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Random  graphs  are  frequently  used  models  of  real-life  random  net-
works.  The  classical  Erdös–Rényi  random  graph  model  is  very  well
explored  and  has  numerous  nontrivial  properties.  In  particular,  a  good
number of important graph parameters that are hard to compute in the
deterministic  case  often  become  much  easier  in  random  graphs.  How-
ever,  a  fundamental  restriction  in  the  Erdös–Rényi  random  graph  is
that the edges are required to be probabilistically independent. This is a
severe restriction, which does not hold in most real-life networks. 

We  consider more general random graphs in which the edges may be
dependent. Specifically,  two models are analyzed. The  first  one is called
a  p-robust  random  graph.  It  is  defined  by  the  requirement  that  each
edge  exist  with  probability  at  least  p,  no  matter  how  we  condition  on
the presence/absence of other edges. It is significantly  more general than
assuming  independent  edges  existing  with  probability  p,  as  exemplified
via several special cases. The  second model considers the case when the
edges are positively correlated, which means that the edge probability is
at least p for each edge, no matter how we condition on the presence of
other edges (but absence is not considered). We  prove some interesting,
nontrivial properties about both models. 

Keywords: random graph; dependent edges; monotone graph property; 
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Introduction  1.

Practical  scenarios  often  exhibit  random  networks.  A  characteristic
example is the web graph, which is an abstraction of the World  Wide
Web.  Further  examples  are  various  social  networks,  wireless  ad-hoc
networks  and  telephone  call  networks,  as  well  as  numerous  others.
Random graph models are frequently applied to describe and analyze
such networks.  

The  historically  first  random  graph  model  has  been  the  Erdös–
Rényi random graph Gn, p. This  denotes a random graph on n nodes,

such  that  each  edge  is  added  with  probability  p,  and  it  is  done  inde-

pendently for each edge. A multitude of deep results are proven about
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such random graphs; see the expositions in [1–3]. In the following we
list  some  examples.  They  are  asymptotic  results,  and  for  simplicity
and clarity we omit potential restrictions for the range of p, as well as

ignore rounding issues (which means that an asymptotic formula may
provide  a  noninteger  value  for  a  parameter  that  is  defined  as  integer
for finite graphs). 

◼ The  asymptotic  size  of  a  maximum  independent  set  in  Gn, p  is

2 n ln d  d, where d is the average degree. 

◼ The maximum clique size in Gn, p is asymptotically 2 log1pn. 

◼ The  chromatic  number  of  Gn, p  is  asymptotically  n  logbn,  where

b  1  1 - p. 

◼ The longest cycle length in Gn, p  is asymptotically n1 - de-d, when the

graph has a constant average degree d. 

◼ The  asymptotic  size  of  a  minimum  dominating  set  in  Gn, p  is  logbn,

where b  1  1 - p. 

◼ The  number  of  nodes  of  degree  k  in  the  Gn, p  is  asymptotically

dke-d  k ! n, where d is the average degree. 

◼ The  diameter  of  Gn, p  is  asymptotically  log n  log(np),  when  np  ∞.

(In  case  the  graph  is  not  connected,  then  the  diameter  is  defined  as  the
largest diameter of its connected components.) 

These  results  (and  many  others)  make  it  possible  that  for  random
graphs  we  can  find  good  and  directly  computable  estimates  of  graph
parameters  that  are  hard  to  compute  for  deterministic  graphs.  More-
over,  the parameters often show very strong concentration. For exam-
ple,  as  listed  above,  the  chromatic  number  of  Gn, p  is  asymptotically

n  logbn, where b  1  1 - p. However,  we can say more: the chro-

matic  number  of  a  random  graph  is  so  strongly  concentrated  that
with  probability  approaching  one,  as  n  ∞,  it  falls  on  one  of  two
consecutive integers (see [4]). 

Random Graphs with Dependent Edges: p-Robust 
Random Graphs    

2.

In modeling real-life networks, the requirement that the edges be inde-
pendent  is  often  a  too-strict  restriction.  As  a  result,  quite  a  few
attempts  have  been  made  to  develop  models  with  various  types  of
dependencies among the edges; see, for example, a survey in [5]. Here
we  consider  a  quite  general  form  of  edge  dependency,  as  defined
below.  Initial three-page abstracts of this model were presented by the
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author in [6, 7]; here we add details and extend the investigation in a
new direction.  

