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Inspired  by  the  recently  emerging  Wolfram  Physics  Project  where
“Multiway  Systems,”  graph  representations  of  abstract  rewriting  sys-
tems equipped with a causal structure, have played an important role in
discrete models of spacetime and quantum mechanics, this paper estab-
lishes  several  more  fundamental  properties  about  the  growth  (number
of  states  over  steps  in  a  system’s  evolution)  of  string  rewriting  systems
in  general.  While  proving  the  undecidability  of  exactly  determining  a
system’s  growth  function,  we  show  several  asymptotic  properties  all
growth  functions  of  arbitrary  string  rewriting  systems  share.  Through
an explicit construction, it is proven that string rewriting systems, while
never  exceeding  exponential  functions  in  their  growth,  are  capable  of
growing  arbitrarily  slowly,  that  is,  slower  than  the  asymptotic  inverse
of  every  Turing-computable  function.  Additionally,  an  elementary
classification  scheme  partitioning  the  set  of  string  rewriting  systems
into  finitely  many  nontrivial  subsets  is  provided.  By  introducing  arith-
metic-like  operations  under  which  Multiway  Systems  form  a  weakened
semiring  structure,  it  is  furthermore  demonstrated  that  their  growth
functions,  while  always  being  primitively  recursive,  can  approximate
many  well-known  elementary  functions  classically  used  in  calculus,
which  underlines  the  complexity  and  computational  diversity  of  Multi-
way Systems. In the context of the Wolfram  Physics Project, some impli-
cations of these findings are discussed as well. 

Keywords: string rewriting systems; growth functions; Wolfram  Physics 
Project

Introduction and Overview 1.

String  rewriting  systems  have  been  thoroughly  researched  in  mathe-
matical  logic,  proof  theory  and  theoretical  computer  science  for  the
past  few  decades  [1,  2].  Recently  however,  these  systems  and  the
related hypergraph rewriting systems have been shown to be of signifi-
cant interest in a fundamental physics context, as they possess various
connections  to  theories  of  relativity,  gravity  and  quantum  mechanics
[3–5], providing a new motivation for their investigation from a differ-
ent  perspective.  A  key  trait  of  this  perspective  will  be  regarding
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abstract  rewriting  systems  as  complex  systems,  as  it  is  necessary  to
computationally simulate a given rewriting system to predict its states
after  a  number  of  applications  of  its  rewrite  rules;  that  is,  the  behav-
ior  of  an  abstract  rewriting  system,  or  string  rewriting  system  in  our
case, is not directly obtainable from its initial state and rewriting rules
in  general.  Still,  some  attributes  of  these  systems  can  be  approxi-
mately  predicted.  In  this  paper,  we  prove  several  asymptotic  state-
ments  about  the  growth  (defined  below)  of  graph  representations  of
string rewriting systems that we call “string-based  Multiway Systems”
(see [6, Section 2.1] for a definition  of string rewriting systems and [3,
Definitions 10 and 11] for formal definitions of Multiway Systems). 

While  string  rewriting  systems  were  already  investigated  from  a
complex systems point of view by Wolfram  in 2002 [7, pp. 204, 939],
it  was  the  Wolfram  Physics  Project  (www.wolframphysics.org),
launched  in  2019,  that  thoroughly  explored  and  established  various
links  between  Multiway  Systems  and  group  theory  (see  [7],  notes  for
Section  5.6),  homotopy  type  theory  [8],  category  theory  [5]  and
numerics of partial differential equations [9], setting aside the already
mentioned  connections  to  what  the  project  calls  “Wolfram  Models,”
certain discrete formalisms for spacetime and quantum mechanics (see
[10]  for  a  general  overview  and  [11]  for  a  technical  introduction,  as
well as the appendix of [5] for a glossary of terminology). In the physi-
cal framework of the actual Wolfram  Model (see Section 2 in [4] for a
formal  definition),  “hypergraph-based”  Multiway  Systems,  that  is,
systems  for  which  the  “elements”  or  “objects”  of  the  underlying
abstract  rewriting  system  are  hypergraphs,  are  used.  We  consider
string-based Multiway Systems instead because of their simpler struc-
ture, which makes them more easily amenable for mathematical analy-
sis.  Most  likely,  our  results  can  be  generalized  to  hypergraph-based
Multiway Systems without much effort. 

For  related  discrete  complex  systems  such  as  cellular  automata,
various growth-related investigations have been conducted. For exam-
ple, Brummit and Rowland give a systematic empirical analysis of the
growth  rates  of  boundaries  of  one-dimensional  two-color  cellular
automata, classify the automata by their (approximate) growth expo-
nent  and  construct  a  cellular  automaton  for  which  no  such  exponent
can be determined [12], a methodology similar to the one used in this
paper,  although concerned with a different object of study.  However,
apart  from  utilizing  the  growth  functions  of  specific  string  rewriting
systems  in  proofs  with  other  focus,  as  it  was  done,  for  example,  in
[13]  or  [14,  Section  9],  there  have  not  been  many  investigations  of
growth functions of string rewriting systems in general, to our knowl-
edge. Still, our results demonstrate how studying them yields some sig-
nificant  new  insights  into  the  general  principles  underlying  abstract

124 Y.  Zeschke

Complex Systems, 31 © 2022

https://www.wolframphysics.org/


rewriting  and  strengthens  the  theoretical  foundations  of  the  Physics
Project as well as the connections between discrete mathematics, theo-
retical physics and theoretical computer science (see Section 4). 

Even despite our investigations being rather theoretical and aiming
at  understanding  the  mathematical  background  and  structure  of
Multiway  Systems  in  themselves,  we  comment  on  several  potential
applications  in  the  Wolfram  Physics  Project  in  Section  4  and  demon-
strate  our  results  by  computational  simulations  of  specific  examples.
Our  visualizations  have  been  made  using  Mathematica  and  all  code
for  simulating  Multiway  Systems  is  available  in  the  Wolfram
Functions  Repository.  Readers  interested  in  running  simulations  and
visualizations  themselves  may  find  the  documentation  of  the
MultiwaySystem resource function to be useful references. 

The  subsequent  subsections  start  by  formally  defining  what  we
mean  by  Multiway  System  growth  functions,  rates  and  classes.  Next,
we  investigate  the  boundaries  of  possible  growth  rates  and  find  that
Multiway  Systems  are,  simply  put,  bounded  in  the  speed  but
unbounded  in  the  slowness  of  their  growth  rate  (Theorem  1).  After
that,  we  show  that  the  growth  classes  of  the  Multiway  Systems  we
defined  cover  the  entire  set  of  Multiway  Systems  and  apart  from  one
trivially empty class, all of them contain infinitely many Multiway Sys-
tems  (Theorem  2).  To  do  this,  we  define  arithmetic-like  operations
equipping  the  set  of  Multiway  Systems  with  a  semiring  structure.
Combining the two theorems, we conclude various interesting proper-
ties  of  the  “computational  diversity”  and  “-complexity”  of  Multiway
Systems, showing that their growth functions constitute an interesting
domain of further research. 

Multiway Growth Functions1.1

Consider a string-based Multiway System M [3, Definition  10], repre-

sented  as  a  triplet  R, sinit, Σ  where  Σ  is  a  finite  alphabet,

R  r1  t1, …, rn  tn  is  a  set  of  string  replacement  rules  over  Σ

and sinit ∈ Σ*
 is the initial string where Σ*

 denotes the set of all words

over  the  alphabet  Σ.  We  define  the  “state-set  of  generation  n”  as  the
set  of  all  new  (previously  nonexistent)  states  added  to  the  Multiway

System in its nth generation. These states are precisely the nodes of the
states graph (cf. [11, Section 5.3]) to which the shortest path from the
initial  state  has  length  n.  In  [11]  they  are  called  “merged  states.”
Now,  the  “growth  function”  gM(n)  is  simply  the  cardinality  of  the

state-set  of  generation  n  (see  Figure  1).  Note  that  we  use  the  terms

“sequence” and “function” interchangeably for functions f : 
+

 
+
. 
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(a) (b)

Figure 1. Both  (a)  M1  "A"  "AB", "AA", A, B  and  (b)  M2 

"A"  "AB", "AB"  "A", "AA", A, B  have  the  same  growth  function

g(n)  n because cycles in the states graph do not lead to new states.

In  general,  it  is  very  hard  or  even  undecidable  (see  Section  3)  to
prove that some Multiway System has a certain growth function. It is
also  not  obvious  that  the  growth  functions  of  Multiway  Systems
should  be  elementary  functions  or  “simple”  by  any  other  definition.
Examples  of  systems  where  the  growth  function  is  hard  to  describe
were  already  given  in  A  New  Kind  of  Science  [7,  pp.  204  ff.].  There-
fore,  we  will  approximate  the  growth  functions  of  Multiway  Systems
by  continuous,  strictly  monotonically  increasing,  unbounded  (and
hence bijective on 

≥0) functions, which can be analyzed more easily.

This way,  many similar growth functions will be considered members
of  the  same  equivalence  class.  We  will  say  that  the  corresponding
Multiway Systems have the same “growth rate.”  

Multiway Growth Rates1.2

To  formalize  the  notion  of  approximating  functions,  we  use  the
asymptotic growth classes from complexity theory,  defined  in the fol-

lowing  way:  For  a  function  f :A  B  where  A  B  
≥0  or

A  B  ,  f   is  defined  as  the  set  of  functions  g :A  B  for  which

lim supx∞

g(x)

f (x)
  exists  and  is  a  real  number.  An  equivalent  definition

is g ∈ f ⟺∃ C ∈ 
+
: ∃ x0 ∈ A : ∀ x > x0 :Cf (x) ≥ g(x)  but  we  use

the  previous  one  for  convenience.  The  subset  of  f   for  which  the

limit  superior  is  zero  is  denoted  of .  Similarly,  Ωf  :=

g :A  B f ∈ g  and  ωf  := g :A  B f ∈ og.  Finally,  Θf  :=

Ωf  ⋂ f .  It  is  straightforward  to  show  that  f ∼
Θ
g⟺ f ∈ Θg  is  an
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equivalence relation. Thus, we may speak of functions that are “asym-
ptotically equal.”

As  already  mentioned,  we  want  to  approximate  growth  functions
by  bijective  functions  for  the  subsequent  mathematical  analysis.  For
some Multiway growth function a, we will define  the sequences a and
a  as  its  tightest  upper  and  lower  bounds  that  are  monotonically

increasing,  even  if  a  itself  is  not  monotonic  at  all.  From  these
sequences,  we  will  then  construct  two  equivalence  classes  of  continu-
ous  functions  that  are  all  asymptotically  equal  to  and  hence  “close
approximations”  of  a  or  a  respectively.  Two  representatives  of  these

classes  will  be  called  “tight  bounds”  and,  since  we  are  generally  con-
cerned  with  unbounded  growth  functions  (bounded  growth  functions
will be discussed shortly), both are bijective on 

≥0.

Notice  that  we  have  only  defined  asymptotic  growth  classes  for
functions on  or 

≥0. However,  since the Multiway growth function

is always a function on 
+
, we consider its linear interpolation, a con-

tinuous  function  from  
≥0  to  

≥0  that  is  equal  to  the  sequence  for

natural  arguments  and  always  bounded  by  consecutive  values  of  the
sequence (see Definition 4), instead. 

Definition 1. Let M be a Multiway System and gM  its growth function.

