
Growth Functions, Rates and Classes of
String-Based Multiway Systems

Yorick Zeschke

Junior Research Affiliate
Wolfram Research, Inc.
yzeschke@gmail.com

Inspired by the recently emerging Wolfram Physics Project where
“Multiway Systems,” graph representations of abstract rewriting sys-
tems equipped with a causal structure, have played an important role in
discrete models of spacetime and quantum mechanics, this paper estab-
lishes several more fundamental properties about the growth (number
of states over steps in a system’s evolution) of string rewriting systems
in general. While proving the undecidability of exactly determining a
system’s growth function, we show several asymptotic properties all
growth functions of arbitrary string rewriting systems share. Through
an explicit construction, it is proven that string rewriting systems, while
never exceeding exponential functions in their growth, are capable of
growing arbitrarily slowly, that is, slower than the asymptotic inverse
of every Turing-computable function. Additionally, an elementary
classification scheme partitioning the set of string rewriting systems
into finitely many nontrivial subsets is provided. By introducing arith-
metic-like operations under which Multiway Systems form a weakened
semiring structure, it is furthermore demonstrated that their growth
functions, while always being primitively recursive, can approximate
many well-known elementary functions classically used in calculus,
which underlines the complexity and computational diversity of Multi-
way Systems. In the context of the Wolfram Physics Project, some impli-
cations of these findings are discussed as well.

Keywords: string rewriting systems; growth functions; Wolfram Physics
Project

Introduction and Overview 1.

String rewriting systems have been thoroughly researched in mathe-
matical logic, proof theory and theoretical computer science for the
past few decades [1, 2]. Recently however, these systems and the
related hypergraph rewriting systems have been shown to be of signifi-
cant interest in a fundamental physics context, as they possess various
connections to theories of relativity, gravity and quantum mechanics
[3–5], providing a new motivation for their investigation from a differ-
ent perspective. A key trait of this perspective will be regarding

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

abstract rewriting systems as complex systems, as it is necessary to
computationally simulate a given rewriting system to predict its states
after a number of applications of its rewrite rules; that is, the behav-
ior of an abstract rewriting system, or string rewriting system in our
case, is not directly obtainable from its initial state and rewriting rules
in general. Still, some attributes of these systems can be approxi-
mately predicted. In this paper, we prove several asymptotic state-
ments about the growth (defined below) of graph representations of
string rewriting systems that we call “string-based Multiway Systems”
(see [6, Section 2.1] for a definition of string rewriting systems and [3,
Definitions 10 and 11] for formal definitions of Multiway Systems).

While string rewriting systems were already investigated from a
complex systems point of view by Wolfram in 2002 [7, pp. 204, 939],
it was the Wolfram Physics Project (www.wolframphysics.org),
launched in 2019, that thoroughly explored and established various
links between Multiway Systems and group theory (see [7], notes for
Section 5.6), homotopy type theory [8], category theory [5] and
numerics of partial differential equations [9], setting aside the already
mentioned connections to what the project calls “Wolfram Models,”
certain discrete formalisms for spacetime and quantum mechanics (see
[10] for a general overview and [11] for a technical introduction, as
well as the appendix of [5] for a glossary of terminology). In the physi-
cal framework of the actual Wolfram Model (see Section 2 in [4] for a
formal definition), “hypergraph-based” Multiway Systems, that is,
systems for which the “elements” or “objects” of the underlying
abstract rewriting system are hypergraphs, are used. We consider
string-based Multiway Systems instead because of their simpler struc-
ture, which makes them more easily amenable for mathematical analy-
sis. Most likely, our results can be generalized to hypergraph-based
Multiway Systems without much effort.

For related discrete complex systems such as cellular automata,
various growth-related investigations have been conducted. For exam-
ple, Brummit and Rowland give a systematic empirical analysis of the
growth rates of boundaries of one-dimensional two-color cellular
automata, classify the automata by their (approximate) growth expo-
nent and construct a cellular automaton for which no such exponent
can be determined [12], a methodology similar to the one used in this
paper, although concerned with a different object of study. However,
apart from utilizing the growth functions of specific string rewriting
systems in proofs with other focus, as it was done, for example, in
[13] or [14, Section 9], there have not been many investigations of
growth functions of string rewriting systems in general, to our knowl-
edge. Still, our results demonstrate how studying them yields some sig-
nificant new insights into the general principles underlying abstract

124 Y. Zeschke

Complex Systems, 31 © 2022

https://www.wolframphysics.org/

rewriting and strengthens the theoretical foundations of the Physics
Project as well as the connections between discrete mathematics, theo-
retical physics and theoretical computer science (see Section 4).

Even despite our investigations being rather theoretical and aiming
at understanding the mathematical background and structure of
Multiway Systems in themselves, we comment on several potential
applications in the Wolfram Physics Project in Section 4 and demon-
strate our results by computational simulations of specific examples.
Our visualizations have been made using Mathematica and all code
for simulating Multiway Systems is available in the Wolfram
Functions Repository. Readers interested in running simulations and
visualizations themselves may find the documentation of the
MultiwaySystem resource function to be useful references.

The subsequent subsections start by formally defining what we
mean by Multiway System growth functions, rates and classes. Next,
we investigate the boundaries of possible growth rates and find that
Multiway Systems are, simply put, bounded in the speed but
unbounded in the slowness of their growth rate (Theorem 1). After
that, we show that the growth classes of the Multiway Systems we
defined cover the entire set of Multiway Systems and apart from one
trivially empty class, all of them contain infinitely many Multiway Sys-
tems (Theorem 2). To do this, we define arithmetic-like operations
equipping the set of Multiway Systems with a semiring structure.
Combining the two theorems, we conclude various interesting proper-
ties of the “computational diversity” and “-complexity” of Multiway
Systems, showing that their growth functions constitute an interesting
domain of further research.

Multiway Growth Functions1.1

Consider a string-based Multiway System M [3, Definition 10], repre-

sented as a triplet R, sinit, Σ where Σ is a finite alphabet,

R  r1  t1, …, rn  tn is a set of string replacement rules over Σ

and sinit ∈ Σ*
 is the initial string where Σ*

 denotes the set of all words

over the alphabet Σ. We define the “state-set of generation n” as the
set of all new (previously nonexistent) states added to the Multiway

System in its nth generation. These states are precisely the nodes of the
states graph (cf. [11, Section 5.3]) to which the shortest path from the
initial state has length n. In [11] they are called “merged states.”
Now, the “growth function” gM(n) is simply the cardinality of the

state-set of generation n (see Figure 1). Note that we use the terms

“sequence” and “function” interchangeably for functions f : 
+

 
+
.

Growth Functions, Rates and Classes of String-Based Multiway Systems 125

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

(a) (b)

Figure 1. Both (a) M1  "A"  "AB", "AA", A, B and (b) M2 

"A"  "AB", "AB"  "A", "AA", A, B have the same growth function

g(n)  n because cycles in the states graph do not lead to new states.

In general, it is very hard or even undecidable (see Section 3) to
prove that some Multiway System has a certain growth function. It is
also not obvious that the growth functions of Multiway Systems
should be elementary functions or “simple” by any other definition.
Examples of systems where the growth function is hard to describe
were already given in A New Kind of Science [7, pp. 204 ff.]. There-
fore, we will approximate the growth functions of Multiway Systems
by continuous, strictly monotonically increasing, unbounded (and
hence bijective on 

≥0) functions, which can be analyzed more easily.

This way, many similar growth functions will be considered members
of the same equivalence class. We will say that the corresponding
Multiway Systems have the same “growth rate.”

Multiway Growth Rates1.2

To formalize the notion of approximating functions, we use the
asymptotic growth classes from complexity theory, defined in the fol-

lowing way: For a function f :A  B where A  B  
≥0 or

A  B  , f  is defined as the set of functions g :A  B for which

lim supx∞

g(x)

f (x)
 exists and is a real number. An equivalent definition

is g ∈ f ⟺∃ C ∈ 
+
: ∃ x0 ∈ A : ∀ x > x0 :Cf (x) ≥ g(x) but we use

the previous one for convenience. The subset of f  for which the

limit superior is zero is denoted of . Similarly, Ωf  :=

g :A  B f ∈ g and ωf  := g :A  B f ∈ og. Finally, Θf  :=

Ωf  ⋂ f . It is straightforward to show that f ∼
Θ
g⟺ f ∈ Θg is an

126 Y. Zeschke

Complex Systems, 31 © 2022

equivalence relation. Thus, we may speak of functions that are “asym-
ptotically equal.”

As already mentioned, we want to approximate growth functions
by bijective functions for the subsequent mathematical analysis. For
some Multiway growth function a, we will define the sequences a and
a as its tightest upper and lower bounds that are monotonically

increasing, even if a itself is not monotonic at all. From these
sequences, we will then construct two equivalence classes of continu-
ous functions that are all asymptotically equal to and hence “close
approximations” of a or a respectively. Two representatives of these

classes will be called “tight bounds” and, since we are generally con-
cerned with unbounded growth functions (bounded growth functions
will be discussed shortly), both are bijective on 

≥0.

Notice that we have only defined asymptotic growth classes for
functions on  or 

≥0. However, since the Multiway growth function

is always a function on 
+
, we consider its linear interpolation, a con-

tinuous function from 
≥0 to 

≥0 that is equal to the sequence for

natural arguments and always bounded by consecutive values of the
sequence (see Definition 4), instead.

Definition 1. Let M be a Multiway System and gM its growth function.

We call M “finite” if ∃ n ∈ 
+
: gM(n)  0 (as this implies that at a cer-

tain point, no further states will be added). We call M “bounded” if

∃ b ∈ 
+
: ∀ n ∈ 

+
: gM(n) ≤ b and M is not finite. Systems that are nei-

ther finite nor bounded are called “unbounded” (see Figure 2).

(a) (b)

Figure 2. (a) States graphs of the finite system M1  "A"  "BC",

"B"  "C", "C"  "B", "A", A, B and (b) first six steps of the bounded

system M2  "A"  "AA", "A", A. Notice that ∀ n ∈ 
+
: gM2

(n)  1,

despite the fact that the rule can be applied in many different positions,
because we are only considering merged states.

Definition 2. Let a : 
+

 
+

 be the growth function of an unbounded

Multiway System and let

an := maxak k ≤ n

Growth Functions, Rates and Classes of String-Based Multiway Systems 127

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

and

an := maxak k ≤ n ⋀ ∀ l ≥ k : al ≥ ak ⋃ {1}.

We call two continuous functions f , g : 
≥0  

≥0 “tight bounds of a”

if f ∈ ΘL

+

(a) ⋀ g ∈ ΘL

+

(a) where L

+

 denotes the linear interpola-

tion over 
+

 (according to Definition 4). See Figure 3 for a visual

illustration.

