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Cellular  automata  (CAs)  are  simple  mathematical  models  that  are
effectively  being  used  to  analyze  and  understand  the  behavior  of  com-
plex  systems.  Researchers  from  a  wide  range  of  fields  are  interested  in
CAs due to their potential for representing a variety of physical, natural
and  real-world  phenomena.  Three-neighborhood  one-dimensional  CAs,
a  special  class  of  CAs,  have  been  utilized  to  develop  various  applica-
tions  in  the  field  of  very  large-scale  integration  (VLSI)  design,  error-
correcting  codes,  test  pattern  generation,  cryptography  and  others.  A
thorough  analysis  of  a  three-neighborhood  cellular  automaton  (CA)
with  two  states  per  cell  is  presented  in  this  paper.  A  graph-based  tool
called  the  next-state  rule  minterm  transition  diagram  (NSRTD)  is
presented  for  analyzing  the  state  transition  behavior  of  CAs  with  fixed
points.  A  linear  time  mechanism  has  been  proposed  for  synthesizing  a
special  class  of  irreversible  CAs  referred  to  as  single  length  cycle  two-
attractor CAs (TACAs),  having only two fixed points. 
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Introduction1.

Cellular  automata  (CAs),  a  significant  development  in  the  history  of
computing,  were  first  developed  by  John  von  Neumann  in  the  1950s
to study self-reproducing automata [1]. Wolfram  established that CAs
could be used to describe complex natural events and subsequently set
the  foundation  for  a  theory  of  CAs,  which  are  defined  as  discrete
dynamic systems in which local interactions among components cause
global  changes  in  space  and  time  [2].  Due  to  the  simple  but  sophisti-
cated  structure,  three-neighborhood  two-state  CAs  have  recently
proved to be an effective modeling tool [3–10]. Characterizing such a
machine,  on  the  other  hand,  is  still  under  study.  While  analyzing  the
state  space  of  a  three-neighborhood  cellular  automaton  (CA),  the
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researchers  identified  a  collection  of  states  known  as  attractors,
toward  which  adjacent  states  asymptotically  approach  during
dynamic evaluation [11]. An attractor that has just one state is known
as  a  fixed  point  [12].  The  CA  with  fixed  points  is  of  utmost  impor-
tance  when  developing  schemes  for  various  applications,  particularly
authentication  and  cryptography  [12–15].  The  verification  of  cache
coherence  in  chip  multiprocessors  [16],  pattern  classification  [17],
diagnosis  of  malfunctioning  nodes  in  wireless  sensor  networks  [18],
memory  testing  [19],  language  recognition  [9]  and  parity  problem-
solving  [10]  are  some  other  possible  application  domains.  This  paper
focuses  on  the  characterization  of  such  a  particular  class  of  CAs  in
null  boundary,  which  is  based  on  an  examination  of  individual  rules
and  their  capacity  to  produce  fixed  points.  The  next-state  rule
minterm transition diagram (NSRTD)  [20] tool provides the theoreti-
cal basis for identifying such rules.  

In [12, 21, 22], the researchers have developed techniques to iden-
tify attractors for linear/additive CAs.  The  researchers in [5, 23] have
proposed a graph-based scheme for identifying attractors, wherein the
de  Bruijn  diagram  and  its  subdiagrams  have  been  employed  to  study
the  CA  and  a  quadratic  time  methodology  is  proposed  to  assess
whether  or  not  a  linear  CA  is  reversible.  In  addition,  the  rule  vector
graph  (RVG),  an  alternative  graph-based  approach,  is  proposed  for
use in null-boundary CAs in [24]. It aims for a solution that takes lin-
ear time in order to test the invertibility of a CA. It is reported in [25]
that  a  similar  solution  exists  for  periodic-boundary  CAs.  However,
there is still much to discover about the characterization of CAs  with
fixed  points outside the linear domain. This  encourages us to develop
a  CA  theory  with  the  objective  of  identifying  rules  that  may  generate
a  specific  number  of  fixed  points  in  the  null  boundary.  The  class  of
irreversible CAs with only two fixed points can act as a two-class clas-
sifier; hence, it has wide applicability in various application domains. 

The currently available tools, specifically  the reachability tree (RT)
for attractors [17] and the explicit rule vector graph (ERVG)  [19], are
efficient  for  identifying  fixed  points  in  the  state  transition  of  a  CA.
On the other hand, in their current form, none of these can be used to
identify  the  existence  of  multilength  cycle  attractors  in  a  CA.  It  is
indispensable to identify the CA rules that have the potential to config-
ure  nonuniform  CAs  having  only  two  fixed  points  for  all  lengths,
referred  to  as  single  length  cycle  two-attractor  CAs  (TACAs).  The
characterization of rules for the synthesis of TACAs  may be achieved
through the use of the graph-based tool NSRTD.  The  NSRTD  is able
to investigate the presence of both multilength cycles and fixed  points,
making  it  a  more  generic  method  for  characterizing  a  CA  with  fixed
points  and/or  multilength  cycles.  It  effectively  identifies  the  single
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length cycle (fixed-point)  attractor CA  (SLCA)  rules that result in the
synthesis of arbitrary-length TACAs.  

The major contributions of this paper are:

◼ Characterization of the CA rules that are the building blocks for synthe-
sizing the desired TACAs.  

◼ Devising a highly efficient  linear time synthesis mechanism for nonuni-
form TACAs  based on analysis of individual CA  rules and their poten-
tial to form TACAs  of arbitrary length. 

Cellular Automata  Preliminaries    2.

A CA  consists of a number of cells organized in the form of a lattice.
It  evolves  in  discrete  space  and  time  and  can  be  viewed  as  an
autonomous  finite-state  machine.  Each  cell  of  a  CA  stores  a  discrete
variable  at  time  t  that  refers  to  the  present  state  (PS)  of  the  cell  (CA
configuration at time t). The next state (NS) of the cell at t + 1 (config-
uration  at  t + 1)  is  affected  by  its  PS  and  the  PS  values  of  its  neigh-
bors.  In  this  paper,  we  concentrate  on  three-neighborhood  CAs  (self,

left  and  right  neighbors)  having  two  states:  0  or  1.  The  NS  of  the  ith

cell of such a CA is  

Si
t+1  fi(Si-1

t , Si
t, Si+1

t )

where Si
t, Si-1

t
 and Si+1

t
 are the PSs of itself and the left and right neigh-

bors  of  the  ith  cell  and  fi  is  the  next  state  function.  The  set  of  states

St  (S1
t , S2

t , …, Sn
t ) of the cells at t is the PS of the CA. Therefore, the

NS of an n -cell CA is 

St+1  (f1(S0
t , S1

t , S2
t ), f2(S1

t , S2
t , S3

t ), …, fn(Sn-1
t , Sn

t , Sn+1
t )).

