
Characterization of Single Length Cycle
Two-Attractor Cellular Automata Using

Next-State Rule Minterm Transition

Diagram

Suvadip Hazra
Mamata Dalui

Computer Science & Engineering, NIT Durgapur
Durgapur
West Bengal 713209, India

Cellular automata (CAs) are simple mathematical models that are
effectively being used to analyze and understand the behavior of com-
plex systems. Researchers from a wide range of fields are interested in
CAs due to their potential for representing a variety of physical, natural
and real-world phenomena. Three-neighborhood one-dimensional CAs,
a special class of CAs, have been utilized to develop various applica-
tions in the field of very large-scale integration (VLSI) design, error-
correcting codes, test pattern generation, cryptography and others. A
thorough analysis of a three-neighborhood cellular automaton (CA)
with two states per cell is presented in this paper. A graph-based tool
called the next-state rule minterm transition diagram (NSRTD) is
presented for analyzing the state transition behavior of CAs with fixed
points. A linear time mechanism has been proposed for synthesizing a
special class of irreversible CAs referred to as single length cycle two-
attractor CAs (TACAs), having only two fixed points.

Keywords: cellular automata; TACA; NSRTD

Introduction1.

Cellular automata (CAs), a significant development in the history of
computing, were first developed by John von Neumann in the 1950s
to study self-reproducing automata [1]. Wolfram established that CAs
could be used to describe complex natural events and subsequently set
the foundation for a theory of CAs, which are defined as discrete
dynamic systems in which local interactions among components cause
global changes in space and time [2]. Due to the simple but sophisti-
cated structure, three-neighborhood two-state CAs have recently
proved to be an effective modeling tool [3–10]. Characterizing such a
machine, on the other hand, is still under study. While analyzing the
state space of a three-neighborhood cellular automaton (CA), the

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

researchers identified a collection of states known as attractors,
toward which adjacent states asymptotically approach during
dynamic evaluation [11]. An attractor that has just one state is known
as a fixed point [12]. The CA with fixed points is of utmost impor-
tance when developing schemes for various applications, particularly
authentication and cryptography [12–15]. The verification of cache
coherence in chip multiprocessors [16], pattern classification [17],
diagnosis of malfunctioning nodes in wireless sensor networks [18],
memory testing [19], language recognition [9] and parity problem-
solving [10] are some other possible application domains. This paper
focuses on the characterization of such a particular class of CAs in
null boundary, which is based on an examination of individual rules
and their capacity to produce fixed points. The next-state rule
minterm transition diagram (NSRTD) [20] tool provides the theoreti-
cal basis for identifying such rules.

In [12, 21, 22], the researchers have developed techniques to iden-
tify attractors for linear/additive CAs. The researchers in [5, 23] have
proposed a graph-based scheme for identifying attractors, wherein the
de Bruijn diagram and its subdiagrams have been employed to study
the CA and a quadratic time methodology is proposed to assess
whether or not a linear CA is reversible. In addition, the rule vector
graph (RVG), an alternative graph-based approach, is proposed for
use in null-boundary CAs in [24]. It aims for a solution that takes lin-
ear time in order to test the invertibility of a CA. It is reported in [25]
that a similar solution exists for periodic-boundary CAs. However,
there is still much to discover about the characterization of CAs with
fixed points outside the linear domain. This encourages us to develop
a CA theory with the objective of identifying rules that may generate
a specific number of fixed points in the null boundary. The class of
irreversible CAs with only two fixed points can act as a two-class clas-
sifier; hence, it has wide applicability in various application domains.

The currently available tools, specifically the reachability tree (RT)
for attractors [17] and the explicit rule vector graph (ERVG) [19], are
efficient for identifying fixed points in the state transition of a CA.
On the other hand, in their current form, none of these can be used to
identify the existence of multilength cycle attractors in a CA. It is
indispensable to identify the CA rules that have the potential to config-
ure nonuniform CAs having only two fixed points for all lengths,
referred to as single length cycle two-attractor CAs (TACAs). The
characterization of rules for the synthesis of TACAs may be achieved
through the use of the graph-based tool NSRTD. The NSRTD is able
to investigate the presence of both multilength cycles and fixed points,
making it a more generic method for characterizing a CA with fixed
points and/or multilength cycles. It effectively identifies the single

364 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

length cycle (fixed-point) attractor CA (SLCA) rules that result in the
synthesis of arbitrary-length TACAs.

The major contributions of this paper are:

◼ Characterization of the CA rules that are the building blocks for synthe-
sizing the desired TACAs.

◼ Devising a highly efficient linear time synthesis mechanism for nonuni-
form TACAs based on analysis of individual CA rules and their poten-
tial to form TACAs of arbitrary length.

Cellular Automata Preliminaries 2.

