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This  paper  explores  the  idea  of  a  toy  model  universe  as  a  character
string  where  each  character  is  either  X  or  -.  The  string  makes  a  transi-
tion  between  states  that  are  of  maximal  variety.  The  definition  of
variety given by Barbour and Smolin is used in this paper.  An interpreta-
tion  of  the  toy  model  universe  is  given  in  terms  of  Everett’s  many-
worlds  interpretation.  The  paper  also  discusses  whether  new  maximal
variety  strings  can  be  obtained  by  addition  or  subtraction  of  maximal
variety strings. A  few comments are included about the use of quantum
computers,  which  may  help  find  the  maximal  variety  strings  more
quickly.  

Keywords: maximal variety; character strings; Leibniz  

Introduction1.

In this paper,  we consider a model universe that consists of character
strings  of  two  distinct  letters,  X  and  -.  We  employ  this  approach  as  a
toy model. More realistic examples may include a graph or a directed
hypergraph, as is the case with the Wolfram  Model [1–3].  

The structure of our toy universe has the concept of variety,  that is,
a  measure  of  how  distinctive  the  universe  is.  The  idea  of  variety  that
we use is given by Barbour and Smolin [4]. It is argued that a universe
should  evolve  in  such  a  way  as  to  attain  maximal  variety  [4,  5].
Recently  the  idea  has  begun  to  attract  more  attention  [6].  However,
the  approach  of  [6]  is  different  from  ours  in  the  way  that  they
consider an unsupervised algorithm that discovers the laws of the uni-
verse.  Our  approach  is  not  based  on  a  machine  learning  algorithm,
and instead is based very much on the concept of variety.  

Leibniz’s  identity of indiscernibles is a philosophical viewpoint that
if two entities are equal in all of their properties, then these two enti-
ties are actually the same thing [7] (as regards the case with quantum
mechanics,  consult  [8]).  In  this  paper,  we  deal  with  strings  that  may
be  composed  of  two  distinct  letters,  for  example,  X  and  -,  that  have
periodic  boundary  conditions.  Due  to  the  periodic  boundary  condi-
tion,  we  can  think  of  the  string  of  characters  as  a  discrete  circle.  In
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our  study,  we  consider  maximal  variety  strings  that  are  also  Leib-
nizian. We  define Leibnizian string configurations in Section 2.2. 

The  paper  is  organized  as  follows:  Section  2  gives  basic  concepts
(the idea of a time capsule and the variety of a string) that are used in
the  rest  of  the  paper.  Section  3  gives  the  laws  of  motion  of  the  uni-
verse.  Section  4  discusses  the  addition  or  subtraction  of  strings  of
maximal  variety  and  string  substitution  systems.  Section  5  gives  an
interpretation  of  our  model  in  terms  of  Everett’s  many  worlds.
Finally,  Section 6 concludes the paper.  

Preliminaries   2.

This section gives some background material.  

Time Capsules   2.1

It  is  appropriate  to  begin  this  subsection  with  a  quote  from  Barbour
[9]:  “By  a  time  capsule,  I  mean  any  fixed  pattern  that  creates  or
encodes  the  appearance  of  motion,  change  or  history.”  So  in  essence,
a time capsule is a configuration  that, when observed, creates the illu-
sion of past or motion.  

Fossil records are good examples of time capsules, as mentioned in
[9].  When  a  scientist  looks  at  a  fossil  and  investigates  its  properties,
the conclusion is that such and such a creature lived a long time ago.
In  our  model,  time  capsules  will  be  persistent  structures  (substrings)
shared among states of the universe. We  find  that some time capsules
are  present  in  all  the  states,  whereas  others  may  be  present  only  in  a
subset of states of the universe. 

Variety of a String2.2

The  variety  of  a  character  string  refers  to  how  distinguishable  the
string is. For example, the string XXXXX has zero variety and the string
X-X-X has more variety.  The definition  we use, mentioned as a sugges-
tion  by  David  Deutsch,  is  included  in  [4].  We  briefly  summarize  the
main  points  of  variety  given  in  [4].  For  clarity,  the  notation  is  kept
mostly the same.  