The fi  can be expressed in the form of a truth table (Table  1). The

decimal equivalent of the eight outputs of fi  is called the “rule”  Ri. In

a two-state three-neighborhood CA, there can be 28  (256) rules. Eight
such rules, 14, 15, 164, 192, 207, 240, 254 and 255, are illustrated in

Table  1. The  first  row lists the possible 23  (8) combinations of PSs of

the  (i - 1)th,  ith  and  (i + 1)th  cells.  The  next  seven  rows  indicate  the

NSs  of  the  ith  cell,  forming  the  rules  14  (fi  Si-1
′ Si+1 + Si-1

′ Si),  15

(fi  Si-1
′ ),  164(fi  Si-1Si+1 + Si-1

′ SiSi+1
′ ),  192  (fi  Si-1.Si),  207

(fi  Si-1
′ + Si),  240  (fi  Si-1),  254  (fi  Si-1 + Si + Si+1)  and  255

(fi  1). The following definitions  are relevant for ease of understand-

ing of the CA theory developed in this work. 
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PS 111 110 101 100 011 010 001 000

RMT  T(7) T(6) T(5) T(4) T(3) T(2) T(1) T(0) Rule

NS 0 0 0 0 1 1 1 0 14

NS 0 0 0 0 1 1 1 1 15

NS 1 0 1 0 0 1 0 0 164

NS 1 1 0 0 0 0 0 0 192

NS 1 1 0 0 1 1 1 1 207

NS 1 1 1 1 0 0 0 0 240

NS 1 1 1 1 1 1 1 0 254

NS 1 1 1 1 1 1 1 1 255

Table 1. RMTs  of  the  rules.  PS:  present  state;  NS:  next  state;  RMT:  rule
minterm.  

Definition 1. The set RV  〈R1, R2, …, Ri, …, Rn〉 of rules that config-
ures the cells of a CA is called the rule vector of the CA. 

Definition 2. If  R1  R2  ⋯  Rn  in  RV  〈R1, R2, …, Ri, …, Rn〉,
then the CA is a uniform CA; otherwise it is a nonuniform CA. 

Definition 3. A  CA  is  a  null-boundary  CA  if  its  left  (respectively  right)
neighbor of the leftmost (respectively rightmost) terminal cell is perma-
nently fixed to 0-state. 

The n-cell CA of Figure 1 is a null-boundary CA. The left neighbor
of  its  leftmost  cell  and  the  right  neighbor  of  the  rightmost  cell  are
“null.”  

Figure 1. Null-boundary CA. 

Definition 4. A  combination  of  present  states  (Si-1
t , Si

t, Si+1
t ),  shown  in

the first row of Table  1, is referred to as the rule minterm (RMT). 

The column 011 of Table  1 is the third RMT.  The next states corre-
sponding  to  this  RMT  are  1  for  rules  14  and  15,  and  0  for  192.  An

RMT  is  represented  as  T(m),  m  0, 1, 2, 3, 4, 5, 6, 7;  and

T(m) ∈ {T},  where  T  T(0), T(1), …, T(7).  The  RMT  for  the  ith  cell
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at time t is denoted as Ti
t(m). For example, T1

t (0) denotes cell 1 RMT

T(0)  at  time  t.  However,  in  the  diagrams  of  this  presentation,  an
RMT  is  represented  only  by  the  corresponding  decimal  number  m;

that is, Ti
t(0) is represented as 0. 

Definition 5. A  rule  divides  the  RMTs  into  two  subsets,  0-RMT  and

1-RMT,  denoted as T / 0 and T / 1. The RMT for which the next state

is  0  belongs  to  T / 0  and  that  having  the  next  state  as  1  belongs  to

T / 1. Hence, T / 0⋂ T / 1  ∅ and T / 0⋃ T / 1  T. 

Definition 6. An  RMT  string  (RS)  is  defined  as  a  sequence  of  consecu-
tive  RMTs  that  appear  in  a  state  of  the  CA.  It  is  represented  as

(T1, T2, …, Tn)  for  an  n-cell  CA,  where  Ti ∈ T.  For  example,  the
state 1011 of a four-cell null-boundary CA  can be represented by the

RS (T1, T2, T3, T4)  (T(2), T(5), T(3), T(6)).   

Definition 7. An  RMT  x0y  (respectively  x1y),  where  x  and  y  are  the
PSs  of  the  left  and  right  neighbors  in  a  rule  R  is  called  passive  (self-
replicating)  if  it  belongs  to  T / 0  (respectively  T / 1).  On  the  other
hand, if an RMT x0y (respectively x1y) in R belongs to T / 1 (respec-
tively  T / 0),  it  is  active  (respectively,  non-self-replicating).  The  RMT
T(0)(000) ∈ T / 0  and  RMT  T(2)(010) ∈ T / 1  in  rule  14  (Table  1).
These  two  RMTs  are  passive.  On  the  other  hand,  RMT
T(0)(000) ∈ T / 1 in rule 15 is active (Table  1). 

Definition 8. A set of states of a CA  can form a cycle (0  0, 13  13,
11  11  and  15  9  15  of  Figure  2(a))  and  is  called  an  attractor.
An  attractor  forms  a  basin  with  the  states  that  lead  to  the  attractor
((15  9  15)-basin of Figure 2(a) contains three states including the
attractor  states  nine  and  15).  The  cycle  0  0  is  a  single  length  cycle
attractor  and  called  a  fixed  point  (referred  to  as  a  fixed-point  attrac-
tor  in  the  rest  of  this  paper).  It  forms  the  10-attractor  basin  having
only state 10. 

Figure 2. State transitions of SLCA.  
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Definition 9. The  depth  of  a  CA  is  the  length  of  the  longest  path  tra-
versed  from  any  state  to  an  attractor  during  its  state  transitions.  The
depth of the CA shown in Figure 2(a) is three (8  12  14  11).   

Definition 10. A  CA  is  reversible  if  its  states  form  only  cycles  during
its  state  transitions;  otherwise,  the  CA  is  irreversible  (Figure 2(a)
and (b)). 

Definition 11. Single  length  cycle  attractor  CAs  (SLCAs)  refer  to  the
CAs  that  have  at  least  one  fixed-point  attractor.  Additional  multi-
length cycle attractors may or may not be present in SLCAs. 

