
Graph Matching with Distance-Preserving

Crossover

Thomas Bärecke

Marcin Detyniecki

Databases and Machine Learning Department
Laboratoire d’Informatique de Paris 6
University Pierre and Marie Curie, Paris, 75005 France
marcin.detyniecki@lip6.fr

Graph models are fundamental to any kind of application on structured
real-world problems. Any comparison between graphs by a graph dis-
tance measure requires the solution of the inexact graph matching prob-
lem, which constitutes a hard combinatorial optimization problem. An
inexact matching problem includes in its formulation robustness to any
type of perturbation, such as, for instance, noise, inherently present in
real-world environments. In this paper, we introduce the concept of dis-
tance-preserving crossover operators for genetic algorithms for this
task. For large graphs, our algorithm outperforms any state-of-the-art
approximate algorithm—in particular, genetic algorithms with alterna-
tive crossover operators, which are to the best of our knowledge cur-
rently limited to no more than 50 nodes. We use a two-level local
search heuristic to further enhance the results, pushing the limits to up
to 300 nodes: a first local search step is directly integrated into the
crossover operator; another one is applied independently during off-
spring generation.

Keywords: graph distance; evolutionary computation; genetic
algorithm; inexact graph isomorphism; permutation encoding;
crossover operator with local search

Introduction1.

Graphs are a universal tool for modeling structured entities. Their
higher generality and flexibility, in comparison to the prevalent vecto-
rial data model, comes with an increase in computational cost. For
instance, general distance computations for feature vectors are linear
in the number of dimensions; they become quadratic for string
sequences [1] and exponential in the number of nodes for graphs [2].
In this paper, we specifically address the problem of comparing
graphs in noisy environments. In mathematical terms, we propose a
method for efficiently resolving the inexact graph matching problem
in order to determine the distance between graphs.

https://doi.org/10.25088/ComplexSystems.31.2.219

mailto:marcin.detyniecki@lip6.fr
https://doi.org/10.25088/ComplexSystems.31.2.219

Intuitively, comparing two graphs is a highly combinatorial prob-
lem because not only the vertices (also called nodes) have to be
matched but also their relationships (called edges). Moreover, the solu-
tion of the graph isomorphism problem guarantees that not only are
these elements between graphs equal, but their structure is the same.

Mathematically, an attributed relational graph G is defined over a
vertex set . Each node is labeled with an attribute a ∈ 


. Their rela-

tionships are labeled with edge attributes e ∈ 
ℰ
. A formal definition

for a fully connected graph is given by [3]:

G  (, α, β). (1)

The edge set is implicitly given by ℰ  . The functions
α :  


 and β :  

ℰ
 assign the attributes to nodes and

edges; missing edges may be modeled using null labels. The attributes
are application-dependent content descriptors.

As shown in Figure 1, the two vertices of the graphs are, respec-
tively, alphabetically (i.e., a, b, c, d) and numerically (i.e., 1, 2, 3, 4,
5) named; the vertices’ attributes are the colors (red, blue, white,
green, black). In these simplified examples, the (labeled) graph
matching problem consists of finding the function m so that the col-

ors (labels) and their relationships correspond: m(a)  1, m(b)  2,
m(c)  3 and so on. To make it obvious that the problem is not only
color matching related, we may think about the particular case when
there are no labels, or to put it in other terms, when there is one sin-
gle color for both graphs.

Figure 1. The graph matching problem answers the question, Are these two
graphs equal in terms of content and structure?

There are many different forms of graph matching problems in the
literature (see [4] for an overview focusing on complexity). The major
research area is graph isomorphism, which is a decision problem
aiming at finding a bijective correspondence m between the nodes of
two unlabeled graphs G  (, ℰ) and G′  (, ℰ) such that

220 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

v1, v2 ∈ G ↔ mv1, mv2 ∈ G′. A weaker form is graph homo-

morphism, where only the edges of G are matched by edges of G′
 but

G′
 may contain additional nodes and edges, that is,

v1, v2 ∈ G  mv1, mv2 ∈ G′. In this case, not all edges of G are

matched. Graph monomorphism adds the constraint that m must be
injective, meaning that all nodes and edges from G have an image
in G′.

Finally, the one we are mostly concerned with is subgraph isomor-
phism, which searches a bijective mapping between all the nodes of
the smaller of the two graphs and a node-induced subgraph of the
same size from the other graph (see Figure 1). It differs from
monomorphism in the fact that all edges must be preserved in both
directions. From the point of view of complexity, it is important to
note that subgraph isomorphism is proven NP-complete [4], while for
graph isomorphism it is not yet known if it is NP-complete or eventu-
ally lies in P [4, 5].

A somehow disconnected problem that is also known as graph
matching concerns matching of independent edges inside a single
graph, which is usually bipartite. Independence between edges is
defined by the absence of common incident nodes. This kind of graph
matching is mainly used to decompose a graph into individual pairs,
by searching a matching that covers the graph at maximum, for exam-
ple, in order to establish factory-product associations. This problem is
often, but not always, referred to as bipartite graph matching in order
to distinguish it from the family of graph isomorphism problems.

The remainder of this paper is organized as follows. Section 2
details the inexact graph isomorphism problem, including the derived
graph distance computation and a short overview of the variety of
algorithms currently used. The following section describes the evolu-
tionary algorithm architecture and introduces all existing and new
operators. Section 4 provides a literature review of existing evolution-
ary approaches to the same problem, including an assessment of their
results. We further detail, in Section 5, the evaluation framework,
including systematic parameter tuning, performance measures and the
results without additional local search. Section 5 comprises a compari-
son with additional local search strategies. First, since our crossover
operator already incorporates some kind of local search, we compare
distance-preserving crossover (DPX) to other classic operators with
added local search. Second, the performance of DPX is studied when
an additional local search strategy is added. We find that there is a
further burst in terms of performance. The final section is the
conclusion.

Graph Matching with Distance-Preserving Crossover 221

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

Inexact Graph Isomorphism 2.

In real-world applications, usually the nodes and edges of a graph
have attributes that need to be taken into account by the matching
procedure. Thus, we face a labeled graph isomorphism problem,
where not only the existence of edges must correspond but also their
individual labels. However, mostly the attributes come from noisy
environments, as, for example, in the case of graphs obtained from
segmented images [6–8]. Then, the problem is transformed from a
decision problem to the minimization problem of finding the match-
ing with minimal cost. In our example illustrated in Figure 1, the inex-
act problem would appear when instead of color labels we had values
(e.g., light-color frequencies), and we would allow close frequencies
to match (in return of a estimated cost, for instance, the frequency dis-
tance). The advantage of allowing matching close attributes is that it
permits the solution to be robust to noise. In fact, noise will change
the values in the two representations (i.e., graphs), making exact
matching impossible.

The matching cost is often obtained either by explicitly modeling
each possible type of error (in particular when the attributes are non-
numerical labels), or by defining a dissimilarity measure (often a
distance) between the attribute values. In this paper, we use the classi-
cal joint distance (see Section 2.1), which is a convex combination of
the nodes’ attribute distance and the relationships (edges’ attributes)
distance.

Formally, the inexact graph isomorphism problem, given two
graphs of equal size G  (, α, β) and G′  (′, α′, β′), consists in
finding the mapping m :  ′

 between the nodes of the two graphs
that minimizes some cost function, formally called the dissimilarity
metric.