Definition 1. (p-robust random graph). A random graph on n vertices is

called  p-robust  if  every  edge  in  the  graph  is  present  with  probability

at least p, regardless of the status (present or not) of other edges. Such

a random graph is denoted by G

n, p. 

It  is  important  to  note  that  p-robustness  does  not  imply  indepen-

dence.  It  allows  that  the  probability  of  an  edge  may  depend  on  other
edges,  possibly  in  a  complicated  way;  it  only  requires  that  the  proba-
bility never drop below p. Below we show some examples of p-robust

random graphs. 

Example 1. First  note  that  the  classical  Erdös–Rényi  random  graph

Gn, p  is a special case of G

n, p, since our model also allows adding all

edges independently with probability p. 

Example 2. We  can also  allow,  however,  possibly messy  dependencies.
As  an  example,  let  P(e)  be  the  probability  that  a  given  edge  e  is  con-

tained  in  the  graph,  and  let  us  condition  on  k  the  number  of  other

edges  in  the  whole  graph.  Let  Pek  denote  the  probability  that  there

are k other edges in the graph. For any fixed k, let us choose 

Pe k  1 -
k + 1

n2

as  the  probability  that  edge  e  exists,  given  that  there  are  k  other
edges in  the  graph.  Using  that  the  total  number  of  edges  cannot  be

more  than  n(n - 1) / 2,  we  have  that  k ≤ n(n - 1)  2 - 1  always  holds.

Therefore, 

Pe k ≥ 1 -
n(n - 1)

2n2
 1 -

n - 1

2n
≥

1

2
,

for any k, implying   

P(e)  

k0

nn-12-1

Pe kPek ≥
1

2
.

Thus, with p  1  2, this random graph is p-robust. At the same time,

the  edges  are  not  independent,  since  the  probability  that  e  is  present
depends on how many other edges are present.  

Example 3. For  any  given  edge  e,  let  r(e)  denote  the  number  of  edges
that are adjacent to e (not including e itself). If e does not exist, then
let  r(e)  0.  Let  us  choose  the  conditional  probability  that  edge  e

The Impact of Edge Correlations in Random Networks 527

https://doi.org/10.25088/ComplexSystems.30.4.525

https://doi.org/10.25088/ComplexSystems.30.4.525


exists, given that it has k adjacent edges as

Pe r(e)  k 
1

2
-

1

k + 5
.

Note that the possible range of k is 0 ≤ k ≤ 2(n - 2). Then we have  

Pe r(e)  k ≥
1

2
-
1

5


3

10
.

The above inequality implies  

P(e)  

k0

2n-2

Pe r(e)  kP

r(e)  k ≥
3

10


k0

2n-2

Pr(e)  k 
3

10
.

Thus,  with  p  3 / 10,  this  random  graph  is  p-robust.  At  the  same

time, the edges are not independent, since the probability that e is pre-
sent is influenced by the number of adjacent edges.  

Example 4. Consider the same model presented in Example 3, but with
the additional condition that every potential edge e have at least three
edges  adjacent  to  it,  regardless  of  whether  e  is  in  the  graph  or  not.
What  can  be  said  about  this  conditional  random  graph?  Repeating

the derivation from Example 3, but using k ≥ 3, provides that the new
random graph will remain p-robust, but now with p  3 / 8. 

If  we  have  a  random  graph  like  the  ones  in  Examples  2–4  (and
many  possible  others  with  dependent  edges),  then  how  can  we  esti-
mate some parameter of the random graph, like the size of the maxi-
mum  clique  or  the  diameter?  It  may  become  very  messy,  due  to  the
possibly  complicated  and  partially  unknown  dependencies.  We  show
that  at  least  for  a  large  family  of  properties,  the  so-called  monotone
graph  properties,  we  can  use  the  existing  results  about  Erdös–Rényi
random graphs as lower bounds. 

Let Q be a set of graphs. We  use it to represent a graph property: a

graph G has property Q if and only if G ∈ Q. Therefore,  we identify

the  property  with  the  set  Q.  We  are  going  to  consider  monotone

graph properties, which are defined below.  

Definition 2. (Monotone  graph  property)  A  graph  property  Q  is  called

monotone  if  it  is  closed  with  respect  to  adding  new  edges  to  the
graph. That is, G ∈ Q and G ⊆ G′

 together imply G′ ∈ Q. 