A CA consists of a number of cells organized in the form of a lattice.
It evolves in discrete space and time and can be viewed as an
autonomous finite-state machine. Each cell of a CA stores a discrete
variable at time t that refers to the present state (PS) of the cell (CA
configuration at time t). The next state (NS) of the cell at t + 1 (config-
uration at t + 1) is affected by its PS and the PS values of its neigh-
bors. In this paper, we concentrate on three-neighborhood CAs (self,

left and right neighbors) having two states: 0 or 1. The NS of the ith

cell of such a CA is

Si
t+1  fi(Si-1

t , Si
t, Si+1

t)

where Si
t, Si-1

t
 and Si+1

t
 are the PSs of itself and the left and right neigh-

bors of the ith cell and fi is the next state function. The set of states

St  (S1
t , S2

t , …, Sn
t) of the cells at t is the PS of the CA. Therefore, the

NS of an n -cell CA is

St+1  (f1(S0
t , S1

t , S2
t), f2(S1

t , S2
t , S3

t), …, fn(Sn-1
t , Sn

t , Sn+1
t)).

The fi can be expressed in the form of a truth table (Table 1). The

decimal equivalent of the eight outputs of fi is called the “rule” Ri. In

a two-state three-neighborhood CA, there can be 28 (256) rules. Eight
such rules, 14, 15, 164, 192, 207, 240, 254 and 255, are illustrated in

Table 1. The first row lists the possible 23 (8) combinations of PSs of

the (i - 1)th, ith and (i + 1)th cells. The next seven rows indicate the

NSs of the ith cell, forming the rules 14 (fi  Si-1
′ Si+1 + Si-1

′ Si), 15

(fi  Si-1
′), 164(fi  Si-1Si+1 + Si-1

′ SiSi+1
′), 192 (fi  Si-1.Si), 207

(fi  Si-1
′ + Si), 240 (fi  Si-1), 254 (fi  Si-1 + Si + Si+1) and 255

(fi  1). The following definitions are relevant for ease of understand-

ing of the CA theory developed in this work.

Characterization of TACAs Using NSRTD 365

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

PS 111 110 101 100 011 010 001 000

RMT T(7) T(6) T(5) T(4) T(3) T(2) T(1) T(0) Rule

NS 0 0 0 0 1 1 1 0 14

NS 0 0 0 0 1 1 1 1 15

NS 1 0 1 0 0 1 0 0 164

NS 1 1 0 0 0 0 0 0 192

NS 1 1 0 0 1 1 1 1 207

NS 1 1 1 1 0 0 0 0 240

NS 1 1 1 1 1 1 1 0 254

NS 1 1 1 1 1 1 1 1 255

Table 1. RMTs of the rules. PS: present state; NS: next state; RMT: rule
minterm.

Definition 1. The set RV  〈R1, R2, …, Ri, …, Rn〉 of rules that config-
ures the cells of a CA is called the rule vector of the CA.

Definition 2. If R1  R2  ⋯  Rn in RV  〈R1, R2, …, Ri, …, Rn〉,
then the CA is a uniform CA; otherwise it is a nonuniform CA.

Definition 3. A CA is a null-boundary CA if its left (respectively right)
neighbor of the leftmost (respectively rightmost) terminal cell is perma-
nently fixed to 0-state.

The n-cell CA of Figure 1 is a null-boundary CA. The left neighbor
of its leftmost cell and the right neighbor of the rightmost cell are
“null.”

Figure 1. Null-boundary CA.

Definition 4. A combination of present states (Si-1
t , Si

t, Si+1
t), shown in

the first row of Table 1, is referred to as the rule minterm (RMT).

The column 011 of Table 1 is the third RMT. The next states corre-
sponding to this RMT are 1 for rules 14 and 15, and 0 for 192. An

RMT is represented as T(m), m  0, 1, 2, 3, 4, 5, 6, 7; and

T(m) ∈ {T}, where T  T(0), T(1), …, T(7). The RMT for the ith cell

366 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

at time t is denoted as Ti
t(m). For example, T1

t (0) denotes cell 1 RMT

T(0) at time t. However, in the diagrams of this presentation, an
RMT is represented only by the corresponding decimal number m;

that is, Ti
t(0) is represented as 0.

Definition 5. A rule divides the RMTs into two subsets, 0-RMT and

1-RMT, denoted as T / 0 and T / 1. The RMT for which the next state

is 0 belongs to T / 0 and that having the next state as 1 belongs to

T / 1. Hence, T / 0⋂ T / 1  ∅ and T / 0⋃ T / 1  T.

Definition 6. An RMT string (RS) is defined as a sequence of consecu-
tive RMTs that appear in a state of the CA. It is represented as

(T1, T2, …, Tn) for an n-cell CA, where Ti ∈ T. For example, the
state 1011 of a four-cell null-boundary CA can be represented by the

RS (T1, T2, T3, T4)  (T(2), T(5), T(3), T(6)).

