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We  investigate the existence of collective dynamical states in nonlocally
coupled  Stuart–Landau  oscillators  with  symmetry  breaking  included  in
the  coupling  term.  We  find  that  the  radius  of  nonlocal  interaction  and
nonisochronicity  parameter  play  important  roles  in  identifying  the
swing  of  synchronized  states  through  amplitude  chimera  states.  Collec-
tive  dynamical  states  are  distinguished  with  the  help  of  strength  of
incoherence.  Different  transition  routes  to  multi-chimera  death  states
are  analyzed  with  respect  to  the  nonlocal  coupling  radius.  In  addition,
we  investigate  the  existence  of  collective  dynamical  states  including
traveling  wave  state,  amplitude  chimera  state  and  multi-chimera  death
state  by  introducing  higher-order  nonlinear  terms  in  the  system.  We
also  verify  the  robustness  of  the  given  notable  properties  for  the
coupled system. 
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Introduction1.

The  study  of  coupled  nonlinear  oscillators  constitutes  a  strong
platform  for  exploring  various  oscillatory  patterns  in  physics,  chem-
istry,  neuroscience and other related areas. Owing to various coupling
scenarios  among  interacting  oscillators  with  intrinsic  properties,  a
variety  of  novel  collective  phenomena  can  be  realized,  including
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synchronization, suppression of oscillations, chimera states and so on.
In particular,  a notion of chimera state has drawn considerable atten-
tion  toward  the  study  of  coupled  networks  with  nonlocal  topology
[1–6].  It  was  initially  observed  in  nonlocally  coupled  dynamical
networks [1, 2]. Since then, nonlocal coupling topology has been con-
sidered as a necessary condition to induce chimera states. In later stud-
ies,  chimera  states  have  also  been  identified  in  networks  with  global
[7]  and  local  couplings  [8–10].  Experimental  observations  of  chimera
states  have  been  made  in  mechanical  oscillators  with  metronomes
[11],  coupled  chemical  oscillators  [12],  optical  combs  systems  [13],
coupled electronic oscillators [14], time-varying networks [15], oscilla-
tors with more than one population [16–20] and so on.  

In  addition,  Zakharova  et  al.  have  observed  the  emergent  phe-
nomenon  of  chimera  states  in  nonlocally  connected  identical  oscilla-
tors  with  symmetry-breaking  coupling  [21].  It  is  characterized  by  the
coexistence  of  spatially  coherent  steady  states  (where  neighboring
oscillators  occupy  the  same  branch  of  inhomogeneous  steady  states)
and  incoherent  steady  states  (where  neighboring  nodes  are  randomly
distributed  among  two  different  branches  of  the  inhomogeneous
steady  states).  In  recent  works,  the  present  authors  have  shown  that
the  multi-cluster  chimera  death  state  can  also  be  observed  in  dynam-
ical networks with global coupling [22], structural changes in chimera
death states [23] can occur,  and different transition routes to chimera
death  states  [24]  in  nonlocally  coupled  Stuart–Landau  oscillators  can
arise. 

On  the  other  hand,  in  [25],  Daido  and  Nakanishi  investigated  a
network  of  globally  coupled  oscillators  with  diffusive  coupling  and
reported  the  phenomenon  of  the  swing  of  synchronized  states.  They
found  that  the  synchronized  state  is  destabilized  with  increasing
strength  of  the  coupling  interaction.  It  is  found  to  be  restabilized  by
further  increases  in  the  coupling  strength.  Also,  they  have  reported
that the globally coupled systems with diffusive coupling can induce a
synchronized  state  that  is  to  be  mediated  by  the  so-called  cluster
states.  Recently  the  phenomenon  of  the  swing  of  synchronized  states
that  is  mediated  through  amplitude  chimera  states  has  been  reported
in  nonlocally  coupled  Stuart–Landau  oscillators  [24].  Motivated  by
these  works,  in  the  present  paper,  we  investigate  the  robustness  of
swing of synchronized states by introducing higher-order  nonlinearity
in the system. 