The computational challenge arises from the fact that inexact
graph matching implies a cost minimization on top of the graph
matching problem, which in its turn implies a search of the large com-
binatorial space of mappings [4, 9]: If δ(G, G′, m) is the matching
cost of a mapping m between the two graphs G and G′, the result of
the inexact graph matching between the two graphs is obtained by
minimizing over all possible mappings:

δG, G′  min
m

δG, G′, m. (2)

Joint Graph Distance 2.1

In order to define the distance between two graphs, we use the classi-
cal joint distance, which is nothing else than a weighted sum of the
edges’ attribute distances and the vertices’ attribute distances. The

222 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

weighting parameter λ controls the importance of the edges versus
the nodes. This straightforward and often-used distance, although not
explicitly modeling the absence of nodes and edges, is able to handle
them by the introduction of null labels.

In order to rigorously define the joint graph distance, we assume
that appropriate elementary distance measures for nodes δ


 and edges

δ
ℰ
 are defined:

δ

:





  (3)

δ
ℰ
:

ℰ


ℰ
 . (4)

For simplicity of notation, we will write in the following, for the
distance of any two vertices v1 and v2 from two graphs

G1  (V1, α1, β1) and G2  (V2, α2, β2), δ(v1, v2) instead of

δ(α1(v1), α2(v2)) and analogically for the edge distances.

With these notations, the joint graph distance of two graphs
implied by the mapping m is defined by:

δG, G′, m 

λ

v∈

δ

(v, m(v)) + (1 - λ) 

v,w∈

δ
ℰ
((v, w), (m(v), m(w))). (5)

The parameter λ ∈ [0, 1] influences the relative importance of the
nodes’ attributes distance and the relationships (edges’ attributes) dis-
tance, respectively, thus, it is highly application dependent. Since in
this study we focus on a general description of our algorithm and eval-
uate it mostly on artificial data, we assume equal impact of both, that
is, λ  0.5. Using this parameter value, the absolute distance between
two graphs is defined as the minimum over all legal mappings, as
stated in equation (2).

Genetic Algorithm Design 3.

Our genetic algorithm (GA) follows the classical steps: first, an initial
population of spop solution candidates (chromosomes) is created.

Then, a certain number of individuals are selected for producing off-
spring using genetic variation operators such as crossover or muta-
tion. Some individuals from the child population eventually undergo a
local search procedure. Finally, the offspring is integrated in or
replaces the parent generation and the selection restarts. For simplici-
ty’s sake, in this paper, as replacement strategy we choose the
generational approach, which means that we always create a child
population of the same size as the parent population and replace the
latter entirely at each generation.

Graph Matching with Distance-Preserving Crossover 223

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

Robust Permutation Encoding 3.1

Most genetic algorithms applied to the graph isomorphism problem
use a permutations encoding under the form of integer strings.
Indeed, any legal solution candidate has an equivalent representation
in the space of permutations of ′ elements. In fact, consider that the
elements of  and ′, respectively, are arbitrarily numbered from 1
to ′. Then the corresponding mapping m will contain all pairs of
nodes (v, v′) that have the same number. In other words, any permuta-
tion of the numeration of V′

 implies a unique mapping and vice versa.
Figure 2 shows the permutational encoding of the graph match

illustrated in Figure 1. We observe that the encoding of m (central

rectangle) represents all the permutation pairs, for instance b, 4, by

pointing node 4 of G2 in position a. Only the identification of the des-

tination nodes is needed since we can assume—because of the permu-
tational nature of the exploration—that the order in the coding of m
corresponds to a particular known order of G1 (here the first position

corresponds to a, the second to b, etc.) It is important to notice that
this encoding is stable in the permutational space.

Figure 2. Permutation encoding corresponding to the subgraph match illus-
trated in Figure 1.

Unfortunately, the inexact subgraph isomorphism problem aims to
minimize equation (5) for graphs of different sizes and thus, permuta-
tional coding is impossible. To overcome this, we propose to com-
plete the smaller graph with unconnected virtual nodes. In Figure 2
this corresponds to the number 3 appearing at the end of the coding
of m. This means that for this subgraph, match node 3 of G2 was not

selected.
Formally, if we assume  < ′, without loss of generality, the

solution space can be transferred into the space of permutations of
size ′. Although this leads to a memory overhead of O(′ - )

and to several permutations having identical mappings, it enables us
to use all genetic operators available for permutation encodings [10].

224 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

Selection 3.2

The evolutionary process of survival of the fittest is modeled by vari-
ous selection schemes; these determine which individuals from the
current population migrate to the intermediate parent population,
based on the distribution of fitness values. Various selection strategies
are available for generational genetic algorithms (GAs). The most
classic strategies include roulette wheel, ranking and tournament selec-
tion, among others [11]. In this paper, we choose to use tournament
selection as a selection scheme, as it is very simple to implement and
sufficiently efficient. In particular, it does not need any scaling or
normalization of the fitness values and does not suffer from genetic
drift [12].

Crossover 3.3

Crossover is the process of combining (in general) two parent chromo-
somes to create a common child. As a variation operator, it maintains
diversity in the population and permits the sampling of new data
points. A generally imposed (soft) constraint on a crossover operator,
as well as any other variation operator, is that, given a set of valid
solutions as inputs, it exclusively samples valid solutions with respect
to the given encoding. We then say that the genotypic search space is
closed under the operator. In certain special cases, this might be
violated at the cost of introducing a repair mechanism or attributing
fitness penalties to invalid solutions, mostly leading to reduced search
efficiency. Since crossover operators play a crucial role in the global
performance of any GA, they have been exhaustively studied. For
many classical problems, like the traveling salesman problem (TSP),
the introduction of new crossover operators has led to major
enhancements of GA performance. In the following, we present
groups of crossover operators particularly adapted to the permuta-
tional encoding.

Permutation Crossover Operators 3.3.1

There are three classes of application-independent crossover operators
available for permutation encodings differing in the type of infor-
mation they aim to preserve: position-based operators like CX [13] or
POS [14], order-based operators like OX [15] or its uniform variant
UOX [14], and operators preserving both gene order and absolute
position to some degree, like PMX [16] or its uniform variant
UPMX [17].

Position-Based Crossover Operators 3.3.2

Although most of the previous operators have been used in the con-
text of graph matching, it appears that for our coding scheme, the

Graph Matching with Distance-Preserving Crossover 225

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

absolute position of the genes is crucial, while ordering information
does not matter much. Therefore, position-based operators are the
most appropriate. Two novel position-based operators, PBX and
UPBX, were introduced in [10]. These operators outperformed PMX
as well as UPMX on the graph matching task [18, 19].

Distance-Preserving Crossover 3.3.3

In this paper, we propose three new crossover operators: DPX, SDPX
and NDPX, inspired by Freisleben and Merz’s distance-preserving
crossover (also called DPX, thus) for the TSP [20].

The basic idea of the DPX is to create a child whose distance to
each parent equals the distance between the parents. As a result, the
algorithm adapts automatically to the tradeoff between exploration
and exploitation. In the beginning of a GA run (e.g., for a graph
matching), parents are likely to be very different. The operator thus
favors exploration over exploitation. While the population gets closer
to an optimum, the interparent distances decrease and exploitation
becomes more important.