We  call M “finite”  if ∃ n ∈ 
+
: gM(n)  0 (as this implies that at a cer-

tain  point,  no  further  states  will  be  added).  We  call M  “bounded”  if

∃ b ∈ 
+
: ∀ n ∈ 

+
: gM(n) ≤ b and M is not finite. Systems that are nei-

ther finite nor bounded are called “unbounded” (see Figure 2).  

(a) (b)

Figure 2. (a)  States  graphs  of  the  finite  system  M1  "A"  "BC",

"B"  "C", "C"  "B", "A", A, B  and  (b)  first  six  steps  of  the  bounded

system  M2  "A"  "AA", "A", A.  Notice  that  ∀ n ∈ 
+
: gM2

(n)  1,

despite  the  fact  that  the  rule  can  be  applied  in  many  different  positions,
because we are only considering merged states.

Definition 2. Let  a : 
+

 
+

 be  the  growth  function  of  an  unbounded

Multiway System and let 

an := maxak k ≤ n
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and

an := maxak k ≤ n ⋀ ∀ l ≥ k : al ≥ ak ⋃ {1}.

We  call two continuous functions f , g : 
≥0  

≥0  “tight  bounds of a”

if  f ∈ ΘL

+

(a) ⋀ g ∈ ΘL

+

(a)  where  L

+

 denotes  the  linear  interpola-

tion  over  
+

 (according  to  Definition  4).  See  Figure  3  for  a  visual

illustration.

(a) (b)

Figure 3. The  growth  function  an  of  M  "AB"  "", "ABA" 

"ABBAB", "ABABBB"  "AAAAABA", "ABABAB", A, B  together  with

an,  an  and  a  pair  f , g  of  tight  bounds.  Note:  Only  f  and  g  are  continuous;

the other lines are drawn for visual appearance.

One  might  ask  why  we  introduce  an  upper  and  a  lower  bound
instead  of  approximating  the  growth  function  with  a  single  function.
Doing so would, however,  be a poor approximation, as there are Mul-
tiway Systems for which even the tightest upper and lower bounds are
never  in  the  same  asymptotic  growth  class  (compare  Figure  4).  We
will  call  these  Multiway  Systems  “strongly  oscillating”  and  all  others

(a) (b)

Figure 4. For this special system, we can prove (see Section 3 for an explana-

tion)  the  tight  bounds  f , g  to  be  in  different  asymptotic  growth  classes:

f ∈ Θ(x) and g ∈ Θx2. Note again that only f  and g are continuous, while an
is drawn as a line for visual appearance. 
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(i.e.,  systems  where  all  tight  bounds  are  asymptotically  equal)  "reg-
ular."  Notice  that  for  every  regular  Multiway  System,  a  pair  of
bijective  tight  bounds  exists  because  its  tight  bounds  will  be  in  the
asymptotic equivalence class of two unbounded strictly monotonically
increasing functions and tight bounds are continuous on 

+
. Strongly

oscillating systems, on the other hand, are much more difficult  to ana-
lyze  since  we  cannot  easily  come  up  with  criteria  for  measuring  the
rate of oscillation and it is not clear at all whether there has to be any
periodicity  or  regularity  in  the  way  in  which  they  oscillate.  Thus,  for
our basic investigations about the fundamental structure of Multiway
Systems, we will focus on regular systems. 

Definition  2  suggests  a  natural  way  to  define  classes  of  Multiway
Systems with “similar”  growth functions by considering growth func-
tions  with  approximately  equal  tight  bounds  as  equivalent.  Let

f , g : 
+

 
+

 be  functions  and  a1, b1, a2, b2  be  tight  bounds  of  f

and  g,  respectively.  We  define  ∼R  by  f ∼R g⟺a1 ∼
Θ
a2 ⋀ b1 ∼

Θ
b2.

Since tight bounds always exist, ∼R  is an equivalence relation because

∼
Θ

 is one. For some Multiway System M with growth function gM, we

call the equivalence class of ∼R  that gM  falls into the “growth  rate” of

gM (or sometimes the growth rate of just M). 

It  is  obvious  that  every  Multiway  System  has  exactly  one  growth
function and exactly one growth rate. The converse, that is, that every

function  f : 
+

 
+

 is  the  growth  function  of  some  Multiway  System

or,  respectively,  that  every  pair  of  bijective  functions  on  
≥0  is  a  pair

of  tight  bounds  of  some  Multiway  growth  function,  is  clearly  not
true,  as  emphasized  in  Lemma  1.  However,  if  we  define  much  more
general  classes  of  growth  functions,  which  we  will  call  “Multiway
growth classes,”  we will see (in Theorem  2) that they indeed partition
the set of all Multiway Systems into a finite set of infinite subsets. 

Multiway Growth Classes 1.3

To  further distinguish between types of Multiway Systems on a more
abstract  level  and  demonstrate  which  kinds  of  growth  functions  can
be  achieved,  we  want  to  define  very  broad  classes  of  Multiway  Sys-
tems  whose  growth  functions  show  similar  behavior  on  a  large  scale.
We  have already distinguished among finite,  bounded and unbounded
systems, as well as dividing the latter into regular and strongly oscillat-
ing  systems.  As  outlined  earlier,  we  will  focus  on  regular  systems.  To
group these into sets of systems of similar behavior,  we use commonly
known  classes  of  functions  such  as  polynomial  or  exponential  func-
tions  or,  more  precisely,  functions  bounded  by  polynomials  or  expo-
nentials,  as  well  as  intermediately  (faster  than  polynomial  and  slower
than exponential) growing functions and some others.
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More  precisely:  Let  Gpol  be  defined  as  the  set  of  all  continuous

bijections  f : 
≥0  

≥0  that  satisfy  f ∈ Ω(xn) ⋂ xn+1  for  some

n ∈ 
+
 and define Gexp as

f : 
≥0  

≥0 f ∈ Ωax ⋂ (a + 1)x

for some a ∈ 
>1. Similarly,  let Gsup exp be the set

f : 
≥0  

≥0 ∀ g ∈ Gexp : f ∈ ωg

where  f  must  be  continuous  and  bijective.  Additionally,  denote  by

Gint  the  set  of  all  continuous  bijections  f : 
≥0  

≥0  fulfilling

∀ g ∈ Gpol, h ∈ Gexp : f ∈ ωg ⋂ oh.  Now,  it  is  easy  to  analogously

define 

Ginv pol := f f-1 ∈ Gpol,

Ginv exp := f f-1 ∈ Gexp,

Ginv sup exp := f f-1 ∈ Gsup exp

and

Ginv int := f f-1 ∈ Gint.

These  eight  sets  give  a  partition  of  the  set  of  all  continuous  bijec-

tions on 
≥0  because a function grows either slower than f : x ↦ x, in

which case its inverse grows faster than f , or it grows faster (or equal

to) f , in which case it is contained in one of the first  four classes. We

call a Multiway System a member of the growth class Ci  if its growth

function  has  tight  bounds  f , g  belonging  to  Gi.  Note  that  this  defini-

tion applies only to regular Multiway Systems. Also, as Definition  2 is
not  applicable  for  finite  or  bounded  Multiway  Systems,  we  handle
them separately.  

Let  Cfin  and  Cbnd  be  the  sets  of  all  finite  and  bounded  Multiway

Systems,  respectively.  For  all  Multiway  Systems  in  Cfin ⋃Cbnd,  the

growth  rate  is  defined  to  be  (1, 1).  While  finite  and  bounded  systems
can  have  quite  an  intricate  structure,  their  growth  functions  are  not
very  interesting  for  our  purposes.  As  a  side  note,  it  should  be
remarked  that  what  seems  to  be  “complex  behavior”  in  a  New  Kind
of  Science-fashion  (compare  [7]),  occurred  much  more  frequently  in
our  empirical  investigations  of  finite  systems,  but  these  observations
are  far  from  conclusive.  They  might  be  useful  for  applications  not
directly related to the Wolfram  Physics Project, but in this paper,  they
will not be discussed in great detail. 
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As  every  continuous  bijection  on  
+

 belongs  to  exactly  one  of  the

Gi,  every  Multiway  System  that  can  be  imagined  is  either  strongly

oscillating  or  in  one  of  those  classes  (including  Cfin  and  Cbnd).  We

will  furthermore  show  in  Theorem  2  that  every  one  of  these  classes
(except Csup exp, which is empty by Lemma 1) contains infinitely  many

Multiway Systems. 
Summarizing  the  previous  section,  we  introduced  the  three  main

concepts  of  Multiway  growth  functions,  Multiway  growth  rates  and
Multiway  growth  classes.  We  will  now  present  the  first  important
result  of  this  paper,  a  theorem  about  the  boundaries  of  possible
growth rates, and spend the next section proving and illustrating it. 

The Spectrum of Possible Growth Rates2.

Having defined  Multiway growth rates, we might ask ourselves which
growth  rates  are  possible,  that  is,  how  the  equivalence  classes  of  ∼R

are distributed in the set of all possible pairs of bijective functions on


≥0.  First  of  all,  it  is  quite  easy  to  give  an  upper  bound  for  growth

rates  that  can  be  achieved.  In  fact,  no  Multiway  System  can  grow
faster than exponentially.

Lemma 1.  Let  f , g  be  the  growth  rate  of  some  Multiway  System.

There exists some constant c ∈  for which f , g ∈ o(ecx). 

Proof.  Denote  by  smax(n)  the  maximum  string  length  that  states  of

generation  n  can  have.  For  every  Multiway  System  M  R, sinit, Σ,

the  set  of  rules  remains  constant  during  the  whole  evolution,  so  smax

can at most increase constantly,  that is, smax ∈ (n). Since the number

of words with length l  is given by Σl, the growth function gM(n) will

never exceed Σsmax(n)  eln(Σ)smax(n) ∈ Θ(ecn) and the claim follows. □

So  what  about  a  lower  bound  for  Multiway  growth  rates?  For-
mally,  a trivial Multiway System with no rules and thus only one state
has  the  lowest  possible  growth  function  by  pointwise  value  compar-
ison. In general, “terminating”  or “constant”  asymptotic growth func-
tions  of  finite  or  bounded  Multiway  Systems  (which  have  the  growth
rate  (1, 1))  are  the  slowest  by  means  of  asymptotic  comparison,  that

is, with respect to the total ordering ≤


 defined  by f ≤

g⟺ f ∈ g,

but  examples  like  this  are  not  very  illuminating.  Therefore,  we  might
ask what the slowest growth rate faster than constant is, that is, what

the  smallest  (by  asymptotic  comparison)  functions  f , g ∈ ω(1)  are  for

which f , g is the growth rate of some Multiway System. It turns out
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however,  that  no  such  smallest  growth  rate  exists,  which  means  that
Multiway Systems can, in a certain sense, grow arbitrarily slowly.  

To  understand why this is the case and make the even stronger state-
ment  that  Multiway  Systems  can  grow  slower  than  all  computable
functions (see Corollary 2), we need to introduce a couple of construc-
tions.  First  of  all,  we  will  show  how  Multiway  Systems  can  emulate
Turing  machines,  meaning  there  are  systems  such  that  the  successive
states  of  their  evolution  correspond  to  steps  in  the  machine’s  evalua-
tion. Phrased differently,  it is possible to construct a Multiway System
that  has  exactly  one  new  state  for  T(n)  steps,  where  T(n)  is  the  num-
ber  of  operations  that  a  certain  Turing  machine    carries  out  before
halting  when  provided  with  the  input  n.  Such  a  machine,  with  some
additional  constraints,  will  be  called  a  “T-halter”  and  T  its  “halting
function.”  