(a) (b)

Figure 3. The growth function an of M  "AB"  "", "ABA" 

"ABBAB", "ABABBB"  "AAAAABA", "ABABAB", A, B together with

an, an and a pair f , g of tight bounds. Note: Only f and g are continuous;

the other lines are drawn for visual appearance.

One might ask why we introduce an upper and a lower bound
instead of approximating the growth function with a single function.
Doing so would, however, be a poor approximation, as there are Mul-
tiway Systems for which even the tightest upper and lower bounds are
never in the same asymptotic growth class (compare Figure 4). We
will call these Multiway Systems “strongly oscillating” and all others

(a) (b)

Figure 4. For this special system, we can prove (see Section 3 for an explana-

tion) the tight bounds f , g to be in different asymptotic growth classes:

f ∈ Θ(x) and g ∈ Θx2. Note again that only f and g are continuous, while an
is drawn as a line for visual appearance.

128 Y. Zeschke

Complex Systems, 31 © 2022

(i.e., systems where all tight bounds are asymptotically equal) "reg-
ular." Notice that for every regular Multiway System, a pair of
bijective tight bounds exists because its tight bounds will be in the
asymptotic equivalence class of two unbounded strictly monotonically
increasing functions and tight bounds are continuous on 

+
. Strongly

oscillating systems, on the other hand, are much more difficult to ana-
lyze since we cannot easily come up with criteria for measuring the
rate of oscillation and it is not clear at all whether there has to be any
periodicity or regularity in the way in which they oscillate. Thus, for
our basic investigations about the fundamental structure of Multiway
Systems, we will focus on regular systems.

Definition 2 suggests a natural way to define classes of Multiway
Systems with “similar” growth functions by considering growth func-
tions with approximately equal tight bounds as equivalent. Let

f , g : 
+

 
+

 be functions and a1, b1, a2, b2 be tight bounds of f

and g, respectively. We define ∼R by f ∼R g⟺a1 ∼
Θ
a2 ⋀ b1 ∼

Θ
b2.

Since tight bounds always exist, ∼R is an equivalence relation because

∼
Θ

 is one. For some Multiway System M with growth function gM, we

call the equivalence class of ∼R that gM falls into the “growth rate” of

gM (or sometimes the growth rate of just M).

It is obvious that every Multiway System has exactly one growth
function and exactly one growth rate. The converse, that is, that every

function f : 
+

 
+

 is the growth function of some Multiway System

or, respectively, that every pair of bijective functions on 
≥0 is a pair

of tight bounds of some Multiway growth function, is clearly not
true, as emphasized in Lemma 1. However, if we define much more
general classes of growth functions, which we will call “Multiway
growth classes,” we will see (in Theorem 2) that they indeed partition
the set of all Multiway Systems into a finite set of infinite subsets.

Multiway Growth Classes 1.3

To further distinguish between types of Multiway Systems on a more
abstract level and demonstrate which kinds of growth functions can
be achieved, we want to define very broad classes of Multiway Sys-
tems whose growth functions show similar behavior on a large scale.
We have already distinguished among finite, bounded and unbounded
systems, as well as dividing the latter into regular and strongly oscillat-
ing systems. As outlined earlier, we will focus on regular systems. To
group these into sets of systems of similar behavior, we use commonly
known classes of functions such as polynomial or exponential func-
tions or, more precisely, functions bounded by polynomials or expo-
nentials, as well as intermediately (faster than polynomial and slower
than exponential) growing functions and some others.

Growth Functions, Rates and Classes of String-Based Multiway Systems 129

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

More precisely: Let Gpol be defined as the set of all continuous

bijections f : 
≥0  

≥0 that satisfy f ∈ Ω(xn) ⋂ xn+1 for some

n ∈ 
+
 and define Gexp as

f : 
≥0  

≥0 f ∈ Ωax ⋂ (a + 1)x

for some a ∈ 
>1. Similarly, let Gsup exp be the set

f : 
≥0  

≥0 ∀ g ∈ Gexp : f ∈ ωg

where f must be continuous and bijective. Additionally, denote by

Gint the set of all continuous bijections f : 
≥0  

≥0 fulfilling

∀ g ∈ Gpol, h ∈ Gexp : f ∈ ωg ⋂ oh. Now, it is easy to analogously

define

Ginv pol := f f-1 ∈ Gpol,

Ginv exp := f f-1 ∈ Gexp,

Ginv sup exp := f f-1 ∈ Gsup exp

and

Ginv int := f f-1 ∈ Gint.

These eight sets give a partition of the set of all continuous bijec-

tions on 
≥0 because a function grows either slower than f : x ↦ x, in

which case its inverse grows faster than f , or it grows faster (or equal

to) f , in which case it is contained in one of the first four classes. We

call a Multiway System a member of the growth class Ci if its growth

function has tight bounds f , g belonging to Gi. Note that this defini-

tion applies only to regular Multiway Systems. Also, as Definition 2 is
not applicable for finite or bounded Multiway Systems, we handle
them separately.

Let Cfin and Cbnd be the sets of all finite and bounded Multiway

Systems, respectively. For all Multiway Systems in Cfin ⋃Cbnd, the

growth rate is defined to be (1, 1). While finite and bounded systems
can have quite an intricate structure, their growth functions are not
very interesting for our purposes. As a side note, it should be
remarked that what seems to be “complex behavior” in a New Kind
of Science-fashion (compare [7]), occurred much more frequently in
our empirical investigations of finite systems, but these observations
are far from conclusive. They might be useful for applications not
directly related to the Wolfram Physics Project, but in this paper, they
will not be discussed in great detail.

130 Y. Zeschke

Complex Systems, 31 © 2022

As every continuous bijection on 
+

 belongs to exactly one of the

Gi, every Multiway System that can be imagined is either strongly

oscillating or in one of those classes (including Cfin and Cbnd). We

will furthermore show in Theorem 2 that every one of these classes
(except Csup exp, which is empty by Lemma 1) contains infinitely many

Multiway Systems.
Summarizing the previous section, we introduced the three main

concepts of Multiway growth functions, Multiway growth rates and
Multiway growth classes. We will now present the first important
result of this paper, a theorem about the boundaries of possible
growth rates, and spend the next section proving and illustrating it.

The Spectrum of Possible Growth Rates2.

Having defined Multiway growth rates, we might ask ourselves which
growth rates are possible, that is, how the equivalence classes of ∼R

are distributed in the set of all possible pairs of bijective functions on


≥0. First of all, it is quite easy to give an upper bound for growth

rates that can be achieved. In fact, no Multiway System can grow
faster than exponentially.

Lemma 1. Let f , g be the growth rate of some Multiway System.

There exists some constant c ∈  for which f , g ∈ o(ecx).

Proof. Denote by smax(n) the maximum string length that states of

generation n can have. For every Multiway System M  R, sinit, Σ,

the set of rules remains constant during the whole evolution, so smax

can at most increase constantly, that is, smax ∈ (n). Since the number

of words with length l is given by Σl, the growth function gM(n) will

never exceed Σsmax(n)  eln(Σ)smax(n) ∈ Θ(ecn) and the claim follows. □

So what about a lower bound for Multiway growth rates? For-
mally, a trivial Multiway System with no rules and thus only one state
has the lowest possible growth function by pointwise value compar-
ison. In general, “terminating” or “constant” asymptotic growth func-
tions of finite or bounded Multiway Systems (which have the growth
rate (1, 1)) are the slowest by means of asymptotic comparison, that

is, with respect to the total ordering ≤


 defined by f ≤

g⟺ f ∈ g,

but examples like this are not very illuminating. Therefore, we might
ask what the slowest growth rate faster than constant is, that is, what

the smallest (by asymptotic comparison) functions f , g ∈ ω(1) are for

which f , g is the growth rate of some Multiway System. It turns out

Growth Functions, Rates and Classes of String-Based Multiway Systems 131

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

however, that no such smallest growth rate exists, which means that
Multiway Systems can, in a certain sense, grow arbitrarily slowly.

To understand why this is the case and make the even stronger state-
ment that Multiway Systems can grow slower than all computable
functions (see Corollary 2), we need to introduce a couple of construc-
tions. First of all, we will show how Multiway Systems can emulate
Turing machines, meaning there are systems such that the successive
states of their evolution correspond to steps in the machine’s evalua-
tion. Phrased differently, it is possible to construct a Multiway System
that has exactly one new state for T(n) steps, where T(n) is the num-
ber of operations that a certain Turing machine  carries out before
halting when provided with the input n. Such a machine, with some
additional constraints, will be called a “T-halter” and T its “halting
function.”

By adding some specific rules to the Multiway System that emu-
lates  , it will be possible to evaluate  indefinitely for increasing
inputs n  1, 2, …. Additionally, the Multiway System will be con-
structed in a way such that every time the underlying Turing machine
is “started again” on the next input, the number of new states per
time step is increased by one. This way, we will obtain a growth func-
tion informally described by the sequence “n occurs T(n) times” (see
Definition 3), for example, the sequence “n occurs n times,” which
would be given by 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, …. We will then show
that this growth function is approximated by the inverse of the linear
interpolation (see Definition 4) over the summatory function of T (see
Lemma 2). From this we conclude the following theorem:

Theorem 1. Let T ∈ Ω(n) be the halting function of some Turing
machine (see Figure 5). There is a Multiway System with growth rate

a, b such that a, b ∈ T
*
-1 where T

*
(x)  L


+

∑k1
n Tk and L


+

denotes the linear interpolation over 
+
 (see Definition 4).

Proof of Theorem 1 2.1

Now let us formalize the proof outlined in the preceding section. For
some function T :   , we define a “T-halter” to be a Turing
machine  such that  executes precisely T(n) operations when given
the input n, taking into account the input and output constraints
depicted in Figure 6(a). These constraints will later allow us to
“enchain” the Multiway Systems corresponding to T-halters. Of
course, neither is there a T-halter for arbitrary T nor must there be a
unique T-halter for a given T. However, and this is the part we care

about, there is a T-halter such that T ∈ Ωf  for any computable func-

tion f because we can just take the Turing machine that computes f

and add some logic to write n + 1 after the computation is finished.

132 Y. Zeschke

Complex Systems, 31 © 2022

Figure 5. Graphical illustration of Theorem 1. The theorem asserts that there

is a Multiway System for which the growth rate f , g is asymptotically less

than T
*
-1(x).

(a) (b)

Figure 6. Visual explanation of the T-halter constraints and Turing machine
plot with an associated Multiway System plot. (a)  is always started on an
empty tape containing only n in unary representation. After halting,  is

required to have written n + 1 in unary on the tape and placed its head onto

or left of the first digit. The number n + 1 must be preceded and followed by
at least one empty symbol. (b) Evolution of 1 (compare Figure 7(a)) next to

the evolution of M1. The position and orientation of the “droplet” symbol

indicate the machine's head position and state, respectively.