The  CA  of  Figure  2(a)  has  three  fixed-point  attractors  (state  0,  13
and  11)  and  one  multilength  cycle  attractor  (15  9  15)  and  it  is
an SLCA. Figure 2(b) depicts the state transitions of a specific  kind of
SLCA with 2n (n  length of CA) fixed-point attractors. 

Definition 12. The  SLCA  producing  a  connected  graph  during  its  state
transitions, that is, having only one fixed-point attractor and no multi-
length  cycle,  is  called  a  single  length  cycle  single-attractor  CA
(SACA).  

An n-cell uniform CA with rule 112 creates a connected graph with
a single fixed-point  attractor for any value of n. The uniform CA with
rule  112  is  thus  an  SACA  (Figure  3(a)  for  a  four-cell  CA)  and  rule
112 is an SACA  rule. 

Figure 3. State transitions of the SACA  and TACA.   

Definition 13. During its state transition, if an SLCA forms exactly two
connected  components,  each  with  one  fixed-point  attractor,  then  it  is
a single length cycle two-attractor CA (TACA).  

A uniform CA with rule 52 creates precisely two connected compo-
nents, each with one fixed-point  attractor (as shown in Figure 3(b) for
a  four-cell  CA).  As  a  result,  it  is  a  TACA,  thus  rule  52  is  a  TACA
rule. 

Such a special class of irreversible CA having only two fixed  points
is our current interest. 

368 S. Hazra and M. Dalui

Complex Systems, 31 © 2022



Next-State Rule Minterm Transition Diagram3.

The graph-based tool referred to as the next-state RMT transition dia-
gram  (NSRTD),  introduced  in  [20]  for  uniform  CAs,  has  been
employed  to  get  more  insight  into  the  state  transition  behavior  of
SLCAs.  We  employ  NSRTD  to  characterize  the  class  of  TACA  rules.
The  NSRTD  provides  a  generic  methodology  to  determine  the  pres-
ence  of  fixed-point  attractors  as  well  as  the  multilength  cycle  attrac-
tors  in  a  CA  and,  therefore,  enables  identification  of  rules  that  form
only  fixed-point  attractors.  The  following  terminologies  are  essential
for describing the NSRTD.   

Definition 14. If  Ti
t
 is  the  RMT  of  the  ith-cell  rule,  based  on  which  the

cell  i  changes  its  state  at  the  tth  time  step,  then  the  next  cell  RMTs

(NCRs)  of Ti
t
 are  the  RMTs Ti+1

t  (2Ti
t mod 8), ((2Ti

t + 1) mod 8)

of the (i + 1)th-cell rule, based on which the (i + 1)th  cell can change its

state at the tth time step. 

For  example,  if  the  RMT  of  the  ith-cell  rule  Ri  is  T(1),  then  its

NCRs  are  T(2)  (  2T(1) mod 8)  and  T(3)  (  (2T(1) + 1) mod 8).

That  is,  if  cell  i  changes  its  state  on  RMT Ti(1)  (T(1)  of  rule  Ri)  at

time  t,  then  the  (i + 1)th  cell  can  change  its  state  on  RMTs  Ti+1(2)  or

Ti+1(3)  of  the  (i + 1)th-cell  rule  Ri+1  at  time  t.  All  such  NCRs  of  the
RMTs are shown in Table  2. 

RMT Ti NCR of RMT Ti

(ith-cell rule) (RMTs of (i + 1)th-cell rule)

T(0)/T(4) T(0), T(1)

T(1)/T(5) T(2), T(3)

T(2)/T(6) T(4), T(5)

T(3)/T(7) T(6), T(7)

Table 2. Relationship between Ti and Ti+1 (NCR).  

Definition 15. If Ti
t
 (respectively Ti

t+1) is the RMT of the ith-cell rule Ri,

based  on  which  cell  i  changes  its  state  at  time  t  (respectively  at  time

t + 1), then Ti
t+1

 is the next-state RMT (NSR) of Ti
t
 for cell i.

Definition 16. The  sequence  of  NSRs  based  on  which  the  ith  cell
changes its state during the state transitions of the CA is called a next-

state  RMT  sequence  (NSRS).  That  is,  an  NSRS  for  the  ith  cell  (deno-

ted as NSRSi) is Ti
0, Ti

1, …, Ti
t, Ti

t+1, … where Ti
t+1

 is the NSR of Ti
t. 
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Definition 17. For the ith-cell rule Ri of a CA, all possible NSRSs can be
represented by a directed graph G(V,E),  called an NSRS graph (NSRS-

G), where all the Ti
t ∈ V  and eiTi

t, Ti
t+1 ∈ E, if and only if Ti

t+1
 is the

NSR of Ti
t. 

Definition 18. The NCR, NSR, NSRS and NSRS-G of a CA enable con-
struction of the set of directed graphs, called NSRTD,  as a two-dimen-
sional arrangement of nodes. Each node is an RMT and each graph in

NSRTD  represents  an  attractor  of  the  CA.  The  edge  Ti
t, Ti

t+1 ∈ E,

such that Ti
t+1

 is the NSR of Ti
t
 and also the edge (Ti

t, Ti+1
t ) ∈ E, such

that Ti+1
t

 is the NCR of Ti
t. Further,  the nodes Ti

t
 (∀ t) form an NSRS

for the ith cell. 

Definition 19.  Two  NSRSs  defined  for  the  ith  and  (i + 1)th  CA  cell

(NSRSi  and  NSRSi+1)  are  called  compatible  if  the  jth  NSR  of  the  two

are  related  in  the  sense  that  the  jth  NSR  of  NSRSi+1  is  the  NCR

(Table 2) of the jth NSR of NSRSi. 

The following subsections explain the NSR, NSRS,  NSRS-G,  com-
patibility class of NSRSs and the construction of NSRTD.  

Identification of Next-State Rule Minterms3.1

If  xyz  is  the  RMT  of  rule  Ri,  based  on  which  the  ith  cell  changes  its

state, and l and r are the PSs of cell (i - 2) and cell (i + 2), respectively,

then the NSR of the cell can be dlddr, where the RMT xyz of Ri  is d,

dl  RMT lxy of the (i - 1)th-cell rule Ri-1, and dr  RMT yzr of the

(i + 1)th-cell  rule  Ri+1.  For  uniform  CAs  with  rule  R,  the  dl,  d  and  dr
are  the  RMTs  lxy,  xyz  and  yzr  of  R.  In  a  null-boundary  n-cell

(cell1, cell2, …celli, …cell(n-1), celln)  CA,  the  following  conditions  are

satisfied. 

For the first cell (i  1): dl  0, x  0, r  0 / 1. 1.

For the second cell (i  2): l  0, r  0 / 1. 2.