By  adding  some  specific  rules  to  the  Multiway  System  that  emu-
lates   ,  it  will  be  possible  to  evaluate    indefinitely  for  increasing
inputs  n  1, 2, ….  Additionally,  the  Multiway  System  will  be  con-
structed in a way such that every time the underlying Turing  machine
is  “started  again”  on  the  next  input,  the  number  of  new  states  per
time step is increased by one. This way,  we will obtain a growth func-
tion  informally  described  by  the  sequence  “n  occurs  T(n)  times”  (see
Definition  3),  for  example,  the  sequence  “n  occurs  n  times,”  which
would be given by 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, …. We  will then show
that this growth function is approximated by the inverse of the linear
interpolation (see Definition  4) over the summatory function of T  (see
Lemma 2). From this we conclude the following theorem: 

Theorem 1.  Let  T ∈ Ω(n)  be  the  halting  function  of  some  Turing
machine (see Figure 5). There  is a Multiway System with growth rate

a, b  such  that  a, b ∈ T
*
-1  where  T

*
(x)  L


+

∑k1
n Tk  and  L


+

denotes the linear interpolation over 
+
 (see Definition 4). 

Proof of Theorem  1 2.1

Now  let  us  formalize  the  proof  outlined  in  the  preceding  section.  For
some  function  T :   ,  we  define  a  “T-halter”  to  be  a  Turing
machine   such that   executes precisely T(n) operations when given
the  input  n,  taking  into  account  the  input  and  output  constraints
depicted  in  Figure  6(a).  These  constraints  will  later  allow  us  to
“enchain”  the  Multiway  Systems  corresponding  to  T-halters.  Of
course, neither is there a T-halter for arbitrary T  nor must there be a
unique  T-halter  for  a  given  T.  However,  and  this  is  the  part  we  care

about, there is a T-halter such that T ∈ Ωf  for any computable func-

tion  f  because  we  can  just  take  the  Turing  machine  that  computes  f

and add some logic to write n + 1 after the computation is finished. 
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Figure 5. Graphical illustration of Theorem  1. The  theorem asserts that there

is  a  Multiway  System  for  which  the  growth  rate  f , g  is  asymptotically  less

than T
*
-1(x).

(a) (b)

Figure 6. Visual  explanation  of  the  T-halter  constraints  and  Turing  machine
plot  with  an  associated  Multiway  System  plot.  (a)    is  always  started  on  an
empty  tape  containing  only  n  in  unary  representation.  After  halting,    is

required  to  have  written  n + 1  in  unary  on  the  tape  and  placed  its  head  onto

or left of the first  digit. The  number n + 1 must be preceded and followed by
at least one empty symbol. (b) Evolution of 1  (compare Figure 7(a)) next to

the  evolution  of  M1.  The  position  and  orientation  of  the  “droplet”  symbol

indicate the machine's head position and state, respectively.  

Having  defined  T-halters,  the  next  step  is  to  show  how  Multiway
Systems  can  emulate  these  (and  all  other  Turing  machines).  Since  we
are  talking  about  deterministic  Turing  machines,  no  branching  shall
occur  in  the  corresponding  Multiway  System;  that  is,  the  system
should  have  exactly  one  state  in  generation  n  that  corresponds  to  the
state  of  the  Turing  machine  after  n - 1  operations.  Because  at  every
state in the machine’s  evolution only a finite  part of the tape contains
non-blank  symbols,  we  include  only  the  symbols  already  “touched”
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by  the  machine  (meaning  the  head  was  on  that  symbol  at  least  once)
in  the  states  of  the  Multiway  System  and  abbreviate  the  infinite
strings of zeros on both sides of the tape with an underscore. The posi-
tion  and  state  of  the  head  are  indicated  by  an  H  right  of  the  symbol
the head is currently on, followed by the current state number.  Hence,
there are four additional symbols (two underscores, an H  and a num-
ber)  used  in  the  Multiway  System  but  not  written  on  the  machine’s
tape (see Figure 6(b)). 

Using  this  representation,  plain  read/write  operations  and  state
changes would be straightforward to implement as replacement rules,
as we could just introduce a rule "xHn"  "yHm" for every combina-

tion  of  currently  read  symbol  x  and  head  state  n  (writing  symbols
next  to  each  other  in  this  context  simply  denotes  their  concatenation
to  a  string).  However,  since  the  head  must  move  left  or  right  after
each  such  operation,  those  rules  are  not  suitable.  What  is  needed
instead to encode the operation “when  x1  is read in state n, write y1,

change  state  to  m  and  move  the  head  right,”  is  a  rule  of  the  form
"x1Hnx2"  "y1x2Hm"  for  every  possible  value  of  x2.  Similarly,  a

left  move  of  the  head  is  encoded  as  "x2x1Hn"  "x2Hmy1".  If  n  is

not  a  halting  state  (in  which  case  we  would  not  need  any  rules),
exactly one of these two rule patterns will be applicable for every pos-
sible  value  of  x1  or,  respectively,  every  state  transition  arrow  starting

at H in the state transition diagram. 
For  a  Turing  machine  with  N  states  working  on  an  alphabet  of  S

symbols,  that  already  gives  a  worst-case  (no  halting  states)  of  N · S2

rules  in  the  corresponding  Multiway  System.  However,  N · S  (worst
case) more rules have to be added to handle the literal “edge  cases” in
which  the  head  is  next  to  one  of  the  underscores  bounding  the  tape.
The two rule patterns, of which, as before, exactly one will match for
every state transition arrow,  are "_xHn"  "_0Hmy" for a left move

and  "xHn_"  "y0Hm_"  for  a  right  move  (in  both  cases  x  is  read

and  y  written).  Now,  the  resulting  rule  set  captures  all  of  the  Turing

machine’s  properties  and  is  able  to  extend  the  tape  to  any  required
length by itself. As  an initial state of the Multiway System to emulate
the  machine,  any  string  of  characters  from  the  machine’s  alphabet
together  with  an  "Hs",  where  s  is  the  starting  state,  and  the  two
bounding underscores can be used. 

To  illustrate  this  construction,  consider  the  Turing  machine  1

shown in Figure 7(a). It is, in some sense, the easiest possible T-halter
for it does nothing more than increase the number on the tape by one
and place its head back at the beginning. Figure 6(b) shows the succes-
sive  states  of  the  machine  (and  tape)  next  to  a  Multiway  System  M1

emulating 1. The rule set for this specific instance is
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{"00H1" -> "0H21",  "10H1" -> "1H21",  "1H10" -> "10H1",  
"1H11" -> "11H1",  "01H2" -> "0H21",  "11H2" -> "1H21",
"0H20" -> "00H3",  "0H21" -> "01H3",  "_0H1" -> "_0H21",  
"1H1_" -> "10H1_",  "_1H2" -> "_0H21",  "0H2_" -> "00H3_"}

Now  it  is  clear  that  a  Multiway  System  emulating  some  T-halter  

has exactly one state for T(n) generations when started with the initial

condition  "_1H11n-1_"  (1n-1  denotes  n - 1  times  the  symbol  1,  the
first  1 is left of the head and the head starts in state 1). Now,  we need
a way to “enchain”  this Multiway System with itself. To  achieve this,

first  add  the  rules  "Hf"  "X"  for  every  halting  state  f  where  X  is

one  fixed  symbol  not  contained  in   ’s  alphabet.  These  additional
rules  will  cause  the  multiway  state  in  generation  T(n) + 1  to  look  like
"_w101X1n0w2_"  (if  the  head  is  left  of  the  first  digit,

"_w10X1n+10w2_"  works  analogously)  where  w1  and  w2  are  arbi-

trary words that might be created as byproducts in the working of  .
This  is  due  to  the  T-halter  constraints  depicted  in  Figure  6(a),  or
rather,  the  T-halter  constraints  were  chosen  precisely  to  cause  such  a
configuration of the tape. 

(a) (b)

Figure 7. Two  different  representations  of  the  same  computational  system:  a
Turing  machine and a Multiway System. (a) Rule plot and state transition dia-
gram of 1. The arrow labels indicate “read,  write, move”. (b) States graph of

the Multiway System constructed from 1 (see below). 

Adding  the  rules  "X1"  "1X",  "X0"  _0",  "1Y"  "Y1"  and
"0Y1"  "0_1H1"  will  cause  exactly  one  state  where  the  X  has
“moved”  one  position  to  the  right  for  n  generations  (first  rule),  then
add an underscore behind the n ones (second rule), “move  back to the
left”  using  the  Y  for  n + 1  generations  (third  rule)  and  finally  add  an
underscore  at  the  left  side,  replacing  Y  by  the  starting  state  symbol
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"H1"  of    (see  Figure  7(b)).  Now,  the  whole  process  can  start  again
because  the  new  underscores  ensure  a  “fresh”  new  tape  for   ,  which
now  contains,  by  the  T-halter  constraints,  n + 1  as  the  next  input  for
  to continue with while everything outside the bounding underscores
will be ignored. 

The resulting Multiway System of this continued reevaluation of 
will  run  indefinitely,  subsequently  running  instances  of    with  larger
and  larger  values  of  n.  Despite  that,  the  Multiway  System  still  has
only  one  state  in  all  generations.  In  order  to  make  the  number  of
states  increase  exactly  when  n  increases;  that  is,  when  some  instance
of    has  finished  working,  we  add  the  rules  "0Y1"  "Z"  and
"Z"  "ZZ".  This  way,  the  Multiway  states  graph  branches  every
time  the  system  starts  a  new  instance  of    into  a  main  branch  where
the  evaluation  of    continues  and  a  diverging  branch  where  the  sec-
ond rule just creates longer and longer strings of Z forever,  constantly
adding one new state to every generation. Thus,  the number of diver-
gent  branches  is  always  equal  to  n - 1  and  these  branches  grow  con-
stantly forever,  causing the desired behavior as shown in Figure 7(b).

First,  it  takes  a  “preparation  time”  of  p(n)  2(n + 1) + 1  (or

p(n)  2(n + 2)  if  the  head  starts  at  the  left  of  the  first  digit  instead)

steps because the head moves over n + 1 symbols including the new 1

before  iteration  n + 1  of    can  start  after  the  nth  iteration  is  done.
Thus,  there  will  be  n  states  for  T(n) + p(n)  steps  in  this  Multiway

System construction, before the number of states increases by one. Let
us generally investigate the sequences obtained this way: 

Definition 3. Let f : 
+

 
+

 be a function. The  sequence “n occurs f (n)

times”  is  defined  by  Af ∑k1
n f k  Af m + ∑k1

n f k  n  for  all

n, m ∈  with n ≥ 1 ⋀m < f (n + 1). 

Definition 4.  Let  f : 
+

 
+

 be  a  function  and  S ⊆ 
+

 an  infinite  set.

The “linear  interpolation of f  over S,”  denoted LSf , is defined  as the

polygonal  chain  starting  at  (0, 0)  and  passing  through  all  points

n, f (n), n ∈ S ordered by n. 

Since  Definition  3  requires  f  to  always  be  greater  than  zero,  every

natural number can be represented as some sum over consecutive val-

ues  of  f  plus  a  remainder  and,  as  Figure  8(a)  shows,  this  definition

indeed  matches  the  informal  description  of  “n  occurs  f (n)  times.”

