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Graph models are fundamental to any kind of application on structured
real-world  problems.  Any  comparison  between  graphs  by  a  graph  dis-
tance measure requires the solution of the inexact graph matching prob-
lem,  which  constitutes  a  hard  combinatorial  optimization  problem.  An
inexact matching problem includes in its formulation robustness to any
type  of  perturbation,  such  as,  for  instance,  noise,  inherently  present  in
real-world environments. In this paper,  we introduce the concept of dis-
tance-preserving  crossover  operators  for  genetic  algorithms  for  this
task.  For  large  graphs,  our  algorithm  outperforms  any  state-of-the-art
approximate  algorithm—in  particular,  genetic  algorithms  with  alterna-
tive  crossover  operators,  which  are  to  the  best  of  our  knowledge  cur-
rently  limited  to  no  more  than  50  nodes.  We  use  a  two-level  local
search  heuristic  to  further  enhance  the  results,  pushing  the  limits  to  up
to  300  nodes:  a  first  local  search  step  is  directly  integrated  into  the
crossover  operator;  another  one  is  applied  independently  during  off-
spring generation. 

Keywords: graph distance; evolutionary computation; genetic 
algorithm; inexact graph isomorphism; permutation encoding; 
crossover operator with local search 

Introduction1.

Graphs  are  a  universal  tool  for  modeling  structured  entities.  Their
higher generality and flexibility,  in comparison to the prevalent vecto-
rial  data  model,  comes  with  an  increase  in  computational  cost.  For
instance,  general  distance  computations  for  feature  vectors  are  linear
in  the  number  of  dimensions;  they  become  quadratic  for  string
sequences [1] and exponential in the number of nodes for graphs [2].
In  this  paper,  we  specifically  address  the  problem  of  comparing
graphs  in  noisy  environments.  In  mathematical  terms,  we  propose  a
method  for  efficiently  resolving  the  inexact  graph  matching  problem
in order to determine the distance between graphs.  
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Intuitively,  comparing  two  graphs  is  a  highly  combinatorial  prob-
lem  because  not  only  the  vertices  (also  called  nodes)  have  to  be
matched but also their relationships (called edges). Moreover,  the solu-
tion  of  the  graph  isomorphism  problem  guarantees  that  not  only  are
these elements between graphs equal, but their structure is the same. 

Mathematically,  an  attributed  relational  graph  G  is  defined  over  a
vertex set . Each node is labeled with an attribute a ∈ 


. Their rela-

tionships  are  labeled  with  edge  attributes  e ∈ 
ℰ
.  A  formal  definition

for a fully connected graph is given by [3]: 

G  (, α, β). (1)

The  edge  set  is  implicitly  given  by  ℰ  .  The  functions
α :  


 and  β :  

ℰ
 assign  the  attributes  to  nodes  and

edges; missing edges may be modeled using null labels. The  attributes
are application-dependent content descriptors. 

As  shown  in  Figure  1,  the  two  vertices  of  the  graphs  are,  respec-
tively,  alphabetically  (i.e.,  a,  b,  c,  d)  and  numerically  (i.e.,  1,  2,  3,  4,
5)  named;  the  vertices’  attributes  are  the  colors  (red,  blue,  white,
green,  black).  In  these  simplified  examples,  the  (labeled)  graph
matching  problem  consists  of  finding  the  function  m  so  that  the  col-

ors  (labels)  and  their  relationships  correspond:  m(a)  1,  m(b)  2,
m(c)  3  and  so  on.  To  make  it  obvious  that  the  problem  is  not  only
color  matching  related,  we  may  think  about  the  particular  case  when
there are no labels, or to put it in other terms, when there is one sin-
gle color for both graphs. 

Figure 1. The  graph  matching  problem  answers  the  question,  Are  these  two
graphs equal in terms of content and structure?  

There are many different forms of graph matching problems in the
literature (see [4] for an overview focusing on complexity). The  major
research  area  is  graph  isomorphism,  which  is  a  decision  problem
aiming  at  finding  a  bijective  correspondence  m  between  the  nodes  of
two  unlabeled  graphs  G  (, ℰ)  and  G′  (, ℰ)  such  that
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v1, v2 ∈ G ↔ mv1, mv2 ∈ G′.  A  weaker  form  is  graph  homo-

morphism, where only the edges of G are matched by edges of G′
 but

G′
 may  contain  additional  nodes  and  edges,  that  is,

v1, v2 ∈ G  mv1, mv2 ∈ G′.  In  this  case,  not  all  edges  of  G  are

matched.  Graph  monomorphism  adds  the  constraint  that  m  must  be
injective,  meaning  that  all  nodes  and  edges  from  G  have  an  image
in G′. 

Finally,  the one we are mostly concerned with is subgraph isomor-
phism,  which  searches  a  bijective  mapping  between  all  the  nodes  of
the  smaller  of  the  two  graphs  and  a  node-induced  subgraph  of  the
same  size  from  the  other  graph  (see  Figure  1).  It  differs  from
monomorphism  in  the  fact  that  all  edges  must  be  preserved  in  both
directions.  From  the  point  of  view  of  complexity,  it  is  important  to
note that subgraph isomorphism is proven NP-complete [4], while for
graph isomorphism it is not yet known if it is NP-complete or eventu-
ally lies in P [4, 5]. 

A  somehow  disconnected  problem  that  is  also  known  as  graph
matching  concerns  matching  of  independent  edges  inside  a  single
graph,  which  is  usually  bipartite.  Independence  between  edges  is
defined  by the absence of common incident nodes. This  kind of graph
matching  is  mainly  used  to  decompose  a  graph  into  individual  pairs,
by searching a matching that covers the graph at maximum, for exam-
ple, in order to establish factory-product associations. This problem is
often, but not always, referred to as bipartite graph matching in order
to distinguish it from the family of graph isomorphism problems. 

The  remainder  of  this  paper  is  organized  as  follows.  Section  2
details the inexact graph isomorphism problem, including the derived
graph  distance  computation  and  a  short  overview  of  the  variety  of
algorithms  currently  used.  The  following  section  describes  the  evolu-
tionary  algorithm  architecture  and  introduces  all  existing  and  new
operators. Section 4 provides a literature review of existing evolution-
ary approaches to the same problem, including an assessment of their
results.  We  further  detail,  in  Section  5,  the  evaluation  framework,
including systematic parameter tuning, performance measures and the
results without additional local search. Section 5 comprises a compari-
son  with  additional  local  search  strategies.  First,  since  our  crossover
operator  already  incorporates  some  kind  of  local  search,  we  compare
distance-preserving  crossover  (DPX)  to  other  classic  operators  with
added  local  search.  Second,  the  performance  of  DPX  is  studied  when
an  additional  local  search  strategy  is  added.  We  find  that  there  is  a
further  burst  in  terms  of  performance.  The  final  section  is  the
conclusion. 
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Inexact Graph Isomorphism    2.