Let s be a string of length N. We  consider that the string is circular;
that is, the next character after the last character is the first  character.
Also let us index the first element of s by 0. We  denote by i

m
 the sub-

string  that  is  constructed  of  letters  at  index  positions  between  i -m
and i +m. If the index is not in the range 0…N - 1, we take the given

index modulo N. For example, for s XX-X---, 1
1 XX- and 0

1 -XX. 

Since the marked point, that is i in i
m, is always at the center,  the

notion  of  string  isomorphism  given  in  [4]  is  that  if  s1  and  s2  are  two
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strings, they are isomorphic if s1  s2  modulo cyclic rotations or s1  is

the  mirror  image  of  s2  modulo  cyclic  rotations.  Then  we  define  “Kij

as  the  smallest  m  such  that  i
m

 is  not  isomorphic  to  j
m”  [4]  (emph-

asis in the original). The maximum value of m is m*
 defined as: if N is

even,  m*  N / 2 - 1,  and  if  N  is  odd,  m*  (N - 1) / 2.  If  for  all  i ≠ j

Kij ≤ m*,  we  call  these  configurations  Leibnizian,  and  non-Leibnizian

otherwise.  Kij  is  called  relative  indifference.  The  higher  it  is,  the  less

distinct s(i) and sj. Using Kij, we can also define the absolute indiffer-

ence Ri, which is the maximum of Kij  where i is kept fixed  and j runs

through all indices that are not equal to i. Then we can give the defini-
tion of variety: 

V′  

i

1

Ri

. (1)

The  free  and  open  source  program  [10]  written  in  Haskell  by  the
author  has  the  function  varietyP  to  calculate  the  variety  of  a  string,
among  other  useful  functions.  This  definition  is  not  unique.  The  key
point that the variety function must satisfy is that it should increase as
Ri  decreases and should decrease as Ri  increases. In order to compare

the  variety  of  different  strings,  we  may  also  use  a  scaled  version  of
variety, that is, variety per character,  defined as V′ /N. 

Table  1  lists  the  maximum  variety  for  strings  with  N  6, … , 20,
and Figure 1 shows a plot of these values. Note that there are no Leib-
nizian strings for N < 6, thus we started with N  6. Figure 2 shows a 

6 8 10 12 14 16 18 20
N

2

4

6

8

10

Maximum Variety

Figure 1. List  plot  of  maximum  variety  values  for  Leibnizian  string  of  length

N,  for  rather  small  N.  As  a  trend,  we  see  that  maximum  variety  approxi-

mately increases as N increases. Table  1 has the exact values.  
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N Maximum Variety

6 4

7 5

8 6

9 17/3

10 37/6

11 20/3

12 8

13 23/3

14 49/6

15 49/6

16 9

17 26/3

18 55/6

19 29/3

20 59/6

Table 1. Maximum variety values for Leibnizian strings of length N.  

plot  of  the  exact  distribution  of  variety  among  Leibnizian  strings  of
lengths  N  8,  10,  12,  14.  The  plot  shows  that  as  N  increases,  the
mean  of  the  density  of  variety  increases  and  variety  per  character

decreases.  Figure  3  shows  a  random  sample  of  about  105  entries  of
Leibnizian strings of lengths N  30, 60, 90, 120 since exact calcula-
tions  could  not  be  done.  In  this  case,  the  mean  of  the  distribution  of
variety  moves  to  larger  values,  whereas  the  variety  per  character
decreases and has sharper peaks as N increases. 

(a)
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(b)

Figure 2. Two  plots  showing  distribution  of  variety  for  Leibnizian  character

strings of lengths N  8, 10, 12, 14. The results are exact in the sense that we
considered all of the Leibnizian character strings of before-mentioned lengths.

The value of maximal variety for N  8 is 6, for N  10 is 37  6, for N  12

is 8 and for N  14 is 49  6.  

(a)

Figure 3. (continues)

A Use of Variety  as a Law of the Universe 251

https://doi.org/10.25088/ComplexSystems.31.2.247

https://doi.org/10.25088/ComplexSystems.31.2.247


(b)

Figure 3. Two  plots  showing  distribution  of  variety  for  Leibnizian  character

strings  of  lengths  N  30,  60,  90,  120.  We  could  not  exhaust  the  search

space  and  rather  made  a  statistical  analysis  by  taking  about  105  Leibnizian

character strings for each N.  