In  this  paper,  we  study  the  dynamical  behavior  of  nonlocally  cou-
pled  Stuart–Landau  oscillators  with  symmetry-breaking  form.  We
observe the basic feature that the nonisochronicity in the system plays
an  important  role  in  realizing  the  synchronized  states  mediated
through  the  amplitude  chimera  states  and  that  we  cannot  observe
such  a  phenomenon  when  there  is  an  absence  of  nonisochronicity  in
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the system. The other crucial contributor in inducing sway of synchro-
nized  states  is  the  coupling  radius  of  nonlocal  interaction.  Here  the
presence  of  nonlocal  coupling  in  the  system  makes  the  amplitude
chimera  states  mediate  the  synchronized  states.  Moreover,  the  system
transits  to  the  multi-chimera  death  state  in  the  strong  coupling  limit.
In  addition,  we  analyze  whether  the  phenomenon  of  a  swing  of  the
synchronized  state  is  robust  for  introducing  the  higher-order  nonlin-
ear  term  in  the  system.  We  find  that  the  higher-order  nonlinearity  in
the system suppresses the phenomenon of a swing of the synchronized
state  that  transits  through  the  amplitude  chimera  state.  Also,  we  find
that the existence of multi-chimera death states is robust in this case. 

Model2.

We  consider  an  array  of  nonlocally  coupled  identical  Stuart–Landau
oscillators  with  symmetry-breaking  form  in  the  coupling,  whose
dynamics can be represented by the following set of equations:

zj

 zj - (1 - ic)zj

2
zj - bzj

4
zj +

ϵ

2P


kN-P

N+P

Rezk -Rezj, (1)

where  zj  xj + iyj,  j  1, 2, 3, …N.  Here  c  is  the  nonisochronicity

parameter  and  N  is  the  total  number  of  oscillators.  Further,  b  is  the

real parameter and it is chosen as b  1. The  nonlocal coupling in the
system is controlled by the coupling strength ϵ and the coupling range
r  P /N, where P corresponds to the number of nearest neighbors in
both  directions.  Here,  we  have  introduced  the  coupling  only  in  the
real parts of the complex amplitude, and so this coupling introduces a
symmetry breaking in the system.  

In  our  simulations,  we  choose  the  number  of  oscillators  N  to  be
equal  to  100,  and  in  order  to  solve  equation  (1),  we  use  the  fourth-
order  Runge–Kutta  method  with  time  step  0.01  and  with  symmetric
initial  conditions  between  -1  and  +1,  which  is  necessary  for  the
occurrence  of  the  oscillation  death  state.  In  the  following  sections  of
the  present  paper,  we  investigate  the  dynamics  of  the  coupled  system

under  two  different  contexts:  (1)  when  the  real  parameter  b  0;  and

(2) when the parameter b ≠ 0.

Characterization to Collective Dynamical States and Swing by 

Mechanism  

3.

Case 1: When  b  03.1

First,  we  start  our  study  by  considering  the  value  of  the  nonlinear

parameter b  0 in equation (1). In order to check whether the system
exhibits the swing of synchronization mechanism in any region of the
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parametric  space  of  this  nonlocally  coupled  system,  we  vary  the  cou-
pling  range  r,  or  equivalently  P,  and  the  nonisochronicity  parameter
c,  and  observe  the  dynamical  behavior  of  the  system.  In  order  to
know  the  nature  of  dynamical  states  in  more  detail,  we  look  at  the
strength  of  incoherence  of  the  system  introduced  recently  by  Gopal,
Venkatesan  and two of the present authors [26], which will help us to
detect interesting collective dynamical states such as the chimera state.
It is defined as 

S  1 -
∑m1
M sm

M
, sm  Θ(δ - σ(m)), (2)

where  

σ(m)  

1

n


jnm-1+1

mn

zj - zj
2

1/2


t

with  

zj 
1

N


i1

N

zj, i(t).

δ  is  the  threshold  value,  which  is  small,  and  Θ  is  the  Heaviside  step
function.  The  angular  bracket  〈…〉t  denotes  the  average  over  time.

Thus the strength of incoherence measures the amount of spatial inco-
herence present in the system, which is zero for the spatially coherent/
synchronized  state.  It  has  the  maximum  value,  that  is  S  1,  for  the
completely  incoherent/desynchronized  state  and  has  intermediate  val-
ues between 0 and 1 for chimera states and cluster states. Further,  to
distinguish  the  amplitude  chimera  state  and  phase  chimera  state,  we
find  the strength of incoherence in the amplitude domain Sr  as differ-

ent from S. For finding  Sr, we use the same procedure as earlier,  with

zj in equation (2) replaced by  

wj  rj - rj+1rj
2  xj

2 + yj
2 .