For the intermediate cells (i  3, …(n - 2)): l  r  0 / 1. 3.

For the second to last cell (i  n - 1): l  0 / 1, r  0. 4.

For the last cell (i  n): l  0 / 1, z  0, dr  0. 5.

The  derivation  of  NSRs  for  an  n-cell  null-boundary  uniform  CA
with rule 58 is shown in Figure 4. 
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Figure 4. Identification of NSRs for a uniform CA with rule 58.  

First Cell Second Cell Intermediate Cells

1-10 RMT NSR RMT NSR RMT NSR

(1) (2) (3) (4) (5) (6)

T(0) T(0), T(1) T(0) T(0), T(1) T(0) T(0), T(1), T(4), T(5)

T(1) T(2), T(3) T(1) T(2), T(3) T(1) T(2), T(3), T(6), T(7)

T(2) T(1) T(2) T(5) T(2) T(5)

T(3) T(2) T(3) T(6) T(3) T(6)

T(4) T(2), T(3) T(4) T(2), T(3)

T(5) T(2), T(3) T(5) T(2), T(3)

T(6) T(5) T(6) T(1), T(5)

T(7) T(4) T(7) T(0), T(4)

Second to Last Cell Last Cell 

RMT NSR RMT NSR

(7) (8) (9) (10)

T(0) T(0), T(4) T(0) T(0), T(4)

T(1) T(2), T(6) T(2) T(4)

T(2) T(5) T(4) T(2)

T(3) T(6) T(6) T(0), T(4)

T(4) T(2)

T(5) T(2)

T(6) T(1), T(5)

T(7) T(0), T(4)

Table 3. NSRs of the cells of a uniform CA with rule 58.  
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Construction of a Next-State Rule Minterm Sequence Graph  3.2

The NSRS-G  for a CA is the union of all possible NSRSs correspond-
ing to that cell. For example, for the first  cell of the uniform CA  with
rule  58,  NSR  of  RMT  T(1)  is  T(2),  and  NSR  of  T(2)  is  T(1).  There-

fore,  Tt(1)  Tt+1(2)  Tt+2(1)  forms  one  NSRS  for  the  first  cell
(Figure  5(i)).  The  NSR  of  T(3)  is  T(2).  Further,  the  NSRs  of  T(0)  are
T(0)  itself  and  T(1)  (columns  1  and  2  of  Table  3).  Therefore,

the  other  NSRSs  are  Tt(0)  Tt+1(0)  Tt+2(0)  …  and  Tt(1) 

Tt+1(3)  Tt+2(2)  Tt+3(1)  …  and  others  as  shown  in  Figure  5(i).
The  union  of  all  such  NSRSs  for  the  first  cell  is  the  NSRS-G  (NSRS-
G1)  for  the  first  cell  (Figure  5(iia)).  The  NSRS-G2,  NSRS-GI,  NSRS-
G(n-1)  and  NSRS-Gn  for  the  second  cell,  intermediate  cells,  second  to

Figure 5. NSRSG for uniform CA with rule 58.  
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last  cell  and  the  last  cell  of  the  CA  are  shown  in  Figure  5  (iib),  (iic),
(iid) and (iie), respectively.  Since the first  (leftmost) cell of the CA can
change  state  only  on  RMTs  T(0),  T(1),  T(2)  and  T(3)  and  the  last
(rightmost)  cell  can  only  change  state  on  RMTs  T(0),  T(2),  T(4)  and
T(6), the NSRS-G1  and NSRS-Gn  are composed of four nodes. How-
ever,  NSRS-G2,  NSRS-GI  and  NSRS-G(n-1)  have  eight  nodes,  as  the

second  cell,  intermediate  cells  and  the  second  to  last  cell  can  change
state on any of the eight RMTs.  

Construction of a Next-State Rule Minterm Transition Diagram3.3

The  NSRTD  of  a  uniform  CA  with  rule  58  is  shown  in  Figure  6.  It
has two graphs, namely G1  and G2, where G1  corresponds to a fixed-
point attractor and G2 corresponds to multilength cycle attractors.  

Figure 6. NSRTD for uniform CA with rule 58.  

Given  a  rule  R,  length  of  CA  n  and  the  NCRs  of  the  eight  RMTs
(Table  2), the NSRs for different cells (first,  second, intermediate, sec-
ond to last and last) are identified  and the NSRS-Gs  are formed. The
cycles  LPs  in  NSRS-Gs  are  then  found.  From  the  set  of  cycles  LP1,
LP2,  LPI,  LP(n-1),  LPn  for  the  first,  second,  intermediate,  second  to

last  and  last  cell,  respectively,  the  compatibility  classes  of  the  cycle
(Definition  19)  are  computed.  Then  the  sequence  of  RMT
Pu  P1u  P2u  P3u  P4u  …P(n-2)u  P(n-1)u  Pnu  representing

a  graph  in  the  NSRTD  is  extracted.  The  number  of  such  n-length
paths Pu  corresponds to the number of attractors of the CA.  If all the
NSRSs Piu, for i  1 to n, in a Pu is a single length cycle, then Pu corre-
sponds to a fixed point; otherwise it is a multilength cycle attractor.
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Extensive  experimentation  with  256  CA  rules  in  three-neighbor-
hood  null-boundary  conditions  has  resulted  in  the  identification  of
uniform  TACA  rules.  Fifteen  such  rules  are  listed  in  Table  4.  A  CA
configured  with  any  of  these  rules  forms  a  uniform  TACA  for  all
lengths. Depending upon the design requirement for the specific  appli-
cation, hybrid (nonuniform) TACA  synthesis may be required. Hence,
the next section elaborates the proposed methodology for synthesis of
a nonuniform TACA  for a given length. 

Group Rule for TACA

3 38, 52

4 46, 106, 116, 120, 166, 180, 235, 249

5 174, 239, 244, 253, 254

Table 4. TACA  rules.  

Proposed Methodology    4.