Definition 7. An RMT x0y (respectively x1y), where x and y are the
PSs of the left and right neighbors in a rule R is called passive (self-
replicating) if it belongs to T / 0 (respectively T / 1). On the other
hand, if an RMT x0y (respectively x1y) in R belongs to T / 1 (respec-
tively T / 0), it is active (respectively, non-self-replicating). The RMT
T(0)(000) ∈ T / 0 and RMT T(2)(010) ∈ T / 1 in rule 14 (Table 1).
These two RMTs are passive. On the other hand, RMT
T(0)(000) ∈ T / 1 in rule 15 is active (Table 1).

Definition 8. A set of states of a CA can form a cycle (0  0, 13  13,
11  11 and 15  9  15 of Figure 2(a)) and is called an attractor.
An attractor forms a basin with the states that lead to the attractor
((15  9  15)-basin of Figure 2(a) contains three states including the
attractor states nine and 15). The cycle 0  0 is a single length cycle
attractor and called a fixed point (referred to as a fixed-point attrac-
tor in the rest of this paper). It forms the 10-attractor basin having
only state 10.

Figure 2. State transitions of SLCA.

Characterization of TACAs Using NSRTD 367

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

Definition 9. The depth of a CA is the length of the longest path tra-
versed from any state to an attractor during its state transitions. The
depth of the CA shown in Figure 2(a) is three (8  12  14  11).

Definition 10. A CA is reversible if its states form only cycles during
its state transitions; otherwise, the CA is irreversible (Figure 2(a)
and (b)).

Definition 11. Single length cycle attractor CAs (SLCAs) refer to the
CAs that have at least one fixed-point attractor. Additional multi-
length cycle attractors may or may not be present in SLCAs.

The CA of Figure 2(a) has three fixed-point attractors (state 0, 13
and 11) and one multilength cycle attractor (15  9  15) and it is
an SLCA. Figure 2(b) depicts the state transitions of a specific kind of
SLCA with 2n (n  length of CA) fixed-point attractors.

Definition 12. The SLCA producing a connected graph during its state
transitions, that is, having only one fixed-point attractor and no multi-
length cycle, is called a single length cycle single-attractor CA
(SACA).

An n-cell uniform CA with rule 112 creates a connected graph with
a single fixed-point attractor for any value of n. The uniform CA with
rule 112 is thus an SACA (Figure 3(a) for a four-cell CA) and rule
112 is an SACA rule.

Figure 3. State transitions of the SACA and TACA.

Definition 13. During its state transition, if an SLCA forms exactly two
connected components, each with one fixed-point attractor, then it is
a single length cycle two-attractor CA (TACA).

A uniform CA with rule 52 creates precisely two connected compo-
nents, each with one fixed-point attractor (as shown in Figure 3(b) for
a four-cell CA). As a result, it is a TACA, thus rule 52 is a TACA
rule.

Such a special class of irreversible CA having only two fixed points
is our current interest.

368 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

Next-State Rule Minterm Transition Diagram3.

The graph-based tool referred to as the next-state RMT transition dia-
gram (NSRTD), introduced in [20] for uniform CAs, has been
employed to get more insight into the state transition behavior of
SLCAs. We employ NSRTD to characterize the class of TACA rules.
The NSRTD provides a generic methodology to determine the pres-
ence of fixed-point attractors as well as the multilength cycle attrac-
tors in a CA and, therefore, enables identification of rules that form
only fixed-point attractors. The following terminologies are essential
for describing the NSRTD.

Definition 14. If Ti
t
 is the RMT of the ith-cell rule, based on which the

cell i changes its state at the tth time step, then the next cell RMTs

(NCRs) of Ti
t
 are the RMTs Ti+1

t  (2Ti
t mod 8), ((2Ti

t + 1) mod 8)

of the (i + 1)th-cell rule, based on which the (i + 1)th cell can change its

state at the tth time step.

For example, if the RMT of the ith-cell rule Ri is T(1), then its

NCRs are T(2) ( 2T(1) mod 8) and T(3) ( (2T(1) + 1) mod 8).

That is, if cell i changes its state on RMT Ti(1) (T(1) of rule Ri) at

time t, then the (i + 1)th cell can change its state on RMTs Ti+1(2) or

Ti+1(3) of the (i + 1)th-cell rule Ri+1 at time t. All such NCRs of the
RMTs are shown in Table 2.

RMT Ti NCR of RMT Ti

(ith-cell rule) (RMTs of (i + 1)th-cell rule)

T(0)/T(4) T(0), T(1)

T(1)/T(5) T(2), T(3)

T(2)/T(6) T(4), T(5)

T(3)/T(7) T(6), T(7)

Table 2. Relationship between Ti and Ti+1 (NCR).