The TSP-DPX works as follows: the content of the first parent is
copied to the offspring and all edges that are not in common with the
other parent are deleted. It results in short common tours. These bro-
ken tours are then reconnected without using the non-shared edges of
the parents. A greedy reconnection procedure is employed to achieve

this: if the edge i, j has been destroyed, the nearest available neigh-

bor k of i among the remaining tour fragments is taken and the edge

i, k is added to the tour, provided that i, k is not contained in the

two parents.
For the TSP solution [20], common information refers to tour frag-

ments, that is, (usually short) gene sequences on the genotypic level.
For graph isomorphism, we propose to refer to elementary node map-
pings, that is, individual genes, instead. Thus, in order to obtain a
complete chromosome, our operator iterates in random order over
the open genes. At each position, it selects the best possible, non-
taboo gene using an estimate of the influence of the particular gene on
the overall fitness. We search the node pair leading to the minimal dis-
tance augmentation when added to the partial mapping already estab-
lished. To this end, we compute, for each possible gene for a certain
position, the sum of the edge distances to all other nodes already
mapped and the node distance between the pair to be introduced.

This strategy offers a relatively precise estimation of the real cost,
but is computationally expensive. Let n be the size of the (larger)
graph and a the number of open positions (i.e., the Hamming distance
between the parents, in the chromosome); the complexity of DPX is

at most 1  2na2.

226 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

Using a less strict estimate can greatly reduce the computational
cost. We propose thus two relaxed versions of the DPX operator,
node DPX (NDPX) and signature DPX (SDPX). NDPX takes into
account only node distances and is therefore somehow inaccurate. As
for SDPX, we compute an aggregation of a node’s and its incident
edges’ attributes. The specific aggregation operator is strongly depen-
dent on the application. The worst-case complexity of both operators
equals the complexity of a fitness function evaluation, when the par-
ents are completely different. In general, the complexity depends on

the parents’ distance and has an upper bound expressed by 1  2a2.

Figure 3 compares the complexity of DPX, NDPX and SDPX to
the complexity of a fitness function evaluation. All shown estimates
are upper bounds for one execution of the operator and shown on a
logarithmic scale as a function of the parents’ distance. For SDPX, the
signatures need to be computed in advance, adding the complexity of
the aggregation operator once at the start of the algorithm.

Figure 3. Complexity of the three DPX variants depending on the Hamming
distance of the parents and compared to the computational cost of one fitness
function evaluation. Complexities are relatively tight upper bounds ignoring
the gain of taboo exclusion.

Mutation 3.4

Mutation is usually applied on single genes. In the case of permuta-
tion encoding, an appropriate elementary altering operation that
preserves the permutation property is the swap of two genes. More
disruptive mutation operators are possible, like scramble mutation,
which scrambles a certain part of the chromosome’s genes, but they
are out of the scope of our paper.

Graph Matching with Distance-Preserving Crossover 227

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

State of the Art: Inexact Graph Isomorphism 4.

During the past decades, numerous algorithms have been applied to
the graph matching problem in general [21, 22]. In order to clarify
the notation, it seems appropriate to distinguish the terms optimal,
exact, inexact and approximate. We refer to exact and inexact when
characterizing the nature of the graph matching problem; that is, does
a match need to be exact or do we admit noise? The terms optimal
and approximate refer to the algorithms used for any of the two prob-
lem types; that is, do we guarantee that the given distance (or match)
is the best possible or do we admit fairly accurate solutions?

For the inexact graph isomorphism, on the one hand, the optimal
algorithms (i.e., guaranteeing that the solution has the best possible
minimal cost) are based on the A*-heuristic with some sophisticated
lookahead procedures [3, 2, 23–25]. Unfortunately, none of them are
computationally efficient, except for some specialized restrictions to
certain types of graphs, for instance, planar. Therefore, these methods
are limited to very small graph sizes (around 10 nodes).

On the other hand, approximate methods allow a reduced compu-
tational cost at the expense of dropping the optimality guarantee.
They usually ensure a local maximum of the matching quality. Exist-
ing bio-inspired approaches include neural networks [26], ant colony
optimization [27] and GAs, which we detail in the following.

Evolutionary Approaches 4.1

As in our proposition, most GAs applied to the graph isomorphism
problem use permutations encoded as integer strings. The first success-
ful attempts used PMX and CX and stated that the coding is similar
to a TSP [28]. Although experimental evaluation is extremely limited,
they were the first to mention that the quality of node assignments
depends on value position rather than order. PMX and CX had to be
extended for graph monomorphism, that is, subgraph matching.

Singh et al. [29] use both binary and integer strings. Furthermore,
they introduce the concept of color crossover, which, using a given
classification of the graph nodes, restricts the search space in allowing
only mappings between nodes of the same class. The main problem is
to find such a classification for any given application that the maxi-
mum inner class error is strictly inferior to the minimal distance
between any two nodes from different classes. If a classification does
not satisfy this condition, it could block the algorithm from obtaining
the optimal result. In their experiments, Singh et al. [29] use ran-
domly generated graphs containing 10, 30 and 50 nodes with mean
(branching-)degrees between three and four for the smaller graphs
and eight for size 50 graphs. After a total of 30 runs (10 different
graphs with three runs each) for each size, there is no performance dif-
ference between the different crossover types; in particular, OX, CX

228 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

and PMX were tested. The use of color crossover with two colors sig-
nificantly improves the results.

Wang et al. [18] tackle inexact graph isomorphism, that is, the
noise-robust variant. They use PMX and swap mutation in combina-
tion with a local search step. The latter is based on two-opt applied
once on each generation’s best individual. Their experiments are also
based on randomly generated graphs with integer attributes and noise
added to these attributes.

All the above-mentioned works focused on pure graph isomor-
phism, where both graphs are of the same size. Based on the encoding
explained in Section 3.1, it is easy to extend the operators to the more
general subgraph problem. In fact, we avoid the necessity to extend
the crossover operators by making a distinction between phenotype
and genotype of the individuals. The genotype of an individual is a
complete permutation (and therefore the operators apply), while the
phenotype (e.g., used to compute the fitness) restricts itself to actually
existing nodes in the smaller graph. Thus, in order to compare state-
of-the-art approaches we select the following (most promising) permu-
tation operators: CX, PMX, UPMX, UOX.

Paradoxically, as we observe in previous works [10], position-
based operators, in particular PBX and UPBX, outperformed permuta-
tion-based PMX as well as UPMX on the graph matching task [18,
19]. Thus, we include these new two operators in the evaluation.

Finally, we also compare the three introduced (in Section 3.3) dis-
tance-preserving operators: DPX, SDPX and NDPX.

Evaluation Framework 5.

For parameter tuning and general comparison between the operators,
we use synthetic graphs. These graphs are fully connected, with edge
and node attributes lying in the unit interval, and obtained using the
Mersenne twister pseudorandom number generator [30]. We also use
this generator to simulate uniform noise and the Ziggurat algorithm
[31] for Gaussian noise.

Performance itself may be defined in a number of different ways,
taking into account basically two components: the precision of the
solution(s) obtained and the computational time that was used to
obtain them. Some very common measures are success rate sr, average

runtime to success (ARS), average fitness function evaluations to suc-
cess (AES) and success performance sp.

◼ sr. The success rate is obtained as the fraction of runs having reached

the optimal solution. A high value indicates a good ability of the algo-
rithm to converge to the right solution.

