and/or  the
excitability  thresholds  used  in  aggregation.  Under  which  circum-
stances  and  to  which  extent  such  plasticity  actually  takes  place  is
controlled  by  a  form  of  so-called  metaplasticity;  for  example,
[20–25].  Such  control  can  address  “the  plasticity  versus  stability

Controlled Adaptive Mental Models for Analysis and Support Processes 491

https://doi.org/10.25088/ComplexSystems.30.4.483

https://doi.org/10.25088/ComplexSystems.30.4.483


conundrum”  (e.g.,  [25,  p.  773])  by  only  making  plasticity  happen  in
circumstances  when  it  is  important  for  the  person  to  change  and
otherwise stabilize it. Here we consider in particular the following spe-
cific  second-order  adaptation  principle  for  such  control  of  first-order
adaptation.  

Exposure Accelerates  Adaptation  Principle

For example, in [23] the following compact quote is found, indicating
that  increasing  stimulus  exposure  makes  the  adaptation  speed
increase [23, p. 2]:  

Quote 5. Adaptation accelerates with increasing stimulus exposure.  

This  indeed  describes  a  form  of  metaplasticity  that  controls  the
speed  of  adaptation  (learning  rate).  This  principle  can  be  modeled  by
a  (dynamic)  second-order  self-model  for  timing  characteristics  (speed
factors) of a first-order  self-model for the first-order  adaptation. Such
a second-order self-model is based on self-model states HWX,Y

 or HTY

for  adaptive  learning  speed  of  any  of  the  two  types  of  learning  dis-
cussed  in  Section  3.1,  or  HWTY

 for  both  types  combined.  The  princi-

ple  formulated  by  Quote  5  indicates  that  the  activation  level  of  these
second-order  self-model  states  should  depend  in  a  monotonically
increasing manner on the activation levels of the base states involved:
these  base  states  are  Y  itself  and  the  states  X,  Z  from  which  Y  gets
incoming connections. This  makes the connectivity of this timing self-
model (for both forms of learning) be as shown in Figure 4: the (pos-
itive,  blue)  upward  connections  from  the  base  states  X,  Y  and  Z  to
the self-model state HWTY

 are used to express the part of the principle

in Quote 5 referring to “stimulus  exposure.”  For the aggregation, for
HWTY

,  a  Euclidean  (with  odd  order  n)  or  a  logistic  sum  function  can

be  used  to  get  the  monotonic  effect  as  needed.  The  (negative,  blue)

upward  connections  from  WX,Y  and  TY  to  the  self-model  state

HWTX,Y
 indicate  a  counterbalancing  effect  that  makes  the  learning

speed  be  limited  depending  on  the  learned  level,  as  represented  by

WX,Y  and  TY .  The  downward  (pink)  connections  from  HWTY
 to

WX,Y  and  TY  indicate  that  the  value  of  HWTY
 is  actually  used  as  a

speed factor for WX,Y  and TY . 

This shows how a specific  self-modeling network model is obtained
according  to  a  more  general  three-level  self-modeling  network  design
for handling internal mental models with the following three levels: 

◼ Base level: applying the mental models (the pink plane in Figure 4). 
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◼ First-order adaptation level: adapting the mental models (the blue plane
in Figure 4). 

◼ Second-order  adaptation  level:  exerting  control  over  the  adaptation  of
the mental models (the purple plane in Figure 4). 

Figure 4. Connectivity  of  a  second-order  self-model  for  the  second-order
exposure  accelerates  the  adaptation  principle  for  control  of  first-order  self-
models for Hebbian learning and excitability modulation. 

Analysis and Support Processes   4.

In  situations  where  humans  perform  complex,  demanding  tasks,  it
may  be  better  to  keep  an  eye  on  them  to  monitor  how  they  are  per-
forming  and  to  assess  their  performance.  If  performance  gets  poor,
support  actions  may  be  considered.  The  mental  processes  to  deter-
mine  such  assessments  and  to  determine  appropriate  support  actions
when needed are complex cognitive processes. In the car driver exam-
ple  considered  here,  it  is  assumed  that  continuous  sensor  or  obser-
vation  data  is  available.  This  may  concern  information  about  the
driver’s  alcohol  usage,  his  or  her  gaze  and  steering  behavior  and  the
amount  of  rest  taken.  An  unfocused  gaze  or  erratic  steering  behavior
may be assessed as a driving risk. If that assessment occurs, a support
action  may  be  needed,  such  as  slowing  down  the  car  or  advice  about
that.  The  knowledge  behind  these  mental  processes  may  be  adaptive,
enabling  the  underlying  processes  to  improve  over  time.  Within  such
complex  adaptive  cognitive  processes,  usually  internal  mental  models
are used; for example, [1–4]. In the case addressed here, such internal
mental models address (see also Figure 5):  

◼ Analysis  model.  This  model  is  used  for  the  assessment  of  the  human’s
performance  using  observations  (e.g.,  using  specific  sensors)  and
domain knowledge. Examples used in the car driver example are a long
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Figure 5. Adaptive  model-based  architecture  to  analyze  and  support  humans;
adapted from [8, p. 469]. 

period  of  driving,  a  not  well-focused  gaze,  erratic  steering  and  alcohol
usage.  Examples  of  generated  assessments  are  a  risk  for  getting
exhausted or (other) driving risks. 

◼ Support  model.  This  model  is  used  to  generate  support  actions  based
on  the  assessments  and  domain  knowledge.  Examples  of  support
actions  that  are  generated  by  this  process  are  advice  to  take  a  rest
period, blocking the starting of the car (when not driving) and slowing
down the car (when driving). 

As such processes are in principle adaptive to enable their improve-
ment, a third internal mental model is needed [8, Chapter 16]: 

◼ Adaptation  model.  This  model  is  used  to  get  the  analysis  and  support
model  to  fit  the  specific  characteristics  of  the  situation  including  the
driver and car better.  This  works via adapting certain characteristics of
the internal mental models. 

Section 5 addresses how these internal mental models and the way
they  are  used  can  be  modeled  by  a  self-modeling  network,  leading  to
the second-order self-modeling network model that is proposed. 

The Second-Order Adaptive  Network Model   5.

This  section  describes  how  the  modeling  approach  discussed  in
Section 2 has been used to model the adaptive mental models for anal-
ysis and support of human performance from Section 3 within a self-
modeling network.  
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A  useful  network  architecture  to  handle  internal  mental  models  in
general  is  a  self-modeling  network  that  covers  at  least  two  levels  (see
also [26]): 

◼ A  base  level  representing  the  mental  model  as  a  network  so  that  it  can
be  applied  or  executed  (based  on  the  mental  model’s  within-network
dynamics). 

◼ A first-order self-model explicitly representing the (network) characteris-
tics of the mental model that can be used for formation and adaptation
of the mental model (adding dynamics of the mental model). 

As discussed in Section 3.2, in human processes the extent to which
plasticity actually occurs is controlled by a form of metaplasticity; for
example,  [20–25].  Therefore,  a  third  level  (see  Section  3.2)  is  also
needed: 

◼ A  second-order  self-model  to  control  these  adaptation  processes
(control of network adaptation). 

This  leads  to  a  general  three-level  network  architecture  shown  in
Figure 6, which is applied here; a specific  example of this was already
shown  in  Figure  4.  Note  that  by  the  upward  interlevel  connections
(the  blue  upward  arrows),  this  general  network  architecture  enables
the  use  of  context-specific  information  from  the  mental  model  at  the
base  level  for  learning  and  context-specific  information  from  both
lower  levels  for  control.  This  allows  us  to  arrange  that  both  learning
and control take place in a context-sensitive manner.  

Figure 6. The general three-level network architecture applied. 

For reasons of presentation, the introduced model will be discussed
in  two  steps.  First,  Figure  7  displays  the  connectivity  of  the  first  two
levels of the introduced network model: the mental models at the base
level within the base (pink) plane and the first-order  self-model within
the  upper  (blue)  plane.  Table  3  provides  an  overview  of  all  states;
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here  the  states  X1  to  X10  model  the  base  level  and  states  X11  to  X25

the network’s first-order self-model. 