Definition 15. If Ti
t
 (respectively Ti

t+1) is the RMT of the ith-cell rule Ri,

based on which cell i changes its state at time t (respectively at time

t + 1), then Ti
t+1

 is the next-state RMT (NSR) of Ti
t
 for cell i.

Definition 16. The sequence of NSRs based on which the ith cell
changes its state during the state transitions of the CA is called a next-

state RMT sequence (NSRS). That is, an NSRS for the ith cell (deno-

ted as NSRSi) is Ti
0, Ti

1, …, Ti
t, Ti

t+1, … where Ti
t+1

 is the NSR of Ti
t.

Characterization of TACAs Using NSRTD 369

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

Definition 17. For the ith-cell rule Ri of a CA, all possible NSRSs can be
represented by a directed graph G(V,E), called an NSRS graph (NSRS-

G), where all the Ti
t ∈ V and eiTi

t, Ti
t+1 ∈ E, if and only if Ti

t+1
 is the

NSR of Ti
t.

Definition 18. The NCR, NSR, NSRS and NSRS-G of a CA enable con-
struction of the set of directed graphs, called NSRTD, as a two-dimen-
sional arrangement of nodes. Each node is an RMT and each graph in

NSRTD represents an attractor of the CA. The edge Ti
t, Ti

t+1 ∈ E,

such that Ti
t+1

 is the NSR of Ti
t
 and also the edge (Ti

t, Ti+1
t) ∈ E, such

that Ti+1
t

 is the NCR of Ti
t. Further, the nodes Ti

t
 (∀ t) form an NSRS

for the ith cell.

Definition 19. Two NSRSs defined for the ith and (i + 1)th CA cell

(NSRSi and NSRSi+1) are called compatible if the jth NSR of the two

are related in the sense that the jth NSR of NSRSi+1 is the NCR

(Table 2) of the jth NSR of NSRSi.

The following subsections explain the NSR, NSRS, NSRS-G, com-
patibility class of NSRSs and the construction of NSRTD.

Identification of Next-State Rule Minterms3.1

If xyz is the RMT of rule Ri, based on which the ith cell changes its

state, and l and r are the PSs of cell (i - 2) and cell (i + 2), respectively,

then the NSR of the cell can be dlddr, where the RMT xyz of Ri is d,

dl  RMT lxy of the (i - 1)th-cell rule Ri-1, and dr  RMT yzr of the

(i + 1)th-cell rule Ri+1. For uniform CAs with rule R, the dl, d and dr
are the RMTs lxy, xyz and yzr of R. In a null-boundary n-cell

(cell1, cell2, …celli, …cell(n-1), celln) CA, the following conditions are

satisfied.

For the first cell (i  1): dl  0, x  0, r  0 / 1. 1.

For the second cell (i  2): l  0, r  0 / 1. 2.

For the intermediate cells (i  3, …(n - 2)): l  r  0 / 1. 3.

For the second to last cell (i  n - 1): l  0 / 1, r  0. 4.

For the last cell (i  n): l  0 / 1, z  0, dr  0. 5.

The derivation of NSRs for an n-cell null-boundary uniform CA
with rule 58 is shown in Figure 4.

370 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

Figure 4. Identification of NSRs for a uniform CA with rule 58.

First Cell Second Cell Intermediate Cells

1-10 RMT NSR RMT NSR RMT NSR

(1) (2) (3) (4) (5) (6)

T(0) T(0), T(1) T(0) T(0), T(1) T(0) T(0), T(1), T(4), T(5)

T(1) T(2), T(3) T(1) T(2), T(3) T(1) T(2), T(3), T(6), T(7)

T(2) T(1) T(2) T(5) T(2) T(5)

T(3) T(2) T(3) T(6) T(3) T(6)

T(4) T(2), T(3) T(4) T(2), T(3)

T(5) T(2), T(3) T(5) T(2), T(3)

T(6) T(5) T(6) T(1), T(5)

T(7) T(4) T(7) T(0), T(4)

Second to Last Cell Last Cell

RMT NSR RMT NSR

(7) (8) (9) (10)

T(0) T(0), T(4) T(0) T(0), T(4)

T(1) T(2), T(6) T(2) T(4)

T(2) T(5) T(4) T(2)

T(3) T(6) T(6) T(0), T(4)

T(4) T(2)

T(5) T(2)

T(6) T(1), T(5)

T(7) T(0), T(4)

Table 3. NSRs of the cells of a uniform CA with rule 58.