In  real-world  applications,  usually  the  nodes  and  edges  of  a  graph
have  attributes  that  need  to  be  taken  into  account  by  the  matching
procedure.  Thus,  we  face  a  labeled  graph  isomorphism  problem,
where  not  only  the  existence  of  edges  must  correspond  but  also  their
individual  labels.  However,  mostly  the  attributes  come  from  noisy
environments,  as,  for  example,  in  the  case  of  graphs  obtained  from
segmented  images  [6–8].  Then,  the  problem  is  transformed  from  a
decision  problem  to  the  minimization  problem  of  finding  the  match-
ing with minimal cost. In our example illustrated in Figure 1, the inex-
act problem would appear when instead of color labels we had values
(e.g.,  light-color  frequencies),  and  we  would  allow  close  frequencies
to match (in return of a estimated cost, for instance, the frequency dis-
tance).  The  advantage  of  allowing  matching  close  attributes  is  that  it
permits  the  solution  to  be  robust  to  noise.  In  fact,  noise  will  change
the  values  in  the  two  representations  (i.e.,  graphs),  making  exact
matching impossible.  

The  matching  cost  is  often  obtained  either  by  explicitly  modeling
each possible type of error (in particular when the attributes are non-
numerical  labels),  or  by  defining  a  dissimilarity  measure  (often  a
distance) between the attribute values. In this paper,  we use the classi-
cal  joint  distance  (see  Section  2.1),  which  is  a  convex  combination  of
the  nodes’  attribute  distance  and  the  relationships  (edges’  attributes)
distance. 

Formally,  the  inexact  graph  isomorphism  problem,  given  two
graphs  of  equal  size  G  (, α, β)  and  G′  (′, α′, β′),  consists  in
finding the mapping m :  ′

 between the nodes of the two graphs
that  minimizes  some  cost  function,  formally  called  the  dissimilarity
metric. 

The  computational  challenge  arises  from  the  fact  that  inexact
graph  matching  implies  a  cost  minimization  on  top  of  the  graph
matching problem, which in its turn implies a search of the large com-
binatorial  space  of  mappings  [4,  9]:  If  δ(G, G′, m)  is  the  matching
cost of a mapping m between the two graphs G and G′, the result of
the  inexact  graph  matching  between  the  two  graphs  is  obtained  by
minimizing over all possible mappings: 

δG, G′  min
m

δG, G′, m. (2)

Joint Graph Distance    2.1

In order to define  the distance between two graphs, we use the classi-
cal  joint  distance,  which  is  nothing  else  than  a  weighted  sum  of  the
edges’  attribute  distances  and  the  vertices’  attribute  distances.  The
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weighting  parameter  λ  controls  the  importance  of  the  edges  versus
the nodes. This  straightforward and often-used distance, although not
explicitly  modeling  the  absence  of  nodes  and  edges,  is  able  to  handle
them by the introduction of null labels.  

In  order  to  rigorously  define  the  joint  graph  distance,  we  assume
that appropriate elementary distance measures for nodes δ


 and edges

δ
ℰ
 are defined: 

δ

:





  (3)

δ
ℰ
:

ℰ


ℰ
 . (4)

For  simplicity  of  notation,  we  will  write  in  the  following,  for  the
distance  of  any  two  vertices  v1  and  v2  from  two  graphs

G1  (V1, α1, β1)  and  G2  (V2, α2, β2),  δ(v1, v2)  instead  of

δ(α1(v1), α2(v2)) and analogically for the edge distances. 

With  these  notations,  the  joint  graph  distance  of  two  graphs
implied by the mapping m is defined by: 

δG, G′, m 

λ

v∈

δ

(v, m(v)) + (1 - λ) 

v,w∈

δ
ℰ
((v, w), (m(v), m(w))). (5)

The  parameter  λ ∈ [0, 1]  influences  the  relative  importance  of  the
nodes’ attributes distance and the relationships (edges’ attributes) dis-
tance,  respectively,  thus,  it  is  highly  application  dependent.  Since  in
this study we focus on a general description of our algorithm and eval-
uate it mostly on artificial  data, we assume equal impact of both, that
is,  λ  0.5.  Using  this  parameter  value,  the  absolute  distance  between
two  graphs  is  defined  as  the  minimum  over  all  legal  mappings,  as
stated in equation (2). 

Genetic Algorithm  Design  3.

Our genetic algorithm (GA) follows the classical steps: first,  an initial
population  of  spop  solution  candidates  (chromosomes)  is  created.

Then,  a  certain  number  of  individuals  are  selected  for  producing  off-
spring  using  genetic  variation  operators  such  as  crossover  or  muta-
tion. Some individuals from the child population eventually undergo a
local  search  procedure.  Finally,  the  offspring  is  integrated  in  or
replaces the parent generation and the selection restarts. For simplici-
ty’s  sake,  in  this  paper,  as  replacement  strategy  we  choose  the
generational  approach,  which  means  that  we  always  create  a  child
population  of  the  same  size  as  the  parent  population  and  replace  the
latter entirely at each generation. 
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Robust Permutation Encoding    3.1

Most  genetic  algorithms  applied  to  the  graph  isomorphism  problem
use  a  permutations  encoding  under  the  form  of  integer  strings.
Indeed,  any  legal  solution  candidate  has  an  equivalent  representation
in the space of permutations of ′ elements. In fact, consider that the
elements  of    and  ′,  respectively,  are  arbitrarily  numbered  from  1
to  ′.  Then  the  corresponding  mapping  m  will  contain  all  pairs  of
nodes (v, v′) that have the same number.  In other words, any permuta-
tion of the numeration of V′

 implies a unique mapping and vice versa. 
Figure  2  shows  the  permutational  encoding  of  the  graph  match

illustrated  in  Figure  1.  We  observe  that  the  encoding  of  m  (central

rectangle)  represents  all  the  permutation  pairs,  for  instance b, 4,  by

pointing node 4 of G2 in position a. Only the identification of the des-

tination nodes is needed since we can assume—because of the permu-
tational  nature  of  the  exploration—that  the  order  in  the  coding  of  m
corresponds to a particular known order of G1  (here the first  position

corresponds  to  a,  the  second  to  b,  etc.)  It  is  important  to  notice  that
this encoding is stable in the permutational space. 

Figure 2. Permutation  encoding  corresponding  to  the  subgraph  match  illus-
trated in Figure 1.