Graph Matching with Distance-Preserving Crossover 229

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

◼ ARS. The average runtime to success corresponds to the mean value of
the time needed to obtain the optimal solution. This value allows
comparison of all different kinds of algorithms without the need of
assessing their specific complexity. However, it is dependent on hard-
ware and implementation, which limits the generality of the results and
comparison with other authors. A low value means that when a solu-
tion is found, it is found quickly.

◼ AES. The average number of fitness function evaluations to success cor-
responds to the mean convergence time as a multiple of the time needed
to compute the fitness function. It is similar to the ARS, but results are
comparable on different hardware. However, when the compared GAs
differ greatly, especially when some operators are far more complex
than others, counting the number of fitness function evaluations might
be misleading as other parts of the algorithm, like local search or com-
plex operators, might have a larger influence on time complexity. In
these cases, a pure runtime comparison might be more appropriate. As
with ARS, it purely measures the performance for the runs that find the
optimal solution and contains no information about how often it was
actually found.

◼ sp. The success performance is obtained by dividing ARS by the success

rate (ARS  sr). This normalization, in contrast to ARS, penalizes unsuc-

cessful runs. It provides a single number to measure both the ability to
converge to the optimal solution and the speed of convergence in a sin-
gle number. Notice that some authors also call success performance the
equivalent regularization computed on AES.

Since the proposed distance-preserving operators (DPX, SDPX and
NDPX) include a fitness estimation, which implies an extra computa-
tional cost (as discussed in Section 3.3), using a measure that only
counts the number of fitness evaluations will bias the results by favor-
ing them in any comparison. Therefore in our experiments and com-
parisons, we focus rather on computational time, paying particular
attention to having the same computational environment (software
and hardware).

Standard Parameters5.1

Parameter setting is crucial to the performance of evolutionary algo-
rithms. The optimization of the parameter set is itself a combinatorial
optimization problem. Furthermore, optimal parameter settings may
change with time or not even exist.

In order to identify reasonable values for the three basic parame-
ters: population size, crossover and mutation probability, for each
crossover operator, in a reasonable time, we reduce the search space
by discretizing all three parameters. We use a nonuniform discretiza-
tion that takes into account known facts about usually good ranges.
Inside promising ranges, the sampling gets finer, while nonpromising

230 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

areas are sparsely covered. The following known assumptions were
used:

◼ pc. The crossover rate should be relatively high, for example, between

0.6 and 1.0 [32, 33]. The sampling gets denser for higher values
approaching 0.01 intervals between 0.95 and 0.99.

◼ pm. The mutation rate is usually small, for example, around 0.01 to 0.1

[32] or using a more classic assumption 1  L with L being the chromo-

some length [33]. We sample relatively densely up to 0.15, and after-
ward sparsely until a maximum of 0.7. Higher values would result in
an unwanted random walk behavior.

◼ spop. The population size is usually in the order of 20 to 100. We cover

the interval from 10 to 1000 and sample more densely for low values.

Best Parameters 5.2

We search the space, starting with the known assumption for the
parameter settings. We use 100 individuals, a crossover probability of
0.99 and a mutation probability of 0.1. Then we use a loose gradient
descent technique, treating the three parameters sequentially, until we
find a stable local optimum. During each step, we adjust the param-
eter where the highest gain was observed in terms of success
performance sp, taking into consideration both convergence itself and

convergence speed [34]. In particular, we use the success rate sp and

AES, eventually completed by ARS for crossover operators with non-
constant computational cost. Each parameter setting is evaluated on
50 graph pairs and 30 runs are done on each of them to obtain statis-
tically significant results.

Finally we explore the area around this optimum using denser sam-
pling, an idea somehow similar to sharpening [35], but different in
the fact that we do not aim at augmenting the accuracy of the perfor-
mance estimates for a set of given parameter settings but at evaluating
more parameter settings in the area of a promising one.

The results of this process are detailed in [36] and the optimal
parameters are displayed in Table 1. We observe that there is a high
variance of the optimal values, depending on the operator. For
instance, PBX has an optimal parameter very close to the starting
point (population size 100, crossover rate 0.99, mutation rate 0.1),
while DPX requires an unexpectedly low crossover rate. Another
example of this variability is the extremely high population size
needed when using cycle crossover (CX).

In tests, we also observed that the parameter settings are generally
stable with respect to graph size (evaluated between 20 and 40) and
noise level (from 0 to a standard deviation of 10% of the attribute
scale). The only exception being the optimal population size of CX

Graph Matching with Distance-Preserving Crossover 231

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

depending on the graph size; that is, bigger graphs need higher popula-
tion sizes.

Finally, we observed that in general, for growing graph sizes, the
sensitivity on the parameters increases; that is, if there is an interval
for which the performance is on a plateau, its width decreased.

Crossover spop pc pm Success

Operator (ind.) (%) (%) Success Rate Performance (sec.)

DPX 50 25 25 1 0.087

SDPX 25 35 30 1 0.165

NDPX 25 40 30 1 0.219

UPBX 90 99 20 0.994 0.298

PBX 120 96 30 0.996 0.388

PMX 120 99 40 0.997 0.430

CX 400 99 60 0.995 0.473

UPMX 90 80 12 0.979 0.669

UOX 10 60 14 0.997 2.372

Table 1. Operators ranked by success performance with their optimal parame-
ter set (population size spop, crossover probability pc and mutation probabil-

ity pm) for graphs of size 40 with uniform noise (6). Distance-preserving

crossovers perform best, followed by strictly position-based crossovers.

Performance Comparison 5.3

Looking at Table 1 from the success performance perspective, we
notice three groups of basic crossover operators. Strict position-based
crossover (PBX and UPBX, [10]), classical position-based and hybrid
operators (CX, PMX, UPMX), and order-based crossover (UOX).
The last one can be discarded as it is from its foundation unfit for the
graph matching problem under permutation encoding and obtains
very poor results, with an extremely high sensitivity to parameter
settings.

Success rates are here close to one, translating the fact that almost
all the runs reached the optimal solution. This is an expected result,
since the graphs’ size was chosen in such a way that parameter opti-
mization can be performed (i.e., with a very large number of runs, as
explained earlier). The high scores also translate the fact that for mid-
sized graphs, any approach—as long as it has optimal parameters—
reaches the optimal solution most of the time, the only difference
being the time to reach it.

232 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

A closer look at our results reveals that UPBX and PBX show simi-
lar success performances, while PBX seems more sensitive to its
parameters, especially to the mutation probability. PMX and CX
need extremely high mutation rates and at the same time high popula-
tion sizes, indicating a merely random exploration of the current
neighborhood guided by the evolutionary selection process. This indi-
cates that the crossover operator itself does not play a major role. We
could cross-check with a mutation-only GA. UPMX’s parameters
seem somehow normal and it shows slightly better performances than
PMX and CX. It is, however, extremely dependent on a sound
crossover probability of 80% and the tuning of the population size.

CX’s poor results contradict the a priori assumption that a purely
position-based operator should perform best on our problem. This
may be explained by the nondisruptive nature of the operator in com-
bination with a weak mutation. We did not observe a significant per-
formance gain after combining CX with scramble mutation, which
leads to more disruptive behavior.

Convergence Comparison 5.3.1

Figure 4 shows the convergence behavior of all operators, using their
respective optimal parameters at size 40. The three DPX variants con-
verge extremely fast. Although the accuracy of all operators is close to
1 (see also Table 1) and, in general, the precision decreases with the
graph size (for most operators, this decrease starts at size 40), the con-
vergence behavior presented in Figure 4 shows significant differences
between the operators.