Having defined T-halters, the next step is to show how Multiway
Systems can emulate these (and all other Turing machines). Since we
are talking about deterministic Turing machines, no branching shall
occur in the corresponding Multiway System; that is, the system
should have exactly one state in generation n that corresponds to the
state of the Turing machine after n - 1 operations. Because at every
state in the machine’s evolution only a finite part of the tape contains
non-blank symbols, we include only the symbols already “touched”

Growth Functions, Rates and Classes of String-Based Multiway Systems 133

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

by the machine (meaning the head was on that symbol at least once)
in the states of the Multiway System and abbreviate the infinite
strings of zeros on both sides of the tape with an underscore. The posi-
tion and state of the head are indicated by an H right of the symbol
the head is currently on, followed by the current state number. Hence,
there are four additional symbols (two underscores, an H and a num-
ber) used in the Multiway System but not written on the machine’s
tape (see Figure 6(b)).

Using this representation, plain read/write operations and state
changes would be straightforward to implement as replacement rules,
as we could just introduce a rule "xHn"  "yHm" for every combina-

tion of currently read symbol x and head state n (writing symbols
next to each other in this context simply denotes their concatenation
to a string). However, since the head must move left or right after
each such operation, those rules are not suitable. What is needed
instead to encode the operation “when x1 is read in state n, write y1,

change state to m and move the head right,” is a rule of the form
"x1Hnx2"  "y1x2Hm" for every possible value of x2. Similarly, a

left move of the head is encoded as "x2x1Hn"  "x2Hmy1". If n is

not a halting state (in which case we would not need any rules),
exactly one of these two rule patterns will be applicable for every pos-
sible value of x1 or, respectively, every state transition arrow starting

at H in the state transition diagram.
For a Turing machine with N states working on an alphabet of S

symbols, that already gives a worst-case (no halting states) of N · S2

rules in the corresponding Multiway System. However, N · S (worst
case) more rules have to be added to handle the literal “edge cases” in
which the head is next to one of the underscores bounding the tape.
The two rule patterns, of which, as before, exactly one will match for
every state transition arrow, are "_xHn"  "_0Hmy" for a left move

and "xHn_"  "y0Hm_" for a right move (in both cases x is read

and y written). Now, the resulting rule set captures all of the Turing

machine’s properties and is able to extend the tape to any required
length by itself. As an initial state of the Multiway System to emulate
the machine, any string of characters from the machine’s alphabet
together with an "Hs", where s is the starting state, and the two
bounding underscores can be used.

To illustrate this construction, consider the Turing machine 1

shown in Figure 7(a). It is, in some sense, the easiest possible T-halter
for it does nothing more than increase the number on the tape by one
and place its head back at the beginning. Figure 6(b) shows the succes-
sive states of the machine (and tape) next to a Multiway System M1

emulating 1. The rule set for this specific instance is

134 Y. Zeschke

Complex Systems, 31 © 2022

{"00H1" -> "0H21", "10H1" -> "1H21", "1H10" -> "10H1",
"1H11" -> "11H1", "01H2" -> "0H21", "11H2" -> "1H21",
"0H20" -> "00H3", "0H21" -> "01H3", "_0H1" -> "_0H21",
"1H1_" -> "10H1_", "_1H2" -> "_0H21", "0H2_" -> "00H3_"}

Now it is clear that a Multiway System emulating some T-halter 

has exactly one state for T(n) generations when started with the initial

condition "_1H11n-1_" (1n-1 denotes n - 1 times the symbol 1, the
first 1 is left of the head and the head starts in state 1). Now, we need
a way to “enchain” this Multiway System with itself. To achieve this,

first add the rules "Hf"  "X" for every halting state f where X is

one fixed symbol not contained in  ’s alphabet. These additional
rules will cause the multiway state in generation T(n) + 1 to look like
"_w101X1n0w2_" (if the head is left of the first digit,

"_w10X1n+10w2_" works analogously) where w1 and w2 are arbi-

trary words that might be created as byproducts in the working of  .
This is due to the T-halter constraints depicted in Figure 6(a), or
rather, the T-halter constraints were chosen precisely to cause such a
configuration of the tape.

(a) (b)

Figure 7. Two different representations of the same computational system: a
Turing machine and a Multiway System. (a) Rule plot and state transition dia-
gram of 1. The arrow labels indicate “read, write, move”. (b) States graph of

the Multiway System constructed from 1 (see below).

Adding the rules "X1"  "1X", "X0"  _0", "1Y"  "Y1" and
"0Y1"  "0_1H1" will cause exactly one state where the X has
“moved” one position to the right for n generations (first rule), then
add an underscore behind the n ones (second rule), “move back to the
left” using the Y for n + 1 generations (third rule) and finally add an
underscore at the left side, replacing Y by the starting state symbol

Growth Functions, Rates and Classes of String-Based Multiway Systems 135

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

"H1" of  (see Figure 7(b)). Now, the whole process can start again
because the new underscores ensure a “fresh” new tape for  , which
now contains, by the T-halter constraints, n + 1 as the next input for
 to continue with while everything outside the bounding underscores
will be ignored.

The resulting Multiway System of this continued reevaluation of 
will run indefinitely, subsequently running instances of  with larger
and larger values of n. Despite that, the Multiway System still has
only one state in all generations. In order to make the number of
states increase exactly when n increases; that is, when some instance
of  has finished working, we add the rules "0Y1"  "Z" and
"Z"  "ZZ". This way, the Multiway states graph branches every
time the system starts a new instance of  into a main branch where
the evaluation of  continues and a diverging branch where the sec-
ond rule just creates longer and longer strings of Z forever, constantly
adding one new state to every generation. Thus, the number of diver-
gent branches is always equal to n - 1 and these branches grow con-
stantly forever, causing the desired behavior as shown in Figure 7(b).

First, it takes a “preparation time” of p(n)  2(n + 1) + 1 (or

p(n)  2(n + 2) if the head starts at the left of the first digit instead)

steps because the head moves over n + 1 symbols including the new 1

before iteration n + 1 of  can start after the nth iteration is done.
Thus, there will be n states for T(n) + p(n) steps in this Multiway

System construction, before the number of states increases by one. Let
us generally investigate the sequences obtained this way:

Definition 3. Let f : 
+

 
+

 be a function. The sequence “n occurs f (n)

times” is defined by Af ∑k1
n f k  Af m + ∑k1

n f k  n for all

n, m ∈  with n ≥ 1 ⋀m < f (n + 1).

Definition 4. Let f : 
+

 
+

 be a function and S ⊆ 
+

 an infinite set.

The “linear interpolation of f over S,” denoted LSf , is defined as the

polygonal chain starting at (0, 0) and passing through all points

n, f (n), n ∈ S ordered by n.

Since Definition 3 requires f to always be greater than zero, every

natural number can be represented as some sum over consecutive val-

ues of f plus a remainder and, as Figure 8(a) shows, this definition

indeed matches the informal description of “n occurs f (n) times.”

Notice as well that the linear interpolation, despite being defined as a

curve in 2, can be regarded as a continuous function from 
≥0 to


≥0 because for all n ∈ S, the function to be interpolated assigns

precisely one y value, and since S is an infinite subset of , the linear

interpolation function is defined everywhere on 
≥0.

136 Y. Zeschke

Complex Systems, 31 © 2022

(a) (b)

Figure 8. Plots for illustrating Definitions 3 and 4. (a) Example for Defini-

tion 3: the sequence “n occurs f (n)  2n times” (A2n). (b) Example for

Definition 4: the linear interpolation of A2n over 
+
, now a continuous func-

tion from 
≥0 to 

≥0.

Now, to express some sequence Af explicitly, define the set of

increase indices of Af as IAf  := n ∈ 
+
Af (n - 1) < Af (n). It follows

that LIAf 
Af  will always be strictly monotonically increasing and

unbounded. Therefore, its inverse function LIAf 
Af 

-1
 exists and we

can formulate the following lemma:

Lemma 2. For all functions f : 
+

 
+
, the following identity holds:

LIAf 
Af (x)  L


+

∑k1
n f k

-1
(x).

Proof. For readability, let T
σ

 be the function ∑K1
n Tk,

φ(x) := LIAf 
Af (x) and ψ(x) := L


+

∑k1
n f k(x). By Definition 4, the

linear interpolation of a function equals that function on the interpola-
tion set, so

∀ n ∈ 
+
: (φ◦ψ)(n)  φ 

k1

n

f k  n.

For values x ∈ (n, n + 1), n ∈ , the linear interpolation gives

ψ(x) 
Δy

Δx
(x - n) + ψ(n) 

ψ(n + 1) - ψ(n)

n + 1 - n
(x - n) + ψ(n)

 (ψ(n + 1) - ψ(n))(x - n) + ψ(n).

(1)

Letting y  ψ(x), we know that

(φ◦ψ)(x)  φy 
φy2 - φy1

y2 - y1

y - y1 + φy1

Growth Functions, Rates and Classes of String-Based Multiway Systems 137

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

for some y1, y2 ∈ IAf  where y1 < y < y2 and y1, y2 are the values in

IAf  closest to y. Since ψ is strictly monotonically increasing, y1 and

y2 must be given by ψ(n) and ψ(n + 1), respectively. Thus,

(φ◦ψ)(x) 
φ(ψ(n + 1)) - φ(ψ(n))

ψ(n + 1) - ψ(n)
(ψ(x) - ψ(n)) + φ(ψ(n))


n + 1 - n

ψ(n + 1) - ψ(n)
(ψ(x) - ψ(n)) + n


(ψ(n + 1) - ψ(n))(x - n) + ψ(n) - ψ(n)

ψ(n + 1) - ψ(n)
+ n by equation (1)

 x - n + n  x.

So φ is a left-inverse of ψ on 
≥0. Analogously, it can be shown that φ

is also a right-inverse of ψ, so indeed, LIAf 
Af  and L


+

∑k1
n f k are

inverse functions. □

Putting it all together, we conclude from the previous Turing
machine investigation that for every halting function T ∈ Ω(n), there
is a Multiway System that has the growth function gM(n)  AT+p(n)

for some p ∈ Θ(n). Additionally, p ∈ Θ(n), so gM will even become

strictly less than L

+

T
σ


-1

 very soon. In most practical cases, gM is

much lower. Hence, p “delays” the growth function even more; that

is, ∀ n ∈ 
+
:AT+p(n) ≤ AT (n), and it follows that

LIgM
gM(n) ≤ LIAT 

AT (n)  L

+

T
σ


-1

(x)

⇒ gM(n) ∈  L

+



k1

n

Tk

-1

by Lemma 2, which concludes the proof of Theorem 1.