Now  Sr  can  be  used  to  clearly  distinguish  the  phase  and  amplitude

chimera  state,  since  the  amplitudes  of  all  the  oscillators  in  the  system
are  the  same  for  the  phase  chimera  state  and  strength  of  incoherence
in  the  amplitude  domain  is  Sr  0,  while  S  varies  between  0  and  1.

On  the  other  hand,  both  S  and  Sr  have  values  between  0  and  1  for

amplitude  chimera  states.  Now  using  the  previous  measures  of
strength  of  incoherence  S  and  Sr,  we  identify  the  different  dynamical

regions  that  the  system  passes  through  while  the  coupling  radius  and
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nonisochronicity  parameter  are  varied.  For  this  purpose,  in  Figure  1
we  demonstrate  the  behavior  of  the  strength  of  incoherence  S  as  well
as  Sr  for  the  variables  xj  with  respect  to  the  coupling  strength  ϵ  for

coupling radius P  10 with c  3. We  find  that initially all the oscil-
lators are desynchronized in phase while the amplitudes of the oscilla-
tors  are  the  same,  where  the  value  of  S  is  found  to  be  maximum  and

Sr  is  found  to  be  zero.  However,  in  the  region  0.021 ≤ ϵ ≤ 0.071  the

system  of  oscillators  attains  a  synchronized  state  where  S  0  (and
also  Sr  0).  On  increasing  the  coupling  strength,  in  the  region

0.072 < ϵ < 0.11,  both  S  and  Sr  oscillate  between  0  and  1,  implying

that  the  states  correspond  to  an  amplitude  chimera  state.  By  increas-
ing ϵ beyond 0.11, both S and Sr are found to be zero, which confirms

the  synchronization  among  the  oscillators.  Thus,  in  this  case,  we  can
observe a recurrence of synchronization, where the synchronization in
the  system  disappears  with  the  increase  of  ϵ,  but  with  a  further
increase of ϵ, synchronized states again reemerge. This  analysis shows
that  the  swing  in  synchronization  in  the  system  is  mediated  by  the
amplitude chimera state.  

Figure 1. Strength of incoherence S and Sr  of the system equation (1) for dif-

ferent values of ϵ for (a) c  3 and P  10; (b) c  3 and P  25; (c) P  10

with c  4.5; and (d) P  10, c  7, respectively.   

Now  increasing  the  coupling  radius  to  P  25,  we  cannot  observe
this  type  of  sway  in  synchronization,  which  is  also  shown  in  Fig-
ure 1(b).  Initially  the  states  are  phase  desynchronized,  where  S  1
and  Sr  0  in  the  region  ϵ < 0.045,  and  both  S  and  Sr  take  values

between 0 to 1 in the region 0.046 < ϵ < 0.11, indicating the presence
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of  chimera  states.  For  ϵ > 0.11,  the  states  are  synchronized,  where
both  S  and  Sr  take  the  value  zero.  Thus,  we  can  observe  here  the

absence  of  recurrence  of  the  synchronized  state  for  large  values  of
nonlocal  interaction.  Thus,  from  Figures  1(a)  and  1(b),  we  find  that
the  swing  in  synchronization  occurs  for  small  values  of  coupling
radius  (or  strength  of  nonlocal  interaction).  Now  we  check  whether
this type of undulation of synchronization occurs for all values of c. 

For this purpose, we fix  P  10 and find  S for different values of c.
The calculated results show that the swing mechanism in synchroniza-
tion occurs neither for large values of c nor for smaller values of c but
can be observed only for the window 2.7 ≤ c ≤ 5.2. To  illustrate this,
we  have  plotted  the  strength  of  incoherence  S  of  the  system  for  two
different  values  of  c,  namely  c  4.0  and  c  7.0  in  Figures  1(c)  and
(d),  respectively.  At  c  4.5  (from  Figure  1(c)),  we  can  observe  that
for  smaller  values  of  ϵ  (ϵ < 0.015),  S  is  found  to  be  unity  and  Sr  0,

which  represents  the  phase  desynchronization  among  the  oscillators.
By increasing the coupling, both S and Sr  reach the value zero, where