History as a Maximal Variety String Tree3.

A  maximal  variety  character  string  is  defined  as  a  string  of  length  N
such  that  it  is  Leibnizian  and  has  the  maximum-value  variety  in  the
state space, which is the space of strings of length N where each letter
is either X or -. For instance, for N  7 modulo symmetries (cyclic and
mirror),  there  is  only  one  maximal  variety  string  XX-X---,  which  is
found by our code [10], and it is given in [4] as well. As is done in [4],
we  can  think  of  the  letter  X  as  matter  and  the  letter  -  as  space,  as  a
rough analogy.   

In our model, we begin with a maximal variety string such as given
above  for  N  7  and  find  the  next  strings  by  a  best-matching  proce-
dure,  similar  to  the  one  given  in  [11]  for  a  system  of  N  particles  in
Euclidean space. 

We  now  define  the  best  matching  for  strings.  Let  s1,  s2  be  two

cyclic  strings  of  lengths  N  and  N + 1  (or  n  and  m  in  general).  The
distance  between  them  is  defined  as:  keep  one  string  fixed  and  rotate
the other and calculate at each step the Levenshtein edit distance. The
minimum  value  of  the  Levenshtein  edit  distance  while  rotating  one
string  is  defined  as  the  distance  between  two  cyclic  strings  s1  and  s2.

The  Levenshtein  edit  distance  [12]  between  two  strings  is  the  mini-
mum  number  of  operations  (deletion,  addition  and  substitution  of

252 F.  S. Dündar

Complex Systems, 31 © 2022



characters)  to  obtain  one  string  from  another.  Our  best-matched  dis-
tance  is  known  in  the  literature  as  the  edit  distance  for  cyclic  strings.

The  algorithm  used  in  [10]  has  complexity  N3;  however,  since  we

do not deal with large strings in this paper,  the main idea in [10] fits
well for our purposes. For example, the Maes algorithm [13] has com-

plexity of N2 log N. For more efficient algorithms on cyclic edit dis-

tance,  consult  [14–16].  See  Figure  4  for  a  simple  illustration  of  the
idea.  On  the  other  hand,  there  are  applications  of  cyclic  edit  distance
to biology; for references consult [16]. 

XX - -XX X - X

X - X - X -

(a) b (c)

Figure 4. The best-matching procedure of two strings, X- and XX-. (a) The Lev-
enshtein edit distance is 1. The  first  string is obtained by adding X in the mid-
dle  of  X-.   (b)  The  distance  is  2;  first  add  -  at  the  beginning  of  the  second
string  and  change  the  last  character  to  X.  (c)  Finally,  the  distance  in  this  case
is  1;  just  add  X  at  the  end  of  the  second  string.  Hence  we  conclude  that  the
cyclic  edit  distance  between  the  strings  XX-  and  X-  is  1.  It  is  the  minimum  of
edit distances, as one string is rotated and the second string is kept the same,
and is called the cyclic edit distance.  

The  time  evolution  of  our  toy  model  universe  is  as  follows.  Fix  a
maximal  variety  string  of  length  N  and  name  it  sN.  Then  let  SN+1  be

the set of maximal variety strings of length N + 1. Then the states that
come  after  sN  are  those  elements  of  SN+1  such  that  they  best-match

with  sN;  that  is,  they  have  the  lowest  cyclic  Levenshtein  edit  distance

to sN. It is certain that at least one string of SN+1  will best-match, but

there may be others as well, depending on N, the definition  of variety
and the definition of best-matching if other definitions are used. 

The history of a physical system in our model is a tree of maximal
variety  character  strings  that  are  best-matched  to  the  previous  string.
Figure 5 shows an illustration of the tree beginning with N  6. 
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XX-X--

XX-X--- XXX-X--

XXX-X---

XXX--X---

XXX-X----- XXXXX -X---

XXX-X---- XXX-XX--- XXXX-X---

XXX-X---X-- XXX-X--X--- XXX-X---XX- XXX-XX-X---
Figure 5. The history of a model universe from N  6 to N  11.

String Algebra and String Substitution Systems4.

This section considers adding and subtracting maximal variety strings
(string algebra) and string substitution systems.

