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Biological  systems  are  notorious  for  complex  behavior  within  short
timescales  (e.g.,  metabolic  activity)  and  longer  timescales  (e.g.,  evolu-
tionary  selection),  along  with  their  complex  spatial  organization.
Because of their complexity and their ability to innovate with respect to
their environment, living systems are considered to be open-ended. His-
torically,  it has been difficult  to model open-ended evolution and inno-
vation.  As  a  result,  our  understanding  of  the  exact  mechanisms  that
distinguish  open-ended  living  systems  from  nonliving  ones  is  limited.
One  of  the  biggest  barriers  is  understanding  how  multiple,  complex
parts  within  a  single  system  interact  and  contribute  to  the  complex,
emergent  behavior  of  the  system  as  a  whole.  How  do  interactions
between parts of a system lead to more complex behavior of the system
as  a  whole?  This  paper  presents  two  interacting  cellular  automata
(CAs)  as  an  abstract  model  to  address  the  effects  of  complex  interac-
tions  between  two  individual  entities  embedded  within  a  larger  system.
Unlike  elementary  CAs,  each  cellular  automaton  (CA)  changes  its
update  rules  as  a  function  of  the  system’s  state  as  a  whole.  The  result-
ing  behavior  of  the  two-CA  system  suggests  that  complex  interaction
functions between the two CAs  have little to no effect on the complex-
ity of each individual CA’s  behavior and structure. However,  having an
interaction  function  that  is  random  results  in  open-ended  evolution
regardless of the specific type of state-dependency.  

Keywords: cellular automata; open-ended evolution; algorithmic 
complexity; interactions

Introduction1.

Biological systems are notorious for their complex physical structures
and complex behaviors over short and long timescales. Biological sys-
tems  also  tend  to  partition  themselves  into  smaller  subsystems  that
interact  with  other  subsystems.  For  example,  the  human  gut  micro-
biome  consists  of  several  bacterial  and  viral  communities.  Viruses  of
bacteria  (phages)  are  being  recognized  as  important  components  of
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the  human  microbiome  due  to  their  interaction  effects  with  bacterial
communities [1]. They modulate bacterial communities by killing bac-
teria  and  driving  metabolic  activity.  However,  little  is  known  about
the  specific  roles  played  by  phages  in  human  systems,  particularly
how  exactly  they  interact  with  bacterial  communities,  how  that  plays
a  role  in  the  human  gut  health  overall,  and  how  those  effects  in  turn
impact  the  phage  communities.  In  general,  the  exact  implications  on
system  structure  and  dynamics  of  interacting  subsystems,  particularly
when it comes to measurable biological complexity and behavior,  are
not well understood [2, 3].  

Biology is also known to evolve open-endedly,  meaning it continu-
ously innovates over time (in several different ways), maintains a cer-
tain  amount  of  complexity  and  never  repeats  itself  exactly  [4–10].
However,  there is no wide agreement on a precise definition  of open-
endedness in the literature [8, 9]. The  relationship between a system’s
capacity  for  open-endedness  and  complexity  also  remains  imprecise,
even within computational models. 

It  is  widely  known  that  interacting  components  of  a  system  can
lead  to  emergent  behavior  of  the  system  as  a  whole  [11,  12].  Bedau
[13]  recognizes  emergence  in  two  main  forms,  weak  and  strong.  In
weak  emergence,  the  behavior  of  individual  entities  sums  exactly  to
completely  describe  the  behavior  of  a  group.  This  emergence  can  be
derived  by  simulating  internal  dynamics  and  known  external  condi-
tions. Strong emergence, on the other hand, is more difficult  to under-
stand  because  it  cannot  be  simulated  from  internal  dynamics  and
known external conditions. Both forms are closely related to the con-
cept  of  innovation  used  to  define  open-endedness.  Here,  something
entirely  new  must  emerge  from  underlying  dynamics,  whether  it  be  a
new  pattern/structure  or  an  entirely  new  set  of  rules  altogether  [14].
Understanding  the  mechanisms  of  open-endedness,  particularly  how
open-ended  systems  innovate  in  several  different  ways,  might  be  use-
ful for understanding mechanisms that drive emergent phenomena. 