the  oscillators  are  in  synchronization  for  the  values  of  ϵ  between
0.016 and 0.055. For the values 0.056 < ϵ < 0.165, we find  the occur-
rence of amplitude chimera states in this region (as both S and Sr  take

the  values  between  0  and  1  for  these  values  of  ϵ).  Both  S  and  Sr  are

found to reach the minimum value (S, Sr  0) by a further increase of

ϵ. Thus  for the values ϵ > 0.166, the oscillators return to the synchro-
nized  state.  This  analysis  shows  that  the  swing  in  synchronization  in
the  system  is  mediated  by  the  amplitude  chimera  states.  Now  let  us
look  at  whether  this  type  of  reappearance  occurs  for  higher  values  of
c also. 

The  obtained  results  for  c  7.0  are  shown  in  Figure  1(d),  which
indicates  the  absence  of  the  given  type  of  synchronized  state.  In  this
case,  we  can  observe  the  phase  desynchronization,  where  S  has  the
maximum  value  while  Sr  takes  the  value  zero  for  small  values  of  ϵ

(ϵ < 0.25).  Both  S  and  Sr  take  a  value  between  0  and  1  for

0.25 < ϵ < 0.550,  corresponding  to  an  amplitude  chimera  state.
Finally  for  ϵ > 0.550,  S  and  Sr  decrease  to  zero,  corresponding  to  a

synchronized state. Hence the large value of nonisochronicity leads to
the  absence  of  swing  in  the  synchronized  state.  Thus,  for  P  10,  we
have  the  phenomenon  of  swing  by  in  synchronization  for  the  values
of c between 2.7 < c < 5.2. 

Existence of Multi-chimera Death States  3.1.1

Further,  we  also  note  that  the  presence  of  a  symmetry-breaking  term
in  the  coupling  leads  the  system  to  transit  to  a  new  dynamical  state
called  a  chimera  death  state  for  large  values  of  coupling  strength.
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Chimera  death  patterns  combine  the  characteristics  of  both  phenom-
ena:  chimera  state  and  oscillation  death.  These  patterns  consist  of
coexisting  domains  of  coherent  and  incoherent  populations  of  the
inhomogeneous  steady-state  branches.  Within  the  incoherent
domains,  the  population  of  the  two  branches  (upper  and  lower)  fol-
lows  a  random  sequence,  as  shown  in  the  space-time  plot  in  Fig-
ure 2(a)  for  the  parameter  values  P  10,  c  3  and  ϵ  0.8.  Within
the  coherent  domains,  the  number  of  clusters  of  neighboring  nodes
that  populate  the  same  branch  of  the  inhomogeneous  steady  state
may  vary.  Snapshots  of  the  variables  xj  and  their  frequency  profiles

illustrated  in  Figures  2(b)  and  (c)  confirm  the  existence  of  multi-
coherent  and  incoherent  domains.  Hence  this  state  is  designated  as
the multi-chimera death state. To  give a concrete idea about the differ-
ent dynamical states with transition routes, we extend our study with
phase diagram in the next subsection. 

Figure 2. (a) Space-time plot for chimera death states; (b) corresponding snap-
shot  of  the  variables  xj ;  and  (c)  frequency  profile  for  the  parameter  values

P  10, c  3 and ϵ  0.08.  

Case 2: When  b ≠ 03.2

Next,  we  consider  the  value  of  the  nonlinearity  parameter  b  in  equa-
tion (1) as nonzero. For simplicity,  in our study,  we assume the value

of  b  as  b  1.  To  explore  the  spatio-temporal  dynamics  of  equa-
tion (1) in some detail, we start by choosing the system parameter val-
ues as c  3 and P  10 for the reason that we explored the results in
the  previous  section  for  these  values.  Figures  3  (a–c)  are  plotted  by
varying  the  strength  of  the  coupling  interaction  to  check  whether  the
system  exhibits  a  swing  of  synchronized  states  or  not.  Initially,  the
system  of  oscillators  is  oscillating  desynchronously.  By  varying
the  coupling  interaction,  we  can  observe  the  traveling  wave  state  for
ε  0.03  in  Figure  3(a),  and  its  snapshot  is  illustrated  in  Figure  3(d).
On further increasing the coupling interaction, the system exhibits an
amplitude  chimera  state  (as  in  Figure  3(b)),  which  is  confirmed
through the snapshot of the variables xj  in Figure  3(e) for ε  0.1. In