The Base Level    5.1

At the base level (see lower pink plane in Figure 7), in the first  place a
number  of  context  representation  states  are  included:  the  states  for  a
long duration of driving, alcohol usage, erratic steering and unfocused
gaze (X1  to X4, respectively), and for driving (state X7) in contrast to

standing  still.  These  states  represent  the  situation  that  is  considered
and  are  assumed  to  be  available  through  sensors  or  observation.  In
addition,  two  states  (X5  and  X6)  are  available  for  assessments  of

exhaustion  risk  and  driving  risk,  and  three  states  (X8  to  X10)  for  the

support  actions  rest  advice,  slow  down  and  block  start.  These  assess-
ments  have  incoming  connections  from  the  context  representation
states (X1  to X4) on which they depend, and the support actions have

incoming  connections  from  the  assessments  and  from  context
representation  state  X7  for  driving.  All  these  connections  have  adap-

tive weights ωX,Y . The  assessment states and support action states use

the  combination  function  alogistic
σ,τ( ..),  which  has  an  adaptive

excitability threshold τ.  

Figure 7. Connectivity  for  the  first  two  levels  of  the  self-modeling  network
model. 

First-Order Self-Models    5.2

Within  the  base  network,  two  subnetworks  can  be  distinguished,  one
for a mental model for analysis to determine an assessment of the per-
formance  and  one  for  a  mental  model  to  determine  support  actions.
For  assessment,  for  the  sake  of  simplicity  the  considered  scenarios
include  the  two  options  exhaustiveness  risk  and  driving  risk,  and  for
this  input  information  is  used  on  long  driving  duration,  alcohol,
erratic steering and unfocused gaze. The mental model for the support
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process  also  uses  as  input  the  assessments  and  generates  support
actions  for  which  the  options  are  rest  advice,  slow  down  and  block
start.  For  the  two  mental  models  at  the  base  level,  self-models  have
been  added  that  enable  adaptation  or  learning  (in  the  upper  plane  in
Figure 7):  

◼ First-order  self-model  for  the  analysis  process:  first-order  self-model

W-states and T-states X11 to X16 in Table 3.

◼ First-order  self-model  for  the  support  process:  first-order  self-model

W-states and T-states X17 to X25 in Table  3. 

Name Explanation

X1 longdrive The driver is driving for a long period of time

X2 alcohol Alcohol is detected

X3 unstabsteer The driver’s steering is erratic

X4 unfocgaze The driver’s gaze is not focused

X5 exhrisk Assessment of a risk that the driver will get 
exhausted

X6 drivingrisk Assessment of a safety risk for driving

X7 driving The car is driving

X8 restadvice Supporting action to advise the driver to take 
some rest

X9 slowdown Supporting action to slow down the car

X10 blockstart Supporting action to block the starting of the car

X11 Wlongdrive,exhrisk First-order connectivity self-model state for 
weight of the connection from longdrive to 

exhrisk

X12 Walcohol,drivingrisk First-order connectivity self-model state for 
weight of the connection from alcohol to 

drivingrisk

X13 Wunstabsteer,drivingrisk First-order connectivity self-model state for 
weight of the connection from unstabsteer to 

drivingrisk

X14 Wunfocgaze,drivingrisk First-order connectivity self-model state for 
weight of the connection from longdrive to 

drivingrisk

X15 Texhrisk First-order aggregation self-model state for 
excitability threshold of exhrisk

X16 Tdrivingrisk First-order aggregation self-model state for 
excitability threshold of drivingrisk

X17 Wexhrisk,restadvice First-order connectivity self-model state for 
weight of the connection from exhrisk to 

restadvice

Table 3. (continues)
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Name Explanation

X18 Wdriving,restadvice First-order connectivity self-model state for 
weight of the connection from driving to 

restadvice

X19 Wdrivingrisk,slowdown First-order connectivity self-model state for 
weight of the connection from drivingrisk to 

slowdown

X20 Wdriving,slowdown First-order connectivity self-model state for 
weight of the connection from driving to 

slowdown

X21 Wdrivingrisk,blockstart First-order connectivity self-model state for 
weight of the connection from drivingrisk to 

blockstart

X22 Wdriving,blockstart First-order connectivity self-model state for 
weight of the connection from driving to 

blockstart

X23 Trestadvice First-order aggregation self-model state for 
excitability threshold of restadvice

X24 Tslowdown First-order aggregation self-model state for 
excitability threshold of slowdown

X25 Tblockstart First-order aggregation self-model state for 
excitability threshold of blockstart

X26 Wlongdrive,Texhrisk
 Second-order connectivity self-model state for 

weight of the connection from longdrive to 

Texhrisk

X27 Wexhrisk,Texhrisk
 Second-order connectivity self-model state for 

weight of the connection from exhrisk to Texhrisk

X28 Walcohol,Tdrivingrisk
 Second-order connectivity self-model state for 

weight of the connection from alcohol to 

Tdrivingrisk

X29 Wunstabsteer,Tdrivingrisk
 Second-order connectivity self-model state for 

weight of the connection from unstabsteer to 

Tdrivingrisk

X30 Wunfocgaze,Tdrivingrisk
 Second-order connectivity self-model state for 

weight of the connection from unfocgaze to 

Tdrivingrisk

X31 Wdrivingrisk,Tdrivingrisk
 Second-order connectivity self-model state for 

weight of the connection from drivingrisk to 

Tdrivingrisk

X32 Wexhrisk,Trestadvice
 Second-order connectivity self-model state for 

weight of the connection from exhrisk to 

Trestadvice

X33 Wrestadvice,Trestadvice
 Second-order connectivity self-model state for 

weight of the connection from restadvice to 

Trestadvice

Table 3. (continues)
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Name Explanation

X34 Wdrivingrisk,Tslowdown
 Second-order connectivity self-model state for 

weight of the connection from drivingrisk to 

Tslowdown

X35 Wdriving,Tslowdown
 Second-order connectivity self-model state for 

weight of the connection from driving to 

Tslowdown

X36 Wslowdown,Tslowdown
 Second-order connectivity self-model state for 

weight of the connection from slowdown to 

Tslowdown

X37 Wdrivingrisk,Tblockstart
 Second-order connectivity self-model state for 

weight of the connection from drivingrisk to 

Tblockstart

X38 Wdriving,Tblockstart
 Second-order connectivity self-model state for 

weight of the connection from driving to Tblockstart

X39 Wblockstart,Tblockstart
 Second-order connectivity self-model state for 

weight of the connection from blockstart to 

Tblockstart

X40 HWTexhrisk
 Second-order timing self-model state for 

the speed of states WX,exhrisk and Texhrisk

X41 HWTdrivingrisk
 Second-order timing self-model state for the 

speed of states WX,drivingrisk and Tdrivingrisk

X42 HWTrestadvice
 Second-order timing self-model state for the 

speed of states WX,restadvice and Trestadvice

X43 HWTslowdown
 Second-order timing self-model state for

 the speed of states WX,slowdown and Tslowdown

X44 HWTblockstart
 Second-order timing self-model state for 

the speed of states WX,blockstart and Tblockstart

Table 3. Explanation  of  the  states  of  the  second-order  self-modeling  network
model. 

These self-models represent the relevant network characteristics for
connectivity  (W-states  for  connection  weights)  and  for  aggregation

(T-states  for  excitability  thresholds)  of  the  two  mental  model  net-
works at the base level. 

Each  of  these  first-order  self-model  states  WX,Y  and  TY  has  a

downward  connection  (in  pink)  to  indicate  the  state  Y  of  the  mental
model at the base level for which they have their special effect; so, in
relation to these downward links, the value of WX,Y  plays the role of

the  indicated  connection  weight  and  the  value  of TY  the  role  of  the

indicated  excitability  threshold.  Each  of  these  first-order  self-model

states  WX,Y  and  TY  has  upward  incoming  connections  to  give  it  the
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relevant  information  about  activation  of  the  base  level  states,  as  the
adaptation depends on that information via the first-order  adaptation
principles  for  Hebbian  learning  Quotes  2  and  3  and  for  excitability
modulation  Quote  5  discussed  in  Section  3.  This  enables  these  self-
model  states  to  be  dynamic  according  to  the  indicated  adaptation
principles,  thereby  using  the  appropriate  combination  functions  as
indicated in Table  2. 

Note that a negative weight is used for the connections to TY  from

the  states  within  the  base  level  that  causally  precede  the  indicated

state  Y.  This  makes  TY  get  lower  values  when  values  of  these  base

level states are higher.  To  counterbalance this negative effect on TY , a

positive weight is used for the upward connection from Y  itself to TY .