Figure 4. Success rate over time for all crossover operators using optimal
parameter settings. DPX clearly outperforms all other operators.

Graph Matching with Distance-Preserving Crossover 233

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

DPX converges twice as fast as SDPX. This indicates that the preci-
sion of the distance (i.e., fitness) estimation in the greedy part of the
operator is far more important than its runtime.

Distance-Preserving Crossover Sensitivity to Parameter Setting 5.3.2

The parameter tuning reveals some interesting facts about the DPX
operators. There is a weak correlation between crossover probability
and the optimal corresponding population size. The performance of
the DPX operators is extremely sensitive to inappropriate crossover
probabilities, which should be lower than 50% (see Figure 5). This
contradicts the common assumption of a need for relatively high
crossover rates.

Figure 5. Influence of the crossover probability on the performance of the
DPX operator. The success rate decreases and the average runtime increases
significantly when the crossover probability exceeds a threshold around 0.5.

All this can be explained by the fact that the solution vectors cre-
ated by DPX are as far away from each of the parents as the parents
are separated, which is a particularly large distance during the first
generations. Therefore, if the crossover rate approaches higher values,
most parents would be immediately replaced by their—faraway—chil-
dren. Although exploration benefits from this behavior, exploitation
of promising regions is hindered and thus the selection process is
blocked. This has a strong impact on the convergence. In fact, we
observe that for any distance-preserving operator there is a crossover
probability bound that, when exceeded, immediately leads to poor
convergence and precision, while any values below that bound only
affect runtime without affecting precision at all.

The optimal mutation rates are also higher than expected (from the
literature) with values around 25% to 30%. This relatively high

234 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

mutation rate may be explained by two effects: On the one hand, the
greedy procedure used to fill in the chromosomes introduces a strong
bias and potentially reduces diversity. A higher mutation rate con-
tributes to better diversity. On the other hand, swap mutation is not a
very disruptive operator, since it just exchanges two out of n genes. A
higher mutation rate makes it more disruptive and increases the possi-
ble radius of the mutation, leading to better exploitation and hence
convergence.

Local Search6.

Adding a local search step to a GA may significantly enhance the
results, as the algorithm exploits the exploration capabilities of the
GA and at the same time uses the exploitation properties of the local
search for faster convergence [37]. A good memetic algorithm needs
an appropriate balance between genetic exploration and local search
[38]. Too much local search leads to premature convergence, while
too much exploration slows the algorithm down. The introduction of
a local search step permits scaling the algorithm to larger graphs.
Additionally, the greedy procedure of the DPX operator may be con-
sidered an adaptive local search whose search radius equals the parent
distance. Therefore, we propose to add a local search procedure to all
other operators and compare them to DPX.

Local search strategies define a neighborhood around a given chro-
mosome and search it exhaustively. The chromosome is then either
replaced by the best chromosome of its neighborhood, which is called
Lamarckian evolution, or, according to the Baldwin effect, only its fit-
ness is updated but the genes stay unchanged [39]. The search radius

can be defined by the elementary operation b : s  b(s), which is used
to create the neighborhood around the chromosome s.

We apply a two-opt local search procedure; that is, the operation b
consists in exchanges of any two genes, with replacement of the chro-

mosomes. The neighborhood contains Cn
2  n(n - 1)  2 chromosomes.

The complexity of the fitness calculus for these chromosomes is signifi-
cantly reduced by ignoring all unchanged mappings. The exchange of
two genes is equivalent to exchanging the elementary mappings of
two graph nodes. Since there are two graph node distances and
2(n - 2) (there are no cycles and the edge between the two nodes is
unaffected since undirected) edge distance changes, the overall com-
plexity of a local search step is

 Cn
2  2 + 2(n - 2) +

n2 + n

2
,

Graph Matching with Distance-Preserving Crossover 235

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

which is (2n) more expensive than a single call to the fitness function

but covers a space of Cn
2
 individuals. Taking into account its complex-

ity, it is obvious that local search should only be applied to a small
proportion of individuals. In the following we identify the most
promising selection strategy for this purpose.

Smart Local Search Strategies 6.1

In its most basic form, the memetic algorithm creates an individual by
the genetic operators and decides whether or not that individual
undergoes a local search procedure. It is often useful to concentrate
the computational effort on the most promising solutions instead of
applying local search to all individuals with constant probability. To
this end, we sort the population and apply local search to the first
pls n individuals.

Additionally, since the local search procedure is deterministic, the
results are the same if applied to the copy of an individual. When a
copy of an individual that underwent local search is detected, we have
two possibilities. First, we may copy the result of the local search
directly without executing it a second time. Second, we can simply
ignore the copy and not apply local search on it. In this case, we leave
it to the selection process to determine the better individual from
these two. We opted for the second solution as it seems a more natu-
ral way, and as preliminary tests between the two methods did not
show much of a difference.

In the end, we test four variants in order to integrate local search
into the generational algorithm, using the letters U for unique, where
copies are discarded, and S for sorted. For example, USGGA stands
for a sorted population where copies are discarded.

Comparing Local Search Enhanced Operators and Distance-
Preserving Crossover

6.2

We determined a pseudo-optimal parameter setting for the tradeoff
between genetic exploration and local search by exhaustively testing
local search probabilities between 0 and 30% for each crossover
operator and algorithm type (Figure 6). Tables 2 and 3 show the suc-
cess performance of the best parameter setting for every combination
at graph sizes of 60 and 100 nodes, respectively. The performances of
the generational GA improve for almost all operators, particularly
when a sorted implementation is used. The difference between a sim-
ple sorted implementation (SGGA) and the one excluding duplicates
is generally insignificant. The optimal parameter settings are also
similar.

Comparing the two sizes, local search is shown to be more benefi-
cial for bigger graphs, as one would generally expect.

236 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

Figure 6. Comparison of crossover operators with local search against dis-
tance-preserving operators without local search.

GA GGA UGGA SGGA USGGA

Operator sp sp pLS sp pLS sp pLS sp pLS

DPX 0.41 0.23 (0.01) 0.27 (0.03) 0.12 (0.03) 0.12 (0.03)

SDPX 0.95 0.74 (0.01) 0.86 (0.02) 0.47 (0.07) 0.46 (0.07)

NDPX 1.42 1.12 (0.01) 1.31 (0.02) 1.01 (0.07) 0.99 (0.10)

UPBX 8.20 n.s.f 6.54 (0.01) 6.88 (0.01) 5.83 (0.01)

PBX 2.97 n.s.f n.s.f n.s.f n.s.f

UPMX 394.26 n.s.f n.s.f 8.99 (0.08) 8.82 (0.06)

PMX 4.23 n.s.f n.s.f 3.88 (0.01) 3.75 (0.01)

CX 4.04 n.s.f n.s.f 3.23 (0.01) 3.02 (0.01)

UOX 122.15 10.21 (0.01) 11.44 (0.18) 7.23 (0.18) 8.68 (0.18)

Table 2. Comparison of success performances of all operators combined with
local search for large graphs of size 60. The corresponding best local search
probability parameter is given in brackets. Where not reported, no solution
was found (n.s.f) in any run. We notice that local search works best when
applied on the best individuals of the population. DPX outperforms all other
operators independently on the use of local search. DPX can be further
improved by adding local search.