It  is  important  to  note  that  many  of  the  often-used  graph  proper-
ties  are  monotone.  Let  us  present  some  examples:  the  graph  has  a

Hamiltonian  circuit,  it  contains  k  disjoint  spanning  trees,  the  graph
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contains  a  clique  of  size  k,  its  diameter  is  at  most  k,  its  chromatic

number is at least k, it has a matching of size at least k, it has a domi-

nating  set  of  size  at  most  k,  as  well  as  a  large  number  of  others.  In
fact,  essentially  almost  all  interesting  graph  properties  have  a  mono-
tone version. Our result is that for any monotone graph property and

for  any  n, p,  it  always  holds  that  G

n, p  is  more  likely  to  have  the

property than Gn, p (or at least as likely). 

Why  is  this  useful?  Because  it  allows  the  application  of  the  rich
treasury of results on Erdös–Rényi random graphs to the non-indepen-
dent  setting,  as  lower  bounds  on  the  probability  of  having  a  mono-
tone property.  Next we state and prove our general result. 

Theorem 1. For any monotone graph property Q the following inequal-

ity holds: 

PrGn, p ∈ Q ≤ PrG

n, p ∈ Q.

Proof.  Our  plan  is  to  represent  G

n, p  as  the  union  of  two  random

graphs,  Gn, p  and  G2.  They  are  both  on  the  same  vertex  set  V.  Here

Gn, p  is  the  well-known  Erdös–Rényi  random  graph;  the  other  graph

G2  will  be  defined  later.  The  union  Gn, p ⋃G2  is  meant  such  that  if

the  same  edge  occurs  in  both  graphs,  then  we  merge  them  into  a  sin-
gle edge. Our plan is to choose the edge probabilities in G2  such that

it  produces  Gn, p ⋃G2 ∼ G

n, p.  Here  the  “∼”  sign  denotes  a  relation

between  random  graphs  with  the  meaning  that  they  have  the  same
probability distribution; in other words, they are statistically indistin-
guishable.  If  we  can  accomplish  this,  then  the  claim  will  directly  fol-

low,  since  then  a  random  graph  distributed  as  G

n, p  can  be  obtained

by adding edges to Gn, p, which cannot destroy a monotone property

once Gn, p has it. This will imply the claim.  

Let us introduce some notations. The  (potential) edges are denoted

by e1, … , em. For every i, let hi  be the indicator of the event that the

edge  ei  is  included  in  G

n, p.  Further,  we  use  the  abbreviation

hi
m  hi, … , hm. For any binary vector a  a1, … , am ∈ {0, 1}m, the

event h1
m  a means that G


n, p  takes a realization in which edge ei  is

included  if  and  only  ai  1.  Similarly,  if  we  want  to  start  from  an

index  i,  rather  than  1,  then  the  notation  hi
m  ai

m  abbreviates  the

event  hi  ai, … , hm  am.  We  also  use  the  notation

ai
m  ai, … , am. 

Now  we  generate  the  random  graphs  Gn, p  and  G2  by  the  follow-

ing  procedure,  which  is  a  recursive  procedure,  starting  from  i  m
and processing downward to i  1. 
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Step 1. Set i  m.

Step  2.  If  i  m,  then  choose  qm  Prhm  1.  If  i < m,  then  set

qi  Prhi  1 hi+1
m  ai+1

m , where ai+1
m

 indicates the formerly generated

edges of Gn, p ⋃G2. 

Step 3. Compute the value 

pi
′ 

p1 - qi

1 - p
. (1)

Step 4. With probability p, put the edge ei into Gn, p, and with probabil-

ity qi - pi
′, put the edge ei into G2. 

Step 5. If i > 1, then decrement i by one and go to Step 2; else halt. 

To  analyze the procedure, first  note that the value qi - pi
′
 in Step 4

can  indeed  serve  as  a  probability.  Why?  First,  we  have  qi - pi
′ ≤ 1,  as

qi is a probability and pi
′ ≥ 0. To  show qi - pi

′ ≥ 0, observe that 

pi
′ 

p1 - qi

1 - p
≤ qi,

since the inequality can be rearranged into  

p1 - qi ≤ qi1 - p,

which simplifies to p ≤ qi. The latter is indeed true, due to  

qi  Prhi  1 hi+1
m  ai+1

m  ≥ p,

which follows from the p-robust property.   