Unfortunately,  the inexact subgraph isomorphism problem aims to
minimize equation (5) for graphs of different sizes and thus, permuta-
tional  coding  is  impossible.  To  overcome  this,  we  propose  to  com-
plete  the  smaller  graph  with  unconnected  virtual  nodes.  In  Figure  2
this  corresponds  to  the  number  3  appearing  at  the  end  of  the  coding
of m. This means that for this subgraph, match node 3 of G2  was not

selected. 
Formally,  if  we  assume   < ′,  without  loss  of  generality,  the

solution  space  can  be  transferred  into  the  space  of  permutations  of
size  ′.  Although  this  leads  to  a  memory  overhead  of  O(′ - )

and  to  several  permutations  having  identical  mappings,  it  enables  us
to use all genetic operators available for permutation encodings [10]. 
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Selection  3.2

The evolutionary process of survival of the fittest  is modeled by vari-
ous  selection  schemes;  these  determine  which  individuals  from  the
current  population  migrate  to  the  intermediate  parent  population,
based on the distribution of fitness  values. Various  selection strategies
are  available  for  generational  genetic  algorithms  (GAs).  The  most
classic strategies include roulette wheel, ranking and tournament selec-
tion,  among  others  [11].  In  this  paper,  we  choose  to  use  tournament
selection  as  a  selection  scheme,  as  it  is  very  simple  to  implement  and
sufficiently  efficient.  In  particular,  it  does  not  need  any  scaling  or
normalization  of  the  fitness  values  and  does  not  suffer  from  genetic
drift [12].  

Crossover  3.3

Crossover is the process of combining (in general) two parent chromo-
somes to create a common child. As a variation operator,  it maintains
diversity  in  the  population  and  permits  the  sampling  of  new  data
points. A  generally imposed (soft) constraint on a crossover operator,
as  well  as  any  other  variation  operator,  is  that,  given  a  set  of  valid
solutions  as  inputs,  it  exclusively  samples  valid  solutions  with  respect
to the given encoding. We  then say that the genotypic search space is
closed  under  the  operator.  In  certain  special  cases,  this  might  be
violated  at  the  cost  of  introducing  a  repair  mechanism  or  attributing
fitness penalties to invalid solutions, mostly leading to reduced search
efficiency.  Since  crossover  operators  play  a  crucial  role  in  the  global
performance  of  any  GA,  they  have  been  exhaustively  studied.  For
many  classical  problems,  like  the  traveling  salesman  problem  (TSP),
the  introduction  of  new  crossover  operators  has  led  to  major
enhancements  of  GA  performance.  In  the  following,  we  present
groups  of  crossover  operators  particularly  adapted  to  the  permuta-
tional encoding.   

Permutation Crossover Operators  3.3.1

There are three classes of application-independent crossover operators
available  for  permutation  encodings  differing  in  the  type  of  infor-
mation they aim to preserve: position-based operators like CX [13] or
POS  [14],  order-based  operators  like  OX  [15]  or  its  uniform  variant
UOX  [14],  and  operators  preserving  both  gene  order  and  absolute
position  to  some  degree,  like  PMX  [16]  or  its  uniform  variant
UPMX [17].  

Position-Based Crossover Operators  3.3.2

Although  most  of  the  previous  operators  have  been  used  in  the  con-
text  of  graph  matching,  it  appears  that  for  our  coding  scheme,  the
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absolute  position  of  the  genes  is  crucial,  while  ordering  information
does  not  matter  much.  Therefore,  position-based  operators  are  the
most  appropriate.  Two  novel  position-based  operators,  PBX  and
UPBX,  were  introduced  in  [10].  These  operators  outperformed  PMX
as well as UPMX on the graph matching task [18, 19].  

Distance-Preserving Crossover    3.3.3

In this paper,  we propose three new crossover operators: DPX, SDPX
and  NDPX,  inspired  by  Freisleben  and  Merz’s  distance-preserving
crossover (also called DPX, thus) for the TSP [20].  

The  basic  idea  of  the  DPX  is  to  create  a  child  whose  distance  to
each  parent  equals  the  distance  between  the  parents.  As  a  result,  the
algorithm  adapts  automatically  to  the  tradeoff  between  exploration
and  exploitation.  In  the  beginning  of  a  GA  run  (e.g.,  for  a  graph
matching),  parents  are  likely  to  be  very  different.  The  operator  thus
favors exploration over exploitation. While  the population gets closer
to  an  optimum,  the  interparent  distances  decrease  and  exploitation
becomes more important. 

The  TSP-DPX  works  as  follows:  the  content  of  the  first  parent  is
copied to the offspring and all edges that are not in common with the
other parent are deleted. It results in short common tours. These  bro-
ken tours are then reconnected without using the non-shared edges of
the  parents.  A  greedy  reconnection  procedure  is  employed  to  achieve

this:  if  the  edge  i, j  has  been  destroyed,  the  nearest  available  neigh-

bor  k  of  i  among  the  remaining  tour  fragments  is  taken  and  the  edge

i, k  is  added  to  the  tour,  provided  that  i, k  is  not  contained  in  the

two parents. 
For the TSP solution [20], common information refers to tour frag-

ments,  that  is,  (usually  short)  gene  sequences  on  the  genotypic  level.
For graph isomorphism, we propose to refer to elementary node map-
pings,  that  is,  individual  genes,  instead.  Thus,  in  order  to  obtain  a
complete  chromosome,  our  operator  iterates  in  random  order  over
the  open  genes.  At  each  position,  it  selects  the  best  possible,  non-
taboo gene using an estimate of the influence of the particular gene on
the overall fitness. We  search the node pair leading to the minimal dis-
tance augmentation when added to the partial mapping already estab-
lished.  To  this  end,  we  compute,  for  each  possible  gene  for  a  certain
position,  the  sum  of  the  edge  distances  to  all  other  nodes  already
mapped and the node distance between the pair to be introduced. 

This  strategy  offers  a  relatively  precise  estimation  of  the  real  cost,
but  is  computationally  expensive.  Let  n  be  the  size  of  the  (larger)
graph and a the number of open positions (i.e., the Hamming distance
between  the  parents,  in  the  chromosome);  the  complexity  of  DPX  is

at most 1  2na2. 
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Using  a  less  strict  estimate  can  greatly  reduce  the  computational
cost.  We  propose  thus  two  relaxed  versions  of  the  DPX  operator,
node  DPX  (NDPX)  and  signature  DPX  (SDPX).  NDPX  takes  into
account only node distances and is therefore somehow inaccurate. As
for  SDPX,  we  compute  an  aggregation  of  a  node’s  and  its  incident
edges’  attributes.  The  specific  aggregation  operator  is  strongly  depen-
dent on the application. The  worst-case complexity of both operators
equals  the  complexity  of  a  fitness  function  evaluation,  when  the  par-
ents  are  completely  different.  In  general,  the  complexity  depends  on

the parents’ distance and has an upper bound expressed by 1  2a2. 

Figure  3  compares  the  complexity  of  DPX,  NDPX  and  SDPX  to
the  complexity  of  a  fitness  function  evaluation.  All  shown  estimates
are  upper  bounds  for  one  execution  of  the  operator  and  shown  on  a
logarithmic scale as a function of the parents’ distance. For SDPX, the
signatures need to be computed in advance, adding the complexity of
the aggregation operator once at the start of the algorithm. 

Figure 3. Complexity  of  the  three  DPX  variants  depending  on  the  Hamming
distance of the parents and compared to the computational cost of one fitness
function  evaluation.  Complexities  are  relatively  tight  upper  bounds  ignoring
the gain of taboo exclusion.  