Applications of Theorem 1 2.2

Computing linear interpolations and their inverse functions seems
hard to do analytically because in most cases, there are no elementary
closed-form expressions describing them. Therefore, it might seem
difficult to actually apply Theorem 1. However, since we are only
interested in growth rates, we can use approximations to make calcu-
lations much easier.

Lemma 3. If f : 
+

 
+

 is strictly increasing, g : 
≥0  

≥0 is continu-

ous and bijective and ∀ n ∈ 
+
: g(n)  f (n), then L


+

f 
-1

∈ Θg-1.

138 Y. Zeschke

Complex Systems, 31 © 2022

Proof. Because g is continuous and takes the same values as f for

natural arguments, we know that

∀ n ∈ 
+
: ∀ x ∈ (n, n + 1) : f (n) ≤ g(x) ≤ f (n + 1).

Using the fact that the linear interpolation equals the function for natu-

ral arguments, this equation becomes L

+

f (n) ≤ g(x) ≤ L

+

f (n + 1).

This implies L

+

f 
-1

y1 ≤ g-1y ≤ L

+

f 
-1

y2 for values y ∈ y1, y2

where y1  f (n) and y2  f (n + 1). Expanding out gives

L

+

f 
-1

f (n) ≤ g-1y ≤ L

+

f 
-1

f (n + 1)

⇒ n ≤ g-1y ≤ n + 1,

which means that the difference of g-1y and L

+

f 
-1

y is always

bounded by 1. Therefore, g-1 ∈ ΘL

+

f 
-1

. □

Whenever it is possible to express some halting function in a closed

form (e.g., T : 
+

 
+
, n ↦ 2n2 + 3n) that could also describe a bijec-

tive function on 
≥0 (like f (x)  2x2 + 3x), we can use Lemma 3 to

simplify calculations: Since f is monotonically increasing and the lin-

ear interpolation equals the summatory function for natural argu-
ments, we have



k0

⌊x⌋

f k ≤ 
0

x
f (t)dt ≤ 

k1

⌈x⌉

f k

⇒ L

+

T
σ

(⌊x⌋) ≤ F(x) ≤ L

+

T
σ

(⌈x⌉).

(2)

Therefore, Lemma 3 tells us that we can approximate the inverse of
the summatory function used in Theorem 1 just by computing the

inverse of the integral of f . Especially in the case of logarithms or

exponential functions, solving integrals is much easier than comput-
ing sums, so this lemma can be very useful.

To demonstrate this and assist with the proof of Theorem 2, let us
imagine we wanted to construct a Multiway System of logarithmic
growth rate. We can approach this problem by designing a T-halter
for some Texp ∈ Θ(2n) and implementing the construction described in

Section 2 to get a Multiway System with the inverse growth rate. As
an example, take the Turing machine exp shown in Figure 9. It is

started in state 1, which simply moves the head to the right end of the
word on the tape and changes to state 2. In this state, the head moves
left again, replacing 2 by 1 until it encounters a 1, which it changes to
a 2 and returns to state 1, repeating the process. It is easy to see that

Growth Functions, Rates and Classes of String-Based Multiway Systems 139

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

Figure 9. The rule plot, state transition diagram and one example evolution
(starting from three ones) for the Turing machine exp.

this is precisely the process of incrementing a binary number where 1
corresponds to a zero and 2 to a one. The process is repeated until the
head moves to the left of the word, which, by then, consists only of 1
since the previous string was the symbol 2 repeated n times. When the
head encounters the first blank symbol on the left, it writes one more
1 to satisfy the T-halter constraint of incrementing the unary number,
and then halts. The process is shown in Figure 9 for n  3.

Consider the action of the machine when started at the right of

some binary word of 1s and 2s in state 1: The head moves b symbols

to the left until it encounters the rightmost 1, and then b symbols

back after changing it. Since there are 2n-b binary words of length n

where the rightmost 1 is at position b, the Turing machine takes



k1

n

2k · 2n-k  2

k1

n

n - k2k  2 n

k1

n

2k - 

k1

n

k2k

 2 n2n+1 - 1 -
2 - (n + 1)2n+1 + n2n+2

(2 - 1)2
15, p. 36

 2n2n+1 - n - 2 + n2n+1 + 2n+1 - n2n+2

 2-n - 2 + 2n+1  2n+2 - 2n - 4

140 Y. Zeschke

Complex Systems, 31 © 2022

steps before the head is at the right of 1n and in state 1. Since the
machine takes n + 2 steps to move to the left again, write the new 1
and halt, as well as taking n steps to move the head to the right in the
first place, the total number of states, including starting and halting
state, simplifies to

Texp(n)  2n + 3 + 2n+2 - 2n - 4  2n+2 - 1.

In combination with Lemma 3, another strategy for simplifying calcu-
lations is to give easily computable bounds for T. In this case, we use

the fact that 2n+1 < 2n+2 - 1 < 2n+2 for all n ∈  to obtain

2x+1 < L

+

Texp(x) < 2x+2 for all x ∈ 
≥0. Letting l(x) := L


+

Texp(x)

for readability, this becomes

2x+1 < l(x) < 2x+2 ⟺ 
0

x
2t+1dt < 

0

x
l(t)dt < 

0

x
2t+2dt

⟺
2

ln(2)
2x - 1 < 

0

x
l(t)dt <

4

ln(2)
2x - 1.

Since the inverse of

x ↦
a

ln(2)
2x - 1

is

y ↦ log2 y
ln(2)

a
+ 1 ,

and f (x) < g(x)⟺ f-1(x) > g-1(x), the equation is equivalent to

log2 y
ln(2)

2
+ 1 > 

0

x
l(t)dt

-1
> log2 y

ln(2)

4
+ 1 .

Now, notice that

log2y + c  log2y + log2 1 +
c

y

x→∞
log2y since 1 +

c

y

x→∞
1

and

log2yc  log2y + log2(c) ∧ log2y + log2(c)
x→∞

log2y.

From this, we know ∫0
xl(t)dt-1 ∈ Θlog2(x) because the upper and

lower bound asymptotically equal log2(x). By Lemma 3 and equa-

tion (2), ∫0
xl(t)dt-1 is also in ΘLIATexp


ATexp

 and we can conclude

Growth Functions, Rates and Classes of String-Based Multiway Systems 141

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

that ATexp
∼

Θ
log2(x). Simulating the Multiway System and measuring

the growth function empirically supports this, as Figure 10 shows. In
future examples, most steps of the argumentation presented here can
be shortened. However, this method of estimation does not work in
all cases because the inverse bounds might not be accurate enough to

be asymptotically equal. This can happen because in general, f ∈ Θg

does not necessarily imply f-1 ∈ Θg-1 (consider e.g., f (x)  ln(x) and

g(x)  2 ln(x)).

Figure 10. The growth function of the Multiway System emulating exp is

bounded by log2(x) and 1  2 log2(x), demonstrating that it is in Θlog2(x).

Implications of Theorem 12.3

What we have seen in the previous example is just a simple demon-
stration of the power of Theorem 1. Besides helping us later to prove
Theorem 2, it tells us a lot about the abstract structure of Multiway
growth functions, their “growth spectrum.” By providing the follow-
ing two corollaries, Theorem 1 gives us knowledge about what this
spectrum of possible growth rates looks like, that is, which kinds of
growth rates are possible and which kinds are not. In addition to that,
it establishes connections between Multiway growth functions and
other classes of functions, namely computable functions and primitive
recursive functions.

Corollary 1. For every computable function f :   , f ∈ ω(1), there is

a Multiway System with growth rate a, b such that a, b ∈ f-1

where f-1 is an asymptotic inverse of f , that is, some function satisfy-

ing f-1
-1

∈ Θf  (this becomes important when f is not properly

invertible).

Proof. Since f is computable, there exists some Turing machine com-

puting f (n) when given n. If we require the machine to read and write

142 Y. Zeschke

Complex Systems, 31 © 2022

input and output in unary coding, computing f (n) must take

T(n) ≥ f (n) steps simply because writing the result takes that long.

Now, let g : 
≥0  

≥0 be a bijective tight lower bound of T. As

T ∈ ω(1), T is unbounded, so g always exists. From g(x) ≤ T(x), it

follows that g-1(x) ≥ T-1(x) and by Theorem 1, there is a Multiway

System for which the growth function has tight bounds

a, b ∈ g-1 ⇒ a, b ∈ f-1 for some asymptotic inverse of f . □

Corollary 2. For every computable function f :   , f ∈ ω(1), there is

a Multiway System with growth rate a, b such that a, b ∈ oL

+

f .

Proof. The function L

+

(f) (for the upper bounding sequence f from

Definition 2) is always greater than or equal to f , asymptotically

equal to f and computable (because equal to f) on the set of increase-

indices If . Therefore, f
-1

 is a computable function on 
+

 and so is

g : x ↦ f
-1

x2. Using Corollary 1, this gives us a way to construct a

Multiway System with a growth rate in g-1   L

+

f   that is

definitely in oL

+

f . □

This quite remarkable fact also shows that for every Multiway
System growing faster than a bounded function, a more slowly grow-
ing Multiway System exists because the growth function of every Mul-
tiway System is obviously computable. We might therefore say that
Multiway Systems can grow arbitrarily slowly; that is, the set of regu-
lar Multiway Systems excluding constant and finite systems is “open”
in some sense. Remember, however, that they cannot grow arbitrarily
quickly, as shown in Lemma 1.

Computational Capabilities of Growth Functions 3.

After marking out the boundaries of the space of possible growth
rates, we will investigate its underlying structure. First of all, we will
see that it contains no “holes”; that is, all of the Multiway growth
classes defined in Section 1 (except Csup exp, which we have already

shown to be empty and just defined for completeness) are nonempty
and, furthermore, contain infinitely many systems. In addition, we
will have some insights into which functions are “Multiway growth-
computable” and “Multiway growth-approximable.” We say, a func-

tion f : 
+

 
+

 is Multiway growth-computable if there is a

Growth Functions, Rates and Classes of String-Based Multiway Systems 143

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

Multiway System M such that ∀ n ∈ 
+
: gM(n)  f (n) and we call

a function f : 
≥0  

≥0 Multiway growth-approximable if there is a

Multiway System M such that f ∼
Θ
L


g.

