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The initial majority identification  task is a fundamental test problem in
cellular  automaton  research.  To  pass  the  test,  a  two-state  automaton
has  to  attain  a  uniform  configuration  consisting  of  only  the  state  that
was initially in the majority.  It does so solely through its local, internal
dynamics—i.e., success in the task is an example of emergent computa-
tion. Finding new,  better-performing automata continues to be of inter-
est  for  what  additional  clues  they  might  reveal  about  this  form  of
computation. Here we describe a novel, coarsened version of one of the
standard  majority  identifiers.  We  show  that  this  coarsened  system  out-
performs  its  parent  automaton  while  significantly  reducing  the  number
of computations required to accomplish the task. 
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Introduction1.

An experiment conducted with fish(!)  [1] motivates the work reported
here.  The  experiment  mixes  together  minnows  initially  trained  to
school  toward  yellow  and  blue  targets.  The  two  subpopulations  con-
tinue to school toward the target each was trained to prefer if there is
only  a  small  majority  of  one  over  the  other.  On  the  other  hand,
adding a large number of untrained fish  with no net target preference
often  causes  the  entire  new  population  to  school  toward  the  target
favored  by  the  initial  small  majority.  This  counterintuitive  result  has
produced much discussion in the literature in terms of potential impli-
cations  for  the  biological  and  social  sciences.  The  paper  we  consider
here,  however,  focuses  narrowly  on  the  minimal  ingredients  needed
for  the  fish  to  come  to  consensus  without  a  leader  [2].  In  it,  the
authors  propose  that  the  minnows  are  essentially  solving  the  cellular
automaton  initial  majority  identification  task.  The  authors  of  [2]
argue  that  using  a  model  they  call  the  directed  majority  automaton
(DMA)  naturally  explains  several  of  the  unexpected  observations
reported in [1].
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The  model  results  of  [2]  are  interesting  and  might  potentially  pro-
vide an alternative interpretation to the observations in [1, 3]. Exactly
how  the  DMA  performs  majority  identification  and  how  to  improve
it,  however,  are  unexplored  in  [2].  We  address  both  of  these  issues
here. To  do so, we adopt the view that majority identification  is simi-
lar to aspects of collective behavior in physical systems. With  this per-
spective,  we  find  that  renormalization  and  universality  arguments
from  thermal  physics  yield  important  insight  into  how  the  DMA
works.  In  particular,  we  show  that  majority  identification  by  the
DMA  is  equivalent  to  a  directed  percolation  phase  transition.  Using
these arguments, we develop a coarsened version of the DMA that per-
forms  the  majority  identification  task  substantially  better  and  also
much more rapidly.

Definition and Performance  of the Directed Majority Automaton2.

The space of the DMA we study is an NN  square grid of cells with
toroidal boundary conditions. Each cell can be in one of two states—
for  example,  + / -1.  In  each  time  step,  each  cell  simultaneously  exe-
cutes the “NE/SW”  rule: if at time t the cell’s  state is +1, then at time
t + 1  the  cell’s  state  is  the  current  majority  of  itself  and  its  nearest
neighbors to the north and east; if the state is -1, then the state is the
majority of itself and its nearest neighbors to the south and west. (The
rules  for  the  ES/WN,  SW/NE  and  WN/ES  directions  perform  identi-
cally.)  The  DMA  successfully  identifies  the  majority  if  (a)  there  is  a
majority  of  one  of  the  states  over  the  other  at  t  0;  and  (b)  after
repeated  iterations,  it  produces  a  uniform  configuration  consisting
only  of  the  initial  majority  state.  (Note  that  [4]  and  [5]  also  analyze
some  aspects  of  the  DMA  of  [2],  and  the  focus  of  interest  here,  but
call it the “2dGKL automaton.”)

Figure  1  shows  the  DMA’s  successful  identification  rates  as  func-
tions  of  the  fractions  of  the  initial  majority  states  and  for  different
space sizes (with N  8, 16, 32, 64 and 128). Each data point shown

is the average of 104  simulations for randomly chosen initial configu-
rations. 

As  is  the  case  for  all  two-state  cellular  automata  [6,  7],  the  DMA
does  not  successfully  identify  the  majority  for  all  initial  configura-
tions.  When  the  DMA  fails  to  identify  the  initial  majority  state,  the
final  configurations  are  either  all  of  the  wrong  state  or  unresolving
mixtures of +1 and -1.
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Figure 1. Average fraction of times the DMA correctly converges to a uni-
form configuration of the state initially in the majority in a random configura-
tion. Space sizes 2n 2n, with n = 3, 4, 5, 6, 7.