Next  we  show  that  the  algorithm  generates  the  random  graphs

Gn, p  and G2  in a way that they satisfy Gn, p ⋃G2 ∼ G

n, p. We  prove

it  by  induction,  starting  from  i  m  and  progressing  downward  to

i  1.  For  any  i,  let  Gn, p
i ,  G2

i
 denote  the  already  generated  parts  of

Gn, p, G2,  respectively,  after  executing  Step  4  m - i + 1  times,  so  they

can  only  contain  edges  with  index  ≥ i.  Further,  let  G


n, p
i

 be  the  sub-

graph  of  G

n, p  in  which  we  only  keep  the  edges  with  index  ≥ i,  that

is,  G


n, p
i

 G

n, p - ei-1, … , e1.  The  inductive  proof  will  show  that

Gn, p
i ⋃G2

i ∼ G


n, p
i

 holds for every i. At  the end of the induction, hav-

ing reached i  1, we are going to get Gn, p
1 ⋃G2

1 ∼ G


n, p
1

, which is the

same as Gn, p ⋃G2 ∼ G

n, p. 
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Let us first look at the base case i  m. Then we have 

Prem ∈ Gn, p  Prem ∈ Gn, p
m   p

by  Step  4.  Then  in  Step  4,  edge  em  is  put  into  G2  with  probability

qm - pm
′ ,  yielding  Prem ∈ G2

m  qm - pm
′ .  Now  observe  that  equa-

tion (1) is chosen such that pi
′
 is precisely the solution of the equation 

p + qi - pi
′ - qi - pi

′p  qi (2)

for pi
′. For i  m the equation becomes  

p + qm - pm
′ - qm - pm

′ p  qm, (3)

and 

pm
′ 

p1 - qm

1 - p

is  the  solution  of  this  equation.  Since  by  Step  4  we  have

Prem ∈ Gn, p
m   p  and  Prem ∈ G2

m  qm - pm
′ ,  therefore,  we  get  that

the  left-hand  side  of  equation  (3)  is  precisely  the  probability  of  the

event  em ∈ Gn, p
m ⋃G2

m.  By  equation  (3),  this  probability  is  equal  to

qm,  which  is  set  to  qm  Prhm  1  Prem ∈ G


n, p
m

  in  Step  2.  This

means that Gn, p
m ⋃G2

m ∼ G


n, p
m

, as desired.  

For  the  induction  step,  assume  that  the  claim  is  true  for  i + 1;  that

is,  Gn, p
i+1 ⋃G2

i+1 ∼ G


n, p
i+1

 holds.  We  show  that  it  carries  over  to  i.  In

Step 4, edge ei  is added to Gn, p
i+1

 with probability p. It is also added to

G2
i+1

 with  probability  qi - pi
′.  Therefore,  just  like  in  the  base  case,

we get 

p + qi - pi
′ - qi - pi

′p  Prei ∈ Gn, p
i ⋃G2

i .

We  already know that pi
′
 satisfies  equation (2), so ei  is added to G



n, p
i+1

with  probability  qi  Prhi  1 hi+1
m  ai+1

m ,  given  the  already  gener-

ated part, represented by ai+1
m . By the inductive assumption, hi+1

m
 is dis-

tributed as G


n, p
i+1

, which is the truncated version of G

n, p, keeping only

the  ≥ i + 1  indexed  edges.  Hence,  for  hi+1
m ,  we  can  write  by  the  chain

rule of conditional probabilities:  

Prhi+1
m  ai+1

m   Prhm  am 

ji+1

m-1

Prhj  aj hj+1
m  aj+1

m .
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After processing ei (i.e., adding it with probability qi), we get  

Prhi
m  ai

m  Prhi  ai hi+1
m  ai+1

m Prhi+1
m  ai+1

m 

 Prhi  ai hi+1
m  ai+1

m 

Prhm  am 

ji+1

m-1

Prhj  aj hj+1
m  aj+1

m 

Prhi+1
m ai+1

m 

 Prhm  am

ji

m-1

Prhj  aj hj+1
m  aj+1

m .

Now  we  observe  that  by  the  chain  rule  this  is  indeed  the  distribution

of G


n, p
i

, completing the induction.  

Thus,  eventually,  a  realization  a  a1
m ∈ {0, 1}m  of  G


n, p  is  gener-

ated with probability 

Prh1
m  a  Prhm  am

j1

m-1

Prhj  aj hj+1
m  aj+1

m ,

which  indeed  assigns  G

n, p  its  correct  probability.  As  a  result,  we  get

Gn, p ⋃G2 ∼ G

n, p.  From  this  we  conclude  G


n, p  arises  by  adding

edges  to  Gn, p,  and  such  additions  cannot  destroy  a  monotone  prop-

erty.  From  this  the  statement  of  the  theorem  follows,  completing  the

proof. □ 

An Example    3.