Notice as well that the linear interpolation, despite being defined  as a

curve  in  2,  can  be  regarded  as  a  continuous  function  from  
≥0  to


≥0  because  for  all  n ∈ S,  the  function  to  be  interpolated  assigns

precisely  one  y  value,  and  since  S  is  an  infinite  subset  of  ,  the  linear

interpolation function is defined everywhere on 
≥0.
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(a) (b)

Figure 8. Plots  for  illustrating  Definitions  3  and  4.  (a)  Example  for  Defini-

tion 3:  the  sequence  “n  occurs  f (n)  2n  times”  (A2n).  (b)  Example  for

Definition 4: the linear interpolation of A2n  over 
+
, now a continuous func-

tion from 
≥0 to 

≥0.

Now,  to  express  some  sequence  Af  explicitly,  define  the  set  of

increase indices of Af  as IAf  := n ∈ 
+
Af (n - 1) < Af (n). It follows

that  LIAf 
Af   will  always  be  strictly  monotonically  increasing  and

unbounded.  Therefore,  its  inverse  function  LIAf 
Af 

-1
 exists  and  we

can formulate the following lemma: 

Lemma 2.  For  all  functions  f : 
+

 
+
,  the  following  identity  holds:

LIAf 
Af (x)  L


+

∑k1
n f k

-1
(x). 

Proof.  For  readability,  let  T
σ

 be  the  function  ∑K1
n Tk,

φ(x) := LIAf 
Af (x)  and  ψ(x) := L


+

∑k1
n f k(x).  By  Definition  4,  the

linear interpolation of a function equals that function on the interpola-
tion set, so 

∀ n ∈ 
+
: (φ◦ψ)(n)  φ 

k1

n

f k  n.

For values x ∈ (n, n + 1), n ∈ , the linear interpolation gives

ψ(x) 
Δy

Δx
(x - n) + ψ(n) 

ψ(n + 1) - ψ(n)

n + 1 - n
(x - n) + ψ(n)

 (ψ(n + 1) - ψ(n))(x - n) + ψ(n).

(1)

Letting y  ψ(x), we know that 

(φ◦ψ)(x)  φy 
φy2 - φy1

y2 - y1

y - y1 + φy1
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for some y1, y2 ∈ IAf  where y1 < y < y2  and y1, y2  are the values in

IAf   closest  to  y.  Since  ψ  is  strictly  monotonically  increasing,  y1  and

y2 must be given by ψ(n) and ψ(n + 1), respectively.  Thus,

(φ◦ψ)(x) 
φ(ψ(n + 1)) - φ(ψ(n))

ψ(n + 1) - ψ(n)
(ψ(x) - ψ(n)) + φ(ψ(n))


n + 1 - n

ψ(n + 1) - ψ(n)
(ψ(x) - ψ(n)) + n


(ψ(n + 1) - ψ(n))(x - n) + ψ(n) - ψ(n)

ψ(n + 1) - ψ(n)
+ n by equation (1)

 x - n + n  x.

So φ is a left-inverse of ψ on 
≥0. Analogously,  it can be shown that φ

is also a right-inverse of ψ, so indeed, LIAf 
Af  and L


+

∑k1
n f k are

inverse functions. □

Putting  it  all  together,  we  conclude  from  the  previous  Turing
machine  investigation  that  for  every  halting  function  T ∈ Ω(n),  there
is  a  Multiway  System  that  has  the  growth  function  gM(n)  AT+p(n)

for  some  p ∈ Θ(n).  Additionally,  p ∈ Θ(n),  so  gM  will  even  become

strictly  less  than  L

+

T
σ


-1

 very  soon.  In  most  practical  cases,  gM  is

much  lower.  Hence,  p  “delays”  the  growth  function  even  more;  that

is, ∀ n ∈ 
+
:AT+p(n) ≤ AT (n), and it follows that 

LIgM
gM(n) ≤ LIAT 

AT (n)  L

+

T
σ


-1

(x)

⇒ gM(n) ∈  L

+



k1

n

Tk

-1

by Lemma 2, which concludes the proof of Theorem 1.

Applications of Theorem 1 2.2

Computing  linear  interpolations  and  their  inverse  functions  seems
hard to do analytically because in most cases, there are no elementary
closed-form  expressions  describing  them.  Therefore,  it  might  seem
difficult  to  actually  apply  Theorem  1.  However,  since  we  are  only
interested in growth rates, we can use approximations to make calcu-
lations much easier.

Lemma 3.  If  f : 
+

 
+

 is  strictly  increasing,  g : 
≥0  

≥0  is  continu-

ous and bijective and ∀ n ∈ 
+
: g(n)  f (n), then L


+

f 
-1

∈ Θg-1. 
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Proof.  Because g  is  continuous  and  takes  the  same  values  as f  for

natural arguments, we know that 

∀ n ∈ 
+
: ∀ x ∈ (n, n + 1) : f (n) ≤ g(x) ≤ f (n + 1).

Using the fact that the linear interpolation equals the function for natu-

ral  arguments,  this  equation  becomes  L

+

f (n) ≤ g(x) ≤ L

+

f (n + 1).

This  implies  L

+

f 
-1

y1 ≤ g-1y ≤ L

+

f 
-1

y2  for  values  y ∈ y1, y2

where y1  f (n) and y2  f (n + 1). Expanding out gives 

L

+

f 
-1

f (n) ≤ g-1y ≤ L

+

f 
-1

f (n + 1)

⇒ n ≤ g-1y ≤ n + 1,

which  means  that  the  difference  of  g-1y  and  L

+

f 
-1

y  is  always

bounded by 1. Therefore, g-1 ∈ ΘL

+

f 
-1

. □

Whenever it is possible to express some halting function in a closed

form (e.g., T : 
+

 
+
, n ↦ 2n2 + 3n) that could also describe a bijec-

tive  function  on  
≥0  (like  f (x)  2x2 + 3x),  we  can  use  Lemma  3  to

simplify  calculations:  Since  f  is  monotonically  increasing  and  the  lin-

ear  interpolation  equals  the  summatory  function  for  natural  argu-
ments, we have 



k0

⌊x⌋

f k ≤ 
0

x
f (t)dt ≤ 

k1

⌈x⌉

f k

⇒ L

+

T
σ

(⌊x⌋) ≤ F(x) ≤ L

+

T
σ

(⌈x⌉).

(2)

Therefore,  Lemma  3  tells  us  that  we  can  approximate  the  inverse  of
the  summatory  function  used  in  Theorem  1  just  by  computing  the

inverse  of  the  integral  of  f .  Especially  in  the  case  of  logarithms  or

exponential  functions,  solving  integrals  is  much  easier  than  comput-
ing sums, so this lemma can be very useful.

To  demonstrate this and assist with the proof of Theorem  2, let us
imagine  we  wanted  to  construct  a  Multiway  System  of  logarithmic
growth  rate.  We  can  approach  this  problem  by  designing  a  T-halter
for some Texp ∈ Θ(2n) and implementing the construction described in

Section  2  to  get  a  Multiway  System  with  the  inverse  growth  rate.  As
an  example,  take  the  Turing  machine  exp  shown  in  Figure  9.  It  is

started in state 1, which simply moves the head to the right end of the
word on the tape and changes to state 2. In this state, the head moves
left again, replacing 2 by 1 until it encounters a 1, which it changes to
a 2 and returns to state 1, repeating the process. It is easy to see that
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Figure 9. The  rule  plot,  state  transition  diagram  and  one  example  evolution
(starting from three ones) for the Turing  machine exp.

this is precisely the process of incrementing a binary number where 1
corresponds to a zero and 2 to a one. The process is repeated until the
head moves to the left of the word, which, by then, consists only of 1
since the previous string was the symbol 2 repeated n times. When the
head encounters the first  blank symbol on the left, it writes one more
1 to satisfy the T-halter constraint of incrementing the unary number,
and then halts. The process is shown in Figure 9 for n  3. 

Consider  the  action  of  the  machine  when  started  at  the  right  of

some binary word of 1s and 2s in state 1: The  head moves b symbols

to  the  left  until  it  encounters  the  rightmost  1,  and  then  b  symbols

back  after  changing  it.  Since  there  are  2n-b  binary  words  of  length  n

where the rightmost 1 is at position b, the Turing  machine takes 



k1

n

2k · 2n-k  2

k1

n

n - k2k  2 n

k1

n

2k - 

k1

n

k2k

 2 n2n+1 - 1 -
2 - (n + 1)2n+1 + n2n+2

(2 - 1)2
15, p. 36

 2n2n+1 - n - 2 + n2n+1 + 2n+1 - n2n+2

 2-n - 2 + 2n+1  2n+2 - 2n - 4
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steps  before  the  head  is  at  the  right  of  1n  and  in  state  1.  Since  the
machine  takes  n + 2  steps  to  move  to  the  left  again,  write  the  new  1
and halt, as well as taking n steps to move the head to the right in the
first  place,  the  total  number  of  states,  including  starting  and  halting
state, simplifies to

Texp(n)  2n + 3 + 2n+2 - 2n - 4  2n+2 - 1.

In combination with Lemma 3, another strategy for simplifying calcu-
lations is to give easily computable bounds for T. In this case, we use

the  fact  that  2n+1 < 2n+2 - 1 < 2n+2  for  all  n ∈   to  obtain

2x+1 < L

+

Texp(x) < 2x+2  for  all  x ∈ 
≥0.  Letting  l(x) := L


+

Texp(x)

for readability,  this becomes

2x+1 < l(x) < 2x+2 ⟺ 
0

x
2t+1dt < 

0

x
l(t)dt < 

0

x
2t+2dt

⟺
2

ln(2)
2x - 1 < 

0

x
l(t)dt <

4

ln(2)
2x - 1.

Since the inverse of 

x ↦
a

ln(2)
2x - 1

is

y ↦ log2 y
ln(2)

a
+ 1 ,

and f (x) < g(x)⟺ f-1(x) > g-1(x), the equation is equivalent to

log2 y
ln(2)

2
+ 1 > 

0

x
l(t)dt

-1
> log2 y

ln(2)

4
+ 1 .

Now,  notice that

log2y + c  log2y + log2 1 +
c

y

x→∞
log2y since 1 +

c

y

x→∞
1

and

log2yc  log2y + log2(c) ∧ log2y + log2(c)
x→∞

log2y.

From this, we know ∫0
xl(t)dt-1 ∈ Θlog2(x) because the upper and

lower  bound  asymptotically  equal  log2(x).  By  Lemma  3  and  equa-

tion (2),  ∫0
xl(t)dt-1  is  also  in  ΘLIATexp


ATexp

  and  we  can  conclude
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that ATexp
∼

Θ
log2(x).  Simulating  the  Multiway  System  and  measuring

the  growth  function  empirically  supports  this,  as  Figure  10  shows.  In
future  examples,  most  steps  of  the  argumentation  presented  here  can
be  shortened.  However,  this  method  of  estimation  does  not  work  in
all cases because the inverse bounds might not be accurate enough to

be  asymptotically  equal.  This  can  happen  because  in  general,  f ∈ Θg

does not necessarily imply f-1 ∈ Θg-1 (consider e.g., f (x)  ln(x) and

g(x)  2 ln(x)). 

Figure 10. The  growth  function  of  the  Multiway  System  emulating  exp  is

bounded by log2(x) and 1  2 log2(x), demonstrating that it is in Θlog2(x).