We  now  describe  in  detail  the  proposed  synthesis  mechanisms  for  a
TACA.  A  basic  framework  for  synthesizing  a  nonuniform  TACA  has
been  reported  in  [26],  which  ensures  an  exponential  time  solution  in
all three cases (best, average and worst). In this paper,  we attempt to
devise  a  linear  time  synthesis  mechanism  for  a  TACA.  The  first
approach  ensures  a  linear  time  solution  in  the  best  case,  but  it  takes
exponential time in the worst case. Hence, we further develop a more
efficient  synthesis  mechanism  capable  of  ensuring  a  linear  time  solu-
tion  in  all  cases  (best,  average  and  worst).  However,  by  doing  some
nominal  modifications,  both  the  methodologies  can  be  extended  to
synthesize  CAs  with  any  number  of  fixed  point(s).  A  TACA,  which
has  only  two  fixed  points,  can  be  useful  in  a  variety  of  applications,
especially  when  differentiating  faulty  states  from  nonfaulty  ones.  To
come up with a solution to this kind of problem, the required TACA
must  be  synthesized.  Utilizing  all  256  rules  in  the  synthesis  of  such  a
TACA  results  in  exponential  complexity.  To  minimize  the  search
space, we examine hybridization of 15 uniform TACA  rules as identi-
fied  in  [16]  and  reported  in  Table  4  to  construct  a  nonuniform
TACA.  However,  the  worst-case  time  complexity  to  synthesize  a

nonuniform/hybrid TACA  of length n is still O(15n).  
Algorithms  1  and  2  are  provided  for  the  synthesis  of  a  scalable

TACA  structure  that  utilizes  the  15  uniform  TACA  rules  in  a  three-
neighborhood null boundary.  
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Algorithm 1. Count cycles in a CA.

Input:  Rule R,  NCRs  for  RMTs  T(0),  T(1),  T(2), …  ,  T(7)  forming  the  sets
NCR0, NCR1, …NCR7.
Output: Cycle in NRSR-Gs.

Start;1:

Find NSRs for the first, second, intermediate, second to last and last

cells for rule R. 

2:

Construct NSRS-Gs for the first cell (NSRS-G1), second cell (NSRS-
G2), intermediate cells (NSRS-GI), second to last cell (NSRS-G(n-1)) 

and last cell (NSRS-Gn);
NSRS-G  {NSRS-G1, NSRS-G2, NSRS-GI, NSRS-G(n-1), NSRS-Gn}. 

3:

Find cycles (simple cycles) in the set NSRS-G
/*these include self-loops as well as multilength cycles*/

LP1  LP11, LP12, …. for the first cell; /*cycles in NSRS-G1*/

LP2  LP21, LP22, …. for the second cell; /*cycles in NSRS-G2*/

LPI  LPI1, LPI2, …. for intermediate cells; /*cycles in NSRS-GI*/

LP(n-1)  LP(n-1)1, LP(n-1)2, …. for the second to last cell; /*cycles in 

NSRS-G(n-1)*/

LPn  LPn1, LPn2, …. for the last cell; /*cycles in NSRS-Gn*/

LP  {LP1, LP2, LPI, LP(n-1), LPn};

4:

Stop.   5:

Algorithm  1  (as  in  [26])  computes  all  the  single  length  as  well  as
multilength cycles in all NSRSs for the first,  second, intermediate, sec-
ond  to  last  and  last  cells.  To  do  so,  Algorithm  1  accepts  rule  R  and
NCRs of the eight RMTs  (Table  2) as input. It first  finds  the NSRs of
the first,  second, intermediate, second to last and last cells. After  that,
it  constructs  NSRS-Gs  for  the  first,  second,  intermediate,  second  to
last and last cells. Finally,  it computes all the cycles, which are utilized
in Algorithm 2. 

Algorithm  2  takes  into  account  the  length  of  the  CA  n,  the  NCRs
of  the  eight  RMTs  (Table  2),  and  the  cycles  in  the  NSRS-Gs,  which
might  be  single  length  or  multilength.  To  choose  the  first  cell  rule,
Algorithm  2  selects  one  rule  from  Table  4  randomly,  as  depicted  in
step  1  of  Algorithm  2.  In  step  3,  Algorithm  2  chooses  a  rule  Rp  ran-

domly  from  all  the  TACA  rules  and  computes  the  compatibility
classes C12 between LP1 (R1) and LP2 (Rp). It assigns Rp as the second

cell  rule  only  if  C12  has  exactly  two  pairs  of  self-loop  NSRSs  and  no
pair of multilength NSRSs.  If that condition is not satisfied,  it further
checks  for  another  TACA  rule.  Following  the  same  approach,  Algo-
rithm  2  chooses  the  third  cell  rule  randomly  from  all  TACA  rules.  If
the length of the CA  is more than five,  it will continue to select inter-
mediate  cell  rules  R(I+1)  for  lengths  three  to  n - 3  by  consulting  the
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compatibility  class  CI(I+1)  between  LPI  (RI)  and  LPI  (R(I+1))  as  dis-

cussed in steps 19, 20 and 21 of Algorithm 2. Next, it selects a TACA
rule  randomly  and  includes  that  rule  as  the  second  to  last  cell  rule
only if the compatibility class CI(n-1)  has exactly two pairs of self-loop

NSRSs  and  no  multilength  NSRSs.  Finally,  by  following  the  same
approach,  Algorithm  2  chooses  the  last  cell  rule  randomly,  as  shown
in steps 35, 36 and 37 of Algorithm 2. 

Algorithm 2. Construct a hybrid TACA.    

Input: Length of CA n, NCRs, LPs (as computed by Algorithm 1).

Output: The rule vector RV of TACA  RV  〈R1, R2, …Rn〉.

Select rule R1 randomly from Table  4; 1:

for p  1 to 15 2:

Choose a TACA  rule Rp randomly and compute compatibility classes 

C12  {(LP1i, LP2j)} where C12 is the compatibility class of NSRSs 

between LP1 (R1) and LP2 (Rp); 

3:

if C12 has exactly two pairs of self-loop NSRSs and no pair of 
multilength NSRSs then

4:

Assign R2  Rp; 5:

break; 6:

end if7:

end for 8:

for p  1 to 15 9:

Choose a TACA  rule Rp randomly and compute compatibility classes 

C2I  {(LP2k, LPIl)} where C2I is the compatibility class of NSRSs 
between LP2 (R2) and LPI (Rp); 

10:

if C2I has exactly two pairs of self-loop NSRSs and no pair of 
multilength NSRSs then 

11:

Assign R3  Rp;12:

 break; 13:

end if 14:

end for 15:

if n > 5 then16:

for i  3 to (n - 3) 17:

for p  1 to 15 18:
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Choose a TACA  rule Rp randomly and compute compatibility

classes CI(I+1)  {(LPIm, LP(I+1)o} where CI(I+1) is the compatibility 

class of NSRSs between LPI (RI) and LPI+1 (Rp); 

19:

if CI(I+1) has exactly two pairs of self-loop NSRSs and no pair of 

multilength NSRSs then

20:

Assign RI+1  Rp; 21:

break; 22:

end if 23:

end for 24:

end for 25:

end if26:

for p  1 to 15 27:

Choose a TACA  rule Rp randomly and compute compatibility classes 

CI(n-1)  LPIq, LP(n-1)r where CI(n-1) is the compatibility class of 

NSRSs between LPI (RI) and LP(n-1) (Rp); 

28:

if CI(n-1) has exactly two pairs of self-loop NSRSs and no pair of 

multilength NSRSs then

29:

Assign Rn-1  Rp; 30:

break; 31:

end if 32:

end for 33:

for p  1 to 15 34:

Choose a TACA  rule Rp randomly and compute compatibility classes 

C(n-1)n  {(LP(n-1)s, LPnt)} where C(n-1)n is the compatibility class of 

NSRSs between LP(n-1) (R(n-1)) and LPn (Rp); 

35:

if C(n-1)n has exactly two pairs of self-loop NSRSs and no pair of 

multilength NSRSs then

36:

Assign Rn  Rp; 37:

break; 38:

end if 39:

end for 40:

Output: 〈R1, R2, …, Rn〉41:

Example 1. Here,  to  illustrate  the  proposed  synthesis  mechanism  fol-
lowing  Algorithm  2,  we  consider  the  synthesis  of  an  n-length  (n  6)
nonuniform  TACA.  In  step  1  of  Algorithm  2,  it  chooses  the  first  cell
rule  R1  166  randomly  from  Table  4.  Next  in  step  2,  Algorithm  2
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selects  rule  38  randomly  and  computes  the  compatibility  class  C12

between  LP1(166)  and  LP2(38).  As  the  compatibility  class

C12  {(T1(0), T2(0)), (T1(2), T2(4))}  has  exactly  two  pairs  of  self-
loop NSRSs,  Algorithm 2 does not further check for any other TACA
rules  and  assigns  rule  38  as  the  second  cell  rule.  Following  the  same
procedure,  rule  46  is  chosen  as  the  third  cell  rule R3  as  the com-
patibility  class  between LP2(38)  and LPI(46): C23 

{(T2(0), T3(0)), (T2(4), T3(0))}  has  exactly  two  pairs  of  self-loop
NSRSs.  Again,  to  choose  the  fourth  cell  rule,  it  assigns  rule  174  as
the  compatibility  class  between  LPI(46)  and  LPI(174):

C34  {(T3(0), T4(0)), (T3(4), T4(0))}  has  exactly  two  pairs  of  self-
loop NSRSs.  Similarly,  rule 106 is selected as the fifth  cell rule as the
compatibility  class  between  LPI(174)  and  LP(n-1)(106):

C45  {(T4(0), T5(0)), (T4(4), T5(0))}  has  exactly  two  pairs  of  self-
loop  NSRSs.  Finally,  in  step  34,  Algorithm  2  chooses  rule  180  ran-
domly  as  the  compatibility  class  between  LP(n-1)(106)  and  LPn(180):

C56  {(T5(0), T6(0)), (T5(4), T6(0))}  has  exactly  two  pairs  of  self-
loop NSRSs,  as shown in Figure 7. The  NSRTD  of a hybrid CA  with
rule  vector  〈166, 38, 46, 174, 106, 180〉  is  shown  in  Figure  8.  From
Figure  8,  we  can  observe  that  there  exist  only  two  paths  with  self-

loop  NSRSs,  that  is,  (T1(0), T2(0), T3(0), T4(0), T5(0), T6(0))  and

(T1(2), T2(4), T3(0), T4(0), T5(0), T6(0)),  and  no  path  with  multi-
length  cycle(s).  So,  the  six-cell  CA  〈166, 38, 46, 174, 106, 180〉  thus
constructed is a TACA.  

Analysis: In the first step of Algorithm 2, a rule is picked up at ran-
dom  from  among  the  15  TACA  rules  as  listed  in  Table  4,  and  this
step  takes  a  constant  amount  of  time.  Even  though  the  selection  of
rule  R2  has  15  possibilities,  it  may  happen  that  after  very  few  search
attempts,  we  can  get  a  candidate  rule  for  which  the  compatibility
class  C12  contains  precisely  two  pairs  of  self-loop  NSRSs  and  no
NSRSs  with  multilength.  Once  a  suitable  candidate  rule  is  obtained,
the  searching  process  for  other  alternative  candidates  stops.  In  the
same way,  we choose the rules for all the cells. For each cell, we will
get a suitable rule after a certain number of search attempts, which is

much  less  than  15.  Suppose  we  find  the  candidate  rule  RI  for  the  Ith

cell  (for  any  value  of  I  2, 3, …, n)  with  at  most  P  search  attempts,
such that the compatibility class C(I-1)I  contains precisely two pairs of

self-loop NSRSs and no NSRSs of multilength. So, the amount of time
it  takes  to  choose  rules  for  a  CA  with  n  cells  is  Pn.  Although,  in  the
worst  case,  we  may  need  to  search  all  the  15  rules  and  hence,  the

worst-case  time  complexity  is  15n.  The  algorithm  proposed  in  [26]

has  the  time  complexities  15n  for  all  the  cases  (best,  average  and
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Figure 7. NSRS-Gs  for  the  hybrid  CA  with  rule  vector

〈166, 38, 46, 174, 106, 180〉.  

Figure 8. NSRTD  for  the  hybrid  CA  with  rule  vector

〈166, 38, 46, 174, 106, 180〉.  

worst),  as  for  all  the  cases  it  computes  a  candidate  set  for  a  cell  con-
taining all the possible candidate rules for that cell and later,  only one
rule is picked up from the set to form the rule vector.  However,  in the
case  of  Algorithm  2,  we  can  achieve  average  case  time  complexity  of
Pn  where P ≪ 15 and the best case time complexity is n. However,  to
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synthesize  a  nonuniform  TACA,  if  we  consider  all  256  CA  rules
instead  of  only  15  rules  in  Table  4,  Algorithm  2  may  take  O(256n)
time  in  the  worst  case.  Figure  9  shows  the  synthesis  time  of  the
nonuniform TACA  with rule vector 〈180, 52, 116, 244, 52〉 consider-
ing  different  lengths.  Here,  the  first,  second,  second  to  last  and  last
cell  rules  are  108,  52,  244  and  52,  respectively,  and  the  intermediate
cell rule 116 is repeated as we increase the length of the CA from 5 to
16. The experimental results show that the synthesis time increases lin-
early with an increase in the length of the CA. Although we have mini-
mized  the  complexity  of  constructing  a  hybrid  TACA,  our  aim  is  to
design an algorithm that can construct a hybrid TACA  in linear time. 

Figure 9. Synthesis time of the nonuniform TACA  for varying length.  