an  amplitude  chimera  state,  oscillators  in  the  coherent  domain  oscil-
late  with  large  amplitudes,  while  the  incoherent  oscillators  have
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smaller  amplitudes.  With  the  further  increase  of  the  coupling  interac-
tion,  the  system  is  seen  to  attain  a  multi-chimera  death  state  for  a
sufficiently  large  value  of  coupling  strength  (ε  0.20),  which  is  indi-
cated  by  the  space-time  plots  in  Figures  3(c)  and  (f).  The  number  of
oscillators  that  attain  the  steady  state  from  the  amplitude  chimera
state  increases  gradually  with  increases  in  the  value  of  the  coupling

strength. In contrast to the previous case (where b  0), here we can-
not  observe  the  phenomenon  of  the  swing  of  synchronized  state.  The
system  attains  multi-chimera  death  states  through  a  traveling  wave
and  amplitude  chimera  state,  irrespective  of  the  actual  value  of  the
coupling  radius,  which  is  clearly  illustrated  with  the  appropriate
phase diagram in Figure 4.

Figure 3. (Color  online)  Spatio-temporal  plots  for  the  variables  xj  after

leaving  transients  up  to  105  time  units:  (a)  traveling  wave  state  for  ε  0.03;
(b) amplitude  chimera  state  for  ϵ  0.1;  and  (c)  multi-chimera  death  state  for
ϵ  2.0.  Snapshots  for  the  variables  xj:  (d)  for  the  traveling  wave  state  at

t  10;  (e)  for  the  amplitude  chimera  state  at  t  10;  and  (f)  multi-chimera
death states at t  10. Other parameter values are P  10, c  3 and b  1.  

Figure 4. (Color  online)  Phase  diagrams  of  equation  (1)  for:  (a)  b  0.0;  and

(b) b  1.0. SY,  DS, AC,  CD, TW regions represent synchronized state, desyn-
chronized state, amplitude chimera state, multi-chimera death state (CD) and
traveling wave state (TW), respectively.  
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Collective States in the (P , ε) Parameter Space4.

In  order  to  give  a  global  picture  of  the  system  more  clearly,  we

present  a  phase  diagram  of  the  system  for  c  3.0  and  b  0  in  Fig-
ure 4(a). It shows that the system exhibits an amplitude chimera state
for certain values of coupling radius P (7 ≤ P ≤ 13) with respect to the
coupling  interaction  ε.  In  this  region,  the  system  shows  the  phe-
nomenon  of  the  swing  of  synchronized  state  mediated  through  the
amplitude chimera state and the transition route is represented by 

desynchronization  synchronization 

amplitude chimera  synchronization  chimera death.

For  other  values  of  the  nonlocal  coupling  radius,  the  system  follows
the transition route as  

desynchronization  synchronization  multi-chimera death.

Since  the  desynchronized  regions  exist  in  a  very  small  region,  it  is
marked  by  an  arrow  in  the  two-parameter  diagram.  We  can  find  the
existence of multi-stability between the stable amplitude chimera state
and  the  synchronized  state  in  the  region  AC.  That  is,  we  can  observe
the stable amplitude chimera state for the specific choice of initial con-
ditions. In that region, we can also find that the synchronized solution
coexists  for  initial  conditions  near  the  synchronized  solution.  We  can
find  the  multi-stability  between  the  chimera  death  state  and  synchro-
nized  state  in  the  region  CD.  Here  we  can  observe  the  chimera  death
state for the specific  choice of initial conditions. In this region, we can
also  find  that  the  synchronized  solution  coexists  for  the  initial  condi-
tions near the synchronized solution.  

Similarly,  Figure 4(b) shows the phase diagram of the system in the

(P, ε) parametric space for c  3 and b  1.0. Here the system follows
the transition route as 

desynchronization 

traveling wave  amplitude chimera  multi-chimera death

with respect to the value of the coupling radius. In the TW region, we
find  multi-stability  between  the  traveling  wave  and  synchronized
state. That  is, we can observe the traveling wave state for the specific
choice  of  initial  conditions.  In  this  region,  we  can  also  find  that  the
synchronized solution coexists for initial conditions near the synchro-
nized solution. We  can also find  the multi-stability between the stable
amplitude chimera state and synchronized state in the region AC  and
multi-stability between the chimera death state and synchronized state
in the region CD.  
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Conclusion    5.