Graph Matching with Distance-Preserving Crossover 237

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

GA GGA UGGA SGGA USGGA

Operator sp sp (pLS) sp (pLS) sp (pLS) sp (pLS)

DPX 3.87 1.57 (0.01) 2.14 (0.03) 0.83 (0.02) 0.84 (0.03)

SDPX 11.33 6.79 (0.01) 10.11 (0.07) 2.97 (0.07) 3.10 (0.07)

NDPX 39.82 12.62 (0.01) 25.80 (0.05) 8.94 (0.07) 7.72 (0.07)

UPBX n.s.f n.s.f n.s.f n.s.f n.s.f

PBX 76.35 n.s.f n.s.f n.s.f n.s.f

UPMX n.s.f n.s.f n.s.f 1979.3 0.08 4148.8 (0.09)

PMX 6136.2 n.s.f n.s.f 222.87 0.02 212.34 (0.02)

CX n.s.f n.s.f n.s.f 146.89 0.01 164.88 (0.01)

UOX n.s.f 97.41 (0.01) 313.99 (0.16) 93.31 (0.18) 100.39 (0.12)

Table 3. Comparison of success performance of all operators combined with
local search for graphs of size 100. The corresponding best local search proba-
bility parameter is given in brackets. Where not reported, no solution was
found (n.s.f) in any run. Only DPX provides acceptable performance. Most
other operators have success rates equal to or near null even with local
search.

Distance-Preserving Crossover with Local Search 6.3

As local search enhances the performance of virtually any operator, it
is straightforward to examine the possible gain of local search with
DPX. Comparing the two graph size sets, local search is shown to be
more beneficial for bigger graphs, as would generally be expected. For
example, the success performance measure for SDPX is improved by
51% at size 60 (see Table 2), which corresponds to a reduction of the
mean time to convergence to half. The improvement attains nearly
74% for larger graphs. The mean convergence time is hence divided
by four.

In conclusion, local search pushes forward the size limitations of
any operator with the distance-preserving operators being the only
ones still offering a near 100% accuracy at graph size 100. For these
last, local search accelerates convergence.

Noise Sensitivity 6.3.1

Another important aspect in the case of inexact subgraph isomor-
phism is the robustness to intrinsic noise. Noise needs to be analyzed
in conjunction with graph size, since higher noise levels for small or
medium graph sizes do represent a less difficult problem than for
large graphs. A noise range of [-10%+ 10%] of the initial value range
of the attributes (for Gaussian noise, we use a σ leading to an identi-
cal variance expectations) can safely be considered. (The difference

238 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

between the results using uniform and Gaussian noise stems from the
fact that the equivalence formula used to determine corresponding σ

for each uniform noise interval guarantees identical variance, which is
quadratic, while distances are linear, which makes Gaussian instances
slightly less complex for higher noise levels.) In fact, we did not
intend to approach levels that compromise the optimal solution, that
is, where the numerical optimal solution does not correspond to the
ground truth due to noise effects. The success rate of our DPX opera-
tor (without local search) at graph size 80 ranges from 1 to 0.95 for
Gaussian noise and from 1 to 0.88 for uniform noise.

Figures 7 and 8 show the effects of increasing noise levels on con-
vergence and precision of the algorithm for larger graphs. In this case,
it is also appropriate to introduce an additional local search step even
to DPX. As expected, the success rate decreases with higher noise lev-
els, but stays on acceptable levels. Note that the introduction of local
search has no effect if the initial precision was one. In general, as
depicted in Figure 8, local search significantly accelerates conver-
gence. A minor side effect of this acceleration is the slight loss in preci-
sion observed for cases where the initial precision is below one.
Among the different distance-preserving operators, SDPX is more sen-
sitive to higher noise than DPX. This is due to the information loss
for the signature with respect to the original graph, which may eventu-
ally compromise the optimal solution, as described.

Figure 7. Success rate sensitivity to noise with and without local search
(sorted GA 2%).

Graph Matching with Distance-Preserving Crossover 239

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

Figure 8. Noise sensitivity with and without 2% local search (sorted GA).

Approaching the Limit 6.3.2

After bringing up the relationship between noise and graph size in the
previous section, we would like to explore the limits of our method in
terms of graph size. Table 4 shows the mean runtime of successful

Algorithm Type Size 100 Size 200 Size 300

DPX

GGA w/o LS 3.7 120.1 5009.2

SGGA w 2% LS 0.8 23.1 296.1

SGGA w 3% LS 0.8 22.2 350.1

USGGA w 3% LS 0.8 27.7 274.8

SDPX

GGA w/o LS 11.4 4563.3 n.s.f

SGGA w 7% LS 3.2 122.4 2989.0

USGGA w 7% LS 3.3 121.0 2868.2

NDPX

GGA w/o LS 38.7 n.s.f n.s.f

SGGA w 7% LS 7.9 687.3 n.s.f

USGGA w 7% LS 8.2 761.9 n.s.f

USGGA w 10% LS 9.3 928.5 n.s.f

Table 4. Mean runtime of successful runs (in seconds) of DPX using different
local search implementations. Where not reported, no solution was found
(n.s.f) in any run.

240 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

runs of the three DPX operators for graphs with 100, 200 and 300
nodes. Without local search, the runtime of DPX at size 100 is more
than four times higher than with local search. The advantage is simi-
lar (or even greater) for all three operators. Local search is more
important with increasing graph sizes.

The success rate obviously decreases with higher graph sizes as
with higher noise levels (see Table 4). Without local search, graph
sizes of 200 are definitely too large for NDPX and SDPX, and 300
represents a limit for DPX.

As shown in Table 5, the effect of local search changes in cases of
extremely low (initial) precision. In that case, local search also leads
to a significantly increased success rate and allows reaching still
acceptable performance for graphs that are otherwise too large. There-
fore, we consider that local search effectively enhances performance
when the problem gets more complicated.

Algorithm Type Size 100 Size 200 Size 300

DPX

GGA w/o LS 0.99 0.66 0.04

SGGA w 2% LS 0.98 0.62 0.25

SGGA w 3% LS 0.99 0.64 0.25

USGGA w 3% LS 0.98 0.63 0.27

SDPX

GGA w/o LS 0.96 0.00 n.s.f

SGGA w 7% LS 0.74 0.39 0.07

USGGA w 7% LS 0.73 0.40 0.08

NDPX

GGA w/o LS 0.49 n.s.f n.s.f

SGGA w 7% LS 0.61 0.11 n.s.f

USGGA w 7% LS 0.58 0.10 n.s.f

USGGA w 10% LS 0.54 0.10 n.s.f

Table 5. Success rates of DPX using different local search implementations.
The best success rates are always obtained by the GA applying local search to
the best individuals. Where not reported, no solution was found (n.s.f) in any
run.

Conclusion 7.

In this paper, we presented a family of distance-preserving crossover
(DPX) operators for the inexact graph matching problem. The use of
these operators presents a big step forward compared to existing

Graph Matching with Distance-Preserving Crossover 241

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.25088/ComplexSystems.31.2.219

evolutionary approaches. In particular, the practical size limit for
acceptable performance increased significantly. This enables the effi-
cient use of more detailed graph models for real-world applications in
the future. Such applications are today primarily in cheminformatics
in the identification of chemical compounds, but also in electronic
design automation in the verification of the equivalence of various rep-
resentations of the design of an electronic circuit. In the future, with
the increase in the capacity of the algorithms to deal with larger
graphs, the number of applications will explode. Any comparison of
information described by a graphical model, such as medical, multime-
dia or social network–based content, will require solving a subgraph
isomorphism problem.