These two opposite effects create a context-sensitive equilibrium value

for  each  aggregation  self-model  state  TY .  In  this  way,  each  aggrega-

tion self-model based on T-states learns and adapts to the context. 

Second-Order Self-Models   5.3

To  incorporate control of the adaptation, a self-model has been added
for the first-order  self-models that model the adaptation, as shown (in
the  purple  plane)  in  Figure  8.  This  makes  the  learning  (in  particular
the learning speed) be adaptive itself. As  a self-model of a self-model,
this is a second-order self-model. Figure 8 displays the connectivity of
the complete second-order adaptive network model. The second-order
self-model  states  in  this  upper  (purple)  plane  are  the  states  exerting
control over adaptation: 

Figure 8. Connectivity  of  the  complete  second-order  self-modeling  network
model. 
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Second-Order Self-Models for the Adaptation  Process  

Second-order  self-model  W-states  and  HWT-states  X26  to  X44  in

Table  3. 
The second-order self-model consists of two parts: 

◼ a  second-order  connectivity  self-model  using  states  WX,TY
 representing

the  weights  of  the  incoming  connections  of  the  T-states  of  the  first-
order self-model 

◼ a  second-order  timing  self-model  using  states  HWTY
 representing  the

speed factors of the first-order W-states and T-states

These  second-order  self-models  are  dynamic,  which  makes  the
whole network a second-order adaptive network. To  achieve this, the
states  HWTY

 are  affected  by  upward  connections  from  the  base  level

network,  following  the  second-order  adaptation  principle  exposure
accelerates  adaptation  Quote  5  for  metaplasticity;  for  example,  [23,
25].  To  this  end,  there  are  (blue)  upward  links  to  each  state  HWTY

from the base states causally preceding base state Y. As  these connec-
tions  get  positive  weights,  when  these  causal  “antecedents”  of  Y  get
higher  activation  levels,  the  adaptation  speed  will  increase  as  well.
The  special  effect  of  each  state  HWTY

 as  a  speed  factor  for  states

WX,Y  and  TY  is  indicated  by  the  downward  (pink)  connection  to  the

related state TY . 

The  states  WX,TY
 in  the  second-order  self-model  change  according

to Hebbian learning Quotes 2 and 3, similar to the states WX,Y  in the

first-order  self-model  as  described  in  Section  5.2.  The  second-order
self-model  states  HWTY

 and  WX,TY
 together  exert  control  over  the

adaptation process modeled by the first-order  self-model. Hereby,  the
former  type  of  state  controls  the  speed  of  adaptation  (learning  rate)
and  the  latter  type  of  state  controls  which  thresholds  of  the  mental
models  are  adapted  and  how  much.  All  this  control  takes  place  in  a
context-sensitive  manner,  as  via  their  incoming  connections  these
second-order  self-model  states  are  affected  by  context-specific  infor-
mation from the lower levels. 

The  appendix  with  a  full  specification  of  the  model  by  role  matri-
ces is included in the online version of this paper at
content.wolfram.com/uploads/sites/13/2021/12/30-4-3.pdf.

Simulation Scenarios   6.

In  this  section  the  simulation  results  for  a  number  of  realistic  scenar-
ios are discussed. Two  different types of scenarios are discussed in Sec-
tions 6.1 and 6.2, respectively:  
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◼ Only adaptive excitability thresholds, connection weights not adaptive. 

◼ Both adaptive excitability thresholds and adaptive connection weights. 

Using Adaptive  Excitability Thresholds  and Constant 
Connection Weights    

6.1

In Figures 9 to 11, simulation results are shown for three realistic sce-
narios  where  the  excitability  threshold  self-model  states  are  dynamic
but  the  connection  weight  self-model  states  are  not:  all  connection
weight  self-model  states  have  constant  values  assigned.  They  are
defined  by  the  common  settings  as  shown  in  the  role  matrices  in
Appendix A  and specific  constant values 0 or 1 for the context repre-
sentation  states  X1  to  X4  and  X7  as  shown  in  Table  4.  These  graphs

display the following:

◼ For  the  base  level:  how  the  assessment  is  generated  by  the  analysis
model and how the support action is generated by the support model. 

◼ For the first-order  adaptation level: how the excitability thresholds used
within the analysis model and the support model adapt over time. 

◼ For  the  second-order  adaptation  or  control  level:  how  the  adaptation
speeds for the adaptations change over time.

Initially  the  values  for  the  excitability  thresholds  were  set  high,  in
order to illustrate the adaptation process that was needed to get good
results.  Moreover,  the  adaptation  speed  values  were  initially  set  at  0.
Therefore,  in  the  first  phase  nothing  happens  at  the  base  level  until
the  adaptation  speeds  get  higher,  making  that  adaptation  process
start. In the next phase this results in successful adaptation of the anal-
ysis  and  support  models,  after  which  they  can  generate  the  appropri-
ate outcomes at the base level. 

Scenario
Scenario 1.1 

Figure 9 

Scenario 1.2 

Figure 10 

Scenario 1.3
Figure 11

Explanation
driving for too 

long a time 
driving with an 

unfocused gaze 

blocking
start after
alcohol usage

X1 longdrive 1 0 0

X2 alcohol 0 0 1

X3 unstabsteer 0 0 0

X4 unfocgaze 0 1 0

X7 driving 1 1 0

Table 4. The three displayed scenarios. 
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Scenario 1.1: Driving for Too  Long a Time

In Figure 9 for Scenario 1.1, it is shown that by the second-order self-
model the adaptation speed for the exhaustion risk excitability thresh-
old increases from time 0 on (see the purple line). This  is because the
long  driving  input  present  from  time  0  on  works  as  a  stimulus.  That
the  adaptation  speed  increases  with  this  stimulus  is  in  accordance
with the second-order adaptation principle exposure accelerates adap-
tation  [23]  discussed  in  Section  3.2.  Moreover,  this  also  conforms  to
the  “plasticity  versus  stability  conundrum”  discussed  in  [25,  p.  773]:
only adapt (adaptation speed > 0) when relevant, otherwise keep sta-
ble  (adaptation  speed  0).  The  observed  increase  in  adaptation  speed
results  in  actual  adaptation  of  this  excitability  threshold  (conform  to
Quote 4 from Section 3.1; see [11]): starting at value 2, it decreases to
(after  time  13)  get  values  between  0.2  and  0.4  (the  brown  line).  It  is
clear that this is low enough: after time 10 the exhaustion risk assess-
ment  is  generated  and  reaches  value  1  after  time  15  (the  pink  line).
This leads to a successful analysis model outcome. 

Figure 9. Long  drive  leads  to  an  exhaustion  risk  assessment  and  to  the  sup-
port action rest advice. 

In  turn  this  outcome  has  the  result  that  after  time  10  the  adapta-
tion  model  increases  the  adaptation  speed  for  the  excitability  thresh-
old of the support action rest advice in the support model (the orange
line). This  results in actual adaptation of that threshold: the value (in-
itially was 2.4) decreases after time 10 and reaches values between 1.4
and  1.6  after  time  18  (the  dark  purple  line).  This  is  low  enough,  as
the  support  action  rest  advice  comes  up  after  time  18  and  reaches  1
after  time  25  (the  dark  green  line).  This  leads  to  a  successful  support
model outcome. 
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Scenario 1.2: Driving with an Unfocused Gaze  

In  Figure  10  for  Scenario  1.2,  it  is  shown  that  by  the  adaptation
model  the  adaptation  speed  for  the  driving  risk  excitability  threshold
(within  the  analysis  model)  increases  from  time  0  on  (the  light  blue
line).  This  leads  to  adaptation  of  this  threshold:  starting  at  value  1.4,
it  decreases  to  (after  time  7)  reach  values  below  0.7  (the  light  green
line).  

Figure 10. Driving  with  an  unfocused  gaze  leads  to  a  driving  risk  assessment
and to the support action slow down. 

Due  to  this,  from  time  5–10  the  driving  risk  assessment  is  gener-
ated and reaches value 1 after time 15 (the pink line). This  leads to a
successful  analysis  model  outcome.  In  turn,  by  the  adaptation  model,
after  time  5  the  adaptation  speed  for  the  excitability  threshold  of  the
support action slow down in the support model gets higher (the dark
green  line).  This  results  in  actual  adaptation  of  that  threshold:  the
value  that  initially  was  set  at  2.8  decreases  after  time  10  and  reaches
values  between  1.4  and  1.6  after  time  18  (middle  green  line).  Due  to
this, the support action slow down increases after time 18 and reaches
1  after  time  20  (the  brown  line).  This  leads  to  a  successful  support
model outcome. 