First, we will define two operations, “Multiway addition” and
“Multiway multiplication,” which will enable us to combine systems
into more complex ones of which the growth function is computable
immediately from the growth functions of the parts. These two fairly
simple operations will be sufficient for demonstrating that Multiway
growth functions are interesting from an algebraic point of view as
well as regarding questions of their computational capabilities (see
Section 3.3). Still, some basic Multiway Systems have to be con-
structed without using these operations as the building blocks of fur-
ther systems. Combining the Multiway operations and specifically
constructed systems will then yield the following theorem and several
other interesting results:

Theorem 2. The classes Cfin, Cbnd, Cpol, Cint, Cexp, Cinv pol, Cinv int,

Cinv exp, Cinv sup exp partition the set of regular Multiway Systems into

infinite subsets.

Arithmetic-Like Operations on Multiway Systems 3.1

Let M1  R1, s1, Σ1, M2  R2, s2, Σ2 and M3  R3, s3, Σ3 be Mul-

tiway Systems. Additionally, let X be a unique (equal for all Multiway
Systems) symbol not included in any Multiway Systems alphabet.
Now, we define the “sum system” by

M1 ⊕ M2  R1 ⋃R2 ⋃ X  si si ∈ S2M1 ⋃ S2M2, "X", Σ1 ⋃ Σ2

where S2(M) is the state-set of M in generation 2, that is, all nodes

with distance 1 to the initial state in the respective states graphs (see
Figure 11). The “product system” of M1 and M2 is now defined as

M1 ⊙ M2  R1 ⋃R2, s1s2, Σ1 ⋃ Σ2

where s1s2 denotes the concatenation of s1 and s2 (see Figure 12).

To calculate the growth functions of systems obtained by these
operations, we will require the parts M1 and M2 to be “rule indepen-

dent,” meaning that their rules do not interfere with each other.
Formally, rule independence can be defined as the property that the
states graph of M1 is isomorphic to the states graph of

R1 ⋃R2, s1, Σ1 ⋃ Σ2, that is M1 with all rules of M2 added, and vice

versa. This works because if adding all the rules of M1 to M2 does not

change its behavior, then these rules will not influence M2’s states

even if the states of M1 get appended to them. Rule independence can

144 Y. Zeschke

Complex Systems, 31 © 2022

always be achieved by requiring the underlying alphabets to be dis-
joint, as in this case it is impossible for a given string to match rules
from R1 and R2 at the same time.

(a) (b)

(c)

Figure 11. States graphs of rule-independent Multiway Systems and their sum

system. The systems used are "AB"  "BA", "B"  "AAB", "AB", A, B

and "CD"  "CDD", "C"  "CD", "CDC", C, D.

If we recall the definition of growth function gM(n) as the number

of nodes to which the shortest path from the initial state has length n,
it is easy to see that the growth function of M1 ⊕ M2 is one in the first

iteration, as "X" is the only state. In further iterations, we can imag-
ine a path of length n simply as a path of length 1 entering the states
graph of either M1 or M2, followed by a path of length n - 1 originat-

ing at some state in the second layer of the chosen subgraph, as if the
other graph were not there. This works because in the entire evolu-
tion, the initial state is the only one containing an X, so for all other

Growth Functions, Rates and Classes of String-Based Multiway Systems 145

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

(a)

(b)

Figure 12. States graphs of "A"  "AB", "AB"  "BA", "A", A, B,

"C"  "D", "D"  "E", "D"  "F", "C", C, D, E, F and their prod-

uct system. Instances of the first system are highlighted in red and orange in
the product system’s graph.

states, the usual rules will apply and the rules replacing X will have
no effect. This concludes that the growth function of the sum system
is precisely

gM1⊕M2
(n)  gM1

(n) + gM2
(n) with gM1⊕M2

(1) := 1. (3)

For the product system, remember that in the states graph of some sys-
tem M1, two nodes u, v are connected by an edge if string u gets trans-

formed into v by a rule from R1. The analogous holds for M2. Since

the initial node of M1 ⊙ M2 consists of a concatenation of s1 and s2,

any node in the states graph of M1 ⊙ M2 corresponds to some combi-

nation of a node of M1 and one of M2. Hence, the states graph of

M1 ⊙ M2 is the Cartesian product graph (see [16, p. 30] for a defini-

tion) of the states graphs of M1 and M2. Note how this is only

146 Y. Zeschke

Complex Systems, 31 © 2022

possible because M1 and M2 are rule independent since otherwise

more edges could be added due to rule matches overlapping between
the M1- and M2-parts of the string or rules of one system getting

applied to states of the other one.
To obtain the number of nodes reachable in this Cartesian product

graph, we might without loss of generality first traverse a path of

length k in the “pure M1-part” (i.e., the second half of the string is

still s2) and then take n - k steps through the “pure M2-part.” For the

first subpath, we have gM1
k options by definition of the growth func-

tion. This gets multiplied by the gM2
n - k choices for the second sub-

path. Since we can choose k freely, the resulting total count of nodes
in the product graph is given by

gM1⊙M2
(n)  

k0

n

gM1
k · gM2

n - k

 f (n) + g(n) + 

k1

n-1

gM1
k · gM2

n - k,

(4)

where we set gM1
(0)  gM2

(0)  1 for convenience.

For these two formulas, we have assumed the systems to be rule
independent. For systems where this is not the case, they still give
lower bounds of the combined systems’ growth rate since, generally
speaking, in any system, the number of edges and nodes of the states
graph can only remain constant or be increased when new rules are
added. This might sound surprising, as we could imagine “deletion
rules,” but rules that cause fewer rules to be applied in the future do
this only in newly added branches of the states graph (or not at all),
not affecting the already existent graph. To make systems rule inde-
pendent, we required the alphabets to be disjoint; however, this is not
necessary as any Multiway System can be emulated by a system over
some binary alphabet, so we can always make the alphabets of M1

and M2 equal.

Lemma 4. For any Multiway System M  (R, s, Σ), there is a Multiway

System M′  R′, s′, a, b where a and b are two distinct symbols,

such that the states graphs of M and M′
 are isomorphic.

Proof. To show this, we will perform a “translation” from M to M′,

that is, replace every symbol in Σ by a word over a, b using some

bijection f : Σ  T ⊂ a, b
*. By altering not only s but also all rules,

any word w ∈ Σ*
 matched by some rule in R will correspond to the

translated word in w′ ∈ T being matched by a rule in R′. Addition-
ally, one must ensure that no two words in T can overlap since

Growth Functions, Rates and Classes of String-Based Multiway Systems 147

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

otherwise, the rules could match in more places than before. Since
there exist non-overlapping codes of arbitrary length, we can use

these as elements in T so there always exists some f with the required

properties. Thus, the actions of the rules on the states will be equal
and isomorphic states graphs will be created. □

Now, let us consider the algebraic properties of our Multiway oper-
ations. We declare two Multiway Systems to be isomorphic (written
M1 ≅ M2) if and only if their states graphs are isomorphic. Isomor-

phic Multiway Systems always have equal growth functions. In the fol-
lowing analysis, we consider only the set of different equivalence
classes of ≅, that is, the set of all Multiway Systems up to isomor-
phism, and denote it by .

Let M1, M2, M3 ∈  be Multiway Systems and, without loss of

generality, rule independent. It is easy to see that ⊕ is commutative
and associative since set unions are. More interestingly, the system
0M := ({}, X, {}) is a neutral element of ⊕ since

M1 ⊕ 0M  R1 ⋃ {} ⋃ X  s s ∈ S2M1 ⋃ {}, X, Σ1 ⋃ {}

 R1 ⋃ X  s s ∈ S2M1, X, Σ1,

which is isomorphic to R1, s1, Σ1 because the X symbol is used only

once, acting precisely as s1 would have and therefore keeping the

states graph structure unchanged.
The commutativity of ⊙ is granted because we required M1 and

M2 to be rule independent, so the order in which their states are con-

catenated does not matter because no overlaps where rules could
apply on the intersection of M1- and M2-states can be created. Simi-

larly, ⊙ is associative, simply because string concatenation is. We can
also prove both properties with the commutativity and associativity
of the Cartesian graph product. There also is a neutral element of ⊙,
namely 1M := ({ }, " ", { }) or actually any system with no rules since its

initial state will just be appended onto every state of the system one is
multiplying with and the states graph will not change.

Also notice that ⊙ distributes from the left over ⊕:

M1 ⊙ M2 ⊕ M3

  R1, s1, Σ1 ⊙ R2 ⋃R3 ⋃ X  S2M2 ⋃ S2M3, X, Σ2 ⋃ Σ3

  R1 ⋃R2 ⋃R3 ⋃ X  S2M2 ⋃ S2M3, s1X, Σ1 ⋃ Σ2 ⋃ Σ3

  R1 ⋃R2 ⋃ R1 ⋃R3 ⋃

X  S2M1 ⋃ X  S2M2 ⋃ X  S2M3,

 X, Σ1 ⋃ Σ2 ⋃ Σ1 ⋃ Σ3

148 Y. Zeschke

Complex Systems, 31 © 2022

  R1 ⋃R2, s1s2, Σ1 ⋃ Σ2 ⊕ R1 ⋃R3, s1s3, Σ1 ⋃ Σ3

  R1, s1, Σ1 ⊙ R2, s2, Σ2 ⊕ R1, s1, Σ1 ⊙ R3, s3, Σ3

  M1 ⊙ M2 ⊕ M1 ⊙ M3.

Thus, we get right distributivity from commutativity and conclude
that ⊙ distributes over ⊕. Therefore, we can conclude that (, ⊕, ⊙) is
a semiring, however with a weakened annihilation property, which
does not hold in general. As a consequence, their growth functions
also form a semiring with weakened annihilation under the opera-

tions g1 + g2(n) := g1(n) + g2(n) (with g1 + g2(1) defined to be 1) and

g1 * g2(n)  ∑k0
n g1k · g2n - k (with g1(0)  g2(0) := 1). This

demonstrates the potential of Multiway Systems to generate quite
diverse and intricate growth functions as the two operations can be
used to combine systems in various very interesting ways. The next
section elaborates on this.

Proof of Theorem 2 3.2

Let us now construct Multiway Systems in the various growth classes
to prove Theorem 2. First, take the product system of a finite “chain”

system M1
N

 having one new state for N generations until terminating

and a constant system M2  ({"A"  "AA"}, "A", {"A"}). After the

first N - 1 steps, M1
N ⊙ M2 will have a constant growth function of

value N as the first N terms in ∑k0
n gM1

kgM2
n - k are one and all

others zero because M1 is finite. While this system produces (asymp-

totically) constant growth functions, it is not suited for multiplying
arbitrary growth functions by constants. To achieve the latter, adding
some system to itself several times resolves the issue.

The next system to consider, M3
N, is again given by the rule set

{"A"  "AB"} and started on a string of N copies of "A" denoted

"AN". For calculating its growth function, we can represent it differ-
ently as the product system of N instances of itself started on a single

"A" and thus having the growth rate gM3

1 (n)  1. From this point of

view, we can write the growth function of M3 started on "AN" recur-

sively as

gM3

N (n)  

k0

n

gM3

N-1k · gM3

1 n - k  

k0

n

gM3

N-1k.