Characterization of TACAs Using NSRTD 371

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

Construction of a Next-State Rule Minterm Sequence Graph 3.2

The NSRS-G for a CA is the union of all possible NSRSs correspond-
ing to that cell. For example, for the first cell of the uniform CA with
rule 58, NSR of RMT T(1) is T(2), and NSR of T(2) is T(1). There-

fore, Tt(1)  Tt+1(2)  Tt+2(1) forms one NSRS for the first cell
(Figure 5(i)). The NSR of T(3) is T(2). Further, the NSRs of T(0) are
T(0) itself and T(1) (columns 1 and 2 of Table 3). Therefore,

the other NSRSs are Tt(0)  Tt+1(0)  Tt+2(0)  … and Tt(1) 

Tt+1(3)  Tt+2(2)  Tt+3(1)  … and others as shown in Figure 5(i).
The union of all such NSRSs for the first cell is the NSRS-G (NSRS-
G1) for the first cell (Figure 5(iia)). The NSRS-G2, NSRS-GI, NSRS-
G(n-1) and NSRS-Gn for the second cell, intermediate cells, second to

Figure 5. NSRSG for uniform CA with rule 58.

372 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

last cell and the last cell of the CA are shown in Figure 5 (iib), (iic),
(iid) and (iie), respectively. Since the first (leftmost) cell of the CA can
change state only on RMTs T(0), T(1), T(2) and T(3) and the last
(rightmost) cell can only change state on RMTs T(0), T(2), T(4) and
T(6), the NSRS-G1 and NSRS-Gn are composed of four nodes. How-
ever, NSRS-G2, NSRS-GI and NSRS-G(n-1) have eight nodes, as the

second cell, intermediate cells and the second to last cell can change
state on any of the eight RMTs.

Construction of a Next-State Rule Minterm Transition Diagram3.3

The NSRTD of a uniform CA with rule 58 is shown in Figure 6. It
has two graphs, namely G1 and G2, where G1 corresponds to a fixed-
point attractor and G2 corresponds to multilength cycle attractors.

Figure 6. NSRTD for uniform CA with rule 58.

Given a rule R, length of CA n and the NCRs of the eight RMTs
(Table 2), the NSRs for different cells (first, second, intermediate, sec-
ond to last and last) are identified and the NSRS-Gs are formed. The
cycles LPs in NSRS-Gs are then found. From the set of cycles LP1,
LP2, LPI, LP(n-1), LPn for the first, second, intermediate, second to

last and last cell, respectively, the compatibility classes of the cycle
(Definition 19) are computed. Then the sequence of RMT
Pu  P1u  P2u  P3u  P4u  …P(n-2)u  P(n-1)u  Pnu representing

a graph in the NSRTD is extracted. The number of such n-length
paths Pu corresponds to the number of attractors of the CA. If all the
NSRSs Piu, for i  1 to n, in a Pu is a single length cycle, then Pu corre-
sponds to a fixed point; otherwise it is a multilength cycle attractor.

Characterization of TACAs Using NSRTD 373

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

Extensive experimentation with 256 CA rules in three-neighbor-
hood null-boundary conditions has resulted in the identification of
uniform TACA rules. Fifteen such rules are listed in Table 4. A CA
configured with any of these rules forms a uniform TACA for all
lengths. Depending upon the design requirement for the specific appli-
cation, hybrid (nonuniform) TACA synthesis may be required. Hence,
the next section elaborates the proposed methodology for synthesis of
a nonuniform TACA for a given length.

Group Rule for TACA

3 38, 52

4 46, 106, 116, 120, 166, 180, 235, 249

5 174, 239, 244, 253, 254

Table 4. TACA rules.

Proposed Methodology 4.

We now describe in detail the proposed synthesis mechanisms for a
TACA. A basic framework for synthesizing a nonuniform TACA has
been reported in [26], which ensures an exponential time solution in
all three cases (best, average and worst). In this paper, we attempt to
devise a linear time synthesis mechanism for a TACA. The first
approach ensures a linear time solution in the best case, but it takes
exponential time in the worst case. Hence, we further develop a more
efficient synthesis mechanism capable of ensuring a linear time solu-
tion in all cases (best, average and worst). However, by doing some
nominal modifications, both the methodologies can be extended to
synthesize CAs with any number of fixed point(s). A TACA, which
has only two fixed points, can be useful in a variety of applications,
especially when differentiating faulty states from nonfaulty ones. To
come up with a solution to this kind of problem, the required TACA
must be synthesized. Utilizing all 256 rules in the synthesis of such a
TACA results in exponential complexity. To minimize the search
space, we examine hybridization of 15 uniform TACA rules as identi-
fied in [16] and reported in Table 4 to construct a nonuniform
TACA. However, the worst-case time complexity to synthesize a

nonuniform/hybrid TACA of length n is still O(15n).
Algorithms 1 and 2 are provided for the synthesis of a scalable

TACA structure that utilizes the 15 uniform TACA rules in a three-
neighborhood null boundary.