Biological  systems  have  natural  partitions  that  define  subsystems,
such  as  individual  organisms,  individual  cells,  different  cell  types  and
different species. From a bottom-up approach, it is assumed that a sys-
tem’s  behavior  is  entirely  determined  by  the  underlying  laws  of  the
parts that compose it [15, 16]. A top-down approach suggests just the
opposite:  that  the  behavior  of  individual  parts  in  a  system  is  deter-
mined by the behavior of the system as a whole [15–17]. Researchers
use  either  (or  both)  approaches  to  explain  how  entities  within  a  sys-
tem affect system dynamics over time [16, 18]. As an example, human
health  is  impacted  by  interactions  that  occur  between  phages  and
microbes.  In  turn,  an  individual’s  overall  health  impacts  their  behav-
ior,  including  diet,  which  impacts  the  communities  of  phages  and
microbes.
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Prior Work   1.1

The  main  goal  of  this  paper  is  to  explore  the  relationship  between
interaction  functions  between  subsystems,  complexity  and  open-
endedness  within  a  simple  computational  model.  One  form  of  open-
ended  evolution  (defined  in  Section  2)  has  been  demonstrated  within
a  system  of  interacting  elementary  cellular  automata  (CAs)  [18].  In
that model, one cellular automaton (CA)  evolves according to a fixed
rule, but a second evolves according to a rule that can change at each
time  step.  The  rule  to  evolve  the  next  state  is  determined  by  the  cur-
rent  state  of  both  spatially  separate  CAs  under  an  arbitrary  interac-

tion  function f .  As  a  result,  the  CA  that  changes  its  rule  can  evolve

open-endedly in the sense that it takes longer than expected to repeat
its  spatial  pattern  and  also  that  the  pattern  is  innovative  with  respect
to all possible patterns generated by a fixed  rule (r ∈ R where R is the
set of 256 elementary CA rules).  

In addition, results from the previous model show that this form of
open-endedness  is  not  scalable  with  system  size  if  the  updating  rule
changes randomly,  without considering the current state of both CAs.
No open-endedness was observed if the rule was only determined by a
single CA, suggesting that open-endedness may depend on state-depen-
dent  dynamics  of  the  system  as  a  whole.  Finally,  assuming  the
transitions between states can be represented on a directed graph, the
topology  of  this  interacting  system  allows  walks  along  states  and
edges  that  are  innovative  and  open-ended.  This  is  because  a  wider
variety of states and edges are more accessible at each time step [19]. 

This  paper  extends  these  results  by  allowing  both  CAs  to  change
their  updating  rule  at  each  time  step.  In  this  experiment,  I  explore  a
few different interaction functions and measure the complexity of the
resulting  spatial  CA  patterns  along  with  the  trajectory  of  states  over
time  for  each  CA.  Due  to  the  algorithmic  nature  of  this  model,
approximations  to  algorithmic  complexity  are  used  in  place  of
entropy-based measures of complexity throughout this analysis [20]. 

Apparent Open-Ended Evolution    2.

Even  though  biological  evolution  is  widely  accepted  as  being  open-
ended  [8,  21],  there  is  no  scientific  consensus  on  an  exact,  quantifi-
able  definition  of  open-endedness  [8,  9].  But  for  bounded,  discrete
dynamical models with synchronous update rules, the open-ended evo-
lution (OEE) of states over time is defined  in terms of innovation and
unbounded  evolution  [18].  These  are  defined  in  Adams,  et  al.  2017
[18] and are also defined below as abbreviated versions.  

The  Poincaré  recurrence  time  tP  of  a  finite,  deterministic,  bounded

and  dynamical  model  provides  a  time  constraint  on  when  it  will
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repeat  exactly.  For  one-dimensional  elementary  cellular  automata
(ECAs),  tP  2w, where w is the number of cells in a single CA  state.

This is because an elementary cellular automaton (ECA)  can, at most,
express  every  possible  state  in  its  evolutionary  state  trajectory,  and
because  the  update  rule  r  is  fixed,  visiting  the  same  state  more  than
once would cause the state trajectory to repeat itself exactly.