Growth Functions, Rates and Classes of String-Based Multiway Systems 149

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

This might be recognized as the sequence of (N - 1)-polytopic num-

bers, also known as “figurate numbers,” of which the nth element is
given by ([17, p. 7])

N - 1 + n - 1

N - 1
.

Hence, gM3

N
 is clearly a polynomial of degree N - 1 and thus asymptot-

ically equal to xN-1.

Now consider the system M4
N  "Q"  "Qxi" i  1, …, N,

"Q", Q, x1, …, xN for distinct symbols xi. In the nth step of evolu-

tion, it has basically generated all words of length n over the alphabet

of all xi. Every node "Qw" (where w ∈ x1, …, xN
*) in the states

graph has N outgoing edges to the nodes "Qxiw" for 1 ≤ i ≤ N.

Thus, its growth function is precisely gM4

N (n)  Nn, allowing the possi-

bility of Multiway Systems growing like all exponential functions.
A more sophisticated example is the system

M5
N  

i1,…,N
"TL"  "TxiR", "RT"  "LxiT", "Rxi"  "xiR",

"xiL"  "Lxi", "TLT", "L", "R", "T", x1, …, xN.

Similarly to the previous system, L and R work as generators for

words over the alphabet x1, …, xN, however, only on the left and

right ends of the word, respectively. In every word ever produced by
the system, there are exactly two "T" symbols, one at the beginning
and one at the end. After generating some new symbol between itself
and the "T", the generator "L" or "R" moves one step left or right,
respectively, thereby not generating any new symbols, as it is not next
to a "T". Since a new symbol is created every time a "L" or "R"
reaches the respective "T", the length of the word is increased every n
steps where n is the previous word length. Thus, their word length is
the sequence “n occurs n times” denoted An and asymptotically

equal to



k0

n

k

-1


n(n + 1)

2

-1


1 + 8n - 1

2
∈ Θ n 

by Lemma 2. But the system’s growth function is given by the number

of possible words, that is, Nn
 and hence asymptotically equal to N n .

The growth function of the previous system is noteworthy because
it grows “intermediately,” that is, faster than every polynomial func-
tion and slower than all exponential functions. Formally, we check

150 Y. Zeschke

Complex Systems, 31 © 2022

this by noticing that

lim
x∞

lnN x 

x
 0

(if the logarithm grows slower than x, the function is subexponential)
and

lim
x∞

lnN x 

ln(x)
 ∞

(if the logarithm grows faster than ln(x) times a constant, the function
grows faster than xn for all n). In the study of groups and semigroups,
which are related to Multiway Systems (see [7, notes for Section 5.6]),
it has long been an open problem, finally solved by Grigorchuk [18],
to find groups of intermediate growth. For Multiway Systems, this
turns out to be remarkably easy, supporting the claim that Multiway
growth functions are computationally diverse and powerful (see Fig-
ure 13).

Now that we have shown the existence of infinitely many systems
in Cfin, Cbnd, Cpol, Cexp and Cint, only the classes of inverse functions

remain. As mentioned earlier, Theorem 1 appears to be very useful
for this. In Section 2.2, we have already shown the existence of a sys-

tem with a growth function asymptotically equal to log2(x). The

Turing machine from that example can be generalized to perform
counting in any number system base a, yielding a halting function
asymptotically equal to n ↦ an, so that the same construction can be

used to obtain Multiway Systems growing like logax. It is not essen-

tial to go through the details here because all logax are asymptotically

equal (since they only differ by constants by the base-change law). It
is also clear that infinitely many systems in the class Cinv exp can be

created because we could, for example, use Multiway addition to add
systems with constant growth functions to logarithmic systems.
Notice how this shows generally that every class containing at least
one system contains infinitely many systems.

By the same style of argument, we conclude that there are infinitely
many systems in Cinv pol. Consider a weaker version M6 of the system

of intermediate growth rate M5
1

 for N  1. This system has one state

forever but the length of its strings is still the sequence “n occurs n
times.” Now simply apply the Turing machine construction from Sec-
tion 2.1 to this system by adding the rules "LT"  "Z", "TR"  "Z"
and "Z"  "ZZ", respectively, to generate different branches of the
states graph. As described in Section 2.1, this yields the desired

growth function of gM6
(n)  An(n) ∈ Θ n  ⇒ M6 ∈ Cinv pol.

Growth Functions, Rates and Classes of String-Based Multiway Systems 151

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

Figure 13. States graphs of exemplary systems M1
3, M2

3, M3
3, M4

3
 and M5

3
 with

growth functions asymptotically equal to n ↦ 0, n ↦ 3, n ↦ n2, n ↦ 3n and

n ↦ 3 n , respectively.

Using Corollary 2, it is also obvious that there are infinitely many
Multiway Systems in Cinv sup exp as we might, for example, just

construct a Multiway System growing slower than the inverse Acker-
mann function. It remains to show that the class of inverses of inter-
mediately growing functions Cinv int is nonempty. To show this, first

note that there is a Turing machine  that computes  n  when

given n in unary in polynomial time. If we feed the result of this com-
putation in the exp machine from Section 2, we can construct a

machine that halts after T(n)  p(n) + 2 n 
 steps for some polyno-

mial function p(n). Similar to the argumentation from the proof of

Lemma 3, we see that T
σ

 is asymptotically equal to the integral of

152 Y. Zeschke

Complex Systems, 31 © 2022

p(x) + 2 x
 given by F(x)  q(x) + c x 2 x

 where q is some polyno-

mial (because  2 x dx 
2 x +1 x ln2-1

ln22
). Since q is a polynomial,

this function grows still intermediately, which we can easily verify by

calculating limx∞

lnF(x)

ln(x)
 and limx∞

lnF(x)

x
. By Theorem 1 and

Lemma 3, there is a Multiway System M7 that has a growth function

asymptotically equal to F-1(x). Since F grows intermediately, this sys-
tem is in Cinv int. Together with the previous paragraphs, this provides

the proof for Theorem 2.

Multiway Growth Approximability and Undecidability 3.3

As we have shown the existence of systems with growth function gM

in Θ(1), Θ(xn), Θ(ax), Θa x , Θ x  and Θln(x), it is possible to find

a Multiway growth function asymptotically equal to any combination
of these functions using pointwise addition and discrete convolution.
This works because asymptotic equivalence is preserved under addi-
tion, summation and multiplication ([19, Section 2.2]), so we can take
the appropriate Multiway Systems for the atomic parts of the func-
tion’s expression and combine them using the Multiway sum and

product. The functions Θ(1), Θ(xn), Θ(ax), Θa x , Θ x  and Θln(x)

are all monotonously increasing, and addition as well as discrete con-
volution preserves this property (because all functions have values in


≥0). This proves the following corollary to Theorem 2:

Corollary 3. If for some function f : 
≥0  

≥0 there is a function

g ∈ Θf  expressible as a finite combination of the functions x ↦ c,

x ↦ xn, x ↦ ax, x ↦ a x , x ↦ x , x ↦ ln(x) (x, a, c ∈ 
+
) using the

operations pointwise addition and discrete convolution, then f is Mul-

tiway growth-approximable.

The corollary provides further insights into the Multiway growth-
approximability and Multiway growth-computability of functions.
Let ℳC and ℳA be the sets of Multiway growth-computable and Mul-

tiway growth-approximable functions, respectively. Note that
ℳC ⊂ ℳA and ℳC is countably infinite, since the set of Multiway

Systems is countably infinite. This follows from the fact that every
Multiway System can be reduced to use only the alphabet {A, B}
(Lemma 4) and then be expressed using the symbols
"A", "B", "  ", "{", "}", "(", ")" and ", " by writing down its
signature. The set of words over this finite eight-symbol alphabet is

Growth Functions, Rates and Classes of String-Based Multiway Systems 153

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

countably infinite. However, ℳA is uncountably infinite because it

contains, for example, all constant functions from 
≥0 to 

≥0. Using

Corollary 3, we notice that a variety of classes of functions are Multi-
way growth-approximable:

For any function f ∈ ℳC, the function λ · f where λ ∈  is a constant is

also in ℳC.

1.

ℳA contains all polynomials with natural coefficients because they can

be built by adding powers xn multiplied by constants.

2.

For all polynomials p(x) in ℳA, ℳA contains functions asymptotically

equal to x ↦ ln(x) · p(x).

3.

Consequence 3 takes a little longer to prove but will be worth
explaining in detail because similar methods may be used to gener-
alize it, for example, showing that ℳA contains polylogarithmic

functions.

Proof. Consider the product system of a polynomial and a logarith-
mic system. By equation (4) and the fact that asymptotic equivalence
is preserved under addition and multiplication, the system’s growth
function is asymptotically equal to

na + ln(n) + 

k1

n

kalnn - k  na + 

k1

n-1

hk.

Consider some fixed input n for g. Let Bk be the kth Bernoulli num-

ber, Bm(x) the periodic continuation of the mth
 Bernoulli polynomial

and choose m  n + 1. Using the Euler–Maclaurin formula [20, pp.
501 ff.], we obtain



k1

n-1

hk  
1

n-1
h(x)dx +

h(n) + h(1)

2
+ Sm +Rm.

First of all,
h(n)+h1

2
 simply evaluates to

ln(n)

2
∈ (1). Next, it is easy to

show inductively that the kth derivative of h is of the form

hk(x)  xa-kc ln(n - x) + p(x) for a real constant c and a rational

function p(x) ∈ (1) as long as k ≥ a. The derivative a + 1 is some

rational function in 
1

x
. Thus, the remainder sum and integral satisfy

Sm  

k2

n+1 (-1)kBk

k !
hk(n) - hk(1)

154 Y. Zeschke

Complex Systems, 31 © 2022

∼
Θ 

k2

n+1

xa-k ln(n - x) ∈ xa-2 ln(n - x)

Rm 
(-1)n+2

(n + 1) !

1

n-1
f n+1(x)Bm+1(x)dx

∼
Θ 1

n-1


1

x
dx ∈ ln(x).

Hence,



k1

n-1

hk ∼
Θ 1

n-1
h(x)dx.