374 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

Algorithm 1. Count cycles in a CA.

Input: Rule R, NCRs for RMTs T(0), T(1), T(2), … , T(7) forming the sets
NCR0, NCR1, …NCR7.
Output: Cycle in NRSR-Gs.

Start;1:

Find NSRs for the first, second, intermediate, second to last and last

cells for rule R.

2:

Construct NSRS-Gs for the first cell (NSRS-G1), second cell (NSRS-
G2), intermediate cells (NSRS-GI), second to last cell (NSRS-G(n-1))

and last cell (NSRS-Gn);
NSRS-G  {NSRS-G1, NSRS-G2, NSRS-GI, NSRS-G(n-1), NSRS-Gn}.

3:

Find cycles (simple cycles) in the set NSRS-G
/*these include self-loops as well as multilength cycles*/

LP1  LP11, LP12, …. for the first cell; /*cycles in NSRS-G1*/

LP2  LP21, LP22, …. for the second cell; /*cycles in NSRS-G2*/

LPI  LPI1, LPI2, …. for intermediate cells; /*cycles in NSRS-GI*/

LP(n-1)  LP(n-1)1, LP(n-1)2, …. for the second to last cell; /*cycles in

NSRS-G(n-1)*/

LPn  LPn1, LPn2, …. for the last cell; /*cycles in NSRS-Gn*/

LP  {LP1, LP2, LPI, LP(n-1), LPn};

4:

Stop. 5:

Algorithm 1 (as in [26]) computes all the single length as well as
multilength cycles in all NSRSs for the first, second, intermediate, sec-
ond to last and last cells. To do so, Algorithm 1 accepts rule R and
NCRs of the eight RMTs (Table 2) as input. It first finds the NSRs of
the first, second, intermediate, second to last and last cells. After that,
it constructs NSRS-Gs for the first, second, intermediate, second to
last and last cells. Finally, it computes all the cycles, which are utilized
in Algorithm 2.

Algorithm 2 takes into account the length of the CA n, the NCRs
of the eight RMTs (Table 2), and the cycles in the NSRS-Gs, which
might be single length or multilength. To choose the first cell rule,
Algorithm 2 selects one rule from Table 4 randomly, as depicted in
step 1 of Algorithm 2. In step 3, Algorithm 2 chooses a rule Rp ran-

domly from all the TACA rules and computes the compatibility
classes C12 between LP1 (R1) and LP2 (Rp). It assigns Rp as the second

cell rule only if C12 has exactly two pairs of self-loop NSRSs and no
pair of multilength NSRSs. If that condition is not satisfied, it further
checks for another TACA rule. Following the same approach, Algo-
rithm 2 chooses the third cell rule randomly from all TACA rules. If
the length of the CA is more than five, it will continue to select inter-
mediate cell rules R(I+1) for lengths three to n - 3 by consulting the

Characterization of TACAs Using NSRTD 375

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

compatibility class CI(I+1) between LPI (RI) and LPI (R(I+1)) as dis-

cussed in steps 19, 20 and 21 of Algorithm 2. Next, it selects a TACA
rule randomly and includes that rule as the second to last cell rule
only if the compatibility class CI(n-1) has exactly two pairs of self-loop

NSRSs and no multilength NSRSs. Finally, by following the same
approach, Algorithm 2 chooses the last cell rule randomly, as shown
in steps 35, 36 and 37 of Algorithm 2.

Algorithm 2. Construct a hybrid TACA.

Input: Length of CA n, NCRs, LPs (as computed by Algorithm 1).

Output: The rule vector RV of TACA RV  〈R1, R2, …Rn〉.

Select rule R1 randomly from Table 4; 1:

for p  1 to 15 2:

Choose a TACA rule Rp randomly and compute compatibility classes

C12  {(LP1i, LP2j)} where C12 is the compatibility class of NSRSs

between LP1 (R1) and LP2 (Rp);

3:

if C12 has exactly two pairs of self-loop NSRSs and no pair of
multilength NSRSs then

4:

Assign R2  Rp; 5:

break; 6:

end if7:

end for 8:

for p  1 to 15 9:

Choose a TACA rule Rp randomly and compute compatibility classes

C2I  {(LP2k, LPIl)} where C2I is the compatibility class of NSRSs
between LP2 (R2) and LPI (Rp);

10:

if C2I has exactly two pairs of self-loop NSRSs and no pair of
multilength NSRSs then

11:

Assign R3  Rp;12:

 break; 13:

end if 14:

end for 15:

if n > 5 then16:

for i  3 to (n - 3) 17:

for p  1 to 15 18:

376 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

Choose a TACA rule Rp randomly and compute compatibility

classes CI(I+1)  {(LPIm, LP(I+1)o} where CI(I+1) is the compatibility

class of NSRSs between LPI (RI) and LPI+1 (Rp);