Mutation  3.4

Mutation  is  usually  applied  on  single  genes.  In  the  case  of  permuta-
tion  encoding,  an  appropriate  elementary  altering  operation  that
preserves  the  permutation  property  is  the  swap  of  two  genes.  More
disruptive  mutation  operators  are  possible,  like  scramble  mutation,
which  scrambles  a  certain  part  of  the  chromosome’s  genes,  but  they
are out of the scope of our paper.   
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State of the Art:  Inexact Graph Isomorphism     4.

During  the  past  decades,  numerous  algorithms  have  been  applied  to
the  graph  matching  problem  in  general  [21,  22].  In  order  to  clarify
the  notation,  it  seems  appropriate  to  distinguish  the  terms  optimal,
exact,  inexact  and  approximate.  We  refer  to  exact  and  inexact  when
characterizing the nature of the graph matching problem; that is, does
a  match  need  to  be  exact  or  do  we  admit  noise?  The  terms  optimal
and approximate refer to the algorithms used for any of the two prob-
lem types; that is, do we guarantee that the given distance (or match)
is the best possible or do we admit fairly accurate solutions?  

For  the  inexact  graph  isomorphism,  on  the  one  hand,  the  optimal
algorithms  (i.e.,  guaranteeing  that  the  solution  has  the  best  possible
minimal  cost)  are  based  on  the  A*-heuristic  with  some  sophisticated
lookahead procedures [3, 2, 23–25]. Unfortunately,  none of them are
computationally  efficient,  except  for  some  specialized  restrictions  to
certain types of graphs, for instance, planar.  Therefore,  these methods
are limited to very small graph sizes (around 10 nodes). 

On the other hand, approximate methods allow a reduced compu-
tational  cost  at  the  expense  of  dropping  the  optimality  guarantee.
They  usually  ensure  a  local  maximum  of  the  matching  quality.  Exist-
ing  bio-inspired  approaches  include  neural  networks  [26],  ant  colony
optimization [27] and GAs, which we detail in the following. 

Evolutionary Approaches   4.1

As  in  our  proposition,  most  GAs  applied  to  the  graph  isomorphism
problem use permutations encoded as integer strings. The first success-
ful  attempts  used  PMX  and  CX  and  stated  that  the  coding  is  similar
to a TSP  [28]. Although  experimental evaluation is extremely limited,
they  were  the  first  to  mention  that  the  quality  of  node  assignments
depends on value position rather than order.  PMX and CX had to be
extended for graph monomorphism, that is, subgraph matching.  

Singh  et  al.  [29]  use  both  binary  and  integer  strings.  Furthermore,
they  introduce  the  concept  of  color  crossover,  which,  using  a  given
classification of the graph nodes, restricts the search space in allowing
only mappings between nodes of the same class. The  main problem is
to  find  such  a  classification  for  any  given  application  that  the  maxi-
mum  inner  class  error  is  strictly  inferior  to  the  minimal  distance
between  any  two  nodes  from  different  classes.  If  a  classification  does
not satisfy this condition, it could block the algorithm from obtaining
the  optimal  result.  In  their  experiments,  Singh  et  al.  [29]  use  ran-
domly  generated  graphs  containing  10,  30  and  50  nodes  with  mean
(branching-)degrees  between  three  and  four  for  the  smaller  graphs
and  eight  for  size  50  graphs.  After  a  total  of  30  runs  (10  different
graphs with three runs each) for each size, there is no performance dif-
ference  between  the  different  crossover  types;  in  particular,  OX,  CX
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and PMX were tested. The use of color crossover with two colors sig-
nificantly improves the results. 

Wang  et  al.  [18]  tackle  inexact  graph  isomorphism,  that  is,  the
noise-robust  variant.  They  use  PMX  and  swap  mutation  in  combina-
tion  with  a  local  search  step.  The  latter  is  based  on  two-opt  applied
once  on  each  generation’s  best  individual.  Their  experiments  are  also
based on randomly generated graphs with integer attributes and noise
added to these attributes. 

All  the  above-mentioned  works  focused  on  pure  graph  isomor-
phism, where both graphs are of the same size. Based on the encoding
explained in Section 3.1, it is easy to extend the operators to the more
general  subgraph  problem.  In  fact,  we  avoid  the  necessity  to  extend
the  crossover  operators  by  making  a  distinction  between  phenotype
and  genotype  of  the  individuals.  The  genotype  of  an  individual  is  a
complete  permutation  (and  therefore  the  operators  apply),  while  the
phenotype (e.g., used to compute the fitness)  restricts itself to actually
existing  nodes  in  the  smaller  graph.  Thus,  in  order  to  compare  state-
of-the-art approaches we select the following (most promising) permu-
tation operators: CX, PMX, UPMX, UOX. 

Paradoxically,  as  we  observe  in  previous  works  [10],  position-
based operators, in particular PBX and UPBX, outperformed permuta-
tion-based  PMX  as  well  as  UPMX  on  the  graph  matching  task  [18,
19]. Thus, we include these new two operators in the evaluation. 

Finally,  we  also  compare  the  three  introduced  (in  Section  3.3)  dis-
tance-preserving operators: DPX, SDPX and NDPX. 

Evaluation Framework     5.

For parameter tuning and general comparison between the operators,
we  use  synthetic  graphs.  These  graphs  are  fully  connected,  with  edge
and  node  attributes  lying  in  the  unit  interval,  and  obtained  using  the
Mersenne  twister  pseudorandom  number  generator  [30].  We  also  use
this  generator  to  simulate  uniform  noise  and  the  Ziggurat  algorithm
[31] for Gaussian noise.  

Performance  itself  may  be  defined  in  a  number  of  different  ways,
taking  into  account  basically  two  components:  the  precision  of  the
solution(s)  obtained  and  the  computational  time  that  was  used  to
obtain them. Some very common measures are success rate sr, average

runtime  to  success  (ARS),  average  fitness  function  evaluations  to  suc-
cess (AES) and success performance sp. 

◼ sr.  The  success  rate  is  obtained  as  the  fraction  of  runs  having  reached

the  optimal  solution.  A  high  value  indicates  a  good  ability  of  the  algo-
rithm to converge to the right solution.
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◼ ARS.  The  average runtime to success corresponds to the mean value of
the  time  needed  to  obtain  the  optimal  solution.  This  value  allows
comparison  of  all  different  kinds  of  algorithms  without  the  need  of
assessing  their  specific  complexity.  However,  it  is  dependent  on  hard-
ware and implementation, which limits the generality of the results and
comparison  with  other  authors.  A  low  value  means  that  when  a  solu-
tion is found, it is found quickly.  