The Directed Majority Automaton Renormalization Flow3.

The successful majority-identification curves in Figure 1 are observed
to be well fit by the form

σ(N, f )  100 / (1 + exp[{AN +B}{2f - 1} + ln{CN +D}]). (1)
Here, σ(N, f ) is the percentage of the cases in which the DMA success-

fully identifies the majority initially present with fraction f , in a space
of size NN. In equation (1), for the data in Figure 1, A  -1.006,
B  -9.532, C  0.042 and D  1.433. The uncertainty in these val-
ues is about ±3%. The form of equation (1) is also suggested by the
observation (discussed below) that the results of the DMA dynamics
are analogous to a classical thermal system evolving to an equilibrium
condition from an unstable initial configuration. In this analogy, the
denominator in equation (1) can be interpreted as a grand canonical
partition function, with 2f - 1 playing the role of an inverse tempera-
ture, -(AN +B) the energy level of the system of size NN, and
ln(CN +D) the analog of (a temperature-dependent) chemical
potential.

The 2n 2n spaces referred to in Figure 1 have no majority when
f  0.5. For this case, the final configurations are either all +1, or
equally all -1, or periodically varying configurations of fixed num-
bers of +1 and -1. The value σ(N, 0.5) is the percent of the time a
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50-50  configuration  converges  to  all  +1  (or,  equally,  to  all  -1).  The
fractions  of  the  time  each  of  these  +1,  -1  and  mixed  configurations
appear  are  determined  by  the  size  of  the  space—with  the  fraction  of
the mixed configuration  increasing as N increases (ranging from 28%

for N  8 to 74% for N  128). When f  is greater than 0.5 by even a

small  amount,  however,  the  DMA  converges  to  the  majority  identifi-

cation  values  shown  in  Figure 1.  Thus,  for  the  DMA, f  0.5  pro-

duces a critical condition of the dynamics. 
A complex dynamical system can sometimes be transformed into a

simpler  equivalent  form  guided  by  the  system’s  “beta  function.”  For

the DMA it is useful to define such a function, β

(N, f ), as 

β

N, f  ≡

∂σ

∂ln f 
 -2fσ(AN +B)(1 - σ / 100). (2)

Substituting the (negative) values for A and B from above shows that,

for the DMA, β

(N, f ) ≥ 0. At  the critical value, f   0.5, β


 is not only

positive  but  also  increases  as  N  increases;  for  example,

β

(128, 0.5)  10.7 β


(8, 0.5). Configurations  with f  0.5 are unstable

and  increasingly  more  so  (as  signaled  by  the  increasing  value  of  β

)  as

the automaton space size increases. On the other hand, for all N, as f

approaches 1, σ approaches 100, and therefore β

 approaches 0. Thus,

for all space sizes, the DMA dynamics “flow”  away from the f  0.5

configurations toward configurations of increasing f . As shown in Fig-

ure  1,  the  DMA  dynamics  is  essentially  scale  invariant  for  f  greater

than about 0.65. When this is the case, the dynamics can be renormal-
ized—that  is,  converted  into  another  dynamical  system  with  similar
results, operating at coarser length scales [8].

The Directed Majority Automaton  Universality Class 4.

To  investigate  consequences  of  the  renormalization  of  the  DMA,  we
first  examined  the  DMA’s  critical  exponents.  As  noted,  small

increases in f  above 0.5 lead to increased successful majority identifi-

cation  via  the  DMA.  The  initial  majority  fraction  f  is  therefore  a

control parameter for the dynamics and the successful majority identi-
fication fraction σ is the related order parameter.  In the study of uni-
versal  phenomena,  the  critical  exponent  β  (not  the  value  of  the
system’s beta function) is defined through the relation 
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σ - σC

σC

 A
f - fC
fC

β

, as f  fC, (3)
with approximately the same value for β for each space size. To evalu-
ate the average β for the DMA, we approximated the limit in equa-
tion (3) using fc  0.5 and the values f1 > 0.5, corresponding to
mixed configurations with one more +1 than 50-50 for each NN
space. (For 88, for example, f1  33 / 64  0.5156, and so on for

the other N.) For each value of N, we averaged 104 simulations for
random initial configurations with the same fC  0.5 and the same

smallest f1. The results are the black data points on the log–log plot
shown in Figure 2.