Scenario 1.3: Blocking Start after Alcohol Usage  

For  Scenario  1.3,  Figure  11  shows  a  similar  initial  pattern  as  in  Sce-
nario  1.2.  However,  later  on  (for  the  support  model),  this  scenario
shows  that  a  fluctuating  pattern  can  also  occur.  This  illustrates  how
the  adaptation  of  the  excitability  threshold  gets  reinforcement  from
the  outcome  of  the  support  model,  so  that  in  the  end  they  reach  an
equilibrium according to a fluctuating pattern.  
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Figure 11. Alcohol usage leads to a driving risk assessment and to the support
action block start. 

Using Both Adaptive  Excitability Thresholds  and 

Connection Weights    

6.2

Next,  a  number  of  simulations  for  example  scenarios  are  discussed
where  not  only  the  excitability  thresholds  are  adaptive  but  also  the
connection  weights.  The  role  matrices  for  these  scenarios  can  be
found  in  Appendix  B.  The  values  for  the  context  states  can  be  found
in Table 5.

Scenario 2.3, 
Figures 14 and 15 

Scenario 

Scenario 2.1, 
Figure 12 

Scenario 2.2, 
Figure 13 driving and alcohol 

Explanation 

driving too 

long 

driving with 

erratic steering nondriving driving

X1 longdrive 1 0 0 0

X2 alcohol 0 0 1 1

X3 unstabsteer 0 0 0 0

X4 unfocgaze 0 1 0 0

X7 driving 1 1 0 1

Table 5. The three displayed scenarios for double adaptivity.  

Scenario 2.1: Driving Too  Long  

The  first  scenario  addresses  a  situation  in  which  the  driver  drives  too
long without resting. The  simulation results of this scenario displayed
in  Figure  12  show  that  around  time  20  the  assessment  is  made  that
there  is  an  exhaustion  risk  (the  pink  curve)  and  around  time  50  the
rest  advice  support  action  is  generated  (the  green  curve).  But  before
that,  different  forms  of  adaptation  have  taken  place.  First,  triggered
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by  the  exposure  from  the  context  information  longdrive,  the  second-
order  self-model  state  HWTexhrisk

 representing  the  adaptation  speed

related to the exhaustion risk assessment X5  starts to increase from 0

(the light blue curve). By this, it exerts its control on adaptation both
on  the  related  excitability  thresholds  and  connection  weights.  The
effect  of  this  on  adaptation  is  seen  in  two  ways.  First,  the  adaptation
is seen as the decrease of the excitability threshold for the exhaustion
risk assessment X5 (the light green curve going down from 1). Second,

it  is  seen  as  the  increase  of  the  connection  weight  representation  X11

for the connection from long drive X1 to exhaustion risk X5 (the dark

curve going up to around 0.95, hand in hand with the pink curve for
the exhaustion risk). These  two adaptations together make the assess-
ment exhaustion risk be generated.  

Figure 12. Driving  too  long  leads  to  a  rest  advice  support  action  with  both
adaptive excitability and connectivity.  

After  this,  a  similar  pattern  occurs  to  generate  a  support  action
based  on  the  assessment  found.  This  starts  around  time  20  with  the
increase  of  the  second-order  self-model  state  HWTrestadvice

 representing

the  adaptation  speed  related  to  the  rest  advice  support  action,  trig-
gered  by  the  assessment  found.  By  the  control  exerted  by  this  state,
again two types of adaptation take place: the threshold representation
X23  for rest advice X8  goes down (orange curve) and both connection

weight  representations  X17  and  X18  go  up  to  around  0.95  (both  fol-

low the yellow curve). 
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Note  that  behind  these  first-order  learning  processes,  a  second-
order learning process also takes place, which is displayed by the two
curves for X26  and X32  that go to around -0.95. Here X26  represents

the connection weight from X1  for long drive to X15  for the excitabil-

ity  threshold  representation  for  X5  within  the  first-order  self-model.

This exerts a second way of control (in addition to the adaptive first-
order  adaptation  speed)  on  the  first-order  adaptation  process,  as  it  is
this  second-order  adaptation  that  enables  the  threshold  of  X5  to  be

adapted. Similarly,  X32  represents the connection weight from X5  for

the  exhaustion  risk  assessment  to  X23  for  the  excitability  threshold

representation  for  X8  within  the  first-order  self-model.  This  also

exerts  a  second  way  of  control  on  the  first-order  adaptation  process,
as  it  is  this  second-order  adaptation  that  enables  the  threshold  of  X8

to be adapted. 

Scenario 2.2: Driving with Erratic Steering  

The  second  scenario  addresses  a  situation  in  which  the  driver  shows
erratic  steering.  The  simulation  results  of  this  scenario  displayed  in
Figure 13 show that around time 20 the assessment is made that there
is a driving risk (the pink curve) and around time 160 the slow down
support  action  is  generated  (the  green  curve).  As  in  Scenario  2.1,  dif-
ferent  forms  of  adaptation  have  taken  place.  First,  triggered  by  the
exposure  from  the  context  information  longdrive,  the  second-order
self-model  state  HWTdrivingrisk

 representing  the  adaptation  speed  related

to  the  driving  risk  assessment  X5  starts  to  increase  from  0  (the  light

blue  curve).  This  exerts  its  control  on  adaptation  of  the  related
excitability thresholds and connection weights. The  first  adaptation is
seen  as  the  decrease  of  the  excitability  threshold  for  the  driving  risk
assessment X6 (the light green curve going down from 1). Second, it is

seen  as  the  increase  of  the  connection  weight  representation  X11  for

the  connection  from  erratic  steering  X3  to  driving  risk  X6  (the  dark

curve going up to around 0.95, hand in hand with the pink curve for
the  driving  risk).  These  two  adaptations  together  lead  to  the  assess-
ment driving risk.

A similar pattern occurs to generate a support action based on the
assessment found. This  starts around time 25 with the increase of the
second-order  self-model  state  HWTslowdown

 representing  the  adaptation

speed related to the slow down support action, triggered by the assess-
ment  found.  By  the  control  exerted  by  this  state  HWTslowdown

,  again

two  types  of  adaptation  take  place:  the  threshold  representation  X24

for  slow  down  X9  goes  down  (orange  curve)  and  both  connection
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weight  representations  X19  and  X20  go  up  to  around  0.95  (both  fol-

low the yellow curve). 

Figure 13. Driving  with  erratic  steering  leads  to  a  slow  down  support  action
with both adaptive excitability and connectivity.   

Again,  behind  these  first-order  learning  processes,  a  second-order
learning process also takes place, which is displayed by the two curves
for  X29  and  X35  that  go  to  around  -0.95.  Here  X29  represents  the

connection weight from X3 for erratic steering to X16 for the excitabil-

ity  threshold  representation  for  driving  risk  X6  within  the  first-order

self-model.  This  exerts  an  additional  means  of  control  on  the  first-
order  adaptation  process,  as  it  is  this  second-order  adaptation  that
enables  the  threshold  of  X6  to  be  adapted.  Similarly,  X34  represents

the connection weight from X6  for the driving risk assessment to X24

for  the  excitability  threshold  representation  for  X9  within  the  first-

order  self-model.  This  also  exerts  a  second  means  of  control  on  the
first-order  adaptation  process,  as  it  is  this  second-order  adaptation
that enables the threshold of X9 to be adapted. 

Scenario 2.3: Driving and Alcohol  

The  third  scenario  addresses  a  situation  in  which  the  driver  has  con-
sumed  alcohol.  Two  cases  are  considered  here  (a)  the  car  is  not  (yet)
driving (see Figure 14), and (b) the car is driving (see Figure 15). The
simulation  results  in  Figure  14  show  that  around  time  20  the  assess-
ment  is  made  that  there  is  a  driving  risk  (the  pink  curve)  and  around
time  60  the  block  start  support  action  is  generated  (the  green  curve).
As in the previous scenarios, different forms of adaptation have taken
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place; as it proceeds in a similar manner,  this will not be discussed fur-
ther for this case. 