◼ AES. The average number of fitness function evaluations to success cor-
responds to the mean convergence time as a multiple of the time needed
to compute the fitness  function. It is similar to the ARS,  but results are
comparable  on  different  hardware.  However,  when  the  compared  GAs
differ  greatly,  especially  when  some  operators  are  far  more  complex
than  others,  counting  the  number  of  fitness  function  evaluations  might
be misleading as other parts of the algorithm, like local search or com-
plex  operators,  might  have  a  larger  influence  on  time  complexity.  In
these  cases,  a  pure  runtime  comparison  might  be  more  appropriate.  As
with ARS,  it purely measures the performance for the runs that find  the
optimal  solution  and  contains  no  information  about  how  often  it  was
actually found. 

◼ sp. The  success performance is obtained by dividing ARS  by the success

rate (ARS  sr). This normalization, in contrast to ARS,  penalizes unsuc-

cessful runs. It provides a single number to measure both the ability to
converge to the optimal solution and the speed of convergence in a sin-
gle number.  Notice that some authors also call success performance the
equivalent regularization computed on AES. 

Since the proposed distance-preserving operators (DPX, SDPX and
NDPX) include a fitness  estimation, which implies an extra computa-
tional  cost  (as  discussed  in  Section  3.3),  using  a  measure  that  only
counts the number of fitness  evaluations will bias the results by favor-
ing  them  in  any  comparison.  Therefore  in  our  experiments  and  com-
parisons,  we  focus  rather  on  computational  time,  paying  particular
attention  to  having  the  same  computational  environment  (software
and hardware). 

Standard Parameters5.1

Parameter  setting  is  crucial  to  the  performance  of  evolutionary  algo-
rithms. The  optimization of the parameter set is itself a combinatorial
optimization  problem.  Furthermore,  optimal  parameter  settings  may
change with time or not even exist.  

In  order  to  identify  reasonable  values  for  the  three  basic  parame-
ters:  population  size,  crossover  and  mutation  probability,  for  each
crossover  operator,  in  a  reasonable  time,  we  reduce  the  search  space
by  discretizing  all  three  parameters.  We  use  a  nonuniform  discretiza-
tion  that  takes  into  account  known  facts  about  usually  good  ranges.
Inside  promising  ranges,  the  sampling  gets  finer,  while  nonpromising
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areas  are  sparsely  covered.  The  following  known  assumptions  were
used: 

◼ pc.  The  crossover  rate  should  be  relatively  high,  for  example,  between

0.6  and  1.0  [32,  33].  The  sampling  gets  denser  for  higher  values
approaching 0.01 intervals between 0.95 and 0.99. 

◼ pm. The mutation rate is usually small, for example, around 0.01 to 0.1

[32] or using a more classic assumption 1  L with L being the chromo-

some  length  [33].  We  sample  relatively  densely  up  to  0.15,  and  after-
ward  sparsely  until  a  maximum  of  0.7.  Higher  values  would  result  in
an unwanted random walk behavior.  

◼ spop. The  population size is usually in the order of 20 to 100. We  cover

the interval from 10 to 1000 and sample more densely for low values. 

Best Parameters  5.2

We  search  the  space,  starting  with  the  known  assumption  for  the
parameter settings. We  use 100 individuals, a crossover probability of
0.99 and a mutation probability of 0.1. Then  we use a loose gradient
descent technique, treating the three parameters sequentially,  until we
find  a  stable  local  optimum.  During  each  step,  we  adjust  the  param-
eter  where  the  highest  gain  was  observed  in  terms  of  success
performance sp, taking into consideration both convergence itself and

convergence  speed  [34].  In  particular,  we  use  the  success  rate  sp  and

AES,  eventually  completed  by  ARS  for  crossover  operators  with  non-
constant  computational  cost.  Each  parameter  setting  is  evaluated  on
50 graph pairs and 30 runs are done on each of them to obtain statis-
tically significant results.  

Finally we explore the area around this optimum using denser sam-
pling,  an  idea  somehow  similar  to  sharpening  [35],  but  different  in
the fact that we do not aim at augmenting the accuracy of the perfor-
mance estimates for a set of given parameter settings but at evaluating
more parameter settings in the area of a promising one. 

The  results  of  this  process  are  detailed  in  [36]  and  the  optimal
parameters  are  displayed  in  Table  1.  We  observe  that  there  is  a  high
variance  of  the  optimal  values,  depending  on  the  operator.  For
instance,  PBX  has  an  optimal  parameter  very  close  to  the  starting
point  (population  size  100,  crossover  rate  0.99,  mutation  rate  0.1),
while  DPX  requires  an  unexpectedly  low  crossover  rate.  Another
example  of  this  variability  is  the  extremely  high  population  size
needed when using cycle crossover (CX). 

In  tests,  we  also  observed  that  the  parameter  settings  are  generally
stable  with  respect  to  graph  size  (evaluated  between  20  and  40)  and
noise  level  (from  0  to  a  standard  deviation  of  10%  of  the  attribute
scale).  The  only  exception  being  the  optimal  population  size  of  CX
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depending on the graph size; that is, bigger graphs need higher popula-
tion sizes. 

Finally,  we  observed  that  in  general,  for  growing  graph  sizes,  the
sensitivity  on  the  parameters  increases;  that  is,  if  there  is  an  interval
for which the performance is on a plateau, its width decreased. 

Crossover spop pc pm Success

Operator (ind.) (%) (%) Success Rate Performance (sec.)

DPX 50 25 25 1 0.087

SDPX 25 35 30 1 0.165

NDPX 25 40 30 1 0.219

UPBX 90 99 20 0.994 0.298

PBX 120 96 30 0.996 0.388

PMX 120 99 40 0.997 0.430

CX 400 99 60 0.995 0.473

UPMX 90 80 12 0.979 0.669

UOX 10 60 14 0.997 2.372

Table 1. Operators ranked by success performance with their optimal parame-
ter  set  (population  size  spop,  crossover  probability  pc  and  mutation  probabil-

ity  pm)  for  graphs  of  size  40  with  uniform  noise  (6).  Distance-preserving

crossovers perform best, followed by strictly position-based crossovers.  

Performance  Comparison  5.3

Looking  at  Table  1  from  the  success  performance  perspective,  we
notice three groups of basic crossover operators. Strict position-based
crossover  (PBX  and  UPBX,  [10]),  classical  position-based  and  hybrid
operators  (CX,  PMX,  UPMX),  and  order-based  crossover  (UOX).
The last one can be discarded as it is from its foundation unfit  for the
graph  matching  problem  under  permutation  encoding  and  obtains
very  poor  results,  with  an  extremely  high  sensitivity  to  parameter
settings.  

Success  rates  are  here  close  to  one,  translating  the  fact  that  almost
all  the  runs  reached  the  optimal  solution.  This  is  an  expected  result,
since  the  graphs’  size  was  chosen  in  such  a  way  that  parameter  opti-
mization can be performed (i.e., with a very large number of runs, as
explained earlier). The high scores also translate the fact that for mid-
sized  graphs,  any  approach—as  long  as  it  has  optimal  parameters—
reaches  the  optimal  solution  most  of  the  time,  the  only  difference
being the time to reach it.
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A closer look at our results reveals that UPBX and PBX show simi-
lar  success  performances,  while  PBX  seems  more  sensitive  to  its
parameters,  especially  to  the  mutation  probability.  PMX  and  CX
need extremely high mutation rates and at the same time high popula-
tion  sizes,  indicating  a  merely  random  exploration  of  the  current
neighborhood guided by the evolutionary selection process. This  indi-
cates that the crossover operator itself does not play a major role. We
could  cross-check  with  a  mutation-only  GA.  UPMX’s  parameters
seem somehow normal and it shows slightly better performances than
PMX  and  CX.  It  is,  however,  extremely  dependent  on  a  sound
crossover probability of 80% and the tuning of the population size. 