In summary,  we have investigated two cases of the occurrence of syn-
chronized oscillations via amplitude chimera states in nonlocally cou-
pled  systems  with  symmetry-breaking  interaction.  We  illustrated  the
roles  of  nonlocal  interaction  and  the  strength  of  nonisochronicity  in
inducing  such  types  of  synchronized  states.  Our  results  indicate  the
fact that the occurrence of characteristic features in synchronization is
observed  for  smaller  values  of  nonlocal  interaction  in  the  nonlocally
coupled system with symmetry breaking.  

Another interesting feature of these nonlocally coupled systems for
higher values of coupling interaction is the existence of multi-chimera
death states. We  also carefully studied the occurrence of different tran-
sition  routes  to  the  recently  observed  dynamical  state  called  chimera
death  while  varying  the  strength  of  the  nonlocal  coupling  radius.  In
addition,  we  have  explored  the  existence  of  collective  dynamical
states such as traveling wave state, amplitude chimera state and multi-
chimera death state by introducing the higher-order  nonlinear term in
the  system.  We  find  that  the  phenomenon  of  swing  of  the  synchro-
nized state is suppressed in this case and the system attains the multi-
chimera death state directly from the amplitude chimera state. 

Acknowledgments

The  work  of  K.  Premalatha  has  been  supported  by  the  DST-SERB,
Government  of  India,  through  a  National  Post  Doctoral  Fellowship
under  Grant  No.  PDF/2018/000783.  The  work  of  V.  K.  Chan-
drasekar  is  supported  by  the  SERB-DST-MATRICS  Grant  No.
MTR/2018/000676  and  CSIR  project  under  Grant  No.
03(1444)/18/EMR-II.  The  work  of  M.  Senthilvelan  forms  part  of  a
research  project  sponsored  by  the  Council  of  Scientific  and  Industrial
Research  (CSIR),  Government  of  India,  under  the  grant  number
03/1397/17/EMR-II.  M.  Lakshmanan  wishes  to  thank  the
Department of Science and Technology  for the award of a SERB Dis-
tinguished Fellowship under Grant No. SB/DF/04/2017.  

References  

[1] Y.  Kuramoto  and  D.  Battogtokh,  “Coexistence  of  Coherence  and  Inco-
herence  in  Nonlocally  Coupled  Phase  Oscillators,”  Nonlinear  Phenom-
ena in Complex System, 5(4), 2002 pp. 380–385.
www.j-npcs.org/online/vol2002/v5no4/v5no4p380.pdf. 

522 K. Premalatha, et al.

Complex Systems, 30 © 2021

http://www.j-npcs.org/online/vol2002/v5no4/v5no4p380.pdf


[2] D.  M. Abrams and S. H. Strogatz, “Chimera  States for Coupled Oscilla-
tors,” Physical Review Letters, 93(17), 2004 174102.
doi:10.1103/PhysRevLett.93.174102. 

[3] D.  M. Abrams  and S. H. Strogatz, “Chimera  States in a Ring of Nonlo-
cally  Coupled  Oscillators,”  International  Journal  of  Bifurcation  and
Choas, 16(1), 2006 pp. 21–37. doi:10.1142/S0218127406014551. 

[4] D.  M.  Abrams,  R.  Mirollo,  S.  H.  Strogatz  and  D.  A.  Wiley,  “Solvable
Model for Chimera States of Coupled Oscillators,”  Physical Review Let-
ters, 101(8), 2008 084103. doi:10.1103/PhysRevLett.101.084103. 

[5] S.-I.  Shima  and  Y.  Kuramoto,  “Rotating  Spiral  Waves  with  Phase-
Randomized  Core  in  Nonlocally  Coupled  Oscillators,”  Physical  Review
E, 69(3), 2004 036213. doi:10.1103/PhysRevE.69.036213. 

[6] J.  H.  Sheeba,  V.  K.  Chandrasekar  and  M.  Lakshmanan,  “Chimera  and
Globally  Clustered  Chimera:  Impact  of  Time  Delay,”  Physical  Review
E, 81(4), 2010 046203. doi:10.1103/PhysRevE.81.046203. 