19:

if CI(I+1) has exactly two pairs of self-loop NSRSs and no pair of

multilength NSRSs then

20:

Assign RI+1  Rp; 21:

break; 22:

end if 23:

end for 24:

end for 25:

end if26:

for p  1 to 15 27:

Choose a TACA rule Rp randomly and compute compatibility classes

CI(n-1)  LPIq, LP(n-1)r where CI(n-1) is the compatibility class of

NSRSs between LPI (RI) and LP(n-1) (Rp);

28:

if CI(n-1) has exactly two pairs of self-loop NSRSs and no pair of

multilength NSRSs then

29:

Assign Rn-1  Rp; 30:

break; 31:

end if 32:

end for 33:

for p  1 to 15 34:

Choose a TACA rule Rp randomly and compute compatibility classes

C(n-1)n  {(LP(n-1)s, LPnt)} where C(n-1)n is the compatibility class of

NSRSs between LP(n-1) (R(n-1)) and LPn (Rp);

35:

if C(n-1)n has exactly two pairs of self-loop NSRSs and no pair of

multilength NSRSs then

36:

Assign Rn  Rp; 37:

break; 38:

end if 39:

end for 40:

Output: 〈R1, R2, …, Rn〉41:

Example 1. Here, to illustrate the proposed synthesis mechanism fol-
lowing Algorithm 2, we consider the synthesis of an n-length (n  6)
nonuniform TACA. In step 1 of Algorithm 2, it chooses the first cell
rule R1  166 randomly from Table 4. Next in step 2, Algorithm 2

Characterization of TACAs Using NSRTD 377

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

selects rule 38 randomly and computes the compatibility class C12

between LP1(166) and LP2(38). As the compatibility class

C12  {(T1(0), T2(0)), (T1(2), T2(4))} has exactly two pairs of self-
loop NSRSs, Algorithm 2 does not further check for any other TACA
rules and assigns rule 38 as the second cell rule. Following the same
procedure, rule 46 is chosen as the third cell rule R3 as the com-
patibility class between LP2(38) and LPI(46): C23 

{(T2(0), T3(0)), (T2(4), T3(0))} has exactly two pairs of self-loop
NSRSs. Again, to choose the fourth cell rule, it assigns rule 174 as
the compatibility class between LPI(46) and LPI(174):

C34  {(T3(0), T4(0)), (T3(4), T4(0))} has exactly two pairs of self-
loop NSRSs. Similarly, rule 106 is selected as the fifth cell rule as the
compatibility class between LPI(174) and LP(n-1)(106):

C45  {(T4(0), T5(0)), (T4(4), T5(0))} has exactly two pairs of self-
loop NSRSs. Finally, in step 34, Algorithm 2 chooses rule 180 ran-
domly as the compatibility class between LP(n-1)(106) and LPn(180):

C56  {(T5(0), T6(0)), (T5(4), T6(0))} has exactly two pairs of self-
loop NSRSs, as shown in Figure 7. The NSRTD of a hybrid CA with
rule vector 〈166, 38, 46, 174, 106, 180〉 is shown in Figure 8. From
Figure 8, we can observe that there exist only two paths with self-

loop NSRSs, that is, (T1(0), T2(0), T3(0), T4(0), T5(0), T6(0)) and

(T1(2), T2(4), T3(0), T4(0), T5(0), T6(0)), and no path with multi-
length cycle(s). So, the six-cell CA 〈166, 38, 46, 174, 106, 180〉 thus
constructed is a TACA.

Analysis: In the first step of Algorithm 2, a rule is picked up at ran-
dom from among the 15 TACA rules as listed in Table 4, and this
step takes a constant amount of time. Even though the selection of
rule R2 has 15 possibilities, it may happen that after very few search
attempts, we can get a candidate rule for which the compatibility
class C12 contains precisely two pairs of self-loop NSRSs and no
NSRSs with multilength. Once a suitable candidate rule is obtained,
the searching process for other alternative candidates stops. In the
same way, we choose the rules for all the cells. For each cell, we will
get a suitable rule after a certain number of search attempts, which is

much less than 15. Suppose we find the candidate rule RI for the Ith

cell (for any value of I  2, 3, …, n) with at most P search attempts,
such that the compatibility class C(I-1)I contains precisely two pairs of

self-loop NSRSs and no NSRSs of multilength. So, the amount of time
it takes to choose rules for a CA with n cells is Pn. Although, in the
worst case, we may need to search all the 15 rules and hence, the

worst-case time complexity is 15n. The algorithm proposed in [26]

has the time complexities 15n for all the cases (best, average and

378 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

Figure 7. NSRS-Gs for the hybrid CA with rule vector

〈166, 38, 46, 174, 106, 180〉.