CX’s  poor  results  contradict  the  a  priori  assumption  that  a  purely
position-based  operator  should  perform  best  on  our  problem.  This
may be explained by the nondisruptive nature of the operator in com-
bination with a weak mutation. We  did not observe a significant  per-
formance  gain  after  combining  CX  with  scramble  mutation,  which
leads to more disruptive behavior.  

Convergence  Comparison  5.3.1

Figure  4  shows  the  convergence  behavior  of  all  operators,  using  their
respective optimal parameters at size 40. The three DPX variants con-
verge extremely fast. Although the accuracy of all operators is close to
1  (see  also  Table  1)  and,  in  general,  the  precision  decreases  with  the
graph size (for most operators, this decrease starts at size 40), the con-
vergence  behavior  presented  in  Figure  4  shows  significant  differences
between the operators.  

Figure 4. Success  rate  over  time  for  all  crossover  operators  using  optimal
parameter settings. DPX clearly outperforms all other operators.  
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DPX converges twice as fast as SDPX. This indicates that the preci-
sion  of  the  distance  (i.e.,  fitness)  estimation  in  the  greedy  part  of  the
operator is far more important than its runtime. 

Distance-Preserving Crossover Sensitivity to Parameter Setting  5.3.2

The  parameter  tuning  reveals  some  interesting  facts  about  the  DPX
operators.  There  is  a  weak  correlation  between  crossover  probability
and  the  optimal  corresponding  population  size.  The  performance  of
the  DPX  operators  is  extremely  sensitive  to  inappropriate  crossover
probabilities,  which  should  be  lower  than  50%  (see  Figure  5).  This
contradicts  the  common  assumption  of  a  need  for  relatively  high
crossover rates.  

Figure 5. Influence  of  the  crossover  probability  on  the  performance  of  the
DPX  operator.  The  success  rate  decreases  and  the  average  runtime  increases
significantly when the crossover probability exceeds a threshold around 0.5.  

All  this  can  be  explained  by  the  fact  that  the  solution  vectors  cre-
ated by DPX are as far away from each of the parents as the parents
are  separated,  which  is  a  particularly  large  distance  during  the  first
generations. Therefore,  if the crossover rate approaches higher values,
most parents would be immediately replaced by their—faraway—chil-
dren.  Although  exploration  benefits  from  this  behavior,  exploitation
of  promising  regions  is  hindered  and  thus  the  selection  process  is
blocked.  This  has  a  strong  impact  on  the  convergence.  In  fact,  we
observe  that  for  any  distance-preserving  operator  there  is  a  crossover
probability  bound  that,  when  exceeded,  immediately  leads  to  poor
convergence  and  precision,  while  any  values  below  that  bound  only
affect runtime without affecting precision at all. 

The optimal mutation rates are also higher than expected (from the
literature)  with  values  around  25%  to  30%.  This  relatively  high
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mutation rate may be explained by two effects: On the one hand, the
greedy procedure used to fill  in the chromosomes introduces a strong
bias  and  potentially  reduces  diversity.  A  higher  mutation  rate  con-
tributes to better diversity.  On the other hand, swap mutation is not a
very disruptive operator,  since it just exchanges two out of n genes. A
higher mutation rate makes it more disruptive and increases the possi-
ble  radius  of  the  mutation,  leading  to  better  exploitation  and  hence
convergence. 

Local Search6.

Adding  a  local  search  step  to  a  GA  may  significantly  enhance  the
results,  as  the  algorithm  exploits  the  exploration  capabilities  of  the
GA and at the same time uses the exploitation properties of the local
search  for  faster  convergence  [37].  A  good  memetic  algorithm  needs
an  appropriate  balance  between  genetic  exploration  and  local  search
[38].  Too  much  local  search  leads  to  premature  convergence,  while
too much exploration slows the algorithm down. The  introduction of
a  local  search  step  permits  scaling  the  algorithm  to  larger  graphs.
Additionally,  the  greedy  procedure  of  the  DPX  operator  may  be  con-
sidered an adaptive local search whose search radius equals the parent
distance. Therefore,  we propose to add a local search procedure to all
other operators and compare them to DPX.  

Local search strategies define  a neighborhood around a given chro-
mosome  and  search  it  exhaustively.  The  chromosome  is  then  either
replaced by the best chromosome of its neighborhood, which is called
Lamarckian evolution, or,  according to the Baldwin effect, only its fit-
ness  is  updated  but  the  genes  stay  unchanged  [39].  The  search  radius

can  be  defined  by  the  elementary  operation b : s  b(s),  which  is  used
to create the neighborhood around the chromosome s.

We  apply a two-opt local search procedure; that is, the operation b
consists in exchanges of any two genes, with replacement of the chro-

mosomes. The  neighborhood contains Cn
2  n(n - 1)  2 chromosomes.

The complexity of the fitness calculus for these chromosomes is signifi-
cantly reduced by ignoring all unchanged mappings. The  exchange of
two  genes  is  equivalent  to  exchanging  the  elementary  mappings  of
two  graph  nodes.  Since  there  are  two  graph  node  distances  and
2(n - 2)  (there  are  no  cycles  and  the  edge  between  the  two  nodes  is
unaffected  since  undirected)  edge  distance  changes,  the  overall  com-
plexity of a local search step is 

 Cn
2  2 + 2(n - 2) +

n2 + n

2
,
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which is (2n) more expensive than a single call to the fitness function

but covers a space of Cn
2
 individuals. Taking  into account its complex-

ity,  it  is  obvious  that  local  search  should  only  be  applied  to  a  small
proportion  of  individuals.  In  the  following  we  identify  the  most
promising selection strategy for this purpose.  

Smart Local Search Strategies  6.1

In its most basic form, the memetic algorithm creates an individual by
the  genetic  operators  and  decides  whether  or  not  that  individual
undergoes  a  local  search  procedure.  It  is  often  useful  to  concentrate
the  computational  effort  on  the  most  promising  solutions  instead  of
applying  local  search  to  all  individuals  with  constant  probability.  To
this  end,  we  sort  the  population  and  apply  local  search  to  the  first
pls n individuals.  