[7] G. C. Sethia and A.  Sen, “Chimera  States: The  Existence Criteria Revis-
ited,” Physical Review Letters, 112(14), 2014 144101.
doi:10.1103/PhysRevLett.112.144101. 

[8] C. R. Laing, “Chimeras  in Networks with Purely Local Coupling,”  Phys-
ical Review E, 92(5), 2015 050904. doi:10.1103/PhysRevE.92.050904. 

[9] B. K. Bera, D.  Ghosh and M. Lakshmanan, “Chimera  States in Bursting
Neurons,” Physical Review E, 93(1), 2016 012205.
doi:10.1103/PhysRevE.93.012205. 

[10] K.  Premalatha,  V.  K.  Chandrasekar,  M.  Senthilvelan  and  M.  Laksh-
manan,  “Stable  Amplitude  Chimera  States  in  a  Network  of  Locally
Coupled Stuart–Landau Oscillators,” Chaos, 28(3), 2018 033110.
doi:10.1063/1.5006454. 

[11] E.  A.  Martens,  S.  Thutupalli,  A.  Fourrière  and  O.  Hallatschek,
“Chimera  States  in  Mechanical  Oscillator  Networks,”  Proceedings
of  the  National  Academy  of  Sciences,  110(26),  2013  pp.  10563–10567.
doi:10.1073/pnas.1302880110. 

[12] M.  R.  Tinsley,  S.  Nkomo  and  K.  Showalter,  “Chimera  and  Phase-
Cluster  States  in  Populations  of  Coupled  Chemical  Oscillators,”  Nature
Physics, 8(9), 2012 pp. 662–665. doi:10.1038/nphys2371. 

[13] A. M. Hagerstrom, T.  E. Murphy,  R. Roy,  P.  Hövel, I. Omelchenko and
E.  Schöll,  “Experimental  Observation  of  Chimeras  in  Coupled-Map
Lattices,” Nature Physics, 8(9), 2012 pp. 658–661.
doi:10.1038/nphys2372. 

[14] L.  V.  Gambuzza,  A.  Buscarino,  S.  Chessari,  L.  Fortuna,  R.  Meucci  and
M.  Frasca,  “Experimental  Investigation  of  Chimera  States  with  Quies-
cent  and  Synchronous  Domains  in  Coupled  Electronic  Oscillators,”
Physical Review E, 90(3), 2014 032905.
doi:10.1103/PhysRevE.90.032905. 

[15] A.  Buscarino,  M.  Frasca,  L.  V.  Gambuzza  and  P.  Hövel,  “Chimera
States  in  Time-Varying  Complex  Networks,”  Physical  Review  E,  91(2),
2015 022817. doi:10.1103/PhysRevE.91.022817. 

Impact of Nonlocal Interaction on Chimera States 523

https://doi.org/10.25088/ComplexSystems.30.4.513

https://doi.org/10.1103/PhysRevLett.93.174102
https://doi.org/10.1142/S0218127406014551
https://doi.org/10.1103/PhysRevLett.101.084103
https://doi.org/10.1103/PhysRevE.69.036213
https://doi.org/10.1103/PhysRevE.81.046203
https://doi.org/10.1103/PhysRevLett.112.144101
https://doi.org/10.1103/PhysRevE.92.050904
https://doi.org/10.1103/PhysRevE.93.012205
https://doi.org/10.1063/1.5006454
https://doi.org/10.1073/pnas.1302880110
https://doi.org/10.1038/nphys2371
https://doi.org/10.1038/nphys2372
https://doi.org/10.1103/PhysRevE.90.032905
https://doi.org/10.1103/PhysRevE.91.022817
https://doi.org/10.25088/ComplexSystems.30.4.513


[16] T.  E. Montbrió, J. Kurths and B. Blasius, “Synchronization  of Two  Inter-
acting  Populations  of  Oscillators,”  Physical  Review  E,  70(5),  2004
056125. doi:10.1103/PhysRevE.70.056125. 

[17] A. Pikovsky and M. Rosenblum, “Partially  Integrable Dynamics of Hier-
archical  Populations  of  Coupled  Oscillators,”  Physical  Review  Letters,
101(26), 2008 264103. doi:10.1103/PhysRevLett.101.264103. 