Unbounded  evolution  [18]  is  the  ability  for  a  single  CA  model  c
embedded within a larger system u of two interacting CAs (c1  and c2)

to  defy  the  Poincaré  recurrence  time  by  repeating  its  patterns  of
expressed  states  s(t1), s(t2), s(t3)…s(tr)  in  a  time  greater  than  tP.

Because c1  and c2  within u are not isolated and do not evolve under a

single, unchanging update rule like ECA, the tP  that c needs to “beat”

is determined by the tP of an ECA with the same size w as c. 

Definition 1.  A  finite,  deterministic  and  bounded  dynamical  system  u,
which  can  be  decomposed  into  subsystems  c1  and  c2  that  interact

according to a function f , exhibits unbounded evolution if there exists

a recurrence time tr  in c1  or c2  such that sf (t)  s(t1), s(t2), s(t3)…s(tr)

is  nonrepeating  for  tr > tP,  where  tP  is  the  Poincaré  recurrence  time

for an equivalent isolated (noninteracting) system c. 

Here,  f  is  the  interaction  function  between  c1  and  c2,  defined  in

Section 3. Because the state evolution (trajectory) of c is compared to
counterfactual state trajectories of ECAs  of the same size, this implies
that  ECAs  are  inherently  incapable  of  unbounded  evolution.  Innova-
tion is defined as [18]: 

Definition 2.  A  finite,  deterministic,  and  bounded  dynamical  system  u,
which  can  be  decomposed  into  subsystems  c1  and  c2  that  interact

according to a function f , exhibits innovation if there exists a state tra-

jectory sf (t)  s(t1), s(t2), s(t3)…s(tr) that is not contained in the set of

all possible state trajectories {sI} for an equivalent isolated (noninterac-

ting) system c. 

That is, a subsystem CA c exhibits innovation by Definition  2 if its
state trajectory cannot be produced by an ECA  of the same size. Both
Definitions  1  and  2  reflect  the  intuitive  notions  of  “on-going  produc-
tion of novelty” and “unbounded  evolution” [5] but do not necessar-
ily  mean  the  complexity  of  individual  states  increases  with  time.
Furthermore,  OEE  is  apparent  on  the  scale  of  a  single  CA  embedded
within a larger system. This is in agreement with our intuition of OEE
within  biology—the  evolution  of  life  as  a  whole  appears  to  evolve
open-endedly,  but  it  is  embedded  within  a  larger  system  that  is  not
necessarily open-ended. 
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Model    3.

The model system explored here is composed of two finite, determinis-
tic  and  spatially  bounded  interacting  CA  with  fixed  widths  w  and
periodic  boundary  conditions.  Each  CA  starts  exactly  like  an  ECA
with  a  fixed  update  rule  (one  of  the  256  ECA  rules),  but  after  each
time step, each CA changes its rule that is used to determine that CA’s
next  state  s.  Both  CAs  use  one  of  the  following  types  of  functions

ftype, t  at  time t  to  change  their  rule r,  which  will  then  determine  the

next state st+1: 

rx, t  fthis state, t(sx, t):  rx, t  is  determined  only  by  the  current  state  sx, t  of

that CA. 

1.

rx, t  fthis state, t(sx, t):  rx, t  is  determined  only  by  the  current  state  sx, t  of

that CA. 

2.

rx, t  fother state, t(sy, t): rx, t  is determined only by the current state sy, t  of

the opposing CA. 

3.

r1, t  r2, t  fboth states, t(s1, t, s2, t):  both  r1, t  and  r2, t  are  determined  by

the current states st of both CAs. 

4.

rx, t  fmixed, t(random choice((s1, t, s2, t) ⋁ sx, t ⋁ sy, t)):  rx, t  depends  on  a

random  choice  of  both  CA  states,  the  state  of  that  CA  or  the  state  of
the opposing CA. 

5.

Because all possible initial states for a given w and initial rules are
explored for both CAs, only CAs with w  3 were explored. For each
of  all  possible  combinations  of  s0,w,  r0,  state  trajectories  were

recorded  for  2 * 2w  time  steps.  An  illustration  of  this  model  is  shown
in Figure 1. 