Figure 2. Successful majority identification as a function of initial majority
near the critical fraction 1  2 for different space sizes.

As each data point (each N) is supposed to have the same β value,
the slope of the best fit to the log–log data yields an estimate of this
parameter for all space sizes. From the data in Figure 2, we find
β  0.56 ± 0.05, for the DMA. This result indicates that the DMA is
(probably) a member of the universality class of directed percolation
in two spatial dimensions—that is, for which β  0.583 ± 0.003 [9].

Coarsening the Directed Majority Automaton5.

Dynamical systems that exhibit critical behavior typically contain self-
similar configurations of states. In such cases, assigning a new effec-
tive state to blocks of multiple cells of the original configuration and
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applying  a  new  dynamical  rule  to  the  evolution  of  the  blocks  yields
quantitatively  similar  results  to  the  original  dynamics  while  reducing
the  associated  computational  requirements.  We  applied  such  a  coars-
ening strategy—which we designate as the coarsened majority automa-
ton, the CMA—to the DMA dynamics. 

Because the DMA always converges to one of three generic configu-
rations—that  is,  all  +1,  all  -1  or  mixed  +1s  and  -1s—we  allowed
our  coarsening  algorithm  to  also  incorporate  three  possible  values:
+1, -1 or 0. The  coarsening rule we used is: replace every 22 block
with a single block and assign to it the state that was in the majority
in  the  22;  if  there  was  no  majority,  assign  the  state  0  to  the  block.
Following  that,  we  apply  the  dynamical  rule:  (a)  if  the  block  state  at
time  t  is  +1,  set  the  state  at  t + 1  to  the  majority  of  the  block,  the
block  to  its  north  and  the  block  to  its  east;  if  there  is  no  majority,
however,  set  the  new  state  to  0;  (b)  if  the  block  state  is  -1,  set  the
new  state  to  the  majority  of  the  block,  the  block  to  its  south  and  the
block  to  its  west;  if  there  is  no  majority,  set  the  new  state  to  0;  (c)  if
the block state is 0, set the new state to the majority of the block plus
its  four  nearest  neighbors.  The  blocks  in  the  CMA  are  toroidally
wrapped  in  the  same  manner  as  the  cells  in  the  DMA  spaces.  As  the
DMA  in  this  study  is  defined  on 2n 2n  spaces,  n  repetitions  of  this
coarsening  plus  dynamics  process  lead  to  a  single  block.  The  CMA
successfully  performs  the  majority  task,  then,  when  the  state  of  its
final  single  block  is  +1  (or  -1),  whenever  +1  (or  -1)  was  in  the
majority in the initial configuration. 

Majority Identification by the Coarsened Algorithm  6.

It  is  not  obvious  that  the  CMA  defined  here  has  any  relation  to  the
original  DMA.  The  CMA,  after  all,  is  a  different  automaton.  As  a

first  check  to  see  if  they  might  be  related,  we  ran  the  CMA  for  104

random initial configurations  with the same space sizes and values of

f  as  we  did  for  the  DMA.  The  results  for  the  CMA,  shown  in  Fig-

ure 3, are qualitatively much like those for the DMA in Figure 1. 
Fitting  the  data  in  Figure  3  by  the  same  functional  form  as  equa-

tion  (1)  yields  coefficient  values  similar  to  those  for  the  DMA:
A  -1.700,  B  -6.623,  C  0.003  and  D  1.414,  the  uncertain-
ties of which are about ±8%. 

To  further  examine  the  degree  to  which  the  DMA  and  the  CMA
are related, we followed the same procedure as previously for finding
the  CMA’s  critical  exponent  β.  The  results  are  shown  in  the  log–log
plot  of  Figure  2  as  the  open  circle  data  points.  The  best  fit  to  the
CMA data yields a slope equal to β  0.54 ± 0.04, which is essentially
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indistinguishable from the result for the DMA. Thus, like the DMA,
the CMA also (probably) belongs to the universality class of two-
dimensional directed percolation.