In  Figure  15  the  other  case  is  addressed:  that  the  car  is  driving.
Here,  a  different  support  action,  namely  slow  down,  is  generated,
which occurs around time 150. 

Figure 14. Alcohol  usage  before  intended  driving  leads  to  a  block  start  sup-
port action with both adaptive excitability and connectivity.  

Figure 15. Alcohol  usage  while  driving  leads  to  a  slow  down  support  action
with both adaptive excitability and connectivity.  
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Discussion   7.

In  complex  cognitive  processes,  often  internal  mental  models  are
used;  for  example,  [1–4].  Such  models  can  just  be  applied,  but  they
are also often adaptive, in order to form and improve them. The focus
in this paper was on adaptive cognitive analysis and support processes
for  the  performance  of  a  human  in  a  demanding  task;  the  adaptive
network  model  was  illustrated  for  a  car  driver.  Within  these  pro-
cesses,  internal  mental  models  are  used  for  the  analysis  and  support
processes.  

An adaptive network model was presented that models such adap-
tive  cognitive  analysis  and  support  processes.  The  network  model
makes  use  of  adaptive  first-order  self-models  for  the  internal  mental
models  used  for  the  analysis  and  support  processes.  To  control  the
adaptation  of  these  first-order  self-models,  second-order  self-models
are  included.  In  contrast  to  the  model  described  in  [6]  that  only
addresses adaptivity of excitability thresholds, in the model presented
in  the  current  paper,  adaptivity  of  all  connection  weights  is  also
addressed.  The  adaptive  network  model  was  illustrated  for  realistic
scenarios  for  a  car  driver  who  gets  exhausted,  shows  erratic  steering,
shows an unfocused gaze and/or used alcohol. 

For the adaptivity and its control, the network model makes use of
biologically  plausible  adaptation  principles  informed  by  the  cognitive
neuroscience literature, two within the first-order  self-model for adap-
tation  of  connectivity  and  aggregation  characteristics  of  the  base
network,  in  particular,  concerning  connection  weights  and  the
excitability  thresholds  [9–12,  15–19],  and  two  within  the  second-
order  self-model  for  adaptation  of  connectivity  characteristics
(connection weights) and timing characteristics (learning rates) for the
first-order  self-model by metaplasticity [12, 20–25]. This  study shows
how  complex  adaptive  cognitive  processes  based  on  internal  mental
models,  including  control  of  adaptation,  can  be  modeled  in  an  ade-
quate manner by multi-order self-modeling networks. 
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Specification of the First Adaptive  Network Model by
Role Matrices  

A.

The  first  model  specification  concerns  a  second-order  network  model
where  only  the  excitability  thresholds  are  adaptive,  and  not  the  con-
nection  weights.  Two  combination  functions  are  used,  the  Euclidean
combination  function  eucl  and  the  logistic  sum  combination  function
alogistic (see Table  1).  

Role  matrices  provide  an  overview  of  the  different  types  of  factors
that  causally  affect  the  network  states.  In  each  of  the  role  matrices,
each state Xi  in the network has its own row where it is listed which

other  states  or  characteristics  affect  this  state  from  that  role.  For
example,  in  Figure  A.1  role  matrix  mb  (for  base  connectivity)  indi-
cates  which  other  states  affect  a  given  state  Xi  (because  there  are

incoming connections from them). In Figure A.2 role matrix mcw (for
connection  weights)  indicates  what  the  connection  weights  of  these
connections are. Together,  these role matrices mb and mcw define  the
connectivity  characteristics  of  the  network  model.  Moreover,  in  Fig-
ure  A.3  role  matrix  mcfw  (for  combination  function  weights)  indi-
cates  how  a  given  state  Xi  is  affected  by  the  choice  of  combination

function(s)  made  for  this  state.  Figure  A.4  shows  role  matrix  mcfp
(for  combination  function  parameters)  idicates  the  parameters  for
these  combination  functions.  Together,  role  matrices  mcfw  and  mcfp
define  the  aggregation  characteristics  of  the  network  model.  Finally,
Figure  A.5  shows  how  the  timing  characteristics  of  the  network
model  are  defined  by  role  matrix  ms  (for  speed  factors).  In  the
nonempty  cells  in  role  matrices  there  is  either  a  static  value  or  a
pointer  (reference)  to  a  state  that  represents  this  value  in  a  dynamic
manner  as  a  self-model  state.  The  latter  option  is  the  detailed  specifi-
cation  of  what  in  the  three-dimensional  images  are  the  pink  down-
ward  arrows.  It  specifies  the  specific  role  of  the  causal  effect;  this
provides  a  quite  compact  specification  of  the  different  self-model  lev-
els. For more information on role matrices, see [5]. 

For  the  first  network  model  specification,  for  connectivity  charac-
teristics  all  connection  weights  not  determined  by  W-states  are  1,
except  for  the  connection  from  driving  to  HWTblockstart

,  which  is  -1.

For aggregation characteristics, the logistic sum combination function
(see  Table  1)  is  used  for  the  base  states  for  assessment  and  support
options (with steepness σ  8 and adaptive excitability threshold) and
the  second-order  HWT-states  (with  steepness  σ  4  and  excitability

threshold  τ  0.7  or  1.4  depending  on  the  number  of  incoming
connections).  All  other  states  use  the  Euclidean  combination  function
(see Table  1) with n  1 and λ  1, which actually is just a sum func-
tion. For timing characteristics, the speed factors of the base states for
assessment  and  support  options  are  0.5  and  for  the  second-order

HWT-states  0.05.  All  other  speed  factors  are  adaptive  (the  base  states
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for  assessment  and  support  options)  or  0  (for  the  other  base  states
and  for  all  W-states).  The  initial  values  for  all  W-states  (which  are
kept constant due to the speed factor value 0) are 1 when they repre-
sent a positive connection; negative ones are: 

Wdriving,blockstart,

Wlongdrive,Texhrisk
,

Walcohol,Tdrivingrisk
,

Wunstabsteer,Tdrivingrisk
,

Wunfocgaze,Tdrivingrisk
,

Wexhrisk,Trestadvice

which have initial value -1, and 

Wdrivingrisk,Tslowdown
,

Wdriving,Tslowdown
,

Wdrivingrisk,Tblockstart
,

Wdriving,Tblockstart

with  initial  value  -0.5.  The  initial  values  of  all  HWT-states  are  0  as

they  are  for  all  base  states  except  the  observables  shown  in  Fig-
ure A.5, which depend on the chosen scenario. Finally,  the initial val-
ues  for  the  five  T-states  were  on  purpose  set  on  too-high  values  2,
1.4,  2.4,  2.8,  2.4,  respectively  (in  relation  to  the  number  of  their
incoming connections), in order to let adaptation happen. 

mb base connectivity 1 2 3 4 5

X1 longdrive X1

X2 alcohol X2

X3 unstabsteer X3

X4 unfocgaze X4

X5 exhrisk X1

X6 drivingrisk X2 X3 X4

X7 driving X7

X8 restadvice X5 X7

X9 slowdown X6 X7

X10 blockstart X6 X7

X11 Wlongdrive,exhrisk X11

X12 Walcohol,drivingrisk X12

X13 Wunstabsteer,drivingrisk X13

X14 Wunfocgaze,drivingrisk X14
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mb base connectivity 1 2 3 4 5

X15 Texhrisk X1 X5 X15

X16 Tdrivingrisk X2 X3 X4 X6 X16

X17 Wexhrisk,restadvice X17

X18 Wdriving,restadvice X18

X19 Wdrivingrisk,slowdown X19

X20 Wdriving,slowdown X20

X21 Wdrivingrisk,blockstart X21

X22 Wdriving,blockstart X22

X23 Trestadvice X5 X8 X23

X24 Tslowdown X6 X7 X9 X24

X25 Tblockstart X6 X7 X10 X25

X26 Wlongdrive,Texhrisk
X26

X27 Wexhrisk,Texhrisk
X27

X28 Walcohol,Tdrivingrisk
X28

X29 Wunstabsteer,Tdrivingrisk
X29

X30 Wunfocgaze,Tdrivingrisk
X30

X31 Wdrivingrisk,Tdrivingrisk
X31

X32 Wexhrisk,Trestadvice
X32

X33 Wrestadvice,Trestadvice
X33

X34 Wdrivingrisk,Tslowdown
X34

X35 Wdriving,Tslowdown
X35

X36 Wslowdown,Tslowdown
X36

X37 Wdrivingrisk,Tblockstart
X37

X38 Wdriving,Tblockstart
X38

X39 Wblockstart,Tblockstart
X39

X40 HTexhrisk
X1

X41 HTdrivingrisk
X2 X3 X4

X42 HTrestadvice
X5

X43 HTslowdown
X6 X7

X44 HTblockstart
X6 X7

Figure A.1.Role  matrices  specifying  connectivity  characteristics:  mb  for  base
connections. 
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mcw connection weights 1 2 3 4 5