Additionally,  since  the  local  search  procedure  is  deterministic,  the
results  are  the  same  if  applied  to  the  copy  of  an  individual.  When  a
copy of an individual that underwent local search is detected, we have
two  possibilities.  First,  we  may  copy  the  result  of  the  local  search
directly  without  executing  it  a  second  time.  Second,  we  can  simply
ignore the copy and not apply local search on it. In this case, we leave
it  to  the  selection  process  to  determine  the  better  individual  from
these two. We  opted for the second solution as it seems a more natu-
ral  way,  and  as  preliminary  tests  between  the  two  methods  did  not
show much of a difference. 

In  the  end,  we  test  four  variants  in  order  to  integrate  local  search
into  the  generational  algorithm,  using  the  letters  U  for  unique,  where
copies  are  discarded,  and  S  for  sorted.  For  example,  USGGA  stands
for a sorted population where copies are discarded. 

Comparing Local Search Enhanced Operators and Distance-
Preserving Crossover  

6.2

We  determined  a  pseudo-optimal  parameter  setting  for  the  tradeoff
between  genetic  exploration  and  local  search  by  exhaustively  testing
local  search  probabilities  between  0  and  30%  for  each  crossover
operator and algorithm type (Figure 6). Tables  2 and 3 show the suc-
cess  performance  of  the  best  parameter  setting  for  every  combination
at graph sizes of 60 and 100 nodes, respectively.  The  performances of
the  generational  GA  improve  for  almost  all  operators,  particularly
when  a  sorted  implementation  is  used.  The  difference  between  a  sim-
ple  sorted  implementation  (SGGA)  and  the  one  excluding  duplicates
is  generally  insignificant.  The  optimal  parameter  settings  are  also
similar. 

Comparing the two sizes, local search is shown to be more benefi-
cial for bigger graphs, as one would generally expect. 
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Figure 6. Comparison  of  crossover  operators  with  local  search  against  dis-
tance-preserving operators without local search.  

GA GGA UGGA SGGA USGGA  

Operator sp sp pLS sp pLS sp pLS sp pLS

DPX 0.41 0.23 (0.01) 0.27 (0.03) 0.12 (0.03) 0.12 (0.03)

SDPX 0.95 0.74 (0.01) 0.86 (0.02) 0.47 (0.07) 0.46 (0.07)

NDPX 1.42 1.12 (0.01) 1.31 (0.02) 1.01 (0.07) 0.99 (0.10)

UPBX 8.20 n.s.f 6.54 (0.01) 6.88 (0.01) 5.83 (0.01)

PBX 2.97 n.s.f n.s.f n.s.f n.s.f  

UPMX 394.26 n.s.f n.s.f 8.99 (0.08) 8.82 (0.06)

PMX 4.23 n.s.f n.s.f 3.88 (0.01) 3.75 (0.01)

CX 4.04 n.s.f n.s.f 3.23 (0.01) 3.02 (0.01)

UOX 122.15 10.21 (0.01) 11.44 (0.18) 7.23 (0.18) 8.68 (0.18)

Table 2. Comparison of success performances of all operators combined with
local  search  for  large  graphs  of  size  60.  The  corresponding  best  local  search
probability  parameter  is  given  in  brackets.  Where  not  reported,  no  solution
was  found  (n.s.f)  in  any  run.  We  notice  that  local  search  works  best  when
applied on the best individuals of the population. DPX outperforms all other
operators  independently  on  the  use  of  local  search.  DPX  can  be  further
improved by adding local search.  
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GA GGA UGGA SGGA USGGA  

Operator sp sp (pLS) sp (pLS) sp (pLS) sp (pLS)

DPX 3.87 1.57 (0.01) 2.14 (0.03) 0.83 (0.02) 0.84 (0.03)

SDPX 11.33 6.79 (0.01) 10.11 (0.07) 2.97 (0.07) 3.10 (0.07)

NDPX 39.82 12.62 (0.01) 25.80 (0.05) 8.94 (0.07) 7.72 (0.07)

UPBX n.s.f n.s.f n.s.f n.s.f n.s.f  

PBX 76.35 n.s.f n.s.f n.s.f n.s.f  

UPMX n.s.f n.s.f n.s.f 1979.3 0.08 4148.8 (0.09)

PMX 6136.2 n.s.f n.s.f 222.87 0.02 212.34 (0.02)

CX n.s.f n.s.f n.s.f 146.89 0.01 164.88 (0.01)

UOX n.s.f 97.41 (0.01) 313.99 (0.16) 93.31 (0.18) 100.39 (0.12)

Table 3. Comparison  of  success  performance  of  all  operators  combined  with
local search for graphs of size 100. The corresponding best local search proba-
bility  parameter  is  given  in  brackets.  Where  not  reported,  no  solution  was
found  (n.s.f)  in  any  run.  Only  DPX  provides  acceptable  performance.  Most
other  operators  have  success  rates  equal  to  or  near  null  even  with  local
search.  

Distance-Preserving Crossover with Local Search  6.3

As local search enhances the performance of virtually any operator,  it
is  straightforward  to  examine  the  possible  gain  of  local  search  with
DPX. Comparing the two graph size sets, local search is shown to be
more beneficial  for bigger graphs, as would generally be expected. For
example,  the  success  performance  measure  for  SDPX  is  improved  by
51% at size 60 (see Table  2), which corresponds to a reduction of the
mean  time  to  convergence  to  half.  The  improvement  attains  nearly
74%  for  larger  graphs.  The  mean  convergence  time  is  hence  divided
by four.   

In  conclusion,  local  search  pushes  forward  the  size  limitations  of
any  operator  with  the  distance-preserving  operators  being  the  only
ones  still  offering  a  near  100%  accuracy  at  graph  size  100.  For  these
last, local search accelerates convergence. 

Noise Sensitivity  6.3.1

Another  important  aspect  in  the  case  of  inexact  subgraph  isomor-
phism  is  the  robustness  to  intrinsic  noise.  Noise  needs  to  be  analyzed
in  conjunction  with  graph  size,  since  higher  noise  levels  for  small  or
medium  graph  sizes  do  represent  a  less  difficult  problem  than  for
large graphs. A noise range of [-10%+ 10%] of the initial value range
of the attributes (for Gaussian noise, we use a σ leading to an identi-
cal  variance  expectations)  can  safely  be  considered.  (The  difference

238 T.  Bärecke and M. Detyniecki

Complex Systems, 31 © 2022



between the results using uniform and Gaussian noise stems from the
fact  that  the  equivalence  formula  used  to  determine  corresponding  σ

for each uniform noise interval guarantees identical variance, which is
quadratic, while distances are linear,  which makes Gaussian instances
slightly  less  complex  for  higher  noise  levels.)  In  fact,  we  did  not
intend  to  approach  levels  that  compromise  the  optimal  solution,  that
is,  where  the  numerical  optimal  solution  does  not  correspond  to  the
ground truth due to noise effects. The  success rate of our DPX opera-
tor  (without  local  search)  at  graph  size  80  ranges  from  1  to  0.95  for
Gaussian noise and from 1 to 0.88 for uniform noise.  