Synthesis of Single Length Cycle Two-Attractor Cellular
Automata in Linear Time   

4.1

The  previous  section  reports  the  synthesis  of  a  TACA  wherein  Algo-
rithm  2  takes  exponential  time.  In  this  section,  we  attempt  to  devise
an  algorithm  for  synthesizing  a  TACA  in  linear  time.  Here  also,  we
have  considered  the  uniform  TACA  rules  as  reported  in  Table  4,  for
synthesizing  a  nonuniform  TACA  in  linear  time.  However,  the
methodology developed can also be utilized for synthesizing CAs with
any specified number of fixed points.  

To  realize  our  objective,  we  have  considered  the  NSRS-Gs  for  the
first,  second,  intermediate,  second  to  last  and  last  cells  for  each  of
the 15  TACA  rules.  From  the  obtained  NSRS-Gs,  we  have  computed
the  compatibility  classes  between  two  consecutive  cells  by  analyzing
the  cycle  structure  of  each  of  the  15  TACA  rules.  Finally,  by
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analyzing  the  compatibility  classes  between  two  consecutive  cells,  all
the  TACA  rules  have  been  organized  in  four  different  tables:
Tables 5–8.  The  candidate  rules  for  the  first  intermediate  cell  from  a
chosen  second  cell  rule  are  listed  in  Table  6.  Table  7  shows  the  rela-
tionship between the last intermediate cell rule and the second to last
cell  rule.  Finally,  Table  8  lists  the  class  relationship  between  the  sec-
ond to last cell rule and last cell rule. 

Tables  are constructed by following the methodology.  

◼ All  the  15  TACA  rules  have  been  divided  into  eight  different  groups
based  on  their  cycle  structure.  For  example,  all  the  rules  in  group  I
(38,  46,  166,  174)  have  the  same  self-loop  NSRSs  in  the  first

cell  (T1(0), T1(1)),  second  cell  (T2(0), T2(4)),  intermediate  cell

(TI(0), TI(4)),  second  to  last  cell  (T(n-1)(0), T(n-1)(4))  and  last  cell

(Tn(0), Tn(4)). 

◼ Table  5  is  constructed  by  checking  whether  the  compatibility  class

between  LP1  (R1)  and  LP2  (R2):  C12  has  exactly  two  pairs  of  self-loop
NSRSs  and  no  pair  of  multilength  NSRSs.  For  example,  if  the  first  cell
rule  is  selected  from  group  I,  then  the  second  cell  rule  can  be  chosen
from either group I or II as listed in column 3 of Table  5. Any rule from
group  I  or  II  can  be  selected  for  the  second  cell  rule  because  the

compatibility  class  between  LP1  (any  rule  from  group  I)  and  LP2  (any

rule  from  group  I)  C12  {(T1(0), T2(0)), (T1(2), T2(4))}  has  exactly

two  pairs  of  self-loop  NSRSs  and  the  compatibility  class  between  LP1
(any  rule  from  group  I)  and  LP2  (any  rule  from  group  II)

C12  {(T1(0), T2(0)), (T1(0), T2(1))}  has  exactly  two  pairs  of  self-loop
NSRSs. 

Group Rules for R1 Class for R2 

I 38, 46, 166, 174 I, II

II 52, 116, 180, 244 II, IV,  V,  VI, VIII

III 106 II, III, IV,  V,  VI, VIII

IV 120 II, IV

V 235 V,  VI

VI 239 V,  VI

VII 249, 253 VII

VIII 254 III, V,  VI, VIII

Table 5. Class relationship between R1 and R2.  

◼ Table  6  is  constructed  by  checking  whether  the  compatibility  class

between  LP2  (R2)  and  LPI  (RI):  C2I  has  exactly  two  pairs  of  self-loop
NSRSs and no pair of multilength NSRSs. 
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Rules for R2 Class for First Intermediate cell

I I

II II,

III I, II, III

IV II, IV

V V,  VI

VI V,  VI

VII VI

VIII VIII

Table 6. Class relationship between R2 and Ri.  

◼ Table  7  is  constructed  by  checking  whether  the  compatibility  class

between  LPI  (RI)  and  LP(n-1)  (R(n-1)):  CI(n-1)  has  exactly  two  pairs  of

self-loop NSRSs and no pair of multilength NSRSs. 

Rules for Last Intermediate Cell Class for Rn-1 

I I, III

II II

III I, III

IV II, IV

V V,  VI

VI V,  VI

VII VII

VIII I, VIII

Table 7. Class relationship between Ri and Rn-1.  

◼ Table  8  is  constructed  by  checking  whether  the  compatibility  class

between  LP(n-1)  (R(n-1))  and  LPn  (Rn):  C(n-1)n  has  exactly  two  pairs  of

self-loop NSRSs and no pair of multilength NSRSs. 

Rules for Rn-1 Class for Rn 

I I, II, III, IV

II II

III I, II, III

IV IV,  VIII

V V,  VI

VI V,  VI

VII III, VI, VII, VIII

VIII I, VIII

Table 8. Class relationship between Rn-1 and Rn.  
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Class  relationship  between  R1  and  R2  (Table  5):  In  Table  5,  we
have classified all 15 TACA  rules into eight groups according to a self-
loop  NSRS  in  each  cell.  The  first  column  of  Table  5  shows  all  the
eight  groups,  and  the  second  column  represents  the  members  in  the
groups  that  can  be  chosen  as  the  first  cell  rule.  The  third  column  of
Table  5 shows the groups for second cell rule R2  when R1  is selected
as per column 2. The main criteria for selecting rule R2  is that it must
be compatible with the chosen rule R1. That  is, the self-loop NSRS  of
rule  R2  must  be  the  NCR  of  R1.  For  example,  if  rule  38  is  chosen  as
the  first  cell  rule  from  Table  5,  then  the  second  cell  rule  R2  can  be
selected  either  from  group  I  or  group  II.  Like  all  other  rules  from
group  I,  46  is  also  compatible  with  rule  38  as  the  self-loop  NSRS  on
RMT T(0) of rule 46 is the NCR of the self-loop NSRS on RMT T(0)
of  rule  38  and  the  self-loop  NSRS  on  RMT  T(4)  of  rule  46  is  the
NCR of the self-loop NSRS on T(2) of rule 38. That is, the compatibil-
ity class between R1 and R2 has exactly two members. 