Implications of Theorem 12.3

What  we  have  seen  in  the  previous  example  is  just  a  simple  demon-
stration of the power of Theorem  1. Besides helping us later to prove
Theorem  2,  it  tells  us  a  lot  about  the  abstract  structure  of  Multiway
growth  functions,  their  “growth  spectrum.”  By  providing  the  follow-
ing  two  corollaries,  Theorem  1  gives  us  knowledge  about  what  this
spectrum  of  possible  growth  rates  looks  like,  that  is,  which  kinds  of
growth rates are possible and which kinds are not. In addition to that,
it  establishes  connections  between  Multiway  growth  functions  and
other classes of functions, namely computable functions and primitive
recursive functions. 

Corollary 1.  For  every  computable  function  f :   , f ∈ ω(1),  there  is

a  Multiway  System  with  growth  rate  a, b  such  that  a, b ∈ f-1

where f-1  is an asymptotic inverse of f , that is, some function satisfy-

ing  f-1
-1

∈ Θf   (this  becomes  important  when  f  is  not  properly

invertible). 

Proof.  Since  f  is  computable,  there  exists  some  Turing  machine  com-

puting f (n) when given n. If we require the machine to read and write
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input  and  output  in  unary  coding,  computing f (n)  must  take

T(n) ≥ f (n)  steps  simply  because  writing  the  result  takes  that  long.

Now,  let  g : 
≥0  

≥0  be  a  bijective  tight  lower  bound  of  T.  As

T ∈ ω(1),  T  is  unbounded,  so  g  always  exists.  From  g(x) ≤ T(x),  it

follows  that  g-1(x) ≥ T-1(x)  and  by  Theorem  1,  there  is  a  Multiway

System  for  which  the  growth  function  has  tight  bounds

a, b ∈ g-1 ⇒ a, b ∈ f-1 for some asymptotic inverse of f . □

Corollary 2.  For  every  computable  function  f :   , f ∈ ω(1),  there  is

a Multiway System with growth rate a, b such that a, b ∈ oL

+

f . 

Proof.  The  function  L

+

(f )  (for  the  upper  bounding  sequence  f  from

Definition  2)  is  always  greater  than  or  equal  to  f ,  asymptotically

equal to f  and computable (because equal to f ) on the set of increase-

indices  If .  Therefore,  f
-1

 is  a  computable  function  on  
+

 and  so  is

g : x ↦ f
-1

x2.  Using  Corollary  1,  this  gives  us  a  way  to  construct  a

Multiway  System  with  a  growth  rate  in  g-1   L

+

f    that  is

definitely in oL

+

f . □

This  quite  remarkable  fact  also  shows  that  for  every  Multiway
System growing faster than a bounded function, a more slowly grow-
ing Multiway System exists because the growth function of every Mul-
tiway  System  is  obviously  computable.  We  might  therefore  say  that
Multiway Systems can grow arbitrarily slowly; that is, the set of regu-
lar Multiway Systems excluding constant and finite  systems is “open”
in some sense. Remember,  however,  that they cannot grow arbitrarily
quickly,  as shown in Lemma 1. 

Computational Capabilities of Growth Functions 3.

After  marking  out  the  boundaries  of  the  space  of  possible  growth
rates,  we  will  investigate  its  underlying  structure.  First  of  all,  we  will
see  that  it  contains  no  “holes”;  that  is,  all  of  the  Multiway  growth
classes  defined  in  Section  1  (except  Csup exp,  which  we  have  already

shown  to  be  empty  and  just  defined  for  completeness)  are  nonempty
and,  furthermore,  contain  infinitely  many  systems.  In  addition,  we
will  have  some  insights  into  which  functions  are  “Multiway  growth-
computable”  and  “Multiway  growth-approximable.”  We  say,  a func-

tion  f : 
+

 
+

 is  Multiway  growth-computable  if  there  is  a

Growth Functions, Rates and Classes of String-Based Multiway Systems 143

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123


Multiway  System M  such  that ∀ n ∈ 
+
: gM(n)  f (n)  and  we  call

a function  f : 
≥0  

≥0  Multiway  growth-approximable  if  there  is  a

Multiway System M such that f ∼
Θ
L


g.

First,  we  will  define  two  operations,  “Multiway  addition”  and
“Multiway  multiplication,”  which  will  enable  us  to  combine  systems
into  more  complex  ones  of  which  the  growth  function  is  computable
immediately  from  the  growth  functions  of  the  parts.  These  two  fairly
simple  operations  will  be  sufficient  for  demonstrating  that  Multiway
growth  functions  are  interesting  from  an  algebraic  point  of  view  as
well  as  regarding  questions  of  their  computational  capabilities  (see
Section  3.3).  Still,  some  basic  Multiway  Systems  have  to  be  con-
structed  without  using  these  operations  as  the  building  blocks  of  fur-
ther  systems.  Combining  the  Multiway  operations  and  specifically
constructed systems will then yield the following theorem and several
other interesting results: 

Theorem 2.  The  classes  Cfin,  Cbnd,  Cpol, Cint, Cexp, Cinv pol,  Cinv int,

Cinv exp,  Cinv sup exp  partition  the  set  of  regular  Multiway  Systems  into

infinite subsets. 

Arithmetic-Like Operations on Multiway Systems 3.1

Let M1  R1, s1, Σ1, M2  R2, s2, Σ2 and M3  R3, s3, Σ3 be Mul-

tiway Systems. Additionally,  let X be a unique (equal for all Multiway
Systems)  symbol  not  included  in  any  Multiway  Systems  alphabet.
Now,  we define the “sum system” by 

M1 ⊕ M2  R1 ⋃R2 ⋃ X  si si ∈ S2M1 ⋃ S2M2, "X", Σ1 ⋃ Σ2

where  S2(M)  is  the  state-set  of  M  in  generation  2,  that  is,  all  nodes

with  distance  1  to  the  initial  state  in  the  respective  states  graphs  (see
Figure 11). The “product system” of M1 and M2 is now defined as 

M1 ⊙ M2  R1 ⋃R2, s1s2, Σ1 ⋃ Σ2

where s1s2 denotes the concatenation of s1 and s2 (see Figure 12).

To  calculate  the  growth  functions  of  systems  obtained  by  these
operations, we will require the parts M1  and M2  to be “rule  indepen-

dent,”  meaning  that  their  rules  do  not  interfere  with  each  other.
Formally,  rule  independence  can  be  defined  as  the  property  that  the
states  graph  of  M1  is  isomorphic  to  the  states  graph  of

R1 ⋃R2, s1, Σ1 ⋃ Σ2, that is M1  with all rules of M2  added, and vice

versa. This works because if adding all the rules of M1 to M2 does not

change  its  behavior,  then  these  rules  will  not  influence  M2’s  states

even if the states of M1  get appended to them. Rule independence can
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always  be  achieved  by  requiring  the  underlying  alphabets  to  be  dis-
joint,  as  in  this  case  it  is  impossible  for  a  given  string  to  match  rules
from R1 and R2 at the same time. 

(a) (b)

(c)

Figure 11. States graphs of rule-independent Multiway Systems and their sum

system. The  systems used are "AB"  "BA", "B"  "AAB", "AB", A, B

and "CD"  "CDD", "C"  "CD", "CDC", C, D.

If  we  recall  the  definition  of  growth  function  gM(n)  as  the  number

of nodes to which the shortest path from the initial state has length n,
it is easy to see that the growth function of M1 ⊕ M2 is one in the first

iteration, as "X" is the only state. In further iterations, we can imag-
ine a path of length n simply as a path of length 1 entering the states
graph of either M1  or M2, followed by a path of length n - 1 originat-

ing at some state in the second layer of the chosen subgraph, as if the
other  graph  were  not  there.  This  works  because  in  the  entire  evolu-
tion,  the  initial  state  is  the  only  one  containing  an  X,  so  for  all  other
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(a)

(b)

Figure 12. States  graphs  of  "A"  "AB", "AB"  "BA", "A", A, B,

"C"  "D", "D"  "E", "D"  "F", "C", C, D, E, F  and  their  prod-

uct  system.  Instances  of  the  first  system  are  highlighted  in  red  and  orange  in
the product system’s graph.

states,  the  usual  rules  will  apply  and  the  rules  replacing  X  will  have
no  effect.  This  concludes  that  the  growth  function  of  the  sum  system
is precisely 

gM1⊕M2
(n)  gM1

(n) + gM2
(n) with gM1⊕M2

(1) := 1. (3)

For the product system, remember that in the states graph of some sys-
tem M1, two nodes u, v are connected by an edge if string u gets trans-

formed  into  v  by  a  rule  from  R1.  The  analogous  holds  for  M2.  Since

the  initial  node  of  M1 ⊙ M2  consists  of  a  concatenation  of  s1  and  s2,

any node in the states graph of M1 ⊙ M2  corresponds to some combi-

nation  of  a  node  of  M1  and  one  of  M2.  Hence,  the  states  graph  of

M1 ⊙ M2  is  the  Cartesian  product  graph  (see  [16,  p.  30]  for  a  defini-

tion)  of  the  states  graphs  of  M1  and  M2.  Note  how  this  is  only
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possible  because  M1  and  M2  are  rule  independent  since  otherwise

more  edges  could  be  added  due  to  rule  matches  overlapping  between
the  M1-  and  M2-parts  of  the  string  or  rules  of  one  system  getting

applied to states of the other one.
To  obtain the number of nodes reachable in this Cartesian product

graph,  we  might  without  loss  of  generality  first  traverse  a  path  of

length  k  in  the  “pure  M1-part”  (i.e.,  the  second  half  of  the  string  is

still s2) and then take n - k steps through the “pure  M2-part.”  For the

first subpath, we have gM1
k options by definition of the growth func-

tion. This gets multiplied by the gM2
n - k choices for the second sub-

path.  Since  we  can  choose  k  freely,  the  resulting  total  count  of  nodes
in the product graph is given by 

gM1⊙M2
(n)  

k0

n

gM1
k · gM2

n - k

 f (n) + g(n) + 

k1

n-1

gM1
k · gM2

n - k,

(4)

where we set gM1
(0)  gM2

(0)  1 for convenience.

For  these  two  formulas,  we  have  assumed  the  systems  to  be  rule
independent.  For  systems  where  this  is  not  the  case,  they  still  give
lower  bounds  of  the  combined  systems’  growth  rate  since,  generally
speaking,  in  any  system,  the  number  of  edges  and  nodes  of  the  states
graph  can  only  remain  constant  or  be  increased  when  new  rules  are
added.  This  might  sound  surprising,  as  we  could  imagine  “deletion
rules,”  but  rules  that  cause  fewer  rules  to  be  applied  in  the  future  do
this  only  in  newly  added  branches  of  the  states  graph  (or  not  at  all),
not  affecting  the  already  existent  graph.  To  make  systems  rule  inde-
pendent, we required the alphabets to be disjoint; however,  this is not
necessary  as  any  Multiway  System  can  be  emulated  by  a  system  over
some  binary  alphabet,  so  we  can  always  make  the  alphabets  of  M1

and M2 equal. 

Lemma 4. For any Multiway System M  (R, s, Σ), there is a Multiway

System  M′  R′, s′, a, b  where  a  and  b  are  two  distinct  symbols,

such that the states graphs of M and M′
 are isomorphic. 