String Algebra4.1
We first consider whether adding or subtracting strings of maximal
variety will again produce maximal variety states. It is easy to calcu-
late variety for addition. When the string XX--X- is added to the string
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--XX-X,  we  obtain  the  string  XX--X---XX-X,  which  is  of  maximal  variety.
However,  there  is  a  counterexample  as  well.  For  N  6,  the  string
XX-X--  is  a  maximal  variety  string.  When  we  consider  injecting  this
string  into  itself  at  all  possible  places,  we  obtain  at  most  two  Leib-
nizian strings of length 12. They  are XXXX-X---X-- and XX-XXX-X---- and
have  variety  19/3.  The  maximum  variety  for  N  12  is  8.  The  addi-
tion  of  two  maximal  variety  strings  did  not  produce  a  maximal  vari-
ety string. However,  this variety is still larger than the mean variety of
distribution of strings of length 12 (see Figure 2).  

The  case  for  string  subtraction  is  more  complicated.  For  that  pur-
pose,  we  need  to  find  a  maximal  variety  substring  of  a  longer  maxi-
mal variety string. X-XX---X--XX is a maximal variety string for N  12;
it  begins  with  the  substring  X-XX--,  which  is  a  maximal  variety  sub-
string  of  length  6.  After  the  subtraction,  we  obtain  -X--XX,  which  is
also a maximal variety string of length 6. On the other hand, there is
the  following  counterexample.  XX--X-----XX-X  is  a  maximal  variety
string. The  initial XX--X- is also of maximal variety; however,  the sub-
tracted part, that is, the string ----XX-X, has variety 14 / 3, which is not
of maximum variety.  Hence we conclude that although there might be
cases  where  adding  or  subtracting  two  maximal  variety  strings  may
provide a maximal variety string, this is not always the case, as coun-
terexamples are provided for both situations. 

String Substitution Systems  4.2

String  substitution  systems,  sometimes  referred  to  as  string  rewriting
systems  or  semi-Thue  systems  [17],  are  a  class  of  models  such  that  a
transformation  rule  is  applied  to  a  string  and  more  strings  are  pro-
duced if a rule matches a substring. As a simple example, consider the
following:  by  starting  from  the  string ABABABA,  apply  the  rule
BA  AB  and  at  the  end  obtain  the  sorted  string.  See  Figure  6  for  an
illustration.  If  the  rule  matches  more  than  one  substring  in  a  string,
branching  occurs.  This  is  what  is  called  a  multiway  system  [18]:  the
time evolution of a string substitution system is a tree.  

Let  R  be  a  rewrite  rule  that  includes  these  operations:  ε  X,  ε -,
X  ε, -  ε, X -, -  X, where ε is the empty string. These  operations
are  used  in  determining  the  Levenshtein  edit  distance.  Hence  we  can
start  from  the  empty  string  ε  and  obtain  all  possible  strings  that  are
composed  of  characters  X  and  -.  Maximal  variety  states  are  also  pro-
duced. Because in our time evolution of the universe the length of the
maximal variety strings is increased by one at each step, there is a pos-
sibility that the tree of strings that is obtained by starting from ε and
applying  the  rule  R  contains  the  time  evolution  of  the  universe  as  a
subtree.  Since  the  edit  cost  that  occurs  due  to  application  of  R  is  one
and  the  minimum  edit  distance  between  two  consecutive  maximal
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variety strings in the universe is at least one (because a string of length
N + 1 is produced after a string of length N the minimum possible
edit distance is one), this is not certain. However, we can surely say
that the time evolution of the universe is contained in the tree gener-
ated by an infinite number of applications of R to ε. The next section
has more about our interpretation of the universe.

ABABABA

AABBABA ABAABBA ABABAAB

AABABBA AABBAAB ABAABAB

AAABBBA AABABAB ABAAABB

AAABBAB AABAABB

AAABABB

AAAABBB

Figure 6. An example string substitution system. The rule is BA  AB. After
six steps, the initial string is sorted. In this case, there is no periodic boundary
condition.
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How to Interpret  the History of the Universe   5.