Using the fact that

d

dx
x + (n - x) ln(n - x)  - ln(n - x)

and applying integration by parts, we obtain

Ia   xa ln(n - x)dx  -xax + (n - x) ln(n - x) +

 x + (n - x) ln(n - x)axa-1dx  T + J

J  a xadx + na xa-1 ln(n - x)dx -

a xa ln(n - x)dx 
axa+1

a + 1
+ naIa-1 - aIa

⇒ (a + 1)Ia  -xax + (n - x) ln(n - x) +
a

a + 1
xa+1 + naIa-1 +C

⇒ 1

n-1
xa ln(n - x)dx  Ia(n - 1) - Ia(1)



1

a + 1
-(n - 1)a(n - 1 + 1 · 0) +

a(n - 1)a+1

a + 1
+ naIa-1(n - 1) +

1a1 + (n - 1) ln(n - 1) -
a

a + 1
1a+1 - naIa-1(1)

Growth Functions, Rates and Classes of String-Based Multiway Systems 155

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123



1

a + 1
-
(n - 1)a+1

a + 1
+

1

a + 1
+ (n - 1) ln(n - 1) +

naIa-1(n - 1) - Ia-1(1)



1

a + 1

1 - (n - 1)a+1

a + 1
+ (n - 1) ln(n - 1) + na

1

n-1
xa-1 ln(n - x)dx .

For a  1 we know


1

n-1
xa-1 ln(n - x)dx  - x + (n - x) ln(n - x)1

n-1

 -(n - 1) + 1 + (n - 1) ln(n - 1)

 -n + 2 + n ln(n - 1) - ln(n - 1)

∈ Θn ln(n - 1)

⇒ 
1

n-1
xa ln(n - x)dx 

1

2

1 - (n - 1)2

2
+ (n - 1) ln(n - 1) +

nΘn ln(n - 1)

⇒ 
1

n-1
x1 ln(n - x)dx ∈ Θn2 ln(n - 1).

Now, by assuming ∫1
n-1xa ln(n - x)dx ∈ Θna+1 ln(n - 1) we have


1

n-1
xa ln(n - x)dx


1

a + 1

1 - (n - 1)a+1

a + 1
+ (n - 1) ln(n - 1) +

na
1

n-1
xa-1 ln(n - x)dx

 Θ-(n - 1)a+1 + Θ(n - 1) ln(n - 1) + a · n · Θna ln(n - 1)

⇒ 
1

n-1
xa ln(n - x)dx∈ Θna+1 ln(n - 1),

proving ∫1
n-1xa ln(n - x)dx ∈ Θna+1 ln(n - 1) inductively. Finally, this

means the growth function of our Multiway System is asymptotically

156 Y. Zeschke

Complex Systems, 31 © 2022

equal to

na + 

k1

n-1

hk ∼
Θ
na+1 ln(n - 1) ∼

Θ
na+1 ln(n),

proving, in fact, that for every xa-system there exists a xa ln(x)-
system. □

From these three properties, we might already conclude that a sig-
nificant number of functions usually investigated in mathematical
analysis can be approximated by Multiway growth functions. This
demonstrates the computational diversity of Multiway growth func-
tions, which is neither a trivial nor an expected property.

We know that Multiway Systems themselves are capable of univer-
sal computation, as they can emulate Turing machines, but it is
unknown so far which computations their growth functions are able
to perform. Thus, it may be considered remarkable that many
common mathematical functions are expressible (i.e., approximable)
as Multiway growth functions. Conversely, this could later allow us
to make statements about a Multiway System’s complexity or struc-
ture by considering only its growth function. Maybe Multiway
Systems can even be used to make general statements about the mathe-
matical functions themselves since they give a new way of looking at
them.

Notice, however, that Multiway growth functions are strictly less
powerful than computable functions in general due to the following
lemma:

Lemma 5. Every Multiway growth function is primitively recursive.

Proof. Given some Multiway System, we can compute the growth
function g(n) in the following way: use two lists Sn and Tn
(S0  {}, T0  {s}) to store all states the system has had until genera-

tion n and all states of generation n. In every iteration, the length of
Tn is the value of g(n). In step n + 1, the algorithm iterates through all

rules and searches through the characters of all strings in Tn to check

if any rule applies. If this happens, the string with some part replaced
will be added to Tn+1 if it is not in Sn or Tn+1 already (only new states

get added). After all possible such operations are done, Tn+1 contains

all new states of the system and we set Sn+1 to be Sn ⋃Tn+1. When

repeated, this process simulates the system’s evolution and thus yields
the correct g(n). All loops required can be implemented using DO-

loops. If strings are treated as lists of characters (numbers), the string
replacement and substring matching operations can be implemented
using only list insertions, deletions and searches through the list. No

Growth Functions, Rates and Classes of String-Based Multiway Systems 157

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

further data structures and no comparisons are needed. Hence, the
entire program is primitively recursive by [21]. □

As primitive recursive functions still contain some superexponen-
tial functions, Multiway growth functions are also strictly weaker
than those. Still, Multiway growth functions can approximate a lot of
elementary functions so they might even be stronger than elementary
arithmetic (EA) while probably weaker than EA+ (EA and the axiom
that the superexponential function is total). It remains an open ques-
tion to find out how ℳA or ℳC can be characterized elegantly.

Besides their use for investigating Multiway growth-computability,
the tools obtained in this paper allow us to elegantly prove some state-
ments about the undecidability of Multiway growth-related questions.
For example, deciding if a given Multiway System is finite is undecid-
able, as a system could simulate some arbitrary Turing machine and
have zero new states when the machine halts, reducing the question to
the halting problem. Additionally, even for an infinite Multiway
System, deciding whether its growth function is equal to some conjec-
tured function is undecidable in general since the system could be the
sum of some usual system and a Turing machine emulator that
becomes, for example, exponentially growing after the machine halts
but has only one state before that. This observation makes it espe-
cially important in the context of the Wolfram Physics Project to not
only use empirical (computed) observations about a system’s growth
function, rate or class but also take into account the system’s rule
when conjecturing about it.

This “trick” of integrating a system that grows very differently
once some Turing machine halts into some larger system was also the
strategy used to construct the strongly oscillating system in Figure 4.

Specifically, we first construct a system similar to M5
N

 from Sec-

tion 3.2, defined as

M8
N,M

= 
i=1,…,N

"RA" → "xiR", "AM", "R", A, x1, … , xN.

When started on a string of M As, R moves to the right while replac-
ing the A it just moved over by any of the N xi. Hence, the states of

the system after N steps are precisely the words of length N over

x1, …, xN since R moved N steps to the right. When R reaches the

right end, the system terminates. Thus, this system has MN
 new states

after M steps and 0 after that.
The oscillating system from Figure 4 is now the sum of a linearly

growing system and a version of the logarithm system from Sec-
tion 2.2. However, the customized logarithm system does not increase
its number of states after exp halts but just triggers an instance of

158 Y. Zeschke

Complex Systems, 31 © 2022

M8
4,N

 on the string of ones exp has written. Since after roughly 2n

steps the nth version of exp halts, n ones are written on the tape so

about n steps later, the system has 4n states for one generation and
then “collapses” into one state again. The smallest monotonically
increasing upper bound for this growth function is one that stays

4n  (2n)2 for roughly 2n steps and then increases to 4n+1. Denote this

sequence a(n). Now log2 a(n) is approximately the sequence “n

occurs 2n times,” which is in Θlog2(n). Thus, log2 a(n) ∈

Θlog2(n)⟺ a(n) ∈ Θ(n)⟺a(n) ∈ Θn2. Since the whole system con-

sists of this and an added linear system, the total growth rate has

lower and upper tight bounds of Θ(x) and Θx2, respectively. If we gen-

eralize the methods used in this paper, they might be used to perform
a kind of “Multiway System engineering”; that is, they could help to
construct systems for specific purposes.

Concluding Remarks4.

While being motivated by applications in fundamental physics, this
paper rather focuses on mathematical statements about string rewrit-
ing systems in general, thereby strengthening the foundations of the
related physical theories. Especially, we make several statements
about regularities, structures and restrictions Multiway Systems
exhibit despite their status as complex systems. It is important to keep
in mind that all our statements apply to all string rewriting systems,
although we use the term “Multiway System” to highlight the connec-
tion to fundamental physics. We can summarize our main results as
follows:

We have introduced the notions of Multiway growth functions, rates
and classes, which have large potential for mathematically investigating
abstract rewriting systems.

1.

We have given the exponential upper bound on string-based Multiway
System growth and shown that they can grow slower than any com-
putable function, thereby describing boundaries of the space of possible
growth rates. This asymmetry implies a more fundamental connection
between abstract rewriting systems and computable functions, which
will be subject to further research.

2.

Furthermore, we have provided a basic but nontrivial classification
scheme that partitions the set of all string rewriting systems into a finite
number of subsets. From an algebraic point of view, our arithmetic-like
operations that equip the set of all Multiway Systems (or string-
rewriting systems, for that matter) with a weakened semiring structure
seem very promising to build algebraic structures upon string rewriting
systems.

3.

Growth Functions, Rates and Classes of String-Based Multiway Systems 159

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

In the same fashion, we have shown that the growth functions of string-
based Multiway Systems can approximate quite an extent of known
functions while being contained in the set of primitive recursive func-
tions. It remains unclear and intriguing to find out which status the sets
ℳA and ℳC have among other well-known sets of functions, but our

Theorem 2 starts a characterization by subdividing them into nontrivial
classes.

4.

Additionally, we have exemplarily constructed a couple of elementary
systems that can be combined purposefully to yield systems giving a
desired growth function. This “Multiway engineering” could be general-
ized and turn out to be useful for getting intuition about string rewrit-
ing systems as well as potentially constructing (counter-)examples to
empirically grounded conjectures existing in the Wolfram Physics Pro-
ject.

5.

There are many potential applications of these results in theoretical
computer science and the Physics Project. Some ideas are outlined
below:

While some “types” or “classes” of string rewriting systems have
already been studied (see e.g., [22, 23]), we can build on our growth-
based classification approach, for example, by allowing combined
classes like “polynomial times inverse intermediate”-functions, and try
to connect growth classes of string rewriting systems with their proper-
ties related to monoids (similar to [13], which uses the growth of a
monoid to show that it is not finitely representable through a certain
string rewriting system). Also, trying to quantify and find regularity in
the oscillations of a system’s growth function (consider the system in
Figure 3 as an example) and analyzing strongly oscillating systems like
the one depicted in Figure 4 are relevant projects to pursue.

1.

Related to the regularity of Multiway Systems, we can ask whether
determining which growth rate (or growth class) a given Multiway
System has from its rules is possible in general (it probably is not).
Maybe methods from automated theorem proving could be used for
this (as abstract rewriting systems themselves can be used for theorem
proving and are amendable to theorem proving techniques [24]).
Another question is whether there are Multiway Systems that show no
regularity in their growth functions. The latter would be important for
complex systems–related research as it has been performed in [7].

2.