As  a  sample  application  of  the  result,  consider  the  random  graph
described  in  Example  3  of  Section  2  .  For  handy  access,  let  us  repeat
the example here: 

Example 3. For a given edge e, let r(e) denote the number of edges that
are adjacent with e (not including e itself). If e does not exist, then let
r(e)  0.  Let  the  conditional  probability  that  edge  e  exists,  given  that

it has k adjacent edges, be 

Pe r(e)  k 
1

2
-

1

k + 5
.

Note that the possible range of k is 0 ≤ k ≤ 2(n - 2). Then we have  

Pe r(e)  k ≥
1

2
-
1

5


3

10
.
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This implies 

P(e)  

k0

2n-2

Pe r(e)  kPr(e)  k ≥
3

10


k0

2n-2

Pr(e)  k 
3

10
.

Thus,  with  p  3 / 10,  this  random  graph  is  p-robust.  At  the  same

time, the edges are not independent, since the probability that e is pre-
sent is influenced by the number of adjacent edges.  

We  can  ask  several  natural  questions  about  this  edge-dependent
random  graph  model,  regarding  the  asymptotic  value  of  various
parameters: 

◼ What is the chromatic number? 

◼ How large is the maximum clique? 

◼ What is the diameter? 

◼ How large is a minimum dominating set? 

Answering  these  questions  via  direct  analysis  of  the  model  would
be a daunting task. On the other hand, using the known results about
the Erdös–Rényi  random graph Gn, p  (listed in  the Introduction), and

complementing them with our Theorem 1, we can quickly obtain con-
cise bounds on the parameters: 

◼ The  chromatic  number  is  asymptotically  at  least  n  logbn,  where  the

parameter b is given by b  1  1 - p  10  7. 

◼ This  random  graph  asymptotically  has  a  maximum  clique  of  size  at

least 2 log10/3n. 

◼ The  minimum  dominating  set  is  asymptotically  at  most  logbn,  where

b  1  1 - p  10  7. 

◼ The  diameter  of  the  graph  is  asymptotically  at  most

log n  log3n  10. 

Observe that obtaining such bounds from the direct analysis of the
model would be extremely hard. 

Positive Edge Correlation  4.

So far we have analyzed the edge-dependency structure that we called
p-robust  random  graph;  see  Definition  1.  This  property  can  also  be

stated such that the probability of an edge cannot decrease if we con-
dition on the arbitrary presence/absence of other edges.  
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Now we look into a less demanding condition: we require that the
probability  of  an  edge  cannot  decrease  if  we  condition  on  the  arbi-
trary  presence  of  other  edges,  but  ignoring  absence.  It  can  be  formu-
lated this way: 

Definition 3.  (Positive  edge  correlation)  A  random  graph  has  the  posi-
tive  edge  correlation  property  if  for  any  (potential)  distinct  edges
e, e1, … , ek it holds that 

Pre e1, … , ek ≥ Pr(e).

In  other  words,  the  presence  of  a  given  edge  cannot  be  made  less
likely by the presence of other edges. 

It  is  natural  to  ask:  which  random  graphs  have  this  property?
While  currently  we  do  not  have  a  full  answer,  we  conjecture  that  all
geometric  random  graphs  have  this  property.  A  random  graph  is
called  geometric  if  it  arises  in  the  following  way:  pick  random  points
independently from some distribution over a metric space; they repre-
sent  the  nodes.  The  edges  are  obtained  by  connecting  any  two  points
if their distance is at most a given parameter r > 0. Then  we can state
our conjecture as follows: 

Conjecture 1. All geometric random graphs have the positive edge corre-
lation property.  

The  requirement  of  positive  edge  correlation  is  weaker  than  the
property of p-robustness, so we cannot expect that a strong result like

Theorem 1 would still hold. Nevertheless, we can still prove an inter-
esting property.  In order to state it, let us introduce some notations. 

Definition  4.  (Erdös–Rényi  core)  Assume  G  is  a  random  graph  with  n
nodes, in which any given edge exists with the same probability p, but

the  edges  may  not  be  independent.  Then  the  Erdös–Rényi  random
graph Gn, p is called the Erdös–Rényi core of G. 