X1 longdrive 1

X2 alcohol 1 

X3 unstabsteer 1 

X4 unfocgaze 1 

X5 exhrisk X11

X6 drivingrisk X12 X13 X14

X7 driving 1 

X8 restadvice X17 X18

X9 slowdown X19 X20

X10 blockstart X21 X22

X11 Wlongdrive,exhrisk 1 

X12 Walcohol,drivingrisk 1 

X13 Wunstabsteer,drivingrisk 1 

X14 Wunfocgaze,drivingrisk 1 

X15 Texhrisk X26 X27 1 

X16 Tdrivingrisk X28 X29 X30 X31 1

X17 Wexhrisk,restadvice 1 

X18 Wdriving,restadvice 1 

X19 Wdrivingrisk,slowdown 1 

X20 Wdriving,slowdown 1 

X21 Wdrivingrisk,blockstart 1 

X22 Wdriving,blockstart 1 

X23 Trestadvice X32 X33 1 

X24 Tslowdown X34 X35 X36 1 

X25 Tblockstart X37 X38 X39 1 

X26 Wlongdrive,Texhrisk
1 

X27 Wexhrisk,Texhrisk
1 

X28 Walcohol,Tdrivingrisk
1 

X29 Wunstabsteer,Tdrivingrisk
1 

X30 Wunfocgaze,Tdrivingrisk
1 

X31 Wdrivingrisk,Tdrivingrisk
1 

X32 Wexhrisk,Trestadvice
1 

X33 Wrestadvice,Trestadvice
1 
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mcw connection weights 1 2 3 4 5

X34 Wdrivingrisk,Tslowdown
1

X35 Wdriving,Tslowdown
1 

X36 Wslowdown,Tslowdown
1 

X37 Wdrivingrisk,Tblockstart
1 

X38 Wdriving,Tblockstart
1 

X39 Wblockstart,Tblockstart
1 

X40 HTexhrisk
1 

X41 HTdrivingrisk
1 1 1 

X42 HTrestadvice
1 

X43 HTslowdown
1 1 

X44 HTblockstart
1 -1

Figure A.2.Role matrices specifying connectivity characteristics: mcw for con-
nection weights. 

mcfw function combination weights 1 eucl 2 alogistic

X1 longdrive 1 

X2 alcohol 1 

X3 unstabsteer 1 

X4 unfocgaze 1 

X5 exhrisk 1

X6 drivingrisk 1

X7 driving 1 

X8 restadvice 1

X9 slowdown 1

X10 blockstart 1

X11 Wlongdrive, exhrisk 1 

X12 Walcohol, drivingrisk 1 

X13 Wunstabsteer, drivingrisk 1 

X14 Wunfocgaze, drivingrisk 1 

X15 Texhrisk 1 

X16 Tdrivingrisk 1 
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mcfw function combination weights 1 eucl 2 alogistic

X17 Wexhrisk, restadvice 1 

X18 Wdriving, restadvice 1 

X19 Wdrivingrisk, slowdown 1 

X20 Wdriving, slowdown 1 

X21 Wdrivingrisk, blockstart 1 

X22 Wdriving, blockstart 1 

X23 Trestadvice 1 

X24 Tslowdown 1 

X25 Tblockstart 1 

X26 Wlongdrive,Texhrisk
1 

X27 Wexhrisk,Texhrisk
1 

X28 Walcohol,Tdrivingrisk
1 

X29 Wunstabsteer,Tdrivingrisk
1 

X30 Wunfocgaze,Tdrivingrisk
1 

X31 Wdrivingrisk,Tdrivingrisk
1 

X32 Wexhrisk,Trestadvice
1 

X33 Wrestadvice,Trestadvice
1 

X34 Wdrivingrisk,Tslowdown
1 

X35 Wdriving,Tslowdown
1 

X36 Wslowdown,Tslowdown
1 

X37 Wdrivingrisk,Tblockstart
1 

X38 Wdriving,Tblockstart
1 

X39 Wblockstart,Tblockstart
1 

X40 HTexhrisk
1

X41 HTdrivingrisk
1

X42 HTrestadvice
1

X43 HTslowdown
1

X44 HTblockstart
1

Figure A.3.Role matrices specifying aggregation characteristics: mcfw for com-
bination function weights.

A-6 J. Treur

Complex Systems, 30 © 2021



mcfp combination function parameters 1 eucl 2 alogistic 

1
n

2
λ

1
σ

2
τ

X1 longdrive 1 1

X2 alcohol 1 1

X3 unstabsteer 1 1

X4 unfocgaze 1 1

X5 exhrisk 8 X15

X6 drivingrisk 8 X16

X7 driving 1 1 

X8 restadvice 8 X23

X9 slowdown 8 X24

X10 blockstart 8 X25

X11 Wlongdrive, exhrisk 1 1 

X12 Walcohol, drivingrisk 1 1 

X13 Wunstabsteer, drivingrisk 1 1 

X14 Wunfocgaze, drivingrisk 1 1 

X15 Texhrisk 1 1 

X16 Tdrivingrisk 1 1 

X17 Wexhrisk, restadvice 1 1 

X18 Wdriving, restadvice 1 1 

X19 Wdrivingrisk, slowdown 1 1 

X20 Wdriving, slowdown 1 1 

X21 Wdrivingrisk, blockstart 1 1 

X22 Wdriving, blockstart 1 1 

X23 Trestadvice 1 1 

X24 Tslowdown 1 1 

X25 Tblockstart 1 1

X26 Wlongdrive,Texhrisk
1 1 

X27 Wexhrisk,Texhrisk
1 1 

X28 Walcohol,Tdrivingrisk
1 1 

X29 Wunstabsteer,Tdrivingrisk
1 1 
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mcfp combination function parameters 1 eucl 2 alogistic 

1
n

2
λ

1
σ

2
τ

X30 Wunfocgaze,Tdrivingrisk
1 1 

X31 Wdrivingrisk,Tdrivingrisk
1 1 

X32 Wexhrisk,Trestadvice
1 1 

X33 Wrestadvice,Trestadvice
1 1 

X34 Wdrivingrisk,Tslowdown
1 1 

X35 Wdriving,Tslowdown
1 1 

X36 Wslowdown,Tslowdown
1 1 

X37 Wdrivingrisk,Tblockstart
1 1 

X38 Wdriving,Tblockstart
1 1 

X39 Wblockstart,Tblockstart
1 1 

X40 HTexhrisk
4 0.7 

X41 HTdrivingrisk
4 0.7 

X42 HTrestadvice
4 0.7 

X43 HTslowdown
4 1.4 

X44 HTblockstart
4 0.7 

Figure A.4.Role matrices specifying aggregation characteristics: mcfp for com-
bination function parameters. 

ms speed factors 1

X1 longdrive 0

X2 alcohol 0

X3 unstabsteer 0

X4 unfocgaze 0

X5 exhrisk 0.5

X6 drivingrisk 0.5

X7 driving 0

X8 restadvice 0.5

X9 slowdown 0.5

X10 blockstart 0.5

X11 Wlongdrive,exhrisk 0

X12 Walcohol,drivingrisk 0

X13 Wunstabsteer,drivingrisk 0

iv initial values 1

X1 longdrive 0

X2 alcohol 0

X3 unstabsteer 0

X4 unfocgaze 0

X5 exhrisk 0

X6 drivingrisk 0

X7 driving 0

X8 restadvice 0

X9 slowdown 0

X10 blockstart 0

X11 Wlongdrive,exhrisk 1

X12 Walcohol,drivingrisk 1

X13 Wunstabsteer,drivingrisk 1
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ms speed factors 1