Proof.  To  show  this,  we  will  perform  a  “translation”  from  M  to  M′,

that  is,  replace  every  symbol  in  Σ  by  a  word  over  a, b  using  some

bijection  f : Σ  T ⊂ a, b
*.  By  altering  not  only  s  but  also  all  rules,

any  word  w ∈ Σ*
 matched  by  some  rule  in  R  will  correspond  to  the

translated  word  in  w′ ∈ T  being  matched  by  a  rule  in  R′.  Addition-
ally,  one  must  ensure  that  no  two  words  in  T  can  overlap  since
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otherwise,  the  rules  could  match  in  more  places  than  before.  Since
there  exist  non-overlapping  codes  of  arbitrary  length,  we  can  use

these as elements in T  so there always exists some f  with the required

properties.  Thus,  the  actions  of  the  rules  on  the  states  will  be  equal
and isomorphic states graphs will be created. □

Now,  let us consider the algebraic properties of our Multiway oper-
ations.  We  declare  two  Multiway  Systems  to  be  isomorphic  (written
M1 ≅ M2)  if  and  only  if  their  states  graphs  are  isomorphic.  Isomor-

phic Multiway Systems always have equal growth functions. In the fol-
lowing  analysis,  we  consider  only  the  set  of  different  equivalence
classes  of  ≅,  that  is,  the  set  of  all  Multiway  Systems  up  to  isomor-
phism, and denote it by . 

Let  M1, M2, M3 ∈   be  Multiway  Systems  and,  without  loss  of

generality,  rule  independent.  It  is  easy  to  see  that  ⊕  is  commutative
and  associative  since  set  unions  are.  More  interestingly,  the  system
0M := ({}, X, {}) is a neutral element of ⊕ since 

M1 ⊕ 0M  R1 ⋃ {} ⋃ X  s s ∈ S2M1 ⋃ {}, X, Σ1 ⋃ {}

 R1 ⋃ X  s s ∈ S2M1, X, Σ1,

which is isomorphic to R1, s1, Σ1 because the X symbol is used only

once,  acting  precisely  as  s1  would  have  and  therefore  keeping  the

states graph structure unchanged.
The  commutativity  of  ⊙  is  granted  because  we  required  M1  and

M2  to be rule independent, so the order in which their states are con-

catenated  does  not  matter  because  no  overlaps  where  rules  could
apply  on  the  intersection  of  M1-  and  M2-states  can  be  created.  Simi-

larly,  ⊙ is associative, simply because string concatenation is. We  can
also  prove  both  properties  with  the  commutativity  and  associativity
of  the  Cartesian  graph  product.  There  also  is  a  neutral  element  of  ⊙,
namely 1M := ({ }, " ", { }) or actually any system with no rules since its

initial state will just be appended onto every state of the system one is
multiplying with and the states graph will not change. 

Also notice that ⊙ distributes from the left over ⊕: 

M1 ⊙ M2 ⊕ M3 

  R1, s1, Σ1 ⊙ R2 ⋃R3 ⋃ X  S2M2 ⋃ S2M3, X, Σ2 ⋃ Σ3 

  R1 ⋃R2 ⋃R3 ⋃ X  S2M2 ⋃ S2M3, s1X, Σ1 ⋃ Σ2 ⋃ Σ3 

  R1 ⋃R2 ⋃ R1 ⋃R3 ⋃

X  S2M1 ⋃ X  S2M2 ⋃ X  S2M3,

 

  X, Σ1 ⋃ Σ2 ⋃ Σ1 ⋃ Σ3 
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  R1 ⋃R2, s1s2, Σ1 ⋃ Σ2 ⊕ R1 ⋃R3, s1s3, Σ1 ⋃ Σ3 

  R1, s1, Σ1 ⊙ R2, s2, Σ2 ⊕ R1, s1, Σ1 ⊙ R3, s3, Σ3 

  M1 ⊙ M2 ⊕ M1 ⊙ M3. 

Thus,  we  get  right  distributivity  from  commutativity  and  conclude
that ⊙ distributes over ⊕. Therefore, we can conclude that (, ⊕, ⊙) is
a  semiring,  however  with  a  weakened  annihilation  property,  which
does  not  hold  in  general.  As  a  consequence,  their  growth  functions
also  form  a  semiring  with  weakened  annihilation  under  the  opera-

tions g1 + g2(n) := g1(n) + g2(n) (with g1 + g2(1) defined  to be 1) and

g1 * g2(n)  ∑k0
n g1k · g2n - k  (with  g1(0)  g2(0) := 1).  This

demonstrates  the  potential  of  Multiway  Systems  to  generate  quite
diverse  and  intricate  growth  functions  as  the  two  operations  can  be
used  to  combine  systems  in  various  very  interesting  ways.  The  next
section elaborates on this.

Proof of Theorem 2 3.2

Let us now construct Multiway Systems in the various growth classes
to prove Theorem 2. First, take the product system of a finite  “chain”

system  M1
N

 having  one  new  state  for  N  generations  until  terminating

and  a  constant  system  M2  ({"A"  "AA"}, "A", {"A"}).  After  the

first  N - 1  steps,  M1
N ⊙ M2  will  have  a  constant  growth  function  of

value  N  as  the  first  N  terms  in  ∑k0
n gM1

kgM2
n - k  are  one  and  all

others  zero  because  M1  is  finite.  While  this  system  produces  (asymp-

totically)  constant  growth  functions,  it  is  not  suited  for  multiplying
arbitrary growth functions by constants. To  achieve the latter,  adding
some system to itself several times resolves the issue.

The  next  system  to  consider,  M3
N,  is  again  given  by  the  rule  set

{"A"  "AB"}  and  started  on  a  string  of  N  copies  of  "A"  denoted

"AN".  For  calculating  its  growth  function,  we  can  represent  it  differ-
ently as the product system of N  instances of itself started on a single

"A"  and  thus  having  the  growth  rate  gM3

1 (n)  1.  From  this  point  of

view,  we can write the growth function of M3  started on "AN" recur-

sively as 

gM3

N (n)  

k0

n

gM3

N-1k · gM3

1 n - k  

k0

n

gM3

N-1k.
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This  might  be  recognized  as  the  sequence  of  (N - 1)-polytopic  num-

bers,  also  known  as  “figurate  numbers,”  of  which  the  nth  element  is
given by ([17, p. 7]) 

N - 1 + n - 1

N - 1
.

Hence, gM3

N
 is clearly a polynomial of degree N - 1 and thus asymptot-

ically equal to xN-1.

Now  consider  the  system  M4
N  "Q"  "Qxi" i  1, …, N,

"Q", Q, x1, …, xN for distinct symbols xi. In the nth  step of evolu-

tion, it has basically generated all words of length n over the alphabet

of  all  xi.  Every  node  "Qw"  (where  w ∈ x1, …, xN
*)  in  the  states

graph  has  N  outgoing  edges  to  the  nodes  "Qxiw"  for  1 ≤ i ≤ N.

Thus, its growth function is precisely gM4

N (n)  Nn, allowing the possi-

bility of Multiway Systems growing like all exponential functions. 
A more sophisticated example is the system 

M5
N  

i1,…,N
"TL"  "TxiR", "RT"  "LxiT", "Rxi"  "xiR",

"xiL"  "Lxi", "TLT", "L", "R", "T", x1, …, xN.

Similarly  to  the  previous  system,  L  and  R  work  as  generators  for

words  over  the  alphabet  x1, …, xN,  however,  only  on  the  left  and

right  ends  of  the  word,  respectively.  In  every  word  ever  produced  by
the  system,  there  are  exactly  two  "T"  symbols,  one  at  the  beginning
and  one  at  the  end.  After  generating  some  new  symbol  between  itself
and  the  "T",  the  generator  "L"  or  "R"  moves  one  step  left  or  right,
respectively,  thereby not generating any new symbols, as it is not next
to  a  "T".  Since  a  new  symbol  is  created  every  time  a  "L"  or  "R"
reaches the respective "T", the length of the word is increased every n
steps  where  n  is  the  previous  word  length.  Thus,  their  word  length  is
the  sequence  “n  occurs  n  times”  denoted  An  and  asymptotically

equal to 



k0

n

k

-1


n(n + 1)

2

-1


1 + 8n - 1

2
∈ Θ n 

by Lemma 2. But the system’s  growth function is given by the number

of possible words, that is, Nn
 and hence asymptotically equal to N n .

The growth function of the previous system is noteworthy because
it  grows  “intermediately,”  that  is,  faster  than  every  polynomial  func-
tion  and  slower  than  all  exponential  functions.  Formally,  we  check
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this by noticing that 

lim
x∞

lnN x 

x
 0

(if the logarithm grows slower than x, the function is subexponential)
and 

lim
x∞

lnN x 

ln(x)
 ∞

(if the logarithm grows faster than ln(x) times a constant, the function
grows faster than xn for all n). In the study of groups and semigroups,
which are related to Multiway Systems (see [7, notes for Section 5.6]),
it  has  long  been  an  open  problem,  finally  solved  by  Grigorchuk  [18],
to  find  groups  of  intermediate  growth.  For  Multiway  Systems,  this
turns  out  to  be  remarkably  easy,  supporting  the  claim  that  Multiway
growth  functions  are  computationally  diverse  and  powerful  (see  Fig-
ure 13). 

Now  that  we  have  shown  the  existence  of  infinitely  many  systems
in Cfin, Cbnd, Cpol, Cexp  and Cint, only the classes of inverse functions

remain.  As  mentioned  earlier,  Theorem  1  appears  to  be  very  useful
for this. In Section 2.2, we have already shown the existence of a sys-

tem  with  a  growth  function  asymptotically  equal  to  log2(x).  The

Turing  machine  from  that  example  can  be  generalized  to  perform
counting  in  any  number  system  base  a,  yielding  a  halting  function
asymptotically  equal  to  n ↦ an,  so  that  the  same  construction  can  be

used  to  obtain  Multiway  Systems  growing  like  logax.  It  is  not  essen-

tial to go through the details here because all logax are asymptotically

equal  (since  they  only  differ  by  constants  by  the  base-change  law).  It
is  also  clear  that  infinitely  many  systems  in  the  class  Cinv exp  can  be

created because we could, for example, use Multiway addition to add
systems  with  constant  growth  functions  to  logarithmic  systems.
Notice  how  this  shows  generally  that  every  class  containing  at  least
one system contains infinitely many systems. 

By the same style of argument, we conclude that there are infinitely
many systems in Cinv pol. Consider a weaker version M6  of the system

of  intermediate  growth  rate  M5
1

 for  N  1.  This  system  has  one  state

forever  but  the  length  of  its  strings  is  still  the  sequence  “n  occurs  n
times.”  Now simply apply the Turing  machine construction from Sec-
tion 2.1 to this system by adding the rules "LT"  "Z", "TR"  "Z"
and  "Z"  "ZZ",  respectively,  to  generate  different  branches  of  the
states  graph.  As  described  in  Section  2.1,  this  yields  the  desired

growth function of gM6
(n)  An(n) ∈ Θ n  ⇒ M6 ∈ Cinv pol. 
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Figure 13. States graphs of exemplary systems M1
3, M2

3, M3
3, M4

3
 and M5

3
 with

growth  functions  asymptotically  equal  to  n ↦ 0,  n ↦ 3,  n ↦ n2,  n ↦ 3n  and

n ↦ 3 n , respectively.