[18] E. A. Martens, M. J. Panaggio and D.  M. Abrams, “Basins  of Attraction
for  Chimera  States,”  New  Journal  of  Physics,  18(2),  2016  022002.
doi:10.1088/1367-2630/18/2/022002. 

[19] K.  Premalatha,  V.  K.  Chandrasekar,  M.  Senthilvelan  and  M.  Laksh-
manan,  “Imperfectly  Synchronized  States  and  Chimera  States  in  Two
Interacting  Populations  of  Nonlocally  Coupled  Stuart–Landau  Oscilla-
tors,” Physical Review E, 94(1), 2016 012311.
doi:10.1103/PhysRevE.94.012311. 

[20] K.  Premalatha,  V.  K.  Chandrasekar,  M.  Senthilvelan  and  M.  Laksh-
manan, “Chimeralike  States in Two  Distinct Groups of Identical Popula-
tions of Coupled Stuart–Landau Oscillators,”  Physical  Review E, 95(2),
2017 022208. doi:10.1103/PhysRevE.95.022208. 

[21] A.  Zakharova,  M.  Kapeller  and  E.  Schöll,  “Chimera  Death:  Symmetry
Breaking  in  Dynamical  Networks,”  Physical  Review  Letters,  112(15),
2014 154101. doi:10.1103/PhysRevLett.112.154101. 

[22] K.  Premalatha,  V.  K.  Chandrasekar,  M.  Senthilvelan  and  M.  Laksh-
manan,  “Different  Kinds  of  Chimera  Death  States  in  Nonlocally
Coupled Oscillators,” Physical Review E, 93(5), 2016 052213.
doi:10.1103/PhysRevE.93.052213. 

[23] K.  Premalatha,  V.  K.  Chandrasekar,  M.  Senthilvelan  and  M.  Laksh-
manan,  “Impact  of  Symmetry  Breaking  in  Networks  of  Globally  Cou-
pled Oscillators,” Physical Review E, 91(5), 2015 052915.
doi:10.1103/PhysRevE.91.052915. 

[24] K.  Premalatha,  V.  K.  Chandrasekar,  M.  Senthilvelan,  R.  Amuda  and
M. Lakshmanan,  “Effect  of  Nonisochronicity  on  the  Chimera  States  in
Coupled  Nonlinear  Oscillators,”  in  Proceedings  of  the  Ninth  Inter-
national  Conference  on  Complex  Networks  and  Their  Applications
(Complex  Networks  2020)  Madrid,  Spain  (R.  M.  Benito,  C.  Cherifi,
H. Cherifi,  E.  Moro,  L.  M.  Rocha  and  M.  Sales-Pardo,  eds.),  Cham,
Switzerland: Springer,  2020 pp. 533–543.
doi:10.1007/978-3-030-65347-7_44.

[25] H.  Daido  and  K.  Nakanishi,  “Diffusion-Induced  Inhomogeneity  in
Globally  Coupled  Oscillators:  Swing-By  Mechanism,”  Physical  Review
Letters, 96(5), 2006 054101. doi:10.1103/PhysRevLett.96.054101. 

[26] R.  Gopal,  V.  K.  Chandrasekar,  A.  Venkatesan  and  M.  Lakshmanan,
“Observation  and  Characterization  of  Chimera  States  in  Coupled
Dynamical Systems with Nonlocal Coupling,”  Physical Review E, 89(5),
2014 052914. doi:10.1103/PhysRevE.89.052914. 

524 K. Premalatha, et al.

Complex Systems, 30 © 2021

https://doi.org/10.1103/PhysRevE.70.056125
https://doi.org/10.1103/PhysRevLett.101.264103
https://doi.org/10.1088/1367-2630/18/2/022002
https://doi.org/10.1103/PhysRevE.94.012311
https://doi.org/10.1103/PhysRevE.95.022208
https://doi.org/10.1103/PhysRevLett.112.154101
https://doi.org/10.1103/PhysRevE.93.052213
https://doi.org/10.1103/PhysRevE.91.052915
https://doi.org/10.1007/978-3-030-65347-7_44
https://doi.org/10.1103/PhysRevLett.96.054101
https://doi.org/10.1103/PhysRevE.89.052914