X14 Wunfocgaze,drivingrisk 0

X15 Texhrisk X40

X16 Tdrivingrisk X41

X17 Wexhrisk,restadvice 0

X18 Wdriving,restadvice 0

X19 Wdrivingrisk,slowdown 0

X20 Wdriving,slowdown 0

X21 Wdrivingrisk,blockstart 0

X22 Wdriving,blockstart 0

X23 Trestadvice X42

X24 Tslowdown X43

X25 Tblockstart X44

X26 Wlongdrive,Texhrisk
0

X27 Wexhrisk,Texhrisk
0

X28 Walcohol,Tdrivingrisk
0

X29 Wunstabsteer,Tdrivingrisk
0

X30 Wunfocgaze,Tdrivingrisk
0

X31 Wdrivingrisk,Tdrivingrisk
0

X32 Wexhrisk,Trestadvice
0

X33 Wrestadvice,Trestadvice
0

X34 Wdrivingrisk,Tslowdown
0

X35 Wdriving,Tslowdown
0

X36 Wslowdown,Tslowdown
0

X37 Wdrivingrisk,Tblockstart
0

X38 Wdriving,Tblockstart
0

X39 Wblockstart,Tblockstart
0

X40 HTexhrisk
0.05

X41 HTdrivingrisk
0.05

X42 HTrestadvice
0.05

X43 HTslowdown
0.05

X44 HTblockstart
0.05

iv initial values 1

X14 Wunfocgaze,drivingrisk 1

X15 Texhrisk 2

X16 Tdrivingrisk 1.4

X17 Wexhrisk,restadvice 1

X18 Wdriving,restadvice 1

X19 Wdrivingrisk,slowdown 1

X20 Wdriving,slowdown 1

X21 Wdrivingrisk,blockstart 1

X22 Wdriving,blockstart -1

X23 Trestadvice 2.4

X24 Tslowdown 2.8

X25 Tblockstart 2.4

X26 Wlongdrive,Texhrisk
-1

X27 Wexhrisk,Texhrisk
1

X28 Walcohol,Tdrivingrisk
-1

X29 Wunstabsteer,Tdrivingrisk
-1

X30 Wunfocgaze,Tdrivingrisk
-1

X31 Wdrivingrisk,Tdrivingrisk
1

X32 Wexhrisk,Trestadvice
-1

X33 Wrestadvice,Trestadvice
1

X34 Wdrivingrisk,Tslowdown
-0.5

X35 Wdriving,Tslowdown
-0.5

X36 Wslowdown,Tslowdown
1

X37 Wdrivingrisk,Tblockstart
-0.5

X38 Wdriving,Tblockstart
-0.5

X39 Wblockstart,Tblockstart
1

X40 HTexhrisk
0

X41 HTdrivingrisk
0

X42 HTrestadvice
0

X43 HTslowdown
0

X44 HTblockstart
0

Figure A.5.Role  matrix  ms  specifying  timing  characteristics  and  vector  iv  of
initial values.  
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Role Matrices Specification of the Second Adaptive  Network 

Model  
B.

The second network model specification  concerns a second-order net-
work  model  where  not  only  are  the  excitability  thresholds  adaptive,
but also the connection weights (Figures B.1 and B.2).  

mb base connectivity 1 2 3 4 5

X1 longdrive X1

X2 alcohol X2

X3 unstabsteer X3

X4 unfocgaze X4

X5 exhrisk X1

X6 drivingrisk X2 X3 X4

X7 driving X7

X8 restadvice X5 X7

X9 slowdown X6 X7

X10 blockstart X6 X7

X11 Wlongdrive,exhrisk X1 X5 X11

X12 Walcohol,drivingrisk X2 X6 X12

X13 Wunstabsteer,drivingriskX3 X6 X13

X14 Wunfocgaze,drivingrisk X4 X6 X14

X15 Texhrisk X1 X5 X15

X16 Tdrivingrisk X2 X3 X4 X6 X16

X17 Wexhrisk, restadvice X5 X8 X17

X18 Wdriving, restadvice X7 X8 X18

X19 Wdrivingrisk, slowdown X6 X9 X19

X20 Wdriving, slowdown X7 X9 X20

X21 Wdrivingrisk, blockstart X6 X10 X21

X22 Wdriving, blockstart X7 X10 X22

X23 Trestadvice X5 X8 X23

X24 Tslowdown X6 X7 X9 X24

X25 Tblockstart X6 X7 X10 X25

X26 Wlongdrive,Texhrisk
X1 X15 X26

X27 Wexhrisk,Texhrisk
X5 X15 X27

X28 Walcohol,Tdrivingrisk
X2 X16 X28

X29 Wunstabsteer,Tdrivingrisk
X3 X16 X29
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mb base connectivity 1 2 3 4 5

X30 Wunfocgaze,Tdrivingrisk
X4 X16 X30

X31 Wdrivingrisk,Tdrivingrisk
X6 X16 X31

X32 Wexhrisk,Trestadvice
X5 X23 X32

X33 Wrestadvice,Trestadvice
X8 X23 X33

X34 Wdrivingrisk,Tslowdown
X6 X24 X34

X35 Wdriving,Tslowdown
X7 X24 X35

X36 Wslowdown,Tslowdown
X9 X24 X36

X37 Wdrivingrisk,Tblockstart
X6 X25 X37

X38 Wdriving,Tblockstart
X7 X25 X38

X39 Wblockstart,Tblockstart
X10 X25 X39

X40 HWTexhrisk
X1

X41 HWTdrivingrisk
X2 X3 X4

X42 HWTrestadvice
X5

X43 HWTslowdown
X6 X7

X44 HWTblockstart
X6 X7

Figure B.1.Role  matrices  specifying  connectivity  characteristics:  mb  for  base
connections. 

mcw connection weights 1 2 3 4 5

X1 longdrive 1 

X2 alcohol 1 

X3 unstabsteer 1 

X4 unfocgaze 1 

X5 exhrisk X11

X6 drivingrisk X12 X13 X14

X7 driving 1 

X8 restadvice X17 X18

X9 slowdown X19 X20

X10 blockstart X21 X22

X11 Wlongdrive, exhrisk 1 1 1

X12 Walcohol, drivingrisk 1 1 1

X13 Wunstabsteer, drivingrisk 1 1 1

X14 Wunfocgaze, drivingrisk 1 1 1
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mcw connection weights 1 2 3 4 5

X15 Texhrisk X26 X27 0.9

X16 Tdrivingrisk X28 X29 X30 X31 0.9

X17 Wexhrisk, restadvice 1 1 1

X18 Wdriving, restadvice 1 1 1

X19 Wdrivingrisk, slowdown 1 1 1

X20 Wdriving, slowdown 1 1 1

X21 Wdrivingrisk, blockstart 1 1 1

X22 Wdriving, blockstart 1 1 1

X23 Trestadvice X32 X33 1

X24 Tslowdown X34 X35 X36 1

X25 Tblockstart X37 X38 X39 1

X26 Wlongdrive,Texhrisk
1 1 1

X27 Wexhrisk,Texhrisk
1 1 1

X28 Walcohol,Tdrivingrisk
1 1 1

X29 Wunstabsteer,Tdrivingrisk
1 1 1

X30 Wunfocgaze,Tdrivingrisk
1 1 1

X31 Wdrivingrisk,Tdrivingrisk
1 1 1

X32 Wexhrisk,Trestadvice
1 1 1

X33 Wrestadvice,Trestadvice
1 1 1

X34 Wdrivingrisk,Tslowdown
1 1 1

X35 Wdriving,Tslowdown
1 1 1

X36 Wslowdown,Tslowdown
1 1 1

X37 Wdrivingrisk,Tblockstart
1 1 1

X38 Wdriving,Tblockstart
1 1 1

X39 Wblockstart,Tblockstart
1 1 1

X40 HWTexhrisk
1 

X41 HWTdrivingrisk
1 1 1

X42 HWTrestadvice
1 

X43 HWTslowdown
1 1 

X44 HWTblockstart
1 -1

Figure B.2.Role matrices specifying connectivity characteristics: mcw for con-
nection weights. 
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Three  combination  functions  are  used,  the  logistic  sum  combina-
tion  function  alogistic,  and  the  Hebbian  learning  functions  hebb  and
hebbneg (see Tables  1 and 2). For a general explanation of role matri-
ces, see Appendix A. 