For  each  interaction  function  type  ftype,  the  exact  mappings  ftype, i

between  states  s  and  rules  r  were  generated  randomly.  Five  thousand

random  mappings  were  created  for  each  ftype,  and  only  six  of  these

5000  mappings  were  used.  The  six  mappings  were  chosen  based  on
their  relative  approximate  complexity  values  (described  in  Sec-
tion 4)—  three  mappings  with  relatively  high  complexity  and  three
mappings with relatively low complexity.  Because the interaction func-

tion for fmixed  depends on a random choice made at each time step t,

the  complexity  could  not  be  measured  for  fmixed, i  mappings,  since  a

static  mapping  does  not  exist.  However,  the  exact  random  choice  in
mappings was based on the other three interaction types. For each of
the  interaction  function  types,  the  six  individual  mappings  are
denoted as i ∈ 0, 1, 2, 3, 4, 5. 
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Figure 1. Each  of  these  CAs  evolves  over  time  (downward)  and  changes  its

update  rule  (one  of  the  256  ECA  rules)  according  to  some  function  ftype  as

described in the text. Because results are exhaustive, only CAs with w  3 are
considered.  

Methods    4.

Both  CA  state  trajectories  were  checked  for  apparent  OEE  according
to  Definitions  1  and  2.  Algorithmic  complexity  (Kolmogorov  com-
plexity)  cannot  be  computed  exactly  due  to  the  halting  problem,  but
can  be  approximated  using  the  block  decomposition  method  (BDM)
[20].  This  is  an  upper-bound  approximation  of  the  algorithmic  com-
plexity,  which,  in  short,  measures  the  size  of  the  smallest  computer
program that can produce the string of symbols being measured [20].  

The  BDM  can  be  used  to  approximate  the  algorithmic  complexity
of  one-dimensional  or  two-dimensional  objects.  By  representing  each

interaction function mapping ftype, i  as an adjacency matrix, it is possi-

ble  to  approximate  the  complexity  for  any  nonchanging  ftype, i  [22].

But since each interaction function mapping ftype, i  was generated ran-

domly,  this  would  affect  the  expected  range  of  BDM  values  for  any

ftype, i. BDM is largely known for quantifying the randomness of mech-

anisms  capable  of  producing  an  object.  This  was  mitigated  by  select-
ing  mappings  with  high  and  low  BDM  values  relative  to  a  batch  of
5000 randomly generated mappings. 

The  CA  state  trajectory  of  both  CAs  can  be  represented  in  two
ways for the purposes of measuring the BDM. The  first  is to measure
the  BDM  of  each  state  in  the  state  trajectory.  Then  the  mean  of  the
BDM values for each individual state s is calculated per CA  state tra-
jectory.  The  second  is  by  enumerating  all  possible  states  for  a  CA  of
size w and measuring the BDM of the sequence of enumerated states.
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For  w  3,  there  are  2w  8  possible  states,  making  it  computation-
ally  tractable  to  measure  the  BDM  for  the  entire  state  trajectory.  For
computational  tractability  reasons,  the  Python  3  package  PyBDM
(pybdm-docs.readthedocs.io/en/latest)  does  not  support  sequences
with  an  alphabet  size  over  nine,  thus  making  it  possible  to  use
PyBDM to calculate the BDM for each of these measurements. 

Results    5.

Figure  2  shows  the  number  of  open-ended  CA  state  trajectories  (%
OEE) for both CAs  as a function of the different interaction function

types ftype,  as  defined  by  Definitions 1  and 2.  There  were  no  OEE

Figure 2. Percent  of  all  OEE  state  trajectories  for  all  interaction  function
types. Results are only shown for CA 1 trajectories; results for CA 2 are simi-
lar because the system is symmetric.
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state trajectories for fboth states, since the tr  of each CA  depends on the

states  and  rules  from  both  CAs  simultaneously.  Then,  by  definition,

there  are  no  OEE  state  trajectories  for fboth states  since  the tr  is  com-

pletely  determined  by  the  dynamics  of  the  whole  system.  There  were

also  no  OEE  state  trajectories fother state.  This  is  consistent  with  prior

results [18], which suggest that the open-ended evolution of a subsys-
tem is largely dependent on state-dependent dynamics—it must use its

own state in ftype to produce open-ended behavior.