For large graphs, our algorithm outperforms all state-of-the-art
approximate algorithms, which are to the best of our knowledge cur-
rently limited to no more than 50 nodes. We validated the perfor-
mance of our approach for graphs containing up to 300 nodes with
different levels of perturbation.

Our DPX operator outperformed all of the large set of alternative
crossover operators studied. In particular, at graph size 100, DPX
was the only operator leading to a significant precision of 100%
against 0% for most of the others. Moreover, it was still able to find
solutions at graph size 300, which is about an order of magnitude
larger than the maximum graph size for which the inexact graph
matching problem could be solved so far.

In order to reach this sphere, we use a two-level local search heuris-
tic. First, local search is integrated into the crossover operator; sec-
ond, another local search heuristic is applied, with low probability,
independently. All interoperator comparisons were carried out after
individually optimizing all parameters, since not only is operator per-
formance substantially influenced by its parameters, but sensitivity to
parameter changes is also substantial for most of them.

All tests on larger graphs were performed on artificial data due to
the lack of suitable real-world graph models. Our approach opens up
the possibility of manipulation and conceiving larger graphs. But the
problem is not simple; for instance, in a two-dimensional to three-
dimensional face recognition task, we observed that augmenting the
level of detail of the graph model led to lower final precision in recog-
nition, although the numerical optimum was found. It would hence
be interesting to see to what extent more detailed graph models can
be developed for real-world inexact graph matching problems, with-
out becoming too brittle to work with.

242 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

References

[1] R. A. Wagner and M. J. Fischer, “The String-to-String Correction
Problem,” Journal of the ACM, 21(1), 1974 pp. 168–173.
doi:10.1145/321796.321811.

[2] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism,” Journal
of the ACM, 23(1), 1976 pp. 31–42. doi:10.1145/321921.321925.

[3] S. Berretti, A. Del Bimbo and E. Vicario, “Efficient Matching and
Indexing of Graph Models in Content-Based Retrieval,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 23(10), 2001
pp. 1089–1105. doi:10.1109/34.954600.

[4] J. Köbler, U. Schöning and J. Torán, The Graph Isomorphism Problem:
Its Structural Complexity, Boston: Birkhäuser, 1993.

[5] J. Torán, “On the Hardness of Graph Isomorphism,” SIAM Journal on
Computing, 33(5), 2004 pp. 1093–1108.
doi:10.1137/S009753970241096X.

[6] Z. Harchaoui and F. Bach, “Image Classification with Segmentation
Graph Kernels,” in 2007 IEEE Conference on Computer Vision and Pat-
tern Recognition, Minneapolis, MN, Los Alamitos, CA: IEEE Computer
Society, 2007 pp. 1–8. doi:10.1109/CVPR.2007.383049.

[7] M. C. Boeres, C. C. Ribeiro and I. Bloch, “A Randomized Heuristic for
Scene Recognition by Graph Matching,” in Experimental and Efficient
Algorithms (WEA 2004) (C. C. Ribeiro and S. L. Martins, eds.), Berlin,
Heidelberg: Springer, 2004 pp. 100–113.
doi:10.1007/978-3-540-24838-5_8.

[8] N. Thome, D. Merad and S. Miguet, “Learning Articulated Appearance
Models for Tracking Humans: A Spectral Graph Matching Approach,”
Signal Processing: Image Communication, 23(10), 2008 pp. 769–787.
doi:10.1016/j.image.2008.09.003.

[9] W. H. Tsai and K.-S. Fu, “Error-Correcting Isomorphism of Attributed
Relational Graphs for Pattern Analysis,” IEEE Transactions on
Systems, Man, and Cybernetics, 9(12), 1979 pp. 757–768.
doi:10.1109/TSMC.1979.4310127.

[10] T. Bärecke and M. Detyniecki, “Memetic Algorithms for Inexact Graph
Matching,” 2007 IEEE Congress on Evolutionary Computation,
Singapore, Piscataway, NJ: IEEE, 2007 pp. 4238–4245.
doi:10.1109/CEC.2007.4425024.

[11] T. Blickle and L. Thiele, “A Comparison of Selection Schemes Used in
Evolutionary Algorithms,” Evolutionary Computation, 4(4), 1996
pp. 361–394. doi:10.1162/evco.1996.4.4.361.

[12] A. Rogers and A. Prugel-Bennett, “Genetic Drift in Genetic Algorithm
Selection Schemes,” IEEE Transactions on Evolutionary Computation,
3(4), 1999 pp. 298–303. doi:10.1109/4235.797972.

Graph Matching with Distance-Preserving Crossover 243

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321921.321925
https://doi.org/10.1109/34.954600
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1109/CVPR.2007.383049
https://doi.org/10.1007/978-3-540-24838-5_8
https://doi.org/10.1016/j.image.2008.09.003
https://doi.org/10.1109/TSMC.1979.4310127
https://doi.org/10.1109/CEC.2007.4425024
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1109/4235.797972
https://doi.org/10.25088/ComplexSystems.31.2.219

[13] I. M. Oliver, D. J. Smith and J. R. C. Holland, “A Study of Permutation
Crossover Operators on the Traveling Salesman Problem,” in
Proceedings of the Second International Conference on Genetic Algo-
rithms on Genetic Algorithms and Their Application, Cambridge, MA
(J. J. Grefenstette, ed.), Hillsdale, NJ: L. Erlbaum Associates Inc., 1987
pp. 224–230.

[14] G. Syswerda, “Schedule Optimization Using Genetic Algorithms,” Hand-
book of Genetic Algorithms (L. Davis, ed.), New York: Van Nostrand
Reinhold, 1991 pp. 332–349.

[15] L. Davis, “Applying Adaptive Algorithms to Epistatic Domains,” in
Proceedings of the 9th International Joint Conference on Artificial Intel-
ligence - Volume 1, Los Angeles (A. Joshi, ed.) San Francisco, CA: Mor-
gan Kaufmann Publishers Inc., 1985 pp. 162–164.

[16] D. E. Goldberg and R. Lingle, “Alleles, Loci and the Traveling Salesman
Problem,” in Proceedings of the 1st International Conference on
Genetic Algorithms (J. J. Grefenstette, ed.), Hillsdale, NJ: L. Erlbaum
Associates Inc., 1985 pp. 154–159.

[17] V. A. Cicirello and S. F. Smith, “Modeling GA Performance for Control
Parameter Optimization,” in GECCO-2000: Proceedings of the Genetic
and Evolutionary Computation Conference, Las Vegas (L. D. Whitley
and D. E. Goldberg, eds.), San Francisco: Morgan Kaufmann Publishers
Inc., 2000 pp. 235–242. dl.acm.org/doi/10.5555/2933718.2933750.

[18] Y.-K. Wang, K.-C. Fan and J.-T. Horng, “Genetic-Based Search for
Error-Correcting Graph Isomorphism,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 27(4), 1997 pp. 588–597.
doi:10.1109/3477.604100.