It is natural to wonder if the DMA and CMA perform the initial
majority identification task identically, or if one does so better than
the other. To investigate this question, we reran the CMA dynamics
using each of the initial configurations as in Figure 1. Again, for each
space size and for each value of the initial majority we ran and aver-

aged the results of 104 simulations. We found that the CMA actually
outperforms the DMA using exactly the same initial configurations.

Figure 3. Average fraction of times the CMA (see text) correctly converges to
a uniform configuration of the state initially in the majority in a random con-
figuration. Space sizes 2n 2n, with n = 3, 4, 5, 6, 7.

Figure 4 summarizes the results. The identification rate of the
CMA is about 20% higher than that of the DMA when averaged over
the same initial majority fractions for the same space sizes we used.
Moreover, the CMA performs the task much more economically. For
example, for 128128 spaces, we observe that the DMA typically
requires about 350 complete updates of all 16384 cell states to
achieve a fixed or periodic end configuration—that is, nearly 6106
updates. For the same initial conditions, the CMA always achieves its
end state in seven iterations—involving a total of 5397 complete state
updates, a factor of about 1000 fewer computations.

Also shown in Figure 4 are results reported in [5]. In that study,
the authors employed a genetic algorithm search for alternative rules
to the DMA to improve majority identification. The CMA’s improve-
ment over the DMA is at least equivalent to, and—for the data
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available in [5] and reported here—possibly better than that obtained
from the genetic algorithm search. And again, the CMA does so while
very significantly reducing the associated computational cost com-
pared to the best genetic algorithm found rule.

Figure 4. Comparison of the improvement of initial majority identification
over the DMA for the coarsening algorithm in the text and for a method pro-
duced by a genetic algorithm search.

Undecidability and Predictive Features in the Directed Majority
Automaton

7.

Figure 5 shows three 1616 initial configurations with the same ini-
tial fraction of +1 (black) (52.3%) and -1 (white) (47.7%) cells. In
the column immediately to the right of the initial configurations are
single blocks representing the respective final 1616 configurations
produced by the DMA dynamics. In the top row, the final 1616 con-
figuration is 100% black. (According to Figure 1, all black is pro-
duced about 60% of the time for this setup.) In the middle row, the
final configuration is 100% white. At the bottom, the final configura-
tion—represented as gray—is an unresolving mixture of black
(59.8%) and white (40.2%). If the DMA were a perfect majority iden-
tifier, all three of these final configurations would be 100% black.

To the eye, the initial configurations shown in Figure 5 appear
qualitatively identical, yet the final configurations are clearly differ-
ent. In other words, the exact spatial relation of all of the states to
each other is important for the DMA’s output. This fussy dependence
on the initial placement of states is referred to as “undecidability.” In
general, if an automaton is undecidable, the only way—almost—to
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determine  what  it  will  produce  for  each  initial  configuration  requires
running the dynamics nearly to completion (see, e.g., [10]). 

Figure 5. Three different configurations  of 134 black and 122 white cells on a

1616 space. The  DMA converges to all black (top), all white (middle) and a
153-black  and  103-white  mixture  (bottom).  Also  shown  are  the  respective

CMA block configurations (88, 44, 22 and 11). In each case, the final—
correct—block is black.

The  DMA  is  almost  undecidable  because  its  final  configuration  is
almost  always  preceded  by  the  formation  of  one  or  more  percolation
paths. A percolation path on a torus is a single state, nearest-neighbor
connected  path  that  spans  the  torus.  It  is  closed,  in  the  sense  that  a
cell on it in the upper row is in the same column as a cell on it in the
lower  row  (or  in  the  same  row  as  cells  in  the  first  and  last  columns).
When  the  final  configuration  of  a  DMA  run  consists  of  all  the  same
state,  the  percolation  paths  that  form  early  on  consist  only  of  that
final  state.  Such  percolation  paths  “fatten”  in  succeeding  iterations,
leading  eventually  to  a  systemwide  collective  state  change.  Consistent
with  our  provisional  identification  of  the  DMA  universality  class,  we
propose  that  successful  identification  of  the  initial  majority  by  the
DMA is equivalent to a directed percolation phase transition. 

When the DMA evolves to a mixed configuration,  there will either
be  two  nonintersecting  percolation  paths  of  opposite  state  forming
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during  the  intermediate  dynamics,  or,  more  rarely,  no  percolation
paths  at  all.  Typically,  such  predictive  precursor  structures—one  or
more paths of the same state or nonintersecting paths of both states—
emerge  in  only  a  few  time  steps.  (The  rare  no-percolation-paths  case
typically takes much longer to develop and is consequently not a use-
ful predictor.)  Thus, the DMA is almost undecidable. 