Figures  7  and  8  show  the  effects  of  increasing  noise  levels  on  con-
vergence and precision of the algorithm for larger graphs. In this case,
it is also appropriate to introduce an additional local search step even
to DPX. As  expected, the success rate decreases with higher noise lev-
els, but stays on acceptable levels. Note that the introduction of local
search  has  no  effect  if  the  initial  precision  was  one.  In  general,  as
depicted  in  Figure  8,  local  search  significantly  accelerates  conver-
gence. A minor side effect of this acceleration is the slight loss in preci-
sion  observed  for  cases  where  the  initial  precision  is  below  one.
Among the different distance-preserving operators, SDPX is more sen-
sitive  to  higher  noise  than  DPX.  This  is  due  to  the  information  loss
for the signature with respect to the original graph, which may eventu-
ally compromise the optimal solution, as described. 

Figure 7. Success  rate  sensitivity  to  noise  with  and  without  local  search
(sorted GA 2%).  
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Figure 8. Noise sensitivity with and without 2% local search (sorted GA).  

Approaching the Limit  6.3.2

After bringing up the relationship between noise and graph size in the
previous section, we would like to explore the limits of our method in
terms  of  graph  size.  Table  4  shows  the  mean  runtime  of  successful

Algorithm Type Size 100 Size 200 Size 300

DPX    

GGA w/o LS 3.7 120.1 5009.2

SGGA w 2% LS 0.8 23.1 296.1

SGGA w 3% LS 0.8 22.2 350.1

USGGA w 3% LS 0.8 27.7 274.8

SDPX

GGA w/o LS 11.4 4563.3 n.s.f

SGGA w 7% LS 3.2 122.4 2989.0

USGGA w 7% LS 3.3 121.0 2868.2

NDPX    

GGA w/o LS 38.7 n.s.f n.s.f

SGGA w 7% LS 7.9 687.3 n.s.f

USGGA w 7% LS 8.2 761.9 n.s.f

USGGA w 10% LS 9.3 928.5 n.s.f

Table 4. Mean runtime of successful runs (in seconds) of DPX using different
local  search  implementations.  Where  not  reported,  no  solution  was  found
(n.s.f) in any run.  

240 T.  Bärecke and M. Detyniecki

Complex Systems, 31 © 2022



runs  of  the  three  DPX  operators  for  graphs  with  100,  200  and  300
nodes.  Without  local  search,  the  runtime  of  DPX  at  size  100  is  more
than  four  times  higher  than  with  local  search.  The  advantage  is  simi-
lar  (or  even  greater)  for  all  three  operators.  Local  search  is  more
important with increasing graph sizes.  

The  success  rate  obviously  decreases  with  higher  graph  sizes  as
with  higher  noise  levels  (see  Table  4).  Without  local  search,  graph
sizes  of  200  are  definitely  too  large  for  NDPX  and  SDPX,  and  300
represents a limit for DPX. 

As  shown  in  Table  5,  the  effect  of  local  search  changes  in  cases  of
extremely  low  (initial)  precision.  In  that  case,  local  search  also  leads
to  a  significantly  increased  success  rate  and  allows  reaching  still
acceptable performance for graphs that are otherwise too large. There-
fore,  we  consider  that  local  search  effectively  enhances  performance
when the problem gets more complicated. 

Algorithm Type  Size 100 Size 200 Size 300 

DPX 

GGA w/o LS 0.99 0.66 0.04 

SGGA w 2% LS 0.98 0.62 0.25 

SGGA w 3% LS 0.99 0.64 0.25 

USGGA w 3% LS 0.98 0.63 0.27 

SDPX 

GGA w/o LS 0.96 0.00 n.s.f

SGGA w 7% LS 0.74 0.39 0.07 

USGGA w 7% LS 0.73 0.40 0.08 

NDPX 

GGA w/o LS 0.49 n.s.f n.s.f

SGGA w 7% LS 0.61 0.11 n.s.f

USGGA w 7% LS 0.58 0.10 n.s.f

USGGA w 10% LS 0.54 0.10 n.s.f

Table 5. Success  rates  of  DPX  using  different  local  search  implementations.
The best success rates are always obtained by the GA applying local search to
the best individuals. Where  not reported, no solution was found (n.s.f) in any
run.  

Conclusion  7.

In  this  paper,  we  presented  a  family  of  distance-preserving  crossover
(DPX)  operators  for  the  inexact  graph  matching  problem.  The  use  of
these  operators  presents  a  big  step  forward  compared  to  existing
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evolutionary  approaches.  In  particular,  the  practical  size  limit  for
acceptable  performance  increased  significantly.  This  enables  the  effi-
cient use of more detailed graph models for real-world applications in
the  future.  Such  applications  are  today  primarily  in  cheminformatics
in  the  identification  of  chemical  compounds,  but  also  in  electronic
design automation in the verification of the equivalence of various rep-
resentations  of  the  design  of  an  electronic  circuit.  In  the  future,  with
the  increase  in  the  capacity  of  the  algorithms  to  deal  with  larger
graphs,  the  number  of  applications  will  explode.  Any  comparison  of
information described by a graphical model, such as medical, multime-
dia  or  social  network–based  content,  will  require  solving  a  subgraph
isomorphism problem.  

For  large  graphs,  our  algorithm  outperforms  all  state-of-the-art
approximate algorithms, which are to the best of our knowledge cur-
rently  limited  to  no  more  than  50  nodes.  We  validated  the  perfor-
mance  of  our  approach  for  graphs  containing  up  to  300  nodes  with
different levels of perturbation. 

Our  DPX  operator  outperformed  all  of  the  large  set  of  alternative
crossover  operators  studied.  In  particular,  at  graph  size  100,  DPX
was  the  only  operator  leading  to  a  significant  precision  of  100%
against 0% for most of the others. Moreover,  it was still able to find
solutions  at  graph  size  300,  which  is  about  an  order  of  magnitude
larger  than  the  maximum  graph  size  for  which  the  inexact  graph
matching problem could be solved so far.  

In order to reach this sphere, we use a two-level local search heuris-
tic.  First,  local  search  is  integrated  into  the  crossover  operator;  sec-
ond,  another  local  search  heuristic  is  applied,  with  low  probability,
independently.  All  interoperator  comparisons  were  carried  out  after
individually optimizing all parameters, since not only is operator per-
formance  substantially  influenced  by  its  parameters,  but  sensitivity  to
parameter changes is also substantial for most of them. 

All  tests  on  larger  graphs  were  performed  on  artificial  data  due  to
the lack of suitable real-world graph models. Our approach opens up
the  possibility  of  manipulation  and  conceiving  larger  graphs.  But  the
problem  is  not  simple;  for  instance,  in  a  two-dimensional  to  three-
dimensional  face  recognition  task,  we  observed  that  augmenting  the
level of detail of the graph model led to lower final  precision in recog-
nition,  although  the  numerical  optimum  was  found.  It  would  hence
be  interesting  to  see  to  what  extent  more  detailed  graph  models  can
be  developed  for  real-world  inexact  graph  matching  problems,  with-
out becoming too brittle to work with. 
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