The  distributions  of  recurrence  times  tr  are  shown  in  Figure  3.  If
the  tr > 2 * 2w,  then  tr  was  denoted  as  tr  2 * 2w + 1,  for  computa-

tional  simplicity.  Within  each  ftype,  the  individual  mappings  showed

little  difference  in  the  distribution  of  tr.  The  interaction  function

fmixed shows an exponential-like distribution. 

Figure 3. Distributions  of  tr  values  for  each  interaction  function  type.  CA
state trajectories with tr > tP  exhibit unbounded evolution, as defined  in Defi-
nition 1.  

The distributions of the mean BDM of a state within a CA state tra-

jectory are shown in Figure 4 for each ftype. Similarly,  the distribution

of the BDM for each enumerated state trajectory is shown in Figure 5.
These  results  are  for  CA  1,  and  results  for  CA  2  are  very  similar
because the system is symmetric (not shown). 
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Figure 4. Distributions of mean BDM values of individual states in a CA state
trajectory  for  each  interaction  function  type  (both  states,  this  state,  other
state, mixed, from upper left to lower right, respectively). 

Figure 5. Distributions  of  mean  BDM  values  of  enumerated  state  trajectories
in a CA  for each interaction function type (both states, this state, other state,
mixed, from upper left to lower right, respectively). 
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For fthis state,  the  relationship  between  %  OEE  and  mean  BDM  is

shown in Figures 6 and 7 for the mean BDM of states within a trajec-
tory  and  the  enumerated  state  trajectory,  respectively.  The  average

mean  BDM  value  is  separated  by  the  six  mappings fthis state, i.  The

other  interaction  function  types  are  not  shown  because  either  they
were  not  able  to  produce  OEE  state  trajectories,  or  the  BDM  for  the

mapping  could  not  be  measured  (for  fmixed, i  mappings).  Results  for

CA 2 are similar and are not shown. 

Figure 6. %  OEE  state trajectories  versus  average  mean  BDM  values of  indi-

vidual states in a CA state trajectory for all six fthis state, i mappings.  

Figure 7. % OEE state trajectories versus average BDM values of enumerated

CA state trajectories for all six fthis state, i mappings.  
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Finally,  Figures 8 and 9 show the ftype, i  mapping BDMs versus the

mean BDM of states within a trajectory and the enumerated state tra-

jectory,  respectively,  for  the  three  ftype  with  measurable  BDMs.  Each

panel is plotted with the same x and y range for comparison. 

(a) (b)

(c)

Figure 8. BDM  complexity  values  for  each  ftype, i  mapping  versus  average

mean  BDM  values  of  individual  states  in  a  CA  state  trajectory  (interacting
function BDM: low blue; high orange).
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(a) (b)

(c)

Figure 9. BDM  complexity  values  for  each  ftype, i  mapping  versus  average

BDM  values  of  enumerated  CA  state  trajectories  (interacting  function  BDM:
low blue; high orange).

Discussion    6.

These  results  suggest  that  the  complexity  of  an  interaction  function
(mappings  between  system  states  and  cellular  automaton  (CA)  rules
for  the  next  time  step)  likely  has  little  to  no  effect  on  the  complexity
of  the  behavior  of  an  individual  CA  embedded  in  a  larger  system.
However,  Figures 2, 3 and 5 strongly suggest that an interaction func-
tion  between  two  cellular  automata  (CAs)  that  randomly  changes  its
state  dependencies  results  in  open-ended  evolution,  complex  states
and complex state dynamics, regardless of the static mapping between

214 A. M. Adams

Complex Systems, 31 © 2022



states and rules it chooses from. This suggests the results for fmixed are

robust  against  the  exact  mapping  between  states  and  rules,  and  the
resulting  complex  behavior  within  a  CA  results  from  the  random
dependencies of different parts of the entire system.  

For real biological systems, such as a human gut microbiome, these
results  suggest  that  the  complex  evolutionary  behavior  of  individual
communities  may  not  be  a  consequence  of  a  fixed,  static  relationship
between  entities,  but  rather  of  random  events  from  multiple  parts  of
an entire system. These results could guide data-driven empirical anal-
yses  on  how  communities,  individuals  or  other  entities  interact  to
form complex behavior in real biological systems. 
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