While it is still generally impossible to infer the outcome of a DMA
process  by  just  examining  its  initial  configuration  (unless  there  is
already  a  percolation  path  present,  such  as  the  black  “horizontal”
path  in  the  top  initial  configuration  in  Figure  5—the  ends  of  which
are  identified  by  the  two  gray  arrows),  the  formation  of  percolation
paths after only a small number of iterations of the dynamics provides
useful  clues.  For  1616  spaces  with  50-50  initial  configurations,  for
example, each of the three final  configuration  types appears (after 30
to  40  iterations)  roughly  equally.  Random  guessing  after  a  few
iterations gets the right answer about a third of the time. Using perco-
lation  path  clues,  however,  allows  the  final  configuration  to  be suc-
cessfully predicted about 60% of the time after just three iterations. 

Why Does the Coarsened Majority Automaton  Outperform the 

Directed Majority Automaton  in the Majority Identification Task?  

8.

Figure  5  also  shows  the  results  of  the  CMA  dynamics  evolving  the
same  initial  configurations  as  applied  to  the  DMA.  Starting  with
1616  states,  there  are  in  each  case  successively  88,  44  and  22
states and finally,  one single state. The CMA states can be black (+1),
white (-1) or gray (0). In each of the cases shown, the final  all-black
configuration,  in contrast to the DMA results for the same initial con-
figurations, correctly identifies the initial majority.  

In  each  of  the  cases  shown,  the  successively  coarser  configurations
contain  increasing  fractions  of  the  initial  majority  state.  For  the  pur-
pose  of  calculating  the  black  content  fraction,  gray  can  be  usefully
interpreted as half black, half white. Thus,  in the top trial depicted in
Figure 5, the black content fraction for the CMA increases from 52%
(for  1616)  to  59%  (for  88)  to  81%  (for  44)  to  100%  (for  22).
In  the  middle  trial,  the  black  fractions  are  55%,  56%  and  75%.  In
the bottom trial, the fractions are 58%, 75% and 100%. This sequen-
tial  majority  amplification  appears  to  be  a  general  result.  For  exam-
ple,  an  average  of  1000  experiments  starting  each  time  with  random
configurations,  but  with  the  same  initial  black  fraction  (52.3%)  as  in
Figure  5  and  where  the  CMA  converges  to  one  black  cell  (which
occurs 78% of the time), yields the increasing sequence 58.5 ± 0.4 (for
88),  74.3 ± 1.0  (for  44)  and  95.7 ± 1.4  (for  22).  In  other  words,
whenever  the  coarsening  algorithm  successfully  identifies  the  initial
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majority,  it  essentially  always  amplifies  the  initial  state  fraction  in
each coarsening. 

In  addition  to  state  amplification,  whenever  the  coarsening  algo-
rithm  correctly  identifies  the  initial  majority,  at  least  one  percolation
path consisting of all the majority states emerges in the coarsened con-
figurations  before the final  configuration.  In the examples in Figure 5,
after  each  first  coarsening  (i.e.,  the  88  configurations)  there  are
already  multiple  black  percolation  paths—counting  gray  as  50%
black—but no white one. 

Therefore,  the  reason  the  CMA  outperforms  the  DMA  is  because
when  the  coarsening  algorithm  eventually  identifies  the  initial  major-
ity,  it  increasingly  amplifies  the  initial  state  fraction  in  each  coarsen-
ing step while at the same time sequentially involving fewer and fewer
cells.  It  is  more  likely,  therefore,  that  the  CMA  will  produce  closed
percolation paths of the correct state—the progenitors of correct iden-
tification—than the DMA.

Summary 9.