Using  Corollary  2,  it  is  also  obvious  that  there  are  infinitely  many
Multiway  Systems  in  Cinv sup exp  as  we  might,  for  example,  just

construct  a  Multiway  System  growing  slower  than  the  inverse  Acker-
mann  function.  It  remains  to  show  that  the  class  of  inverses  of  inter-
mediately  growing  functions  Cinv int  is  nonempty.  To  show  this,  first

note  that  there  is  a  Turing  machine    that  computes   n   when

given n in unary in polynomial time. If we feed the result of this com-
putation  in  the  exp  machine  from  Section  2,  we  can  construct  a

machine  that  halts  after  T(n)  p(n) + 2 n 
 steps  for  some  polyno-

mial  function  p(n).  Similar  to  the  argumentation  from  the  proof  of

Lemma  3,  we  see  that  T
σ

 is  asymptotically  equal  to  the  integral  of
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p(x) + 2 x
 given  by  F(x)  q(x) + c x 2 x

 where  q  is  some  polyno-

mial  (because   2 x dx 
2 x +1 x ln2-1

ln22
).  Since  q  is  a  polynomial,

this function grows still intermediately,  which we can easily verify by

calculating  limx∞

lnF(x)

ln(x)
 and  limx∞

lnF(x)

x
.  By  Theorem  1  and

Lemma 3, there is a Multiway System M7  that has a growth function

asymptotically equal to F-1(x). Since F  grows intermediately,  this sys-
tem is in Cinv int. Together  with the previous paragraphs, this provides

the proof for Theorem 2. 

Multiway Growth Approximability and Undecidability  3.3

As  we  have  shown  the  existence  of  systems  with  growth  function  gM

in Θ(1), Θ(xn), Θ(ax), Θa x , Θ x  and Θln(x), it is possible to find

a Multiway growth function asymptotically equal to any combination
of  these  functions  using  pointwise  addition  and  discrete  convolution.
This  works  because  asymptotic  equivalence  is  preserved  under  addi-
tion, summation and multiplication ([19, Section 2.2]), so we can take
the  appropriate  Multiway  Systems  for  the  atomic  parts  of  the  func-
tion’s  expression  and  combine  them  using  the  Multiway  sum  and

product. The  functions Θ(1), Θ(xn), Θ(ax), Θa x , Θ x  and Θln(x)

are all monotonously increasing, and addition as well as discrete con-
volution  preserves  this  property  (because  all  functions  have  values  in


≥0). This proves the following corollary to Theorem 2:

Corollary 3.  If  for  some  function  f : 
≥0  

≥0  there  is  a  function

g ∈ Θf   expressible  as  a  finite  combination  of  the  functions  x ↦ c,

x ↦ xn,  x ↦ ax,  x ↦ a x ,  x ↦ x ,  x ↦ ln(x)  (x, a, c ∈ 
+
)  using  the

operations pointwise addition and discrete convolution, then f  is Mul-

tiway growth-approximable. 

The  corollary  provides  further  insights  into  the  Multiway  growth-
approximability  and  Multiway  growth-computability  of  functions.
Let ℳC and ℳA be the sets of Multiway growth-computable and Mul-

tiway  growth-approximable  functions,  respectively.  Note  that
ℳC ⊂ ℳA  and  ℳC  is  countably  infinite,  since  the  set  of  Multiway

Systems  is  countably  infinite.  This  follows  from  the  fact  that  every
Multiway  System  can  be  reduced  to  use  only  the  alphabet  {A, B}
(Lemma  4)  and  then  be  expressed  using  the  symbols
"A", "B", "  ", "{", "}", "(", ")"  and  ", "  by  writing  down  its
signature.  The  set  of  words  over  this  finite  eight-symbol  alphabet  is
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countably  infinite.  However,  ℳA  is  uncountably  infinite  because  it

contains,  for  example,  all  constant  functions  from  
≥0  to  

≥0.  Using

Corollary 3, we notice that a variety of classes of functions are Multi-
way growth-approximable: 

For any function f ∈ ℳC, the function λ · f  where λ ∈  is a constant is

also in ℳC. 

1.

ℳA  contains  all  polynomials  with  natural  coefficients  because  they  can

be built by adding powers xn multiplied by constants. 

2.

For  all  polynomials  p(x)  in  ℳA,  ℳA  contains  functions  asymptotically

equal to x ↦ ln(x) · p(x). 

3.

Consequence  3  takes  a  little  longer  to  prove  but  will  be  worth
explaining  in  detail  because  similar  methods  may  be  used  to  gener-
alize  it,  for  example,  showing  that  ℳA  contains  polylogarithmic

functions. 

Proof.  Consider  the  product  system  of  a  polynomial  and  a  logarith-
mic  system.  By  equation  (4)  and  the  fact  that  asymptotic  equivalence
is  preserved  under  addition  and  multiplication,  the  system’s  growth
function is asymptotically equal to 

na + ln(n) + 

k1

n

kalnn - k  na + 

k1

n-1

hk.

Consider  some  fixed  input  n  for  g.  Let  Bk  be  the  kth  Bernoulli  num-

ber,  Bm(x)  the  periodic  continuation  of  the  mth
 Bernoulli  polynomial

and  choose  m  n + 1.  Using  the  Euler–Maclaurin  formula  [20,  pp.
501 ff.], we obtain



k1

n-1

hk  
1

n-1
h(x)dx +

h(n) + h(1)

2
+ Sm +Rm.

First of all, 
h(n)+h1

2
 simply evaluates to 

ln(n)

2
∈ (1). Next, it is easy to

show  inductively  that  the  kth  derivative  of  h  is  of  the  form

hk(x)  xa-kc ln(n - x) + p(x)  for  a  real  constant  c  and  a  rational

function  p(x) ∈ (1)  as  long  as  k ≥ a.  The  derivative  a + 1  is  some

rational function in 
1

x
. Thus, the remainder sum and integral satisfy

Sm  

k2

n+1 (-1)kBk

k !
hk(n) - hk(1)
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∼
Θ 

k2

n+1

xa-k ln(n - x) ∈ xa-2 ln(n - x)

Rm 
(-1)n+2

(n + 1) !

1

n-1
f n+1(x)Bm+1(x)dx

∼
Θ 1

n-1


1

x
dx ∈ ln(x).

Hence,



k1

n-1

hk ∼
Θ 1

n-1
h(x)dx.

Using the fact that

d

dx
x + (n - x) ln(n - x)  - ln(n - x)

and applying integration by parts, we obtain

Ia   xa ln(n - x)dx  -xax + (n - x) ln(n - x) +

 x + (n - x) ln(n - x)axa-1dx  T + J

J  a xadx + na xa-1 ln(n - x)dx -

a xa ln(n - x)dx 
axa+1

a + 1
+ naIa-1 - aIa

⇒ (a + 1)Ia  -xax + (n - x) ln(n - x) +
a

a + 1
xa+1 + naIa-1 +C

⇒ 1

n-1
xa ln(n - x)dx  Ia(n - 1) - Ia(1)

 

1

a + 1
-(n - 1)a(n - 1 + 1 · 0) +

a(n - 1)a+1

a + 1
+ naIa-1(n - 1) +

1a1 + (n - 1) ln(n - 1) -
a

a + 1
1a+1 - naIa-1(1)
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 

1

a + 1
-
(n - 1)a+1

a + 1
+

1

a + 1
+ (n - 1) ln(n - 1) +

naIa-1(n - 1) - Ia-1(1)

 

1

a + 1

1 - (n - 1)a+1

a + 1
+ (n - 1) ln(n - 1) + na

1

n-1
xa-1 ln(n - x)dx .

For a  1 we know


1

n-1
xa-1 ln(n - x)dx  - x + (n - x) ln(n - x)1

n-1

 -(n - 1) + 1 + (n - 1) ln(n - 1)

 -n + 2 + n ln(n - 1) - ln(n - 1)

∈ Θn ln(n - 1)

⇒ 
1

n-1
xa ln(n - x)dx 

1

2

1 - (n - 1)2

2
+ (n - 1) ln(n - 1) +

nΘn ln(n - 1)

⇒ 
1

n-1
x1 ln(n - x)dx ∈ Θn2 ln(n - 1).

Now,  by assuming ∫1
n-1xa ln(n - x)dx ∈ Θna+1 ln(n - 1) we have


1

n-1
xa ln(n - x)dx


1

a + 1

1 - (n - 1)a+1

a + 1
+ (n - 1) ln(n - 1) +

na
1

n-1
xa-1 ln(n - x)dx

 Θ-(n - 1)a+1 + Θ(n - 1) ln(n - 1) + a · n · Θna ln(n - 1)

⇒ 
1

n-1
xa ln(n - x)dx∈ Θna+1 ln(n - 1),

proving  ∫1
n-1xa ln(n - x)dx ∈ Θna+1 ln(n - 1)  inductively.  Finally,  this

means  the  growth  function  of  our  Multiway  System  is  asymptotically
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equal to

na + 

k1

n-1

hk ∼
Θ
na+1 ln(n - 1) ∼

Θ
na+1 ln(n),

proving,  in  fact,  that  for  every  xa-system  there  exists  a  xa ln(x)-
system. □

From these three properties,  we might already conclude that a sig-
nificant  number  of  functions  usually  investigated  in  mathematical
analysis  can  be  approximated  by  Multiway  growth  functions.  This
demonstrates  the  computational  diversity  of  Multiway  growth  func-
tions, which is neither a trivial nor an expected property.  

We  know that Multiway Systems themselves are capable of univer-
sal  computation,  as  they  can  emulate  Turing  machines,  but  it  is
unknown  so  far  which  computations  their  growth  functions  are  able
to  perform.  Thus,  it  may  be  considered  remarkable  that  many
common  mathematical  functions  are  expressible  (i.e.,  approximable)
as  Multiway  growth  functions.  Conversely,  this  could  later  allow  us
to  make  statements  about  a  Multiway  System’s  complexity  or  struc-
ture  by  considering  only  its  growth  function.  Maybe  Multiway
Systems can even be used to make general statements about the mathe-
matical  functions  themselves  since  they  give  a  new  way  of  looking  at
them. 

Notice,  however,  that  Multiway  growth  functions  are  strictly  less
powerful  than  computable  functions  in  general  due  to  the  following
lemma: 

Lemma 5. Every Multiway growth function is primitively recursive. 

Proof.  Given  some  Multiway  System,  we  can  compute  the  growth
function  g(n)  in  the  following  way:  use  two  lists  Sn  and  Tn
(S0  {}, T0  {s})  to  store  all  states  the  system  has  had  until  genera-

tion  n  and  all  states  of  generation  n.  In  every  iteration,  the  length  of
Tn  is the value of g(n). In step n + 1, the algorithm iterates through all

rules and searches through the characters of all strings in Tn  to check

if any rule applies. If this happens, the string with some part replaced
will be added to Tn+1 if it is not in Sn or Tn+1 already (only new states

get added). After  all possible such operations are done, Tn+1  contains

all  new  states  of  the  system  and  we  set  Sn+1  to  be  Sn ⋃Tn+1.  When

repeated, this process simulates the system’s  evolution and thus yields
the  correct  g(n).  All  loops  required  can  be  implemented  using  DO-

loops. If strings are treated as lists of characters (numbers), the string
replacement  and  substring  matching  operations  can  be  implemented
using  only  list  insertions,  deletions  and  searches  through  the  list.  No
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further  data  structures  and  no  comparisons  are  needed.  Hence,  the
entire program is primitively recursive by [21]. □

As  primitive  recursive  functions  still  contain  some  superexponen-
tial  functions,  Multiway  growth  functions  are  also  strictly  weaker
than those. Still, Multiway growth functions can approximate a lot of
elementary  functions  so  they  might  even  be  stronger  than  elementary
arithmetic  (EA)  while  probably  weaker  than  EA+  (EA  and  the  axiom
that  the  superexponential  function  is  total).  It  remains  an  open  ques-
tion to find out how ℳA or ℳC can be characterized elegantly.  