Speaking of regularity, an important direction of research is the connec-
tion between a Multiway System’s complexity and its growth function,
rate or class. Section 3 and the construction in 3 have already hinted at
the hypothesis that a system’s rules need to be more complex to achieve
a growth rate in one of the slow-growing “inverse”-classes. To build on
this, we could try to “restrict” a system’s growth by enforcing “boun-
dary conditions” and consider the complexity it can produce in this lim-
ited form, similar to the approach employed by LuValle [25] for
cellular automata. Additionally, relations between slow growth and
complexity of cellular automaton boundaries appear in [12] as well,

3.

160 Y. Zeschke

Complex Systems, 31 © 2022

especially in the construction of a cellular automaton whose boundary
growth “oscillates” similarly to the Multiway System shown in Fig-
ure 4. This suggests that exploring the relation between cellular automa-
ton boundary growth and Multiway System growth can be a fruitful
enterprise.

Regarding the Physics Project, the most obvious next step is generaliz-
ing our theorems to hypergraph rewriting systems to make them more
meaningful in a physical context. While it might be difficult to general-
ize them to arbitrary abstract rewriting systems, the hypergraph case
should not be difficult to do because of the similarities of set replace sys-
tems (which can emulate hypergraph rewriting systems) and string
rewriting systems. Developing the algebraic operations we defined for
Multiway Systems, we are likely to gain new insights about abstract
rewriting systems using the connection to category theory and quantum
mechanics established in [5]. Additionally, more general forms of our
results could be obtained in the context of the relation between Multi-
way Systems and the foundations of homotopy type theory [8].

4.

More specifically, the changes in structure of branchial space (see glos-
sary of [5]) over time and thus the growth functions of Multiway
Systems are related to the states of quantum systems and measurements
of these [3]. Our upper bound on Multiway System growth rate may be
used to give upper bounds on entanglement speed and maximum possi-
ble information entropy in Wolfram Models. Similarly, the fact that
slowness of Multiway growth rates is “unbounded” could be used to
investigate very slowly developing quantum systems that might be espe-
cially stable and hence useful for quantum computation, but that is
mere speculation. More straightforward is the application of Multiway
growth classes to estimating the complexity of quantum computational
algorithms or make predictions about quantum supremacy using the
Wolfram model [26].

5.

Another potential physical application is early-universe cosmology.
Since there seems to be an empirical connection [27], formalizing that
would also be an important project, between the growth rates of physi-
cal and branchial space; that is, in our context string-length (or hyper-
graph size) and Multiway growth functions, our boundaries on growth
functions and especially the “unboundedness” of its slowness may be
related to the physical expansion of the early universe in the view of the
Wolfram Model’s formalism.

6.

The preceding points are just a few possibilities showing how much
potential the investigation of the growth functions, rates and classes
of abstract rewriting systems has. This paper marks only the begin-
ning of many further research projects. However, while we lay a very
basic foundation, we succeed in doing so, as our results are formally
proven and computationally applicable.

Growth Functions, Rates and Classes of String-Based Multiway Systems 161

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.31.1.123

Acknowledgments

First and foremost, the author would like to thank Stephen Wolfram
for suggesting this project and giving important advice concerning the
general directions of research and methodology. Speaking of method-
ology, I have to mention my mentor Xerxes D. Arsiwalla, for whose
guidance and feedback I am very grateful. Many thanks also to
Jonathan Gorard for repeatedly proofreading this paper and assisting
with the proof that Multiway Systems form a semiring with weakened
annihilation property (Section 3.1). Additionally, I highly appreciated
the encouragement and support of Peter Barendse, who helped to
kick-start this research project at the Wolfram Summer Camp 2020,
and Paul Siewert, whose critique and explanations were very useful
for formalizing the proofs presented in this paper.

References

[1] F. Baader and T. Nipkow, Term Rewriting and All That, New York:
Cambridge University Press, 1998.

[2] M. Bezem, J. W. Klop and R. de Vrijer, eds., Term Rewriting Systems/
Terese, New York: Cambridge University Press, 2003.

[3] J. Gorard, “Some Quantum Mechanical Properties of the Wolfram
Model,” Complex Systems, 29(2), 2020 pp. 537–598.
doi:10.25088/ComplexSystems.29.2.537.

[4] J. Gorard, “Some Relativistic and Gravitational Properties of the
Wolfram Model,” Complex Systems, 29(2), 2020 pp. 599–654.
doi:10.25088/ComplexSystems.29.2.599.

[5] J. Gorard, M. Namuduri and X. D. Arsiwalla, “ZX-Calculus and
Extended Hypergraph Rewriting Systems I: A Multiway Approach to
Categorical Quantum Information Theory.” arxiv.org/abs/2010.02752.

[6] R. V. Book and F. Otto, String-Rewriting Systems, New York: Springer-
Verlag, 1993.

[7] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002. www.wolframscience.com/nks.

[8] X. D. Arsiwalla, “Homotopic Foundations of Wolfram Models” from
Wolfram Community Posts, July 2020.
community.wolfram.com/groups/-/m/t/2032113.

[9] Y. Marji, “Wolfram Models as Discretization Methods for Numerical
PDE Solver” from Wolfram Community Posts, July 2020.
community.wolfram.com/groups/-/m/t/2030068.

[10] S. Wolfram, A Project to Find the Fundamental Theory of Physics,
Champaign, IL: Wolfram Media, 2020.

162 Y. Zeschke

Complex Systems, 31 © 2022

https://doi.org/10.25088/ComplexSystems.29.2.537
https://doi.org/10.25088/ComplexSystems.29.2.599
https://arxiv.org/abs/2010.02752
https://www.wolframscience.com/nks
https://community.wolfram.com/groups/-/m/t/2032113
https://community.wolfram.com/groups/-/m/t/2030068

[11] S. Wolfram, “A Class of Models with the Potential to Represent Funda-
mental Physics,” Complex Systems, 29(2), 2020 pp. 107–536.
doi:10.25088/ComplexSystems.29.2.107.

[12] C. D. Brummit and E. Rowland, “Boundary Growth in One-Dimen-
sional Cellular Automata,” Complex Systems, 21(2), 2012 pp. 85–116.
doi:10.25088/ComplexSystems.21.2.85.

[13] Y. Kobayashi, “A Finitely Presented Monoid Which Has Solvable Word
Problem but Has No Regular Complete Presentation,” Theoretical
Computer Science, 146(1), 1995 pp. 321–329.
doi:10.1016/0304-3975(94)00264-J.

[14] F. Otto and Y. Kobayashi, “Properties of Monoids That Are Presented
by Finite Convergent String-Rewriting Systems: A Survey,” 1996.
static.aminer.org/pdf/PDF/000/066/293/properties_of_monoids_that_
are_presented_by_finite_convergent_string.pdf.

[15] A. Jeffrey and H.-H. Dai, Handbook of Mathematical Formulas and
Integrals, 4th ed., Burlington, MA: Academic Press/Elsevier, 2008.

[16] A. Bondy and U. S. R. Murty, Graph Theory, New York: Springer,
2008.

[17] L. E. Dickson, History of the Theory of Numbers, Volume II: Diophan-
tine Analysis, Mineola, NY: Dover Publications, 2005.

[18] R. I. Grigorchuk, “On the Milnor Problem of Group Growth,” Doklady
Akademii Nauk SSSR, 271(1), 1983 pp. 30–33.
mi.mathnet.ru/dan10037.

[19] A. J. Hildebrand. “Asymptotic Analysis Chapter 2 - Lecture Notes.”
(Feb 14, 2021) faculty.math.illinois.edu/~hildebr/595ama/ama-ch2.pdf.

[20] U. Storch and H. Wiebe, Lehrbuch der Mathematik - Band 1: Analysis
einer Veränderlichen , Wiesbaden, Germany: Spektrum Akademischer
Verlag, 2010.

[21] A. R. Meyer and M. D. Ritchie, “The Complexity of Loop Programs,”
in ACM: Proceedings of the 22nd Annual Conference, 1967,
pp. 465–469. doi:10.1145/800196.806014.

[22] V. Manca, “Logical String Rewriting,” Theoretical Computer Science,
264(1), 2001, pp. 25–51. doi:10.1016/S0304-3975(00)00212-7.

[23] V. Diekert, A. J. Duncan and A. G. Myasnikov, “Geodesic Rewriting
Systems and Pregroups,” Combinatorial and Geometric Group Theory
(O. Bogopolski, I. Bumagin, O. Kharlampovich and E. Ventura, eds.),
Basel, Switzerland: Birkhauser Basel, 2010 pp. 55–91.
doi:10.1007/978-3-7643-9911-5_3.

[24] J. Hsiang, H. Kirchner, P. Lescanne and M. Rusinowitch, “The Term
Rewriting Approach to Automated Theorem Proving,” The Journal
of Logic Programming, 14(1), 1992 pp. 71–99.
doi:10.1016/0743-1066(92)90047-7.

Growth Functions, Rates and Classes of String-Based Multiway Systems 163

https://doi.org/10.25088/ComplexSystems.31.1.123

https://doi.org/10.25088/ComplexSystems.29.2.107
https://doi.org/10.25088/ComplexSystems.21.2.85
https://doi.org/10.1016/0304-3975(94)00264-J
https://static.aminer.org/pdf/PDF/000/066/293/properties_of_monoids_that_are_presented_by_finite_convergent_string.pdf
https://static.aminer.org/pdf/PDF/000/066/293/properties_of_monoids_that_are_presented_by_finite_convergent_string.pdf
http://mi.mathnet.ru/dan10037
https://faculty.math.illinois.edu/~hildebr/595ama/ama-ch2.pdf
https://doi.org/10.1145/800196.806014
https://doi.org/10.1016/S0304-3975(00)00212-7
https://doi.org/10.1007/978-3-7643-9911-5_3
https://doi.org/10.1016/0743-1066(92)90047-7
https://doi.org/10.25088/ComplexSystems.31.1.123

[25] B. J. LuValle, “The Effects of Boundary Conditions on Cellular
Automata,” Complex Systems, 28(1), 2019 pp. 97–124.
doi:10.25088/ComplexSystems.28.1.97.

[26] J. Gorard, M. Namuduri and X. D. Arsiwalla, “ZX-Calculus and
Extended Wolfram Model Systems II: Fast Diagrammatic Reasoning
with an Application to Quantum Circuit Simplification.”
arxiv.org/abs/2103.15820.

[27] M. Namuduri, “Comparing Expansion in Physical and Branchial
Space,” from Wolfram Community Posts, July 2020,
community.wolfram.com/groups/-/m/t/2029454.

164 Y. Zeschke

Complex Systems, 31 © 2022

https://doi.org/10.25088/ComplexSystems.28.1.97
https://arxiv.org/abs/2103.15820
https://community.wolfram.com/groups/-/m/t/2029454