In  other  words,  the  Erdös–Rényi  core  has  the  same  number  of
nodes and the same edge probability as G, but the edges are indepen-
dent, in contrast to arbitrary edge dependencies in G. 

Definition  5.  (Q-subgraph  count)  For  any  graph  G  and  for  any  prop-

erty  Q  of  graphs,  the  Q-subgraph  count  in  G  means  how  many  sub-

graphs of G have property Q. We  denote this quantity by G, Q. 

Now we are ready to prove our result: 

Theorem  2.  For  an  arbitrary  random  graph  G  with  n  vertices,  assume
that  any  given  edge  exists  with  the  same  probability  p,  but  the  edges

may  not  be  independent.  Let  Gn, p  be  the  Erdös–Rényi  core  of  G.

Assume  that  G  has  the  positive  edge  correlation  property  (Defin-
ition 3).  Then  for  any  graph  property  Q,  it  holds  that  the  expected
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value of the Q-subgraph count in G is at least as large as the expected

value of the Q-subgraph count in Gn, p. In formula: 

EG, Q ≥ EGn, p, Q. (4)

Proof.  Let  G0  be  any  fixed  graph  that  may  be  a  subgraph  of  G  with

positive  probability.  If  G0  has  property  Q,  this  fact  is  denoted  by

G0 ∈ Q.  If  it  also  has  at  most  n  nodes,  then  we  use  the  notation

G0 ∈ Qn.  Further,  the  event  that  G0  is  a  subgraph  of  the  (random)

graph G is denoted by G0 ⊆ G. Then  we can express the expected Q-

subgraph count in G as 

EG, Q  

G0∈Qn

PrG0 ⊆ G.

For  a  fixed  G0,  let  e1, … , ek  denote  its  edges.  Using  the  notation

Pre1, … , ek ∈ G  Pre1, … , ek,  we  can  rewrite  the  expression  of

EG, Q as  

EG, Q  

G0∈Qn,EG0e1,…, ek

Pre1, … , ek. (5)

Next we show that the positive correlation property implies  

Pre1, … , ek ≥ Pre1…Prek.

We  use induction with respect to k. For k  1 the statement is trivial.

Assume it holds for any k - 1 edges, implying  

Pre2, … , ek ≥ Pre2…Prek. (6)

Then we carry it over to k, as follows. First we write  

Pre1, … , ek  Pre1 e2, … , ekPre2, … , ek.

Then we observe that the conditional probability Pre1 e2, … , ek can

be bounded from below by Pre1, due to the positive correlation prop-

erty.  Further,  the  probability  Pre2, … , ek  can  be  bounded  from

below by equation (6), so we indeed obtain  

Pre1, … , ek ≥ Pre1…Prek.

Using it in equation (5) yields  

EG, Q ≥ 

G0∈Qn,EG0e1,…, ek

Pre1…Prek. (7)

Now observe that  

PrG0 ⊆ Gn, p  Pre1…Prek.
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This yields  

EGn, p, Q  

G0∈Qn

PrG0 ⊆ Gn, p 



G0∈Qn,EG0e1,…, ek

Pre1…Prek.
(8)

Comparing equations (7) and (8), we obtain precisely equation (4) as

desired. □ 

Interpretation  of the Results  5.

Both of our theorems allow the use of results about Erdös–Rényi ran-
dom graphs to obtain lower bounds on probabilities or expected sub-
graph counts in more general random graph models. This may lead to
bounds  that  would  be  otherwise  hard  to  obtain  via  direct  analysis  of
the model. We  have described an example in Section 3.  

Let us mention here another interpretation that exhibits interesting
extremal  properties  of  the  Erdös–Rényi  random  graph  model.  We
state  them  below  in  two  theorems,  which  directly  follow  from  Theo-
rems 1 and 2. 

Theorem  3.  Let  Q  be  a  graph  property,  which  is  assumed  monotone.

Then  the  Erdös–Rényi  random  graph  Gn, p  has  the  smallest  proba-

bility  to  have  property  Q  among  all  p-robust  random  graphs  on  n

vertices. 

Theorem 4. Let Q be an arbitrary graph property.  Then among all ran-

dom  graphs  on  n  vertices  with  the  positive  correlation  property  and
with edge probability p, the Erdös–Rényi random graph Gn, p  has the

smallest expected Q-subgraph count. 
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