The  directed  majority  automaton  (DMA)  is  a  two-dimensional,  two-
state  cellular  automaton  that  competently,  though  not  perfectly,  per-
forms  the  initial  majority  task  over  a  wide  range  of  initial  majority
fractions. This  feat is accomplished autonomously by the automaton’s
collective  dynamics.  Here,  we  demonstrate  that  the  DMA’s  dynamics
reside  in  the  universality  class  of  directed  percolation.  We  observe
that  successful  majority  identification  is  always  preceded  by  the
appearance of a closed percolation path, consisting solely of the initial
majority  state,  traversing  the  automaton  space.  Such  paths  subse-
quently  initiate  a  phase  transition  in  which  all  of  the  cells  of  the
automaton take on the initial majority state. Exploiting the possibility
that the collective dynamics of the DMA might be renormalizable, we
developed  a  coarsened  version  of  the  DMA—the  CMA—which
resides in the same universality class as the DMA. The CMA performs
the majority identification  task with higher success rates and consider-
ably fewer computations than the DMA. It does so by also developing
percolation paths in the coarsened state spaces. 

References

[1] I.  D.  Couzin,  C.  C.  Ioannou,  G.  Demirel,  T.  Gross,  C.  J.  Torney,
A.  Hartnett,  L.  Conradt,  S.  A.  Levin  and  N.  E.  Leonard,  “Uninformed
Individuals  Promote  Democratic  Consensus  in  Animal  Groups,”  Sci-
ence, 334(6062), 2011 pp. 1578–1580. doi:10.1126/science.1210280. 

Improved Majority Identification by the Coarsened Majority Automaton 201

https://doi.org/10.25088/ComplexSystems.31.2.191

https://doi.org/10.1126/science.1210280
https://doi.org/10.25088/ComplexSystems.31.2.191


[2] J.  D.  Christensen,  D.  B.  Griffin  and  D.  Peak,  “Undecided  Cliques  Pro-
mote  Consensus  in  the  Directed  Majority  Automaton,”  International
Journal of Unconventional Computing, 13(4), 2018 pp. 359–375. 

[3] Y.  Katz,  K.  Tunstrøm,  C.  C.  Ioannou,  C.  Huepe  and  I.  D.  Couzin,
“Inferring  the  Structure  and  Dynamics  of  Interactions  in  Schooling
Fish,”  Proceedings  of  the  National  Academy  of  Science,  108(46),  2011
pp. 18720–18725. doi:10.1073/pnas.1107583108. 

[4] S. M. Messinger,  K. A.  Mott and D.  Peak, “Task-Performing  Dynamics
in  Irregular,  Biomimetic  Networks,”  Complexity,  12(6),  2007
pp. 14–21. doi:10.1002/cplx.20181. 

[5] M.  Cenek  and  M.  Mitchell,  “Evolving  Cellular  Automata,”  Encyclope-
dia  of  Complexity  and  Systems  Science  (R.  A.  Meyers,  ed.),  New  York:
Springer,  2009 pp. 3233–3242. doi:10.1007/978-0-387-30440-3_191.

[6] M.  Land  and  R.  K.  Belew,  “No  Perfect  Two-State  Cellular  Automata
for  Density  Classification  Exists,”  Physical  Review  Letters,  74(25),
1995 pp. 1548–1550. doi:10.1103/PhysRevLett.74.5148. 

[7] A.  Bušić,  N.  Fatès,  J.  Mairesse  and  I.  Marcovic,  “Density  Classification
on  Infinite  Lattices  and  Trees,”  Electronic  Journal  of  Probability,  18,
2013 pp. 1–22. doi:10.1214/EJP.v18-2325. 

[8] K.  G.  Wilson,  “The  Renormalization  Group:  Critical  Phenomena  and
the  Kondo  Problem,”  Reviews  of  Modern  Physics,  47(4),  1975
pp. 773–840. doi:10.1103/RevModPhys.47.773. 

[9] J.  Wang,  Z. Zhou, Q.  Liu, T.  M. Garoni and Y.  Deng, “High-Precision

Monte Carlo Study of Directed Percolation in d + 1 Dimensions,”  Phys-

ical Review E, 88(4), 2013 042102. doi:10.1103/PhysRevE.88.042102. 

[10] S.  Wolfram,  A  New  Kind  of  Science,  Champaign,  IL:  Wolfram  Media,
Inc., 2002 pp. 753–755. 

202 D. Peak, C. G. Torre  and J. R. Whiteley

Complex Systems, 31 © 2022

https://doi.org/10.1073/pnas.1107583108
https://doi.org/10.1002/cplx.20181
https://doi.org/10.1007/978-0-387-30440-3_191
https://doi.org/10.1103/PhysRevLett.74.5148
https://doi.org/10.1214/EJP.v18-2325
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevE.88.042102