mmcfw combination function weights 1 alogistic 2 hebb 3 hebbneg

X1 longdrive 1 

X2 alcohol 1 

X3 unstabsteer 1 

X4 unfocgaze 1 

X5 exhrisk 1 

X6 drivingrisk 1 

X7 driving 1 

X8 restadvice 1 

X9 slowdown 1 

X10 blockstart 1 

X11 Wlongdrive, exhrisk 1 

X12 Walcohol, drivingrisk 1 

X13 Wunstabsteer, drivingrisk 1 

X14 Wunfocgaze, drivingrisk 1 

X15 Texhrisk 1 

X16 Tdrivingrisk 1 

X17 Wexhrisk, restadvice 1 

X18 Wdriving, restadvice 1 

X19 Wdrivingrisk, slowdown 1 

X20 Wdriving, slowdown 1 

X21 Wdrivingrisk, blockstart 1 

X22 Wdriving, blockstart 1

X23 Trestadvice 1 

X24 Tslowdown 1 

X25 Tblockstart 1 

X26 Wlongdrive,Texhrisk
1

X27 Wexhrisk,Texhrisk
1 

X28 Walcohol,Tdrivingrisk
1

X29 Wunstabsteer,Tdrivingrisk
1
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mmcfw combination function weights 1 alogistic 2 hebb 3 hebbneg

X30 Wunfocgaze,Tdrivingrisk
1

X31 Wdrivingrisk,Tdrivingrisk
1 

X32 Wexhrisk,Trestadvice
1

X33 Wrestadvice,Trestadvice
1 

X34 Wdrivingrisk,Tslowdown
1

X35 Wdriving,Tslowdown
1

X36 Wslowdown,Tslowdown
1 

X37 Wdrivingrisk,Tblockstart
1

X38 Wdriving,Tblockstart
1 

X39 Wblockstart,Tblockstart
1 

X40 HWTexhrisk
1 

X41 HWTdrivingrisk
1 

X42 HWTrestadvice
1 

X43 HWTslowdown
1 

X44 HWTblockstart
1 

Figure B.3.Role matrices specifying aggregation characteristics: mcfw for com-
bination function weights. 

1 alogistic 2 hebb 3 hebbneg

mcfp combination function parameters
1
 n

2
 τ

1 

μ

1 

μ

X1 longdrive 8 0.5

X2 alcohol 8 0.5

X3 unstabsteer 8 0.5

X4 unfocgaze 8 0.5

X5 exhrisk 8 X15

X6 drivingrisk 8 X16

X7 driving 8 0.5

X8 restadvice 8 X23

X9 slowdown 8 X24

X10 blockstart 8 X25

X11 Wlongdrive, exhrisk 0.95

X12 Walcohol, drivingrisk 0.95

X13 Wunstabsteer, drivingrisk 0.95

X14 Wunfocgaze, drivingrisk 0.95
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1 alogistic 2 hebb 3 hebbneg

mcfp combination function parameters
1
 n

2
 τ

1 

μ

1 

μ

X15 Texhrisk 8 0.5

X16 Tdrivingrisk 8 0.5

X17 Wexhrisk, restadvice 0.95

X18 Wdriving, restadvice 0.95

X19 Wdrivingrisk, slowdown 0.95

X20 Wdriving, slowdown 0.95

X21 Wdrivingrisk, blockstart 0.95

X22 Wdriving, blockstart 0.95 

X23 Trestadvice 8 0.5

X24 Tslowdown 8 0.2

X25 Tblockstart 8 0.5

X26 Wlongdrive,Texhrisk
0.95

X27 Wexhrisk,Texhrisk
0.95

X28 Walcohol,Tdrivingrisk
0.95

X29 Wunstabsteer,Tdrivingrisk
0.95 

X30 Wunfocgaze,Tdrivingrisk
0.95 

X31 Wdrivingrisk,Tdrivingrisk
0.95

X32 Wexhrisk,Trestadvice
0.95 

X33 Wrestadvice,Trestadvice
0.95

X34 Wdrivingrisk,Tslowdown
0.95 

X35 Wdriving,Tslowdown
0.95 

X36 Wslowdown,Tslowdown
0.95

X37 Wdrivingrisk,Tblockstart
0.95 

X38 Wdriving,Tblockstart
0.95

X39 Wblockstart,Tblockstart
0.95

X40 HWTexhrisk
10 0.7

X41 HWTdrivingrisk
10 0.7

X42 HWTrestadvice
10 0.7

X43 HWTslowdown
10 1.4

X44 HWTblockstart
10 0.7

Figure B.4. Role matrices specifying aggregation characteristics: mcfp for com-
bination function parameters.
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ms speed factors 1

X1 longdrive 0

X2 alcohol 0

X3 unstabsteer 0

X4 unfocgaze 0

X5 exhrisk 0.5

X6 drivingrisk 0.5

X7 driving 0

X8 restadvice 0.5

X9 slowdown 0.5

X10 blockstart 0.5

X11 Wlongdrive,exhrisk X40

X12 Walcohol,drivingrisk X41

X13 Wunstabsteer,drivingrisk X41

X14 Wunfocgaze,drivingrisk X41

X15 Texhrisk X40

X16 Tdrivingrisk X41

X17 Wexhrisk,restadvice X42

X18 Wdriving,restadvice X42

X19 Wdrivingrisk,slowdown X43

X20 Wdriving,slowdown X43

X21 Wdrivingrisk,blockstart X44

X22 Wdriving,blockstart X44

X23 Trestadvice X42

X24 Tslowdown X43

X25 Tblockstart X44

X26 Wlongdrive,Texhrisk
0.1

X27 Wexhrisk,Texhrisk
0.1

X28 Walcohol,Tdrivingrisk
0.1

X29 Wunstabsteer,Tdrivingrisk
0.1

X30 Wunfocgaze,Tdrivingrisk
0.1

X31 Wdrivingrisk,Tdrivingrisk
0.1

iv initial values 1

X1 longdrive 0

X2 alcohol 0

X3 unstabsteer 0

X4 unfocgaze 0

X5 exhrisk 0

X6 drivingrisk 0

X7 driving 0

X8 restadvice 0

X9 slowdown 0

X10 blockstart 0

X11 Wlongdrive,exhrisk 0.1

X12 Walcohol,drivingrisk 0.1

X13 Wunstabsteer,drivingrisk 0.1

X14 Wunfocgaze,drivingrisk 0.1

X15 Texhrisk 1

X16 Tdrivingrisk 1

X17 Wexhrisk,restadvice 0.1

X18 Wdriving,restadvice 0.1

X19 Wdrivingrisk,slowdown 0.1

X20 Wdriving,slowdown 0.1

X21 Wdrivingrisk,blockstart 0.1

X22 Wdriving,blockstart -0.1

X23 Trestadvice 1

X24 Tslowdown 1

X25 Tblockstart 1

X26 Wlongdrive,Texhrisk
-0.1

X27 Wexhrisk,Texhrisk
0.1

X28 Walcohol,Tdrivingrisk
-0.1

X29 Wunstabsteer,Tdrivingrisk
-0.1

X30 Wunfocgaze,Tdrivingrisk
-1

X31 Wdrivingrisk,Tdrivingrisk
0.1
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ms speed factors 1

X32 Wexhrisk,Trestadvice
0.1

X33 Wrestadvice,Trestadvice
0.1

X34 Wdrivingrisk,Tslowdown
0.1

X35 Wdriving,Tslowdown
0.1

X36 Wslowdown,Tslowdown
0.1

X37 Wdrivingrisk,Tblockstart
0.1

X38 Wdriving,Tblockstart
0.1

X39 Wblockstart,Tblockstart
0.1

X40 HWTexhrisk
0.05

X41 HWTdrivingrisk
0.05

X42 HWTrestadvice
0.05

X43 HWTslowdown
0.05

X44 HWTblockstart
0.05

iv initial values 1

X32 Wexhrisk,Trestadvice
-1

X33 Wrestadvice,Trestadvice
0.1

X34 Wdrivingrisk,Tslowdown
-1

X35 Wdriving,Tslowdown
-1

X36 Wslowdown,Tslowdown
0.1

X37 Wdrivingrisk,Tblockstart
-1

X38 Wdriving,Tblockstart
0.1

X39 Wblockstart,Tblockstart
0.1

X40 HWTexhrisk
0

X41 HWTdrivingrisk
0

X42 HWTrestadvice
0

X43 HWTslowdown
0

X44 HWTblockstart
0

Figure B.5.Role  matrix  ms  specifying  timing  characteristics  and  vector  iv  of
initial values.  
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