Besides  their  use  for  investigating  Multiway  growth-computability,
the tools obtained in this paper allow us to elegantly prove some state-
ments about the undecidability of Multiway growth-related questions.
For example, deciding if a given Multiway System is finite  is undecid-
able,  as  a  system  could  simulate  some  arbitrary  Turing  machine  and
have zero new states when the machine halts, reducing the question to
the  halting  problem.  Additionally,  even  for  an  infinite  Multiway
System, deciding whether its growth function is equal to some conjec-
tured function is undecidable in general since the system could be the
sum  of  some  usual  system  and  a  Turing  machine  emulator  that
becomes,  for  example,  exponentially  growing  after  the  machine  halts
but  has  only  one  state  before  that.  This  observation  makes  it  espe-
cially  important  in  the  context  of  the  Wolfram  Physics  Project  to  not
only  use  empirical  (computed)  observations  about  a  system’s  growth
function,  rate  or  class  but  also  take  into  account  the  system’s  rule
when conjecturing about it. 

This  “trick”  of  integrating  a  system  that  grows  very  differently
once some Turing  machine halts into some larger system was also the
strategy  used  to  construct  the  strongly  oscillating  system  in  Figure  4.

Specifically,  we  first  construct  a  system  similar  to  M5
N

 from  Sec-

tion 3.2, defined as 

M8
N,M

= 
i=1,…,N

"RA" → "xiR", "AM", "R", A, x1, … , xN.

When started on a string of M As, R moves to the right while replac-
ing  the  A  it  just  moved  over  by  any  of  the  N  xi.  Hence,  the  states  of

the  system  after  N  steps  are  precisely  the  words  of  length  N  over

x1, …, xN  since  R  moved  N  steps  to  the  right.  When  R  reaches  the

right end, the system terminates. Thus,  this system has MN
 new states

after M steps and 0 after that. 
The  oscillating  system  from  Figure  4  is  now  the  sum  of  a  linearly

growing  system  and  a  version  of  the  logarithm  system  from  Sec-
tion 2.2. However,  the customized logarithm system does not increase
its  number  of  states  after  exp  halts  but  just  triggers  an  instance  of
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M8
4,N

 on  the  string  of  ones  exp  has  written.  Since  after  roughly  2n

steps  the  nth  version  of  exp  halts,  n  ones  are  written  on  the  tape  so

about  n  steps  later,  the  system  has  4n  states  for  one  generation  and
then  “collapses”  into  one  state  again.  The  smallest  monotonically
increasing  upper  bound  for  this  growth  function  is  one  that  stays

4n  (2n)2 for roughly 2n steps and then increases to 4n+1. Denote this

sequence  a(n).  Now  log2 a(n)  is  approximately  the  sequence  “n

occurs  2n  times,”  which  is  in  Θlog2(n).  Thus,  log2 a(n) ∈

Θlog2(n)⟺ a(n) ∈ Θ(n)⟺a(n) ∈ Θn2. Since the whole system con-

sists  of  this  and  an  added  linear  system,  the  total  growth  rate  has

lower and upper tight bounds of Θ(x) and Θx2, respectively.  If we gen-

eralize the methods used in this paper,  they might be used to perform
a  kind  of  “Multiway  System  engineering”;  that  is,  they  could  help  to
construct systems for specific purposes. 

Concluding Remarks4.

While  being  motivated  by  applications  in  fundamental  physics,  this
paper  rather  focuses  on  mathematical  statements  about  string  rewrit-
ing  systems  in  general,  thereby  strengthening  the  foundations  of  the
related  physical  theories.  Especially,  we  make  several  statements
about  regularities,  structures  and  restrictions  Multiway  Systems
exhibit despite their status as complex systems. It is important to keep
in  mind  that  all  our  statements  apply  to  all  string  rewriting  systems,
although we use the term “Multiway  System” to highlight the connec-
tion  to  fundamental  physics.  We  can  summarize  our  main  results  as
follows:

We  have  introduced  the  notions  of  Multiway  growth  functions,  rates
and classes, which have large potential for mathematically investigating
abstract rewriting systems. 

1.

We  have  given  the  exponential  upper  bound  on  string-based  Multiway
System  growth  and  shown  that  they  can  grow  slower  than  any  com-
putable function, thereby describing boundaries of the space of possible
growth  rates.  This  asymmetry  implies  a  more  fundamental  connection
between  abstract  rewriting  systems  and  computable  functions,  which
will be subject to further research. 

2.

Furthermore,  we  have  provided  a  basic  but  nontrivial  classification
scheme that partitions the set of all string rewriting systems into a finite
number of subsets. From an algebraic point of view,  our arithmetic-like
operations  that  equip  the  set  of  all  Multiway  Systems  (or  string-
rewriting  systems,  for  that  matter)  with  a  weakened  semiring  structure
seem very promising to build algebraic structures upon string rewriting
systems.

3.
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In the same fashion, we have shown that the growth functions of string-
based  Multiway  Systems  can  approximate  quite  an  extent  of  known
functions  while  being  contained  in  the  set  of  primitive  recursive  func-
tions. It remains unclear and intriguing to find  out which status the sets
ℳA  and  ℳC  have  among  other  well-known  sets  of  functions,  but  our

Theorem 2 starts a characterization by subdividing them into nontrivial
classes.

4.

Additionally,  we  have  exemplarily  constructed  a  couple  of  elementary
systems  that  can  be  combined  purposefully  to  yield  systems  giving  a
desired growth function. This “Multiway  engineering” could be general-
ized  and  turn  out  to  be  useful  for  getting  intuition  about  string  rewrit-
ing  systems  as  well  as  potentially  constructing  (counter-)examples  to
empirically  grounded  conjectures  existing  in  the  Wolfram  Physics  Pro-
ject. 

5.

There are many potential applications of these results in theoretical
computer  science  and  the  Physics  Project.  Some  ideas  are  outlined
below:

While  some  “types”  or  “classes”  of  string  rewriting  systems  have
already  been  studied  (see  e.g.,  [22,  23]),  we  can  build  on  our  growth-
based  classification  approach,  for  example,  by  allowing  combined
classes  like  “polynomial  times  inverse  intermediate”-functions,  and  try
to connect growth classes of string rewriting systems with their proper-
ties  related  to  monoids  (similar  to  [13],  which  uses  the  growth  of  a
monoid  to  show  that  it  is  not  finitely  representable  through  a  certain
string  rewriting  system).  Also,  trying  to  quantify  and  find  regularity  in
the  oscillations  of  a  system’s  growth  function  (consider  the  system  in
Figure  3  as  an  example)  and  analyzing  strongly  oscillating  systems  like
the one depicted in Figure 4 are relevant projects to pursue. 

1.

Related  to  the  regularity  of  Multiway  Systems,  we  can  ask  whether
determining  which  growth  rate  (or  growth  class)  a  given  Multiway
System  has  from  its  rules  is  possible  in  general  (it  probably  is  not).
Maybe  methods  from  automated  theorem  proving  could  be  used  for
this  (as  abstract  rewriting  systems  themselves  can  be  used  for  theorem
proving  and  are  amendable  to  theorem  proving  techniques  [24]).
Another  question  is  whether  there  are  Multiway  Systems  that  show  no
regularity  in  their  growth  functions.  The  latter  would  be  important  for
complex systems–related research as it has been performed in [7]. 

2.

Speaking of regularity,  an important direction of research is the connec-
tion  between  a  Multiway  System’s  complexity  and  its  growth  function,
rate or class. Section 3 and the construction in 3 have already hinted at
the hypothesis that a system’s  rules need to be more complex to achieve
a growth rate in one of the slow-growing “inverse”-classes.  To  build on
this,  we  could  try  to  “restrict”  a  system’s  growth  by  enforcing  “boun-
dary conditions” and consider the complexity it can produce in this lim-
ited  form,  similar  to  the  approach  employed  by  LuValle  [25]  for
cellular  automata.  Additionally,  relations  between  slow  growth  and
complexity  of  cellular  automaton  boundaries  appear  in  [12]  as  well,

3.
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especially  in  the  construction  of  a  cellular  automaton  whose  boundary
growth  “oscillates”  similarly  to  the  Multiway  System  shown  in  Fig-
ure 4. This suggests that exploring the relation between cellular automa-
ton  boundary  growth  and  Multiway  System  growth  can  be  a  fruitful
enterprise. 

Regarding  the  Physics  Project,  the  most  obvious  next  step  is  generaliz-
ing  our  theorems  to  hypergraph  rewriting  systems  to  make  them  more
meaningful in a physical context. While  it might be difficult  to general-
ize  them  to  arbitrary  abstract  rewriting  systems,  the  hypergraph  case
should not be difficult to do because of the similarities of set replace sys-
tems  (which  can  emulate  hypergraph  rewriting  systems)  and  string
rewriting  systems.  Developing  the  algebraic  operations  we  defined  for
Multiway  Systems,  we  are  likely  to  gain  new  insights  about  abstract
rewriting systems using the connection to category theory and quantum
mechanics  established  in  [5].  Additionally,  more  general  forms  of  our
results  could  be  obtained  in  the  context  of  the  relation  between  Multi-
way Systems and the foundations of homotopy type theory [8]. 

4.

More specifically,  the changes in structure of branchial space (see glos-
sary  of  [5])  over  time  and  thus  the  growth  functions  of  Multiway
Systems are related to the states of quantum systems and measurements
of these [3]. Our upper bound on Multiway System growth rate may be
used to give upper bounds on entanglement speed and maximum possi-
ble  information  entropy  in  Wolfram  Models.  Similarly,  the  fact  that
slowness  of  Multiway  growth  rates  is  “unbounded”  could  be  used  to
investigate very slowly developing quantum systems that might be espe-
cially  stable  and  hence  useful  for  quantum  computation,  but  that  is
mere  speculation.  More  straightforward  is  the  application  of  Multiway
growth classes  to estimating the complexity  of quantum computational
algorithms  or  make  predictions  about  quantum  supremacy  using  the
Wolfram  model [26]. 

5.

Another  potential  physical  application  is  early-universe  cosmology.
Since  there  seems  to  be  an  empirical  connection  [27],  formalizing  that
would also be an important project, between the growth rates of physi-
cal  and  branchial  space;  that  is,  in  our  context  string-length  (or  hyper-
graph size) and Multiway growth functions, our boundaries on growth
functions  and  especially  the  “unboundedness”  of  its  slowness  may  be
related to the physical expansion of the early universe in the view of the
Wolfram  Model’s formalism. 

6.

The preceding points are just a few possibilities showing how much
potential  the  investigation  of  the  growth  functions,  rates  and  classes
of  abstract  rewriting  systems  has.  This  paper  marks  only  the  begin-
ning of many further research projects. However,  while we lay a very
basic  foundation,  we  succeed  in  doing  so,  as  our  results  are  formally
proven and computationally applicable. 
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