In  our  model,  the  size  of  the  universe  (i.e.,  the  length  of  the  string)
increases  by  one  at  each  step.  We  could  also  start  from  a  bigger  uni-
verse  and  then  contract  the  string  length.  So  this  model,  according  to
how the increment or decrement of string lengths is handled, may give
rise  to  linear  expansion,  accelerated  expansion  and  collapse  scenarios
of various sorts. However,  if N  is constant, there can be no dynamics
in  the  current  model  if  there  is  only  one  maximal  variety  string  of
length  N,  and  possibly  a  simple  time  evolution  if  there  is  more  than
one maximal variety string of length N.  

As mentioned earlier,  the definition of variety may be changed, sub-
ject  to  certain  conditions.  Such  a  change  alters  the  state  of  maximal
variety  strings  for  a  fixed  N.  Hence  it  is  a  kinematical  change.  The
definition  of  cyclic  edit  distance  between  two  cyclic  strings  may  also
change, and this gives rise to a different time evolution. So this change
is dynamical. Although we tried to give canonical choices for kinemat-
ics and dynamics, the definitions  can change and move with different
choices  to  model  another  universe  with  different  kinematics  and
dynamics. 

Everett’s Many Worlds Interpretation5.1

One  possible  way  of  interpreting  the  universe  in  this  model  is  by  the
Everett’s  many-worlds  interpretation  [19].  According  to  this interpre-
tation,  every  way  of  traversing  the  string  tree  is  realized.  In  the  usual
depiction  of  the  many-worlds  idea,  the  universe  splits  into  possibly
innumerable different worlds, which then split into many others. This
is  true  in  our  model,  and  additionally  note  that  sometimes  the  paths
may converge, as can be seen in Figure 5.  

A Few Time Capsules in Our Model5.2

Since  any  maximal  variety  strings  cannot  be  uniform—for  example,
XX…XX or --…-- have zero variety—all of them will share the substring
X-.  This  substring  can  be  interpreted  as  an  atom  or  the  cosmic
microwave  background.  In  Figure  5,  it  can  be  seen  that  the  pattern
XX-  is  a  time  capsule  that  is  shared  by  all  the  strings  in  the  history  of
the  model  universe,  as  far  as  it  is  calculated.  This  pattern  can  be
regarded  as  some  sort  of  molecule.  As  the  fossil  analogy  suggests,  a
time  capsule  may  persist  for  some  time  and  then  degrade.  It  is  an
open problem to find and classify time capsules in our model.  
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Conclusion6.

In  this  paper,  we  considered  a  toy  model  universe  that  is  a  character
string of two distinct letters. We  considered the idea of maximal vari-
ety  of  character  strings  and  using  a  best-matching  procedure,  we  put
forward the law of motion of the universe that it hops from one maxi-
mal  variety  state  to  other  maximal  variety  states.  We  then  gave  an
interpretation of our model in terms of Everett’s many worlds.  

On a computer with an i5 processor and 8 GB of RAM, the maxi-
mum  variety  of  strings  of  length  6  to  20  can  be  calculated.  Perhaps
this  bound  may  be  surpassed  by  writing  an  optimized  C  code  pro-
gram; however,  for our illustrative purpose, what has been done is suf-
ficient.  On  the  other  hand,  if  a  suitable  algorithm  is  found,  quantum
computers may bring an advantage. When  the qubits are initialized as
0〉  and  Hadamard  gates  are  applied  to  each  qubit,  the  final  state  is

the  superposition  of  each  possible  string  configuration  with  equal
coefficients.  If  we  can  find  a  gate  that  maps  ψ〉  to  V′(ψ) ψ〉 /A,

where A is some complex number that stands to normalize the wave-
function  and  V′(ψ)  is  the  variety  of  the  configuration  ψ,  then  we  can
also find  the maximal variety strings among all states. (Due to unitar-
ity  of  quantum  gates,  the  variety  of  uniform  strings  cannot  be  zero;
we  may  assign  uniform  strings  the  lowest  allowed  value.)  The  maxi-
mal variety strings will be the ones for which there are many observa-
tions.  If  a  quantum  algorithm,  similar  to  amplitude  amplification,  is
found  that  increases  the  amplitudes  of  higher-variety  strings,  there
may  be  a  significant  speedup  for  finding  the  value  of  maximum  vari-
ety and the maximal variety strings. The only caveat is that the length
of the strings must be less than or equal to the number of qubits on a
quantum computer.  
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