Class relationship between R2 and Ri (Table  6): The first intermedi-
ate cell rule, that is, R3, can be selected from Table  6. Following a sim-
ilar  strategy,  rule  R3  is  selected  by  checking  the  compatibility  class
between R2  and R3. For example, if rule 106 is chosen for the second
cell rule R2, we can then choose any of the rules from groups I, II and
III  as  a  candidate  rule  for  R3.  Like  all  other  rules  from  group  II,  116
is also compatible with rule 106 as the self-loop NSRS  on RMT T(0)
of  rule  116  is  the  NCR  of  the  self-loop  NSRS  on  RMT  T(0)  of  rule
106, and the self-loop NSRS  on RMT T(1)  of rule 116 is the NCR of
the  self-loop  NSRS  on  T(0)  of  rule  106.  That  is,  the  compatibility
class  between  R2  and  R3  has  exactly  two  members.  While  selecting
the  rules  for  intermediate  cells  Ri,  additional  constraints  need  to  be
considered. The  rules for intermediate cell Ri  and Ri+1  must belong to
the same group; that is, if rule 52 (member of group II) is selected as
Ri,  then  the  next  rule  Ri+1  must  also  belong  to  the  same  group,  that
is, group II.

Class  relationship  between  Ri  and  Rn-1  (Table  7):  The  second  to
last cell rule can be selected from Table  7. The first column of Table  7
lists  the  class  of  the  final  intermediate  cell  rule,  and  the  second  col-
umn  lists  the  class  of  candidate  rules  for  the  second  to  last  cell  rule
Rn-1.  For  example,  if  rule  120  is  chosen  for  Ri  then  any  member  of
groups  II  or  IV  can  be  selected  as  the  second  to  last  cell  rule.  So,
rule 180 can be selected as the second to last cell rule as the self-loop
NSRS on RMT T(0) of rule 180 is the NCR of the self-loop NSRS on
RMT T(0)  of rule 120, and the self-loop NSRS  on RMT T(1)  of rule
180  is  the  NCR  of  the  self-loop  NSRS  on  T(2)  of  rule  120.  That  is,
the compatibility class between Ri and Rn-1 has exactly two members. 

Class  relationship  between  Rn-1  and  Rn  (Table  8):  Based  on  the
group  defined  in  Table  5,  the  last  cell  rule  can  be  selected  from
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Table 8.  For  example,  rule  249,  which  is  a  member  of  group  VIII,  is
chosen  as  the  second  to  last  cell,  (i.e.,  Rn-1);  then  any  rule  from
groups III, VI,  VII  and VIII  can be chosen as the last cell rule Rn. So,
rule 254 can be selected as the last cell rule as the self-loop NSRS  on
RMT  T(6)  of  rule  254  is  the  NCR  of  the  self-loop  NSRS  on  RMT
T(3) of rule 249, and the self-loop NSRS  on RMT T(6)  of rule 254 is
the NCR of the self-loop NSRS on T(7) of rule 249. That is, the com-
patibility class between Rn-1 and Rn has exactly two members. 

 Algorithm  3  formalizes  the  steps  for  the  synthesis  of  an  n-cell
TACA.  

Algorithm 3. Construct a hybrid TACA  in linear time.   

Input: length of TACA  (n), Tables  5–8 

Output: The CA rule vector RV  〈R1, R2, …, Rn〉 

Start; 1:

Choose rule R1 from Table  5 randomly from any row (group I to 

VIII); 
2:

Determine the class of R2 (cl2) from the appropriate row of Table 5; 3:

R2 must be chosen from the appropriate row of cl2 of Table  5; 4:

Determine the class of R3 (cl3) from the appropriate row of Table 6; 5:

R3 must be chosen from the appropriate row of cl3 of Table  6; 6:

if n > 5 then 7:

for i  3 to (n - 3) do 8:

cli+1cli; 9:

Choose Ri+1 from the same group as rule Ri; 10:

end for 11:

end if12:

Determine the class of Rn-1 (cln-1) from the appropriate row of 
Table 7; 

13:

Rn-1 must be chosen from the appropriate row of cln-1 of Table  7; 14:

Determine the class of Rn (cln) from the appropriate row of Table 8; 15:

Rn must be chosen from the appropriate row of cln of Table  8; 16:

Output: 〈R1, R2, …, Rn〉 17:

Stop.  18:

Complexity:  Algorithm  3  selects  rules  R1,  R2,  R3,  Rn-1  and  Rn

from  Tables  5–8,  respectively.  Each  rule  selection  takes  O(1)  time.  If
the  length  of  the  CA  is  greater  than  five,  then  the  loop  is  iterated  for
n - 5 times and each iteration takes constant time. Therefore, the run-
ning time of Algorithm 3 is O(n). 
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Example 2. Consider  synthesis  of  a  five-length  hybrid  TACA  using
Algorithm 3. At  step 1, rule R1  is randomly chosen from Table  5. For
example,  rule  52  is  selected  for  the  first  cell  rule.  As  the  first  cell
rule 52 belongs to group II, the second cell rule R2 must belong to any
one  of  the  groups  II,  IV,  V,  VI  or  VIII.  Suppose  rule  235  (from
group V)  is  selected  as  R2.  From  Table  6,  we  can  observe  that  the
next  cell  rule  must  belong  to  either  group  V  or  VI.  Now,  rule  239
(member of group VI) is selected as R3. Similarly,  the next cell rule R4

must belong to either group V  or VI  as listed in Table  7. So rule 239
is selected, as it is a member of group VI.  Finally,  rule 235 is selected
as the last cell rule. The  candidate rule for the last cell must belong to
either group V or VI, and 235 is selected as it is a member of group V.
From  Figure  10,  we  can  observe  that  there  exist  only  two  paths  with

self-loop  NSRSs,  that  is,  (T1(1), T2(3), T3(7), T4(6), T5(4))  and

(T1(1), T2(3), T3(7), T7(7), T5(6))  in  the  NSRTD  and  no  additional
path  with  multilength  NSRSs.  So  the  resulting  hybrid  CA
〈52, 235, 239, 239, 235〉 is a TACA.  

Figure 10. NSRTD for hybrid CA with rule vector 〈52, 235, 239, 239, 235〉.  

Conclusion    5.

Cellular  automata  (CAs)  have  progressed  since  von  Neumann’s  early
days  through  Wolfram’s  elementary  form,  and  eventually  to  the  cur-
rent  research  trends  using  this  straightforward  yet  attractive  model.
Along  the  way,  different  forms  of  CAs  targeting  various  applications
have  been  developed.  In  this  paper,  we  have  discussed  the  next-state
rule  minterm  transition  diagram  (NSRTD)  in  order  to  gain  a  deeper
understanding of how CAs with fixed  points behave during state tran-
sitions,  and  an  algorithm  for  synthesizing  a  nonuniform  single  length
cycle two-attractor CA (TACA)  in linear time is proposed.  
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