[19] R. Torres-Velázquez and V. Estivill-Castro, “A Memetic Algorithm
Guided by Quicksort for the Error-Correcting Graph Isomorphism
Problem,” in Applications of Evolutionary Computing (EvoWorkshops
2002), Kinsale, Ireland (S. Cagnoni, J. Gottleib, E. Hart, M. Midden-
dorf and G. R. Raidl, eds.), 2002 pp. 173–182.
doi:10.1007/3-540-46004-7_18.

[20] B. Freisleben and P. Merz, “New Genetic Local Search Operators for
the Traveling Salesman Problem,” in Parallel Problem Solving from
Nature—PPSN IV, (H. M. Voigt W. Ebeling , I. Rechenberg and
H. P. Schwefel, eds.), Berlin, Heidelberg: Springer, 1996 pp. 890–899.
doi:10.1007/3-540-61723-X_1052.

[21] R. C. Read and D. G. Corneil, “The Graph Isomorphism Disease,”
Journal of Graph Theory, 1(4), 1977 pp. 339–363.
doi:10.1002/jgt.3190010410.

[22] D. Conte, P. Foggia, C. Sansone and M. Vento, “Thirty Years of Graph
Matching in Pattern Recognition,” International Journal of Pattern
Recognition and Artificial Intelligence, 18(3), 2004 pp. 265–298.
doi:10.1142/S0218001404003228.

244 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

https://dl.acm.org/doi/10.5555/2933718.2933750
https://doi.org/10.1109/3477.604100
https://doi.org/10.1007/3-540-46004-7_18
https://doi.org/10.1007/3-540-61723-X_1052
https://doi.org/10.1002/jgt.3190010410
https://doi.org/10.1142/S0218001404003228

[23] H. Bunke and G. Allerman, “A Metric on Graphs for Structural Pattern
Recognition,” in Signal Processing II: Theories and Applications:
Proceedings of EUSIPCO-83, Second European Signal Processing Con-
ference, Erlangen, W.-Germany (H. W. Schüssler, ed.), New York:
North-Holland, 1983.

[24] L. G. Shapiro and R. M. Haralick, “Structural Descriptions and Inexact
Matching,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 3(5), 1981 pp. 504–519. doi:10.1109/TPAMI.1981.4767144.

[25] W.-H. Tsai and K.-S. Fu, “Error-Correcting Isomorphisms of Attributed
Relational Graphs for Pattern Analysis,” IEEE Transactions on
Systems, Man, and Cybernetics, 9(12), 1979 pp. 757–768.
doi:10.1109/TSMC.1979.4310127.

[26] B. J. Jain and F. Wysotzki, “Solving Inexact Graph Isomorphism Prob-
lems Using Neural Networks,” Neurocomputing, 63, 2005 pp. 45–67.
doi:10.1016/j.neucom.2004.01.189.

[27] O. Sammoud, S. Sorlin, C. Solnon and K. Ghédira, “A Comparative
Study of Ant Colony Optimization and Reactive Search for Graph
Matching Problems,” in Evolutionary Computation in Combinatorial
Optimization (EvoCOP 2006), Budapest, Hungary (J. Gottlieb and
G. R. Raidl, eds.), Berlin, Heidelberg: Springer, 2006 pp. 234–246.
doi:10.1007/11730095_20.

[28] M. Krcmar and A. P. Dhawan, “Application of Genetic Algorithms in
Graph Matching,” in Proceedings of the 1994 IEEE International Con-
ference on Neural Networks. Part 1 (of 7), Orlando, Piscataway, NJ:
IEEE, 1994 pp. 3872–3876.

[29] M. Singh, A. Chatterjee and S. Chaudhury, “Matching Structural Shape
Descriptions Using Genetic Algorithms,” Pattern Recognition, 30(9),
1997 pp. 1451–1462. doi:10.1016/S0031-3203(96)00181-1.

[30] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimen-
sionally Equidistributed Uniform Pseudo-random Number Generator,”
ACM Transactions on Modeling and Computer Simulation, 8(1), 1998
pp. 3–30. doi:10.1145/272991.272995.

[31] G. Marsaglia and W. W. Tsang, “The Ziggurat Method for Generating
Random Variables,” Journal of Statistical Software, 5(8), 2000 pp. 1–7.
doi:10.18637/jss.v005.i08.

[32] V. Nannen and A. E. Eiben, “Relevance Estimation and Value Calibra-
tion of Evolutionary Algorithm Parameters,” in Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence
(IJCAI ’07), Hyderabad, India, California: International Joint Confer-
ences on Artificial Intelligence, 2007 pp. 975–980.
www.ijcai.org/Proceedings/07/Papers/157.pdf.

[33] H. Mühlenbein, “How Genetic Algorithms Really Work: Mutation and
Hillclimbing,” in Parallel Problem Solving from Nature 2 (PPSN-II),
Brussels, Belgium (R. Manner and B. Maderick, eds.), New York: Else-
vier Science Inc., 1992 pp. 15–25.

Graph Matching with Distance-Preserving Crossover 245

https://doi.org/10.25088/ComplexSystems.31.2.219

https://doi.org/10.1109/TPAMI.1981.4767144
https://doi.org/10.1109/TSMC.1979.4310127
https://doi.org/10.1016/j.neucom.2004.01.189
https://doi.org/10.1007/11730095_20
https://doi.org/10.1016/S0031-3203(96)00181-1
https://doi.org/10.1145/272991.272995
https://doi.org/10.18637/jss.v005.i08
https://www.ijcai.org/Proceedings/07/Papers/157.pdf
https://doi.org/10.25088/ComplexSystems.31.2.219

[34] P. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and
S. Tiwari, “Problem Definitions and Evaluation Criteria for the CEC
2005 Special Session on Real-Parameter Optimization,” Technical
Report, Nanyan Technological University & Kanpur Genetic Algo-
rithms Laboratory, May 2005.

[35] S. K. Smit and A. E. Eiben, “Comparing Parameter Tuning Methods
for Evolutionary Algorithms,” in 2009 IEEE Congress on Evolutionary
Computation, Trondheim, Norway, Piscataway, NJ: 2009
pp. 399–406. doi:10.1109/CEC.2009.4982974.

[36] T. Bärecke, “Evolutionary Optimisation for Inexact Graph Isomor-
phism,” Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, 2009.

[37] J.-M. Renders and S. P. Flasse, “Hybrid Methods Using Genetic Algo-
rithms for Global Optimization,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 26(2), 1996 pp. 243–258.
doi:10.1109/3477.485836.

[38] H. Ishibuchi, T. Yoshida and T. Murata, “Balance between Genetic
Search and Local Search in Memetic Algorithms for Multiobjective
Permutation Flowshop Scheduling,” IEEE Transactions on Evolution-
ary Computation, 7(2), 2003 pp. 204–223.
doi:10.1109/TEVC.2003.810752.

[39] D. L. Whitley, V. S. Gordon and K. E. Mathias, “Lamarckian Evolu-
tion, the Baldwin Effect and Function Optimization,” in Parallel Prob-
lem Solving from Nature - PPSN III, Jerusalem, Israel (Y. Davidor,
H.-P. Schwefel and R. Männer, eds.), Berlin, Heidelberg: Springer, 1994
pp. 6–15. doi:10.1007/3-540-58484-6_245.

246 T. Bärecke and M. Detyniecki

Complex Systems, 31 © 2022

https://doi.org/10.1109/CEC.2009.4982974
https://doi.org/10.1109/3477.485836
https://doi.org/10.1109/TEVC.2003.810752
https://doi.org/10.1007/3-540-58484-6_245