Figure 8. NSRTD for the hybrid CA with rule vector

〈166, 38, 46, 174, 106, 180〉.

worst), as for all the cases it computes a candidate set for a cell con-
taining all the possible candidate rules for that cell and later, only one
rule is picked up from the set to form the rule vector. However, in the
case of Algorithm 2, we can achieve average case time complexity of
Pn where P ≪ 15 and the best case time complexity is n. However, to

Characterization of TACAs Using NSRTD 379

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

synthesize a nonuniform TACA, if we consider all 256 CA rules
instead of only 15 rules in Table 4, Algorithm 2 may take O(256n)
time in the worst case. Figure 9 shows the synthesis time of the
nonuniform TACA with rule vector 〈180, 52, 116, 244, 52〉 consider-
ing different lengths. Here, the first, second, second to last and last
cell rules are 108, 52, 244 and 52, respectively, and the intermediate
cell rule 116 is repeated as we increase the length of the CA from 5 to
16. The experimental results show that the synthesis time increases lin-
early with an increase in the length of the CA. Although we have mini-
mized the complexity of constructing a hybrid TACA, our aim is to
design an algorithm that can construct a hybrid TACA in linear time.

Figure 9. Synthesis time of the nonuniform TACA for varying length.

Synthesis of Single Length Cycle Two-Attractor Cellular
Automata in Linear Time

4.1

The previous section reports the synthesis of a TACA wherein Algo-
rithm 2 takes exponential time. In this section, we attempt to devise
an algorithm for synthesizing a TACA in linear time. Here also, we
have considered the uniform TACA rules as reported in Table 4, for
synthesizing a nonuniform TACA in linear time. However, the
methodology developed can also be utilized for synthesizing CAs with
any specified number of fixed points.

To realize our objective, we have considered the NSRS-Gs for the
first, second, intermediate, second to last and last cells for each of
the 15 TACA rules. From the obtained NSRS-Gs, we have computed
the compatibility classes between two consecutive cells by analyzing
the cycle structure of each of the 15 TACA rules. Finally, by

380 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

analyzing the compatibility classes between two consecutive cells, all
the TACA rules have been organized in four different tables:
Tables 5–8. The candidate rules for the first intermediate cell from a
chosen second cell rule are listed in Table 6. Table 7 shows the rela-
tionship between the last intermediate cell rule and the second to last
cell rule. Finally, Table 8 lists the class relationship between the sec-
ond to last cell rule and last cell rule.

Tables are constructed by following the methodology.

◼ All the 15 TACA rules have been divided into eight different groups
based on their cycle structure. For example, all the rules in group I
(38, 46, 166, 174) have the same self-loop NSRSs in the first

cell (T1(0), T1(1)), second cell (T2(0), T2(4)), intermediate cell

(TI(0), TI(4)), second to last cell (T(n-1)(0), T(n-1)(4)) and last cell

(Tn(0), Tn(4)).

◼ Table 5 is constructed by checking whether the compatibility class

between LP1 (R1) and LP2 (R2): C12 has exactly two pairs of self-loop
NSRSs and no pair of multilength NSRSs. For example, if the first cell
rule is selected from group I, then the second cell rule can be chosen
from either group I or II as listed in column 3 of Table 5. Any rule from
group I or II can be selected for the second cell rule because the

compatibility class between LP1 (any rule from group I) and LP2 (any

rule from group I) C12  {(T1(0), T2(0)), (T1(2), T2(4))} has exactly

two pairs of self-loop NSRSs and the compatibility class between LP1
(any rule from group I) and LP2 (any rule from group II)

C12  {(T1(0), T2(0)), (T1(0), T2(1))} has exactly two pairs of self-loop
NSRSs.

Group Rules for R1 Class for R2

I 38, 46, 166, 174 I, II

II 52, 116, 180, 244 II, IV, V, VI, VIII

III 106 II, III, IV, V, VI, VIII

IV 120 II, IV

V 235 V, VI

VI 239 V, VI

VII 249, 253 VII

VIII 254 III, V, VI, VIII

Table 5. Class relationship between R1 and R2.

◼ Table 6 is constructed by checking whether the compatibility class

between LP2 (R2) and LPI (RI): C2I has exactly two pairs of self-loop
NSRSs and no pair of multilength NSRSs.

Characterization of TACAs Using NSRTD 381

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

Rules for R2 Class for First Intermediate cell

I I

II II,

III I, II, III

IV II, IV

V V, VI

VI V, VI

VII VI

VIII VIII

Table 6. Class relationship between R2 and Ri.

◼ Table 7 is constructed by checking whether the compatibility class

between LPI (RI) and LP(n-1) (R(n-1)): CI(n-1) has exactly two pairs of

self-loop NSRSs and no pair of multilength NSRSs.

Rules for Last Intermediate Cell Class for Rn-1

I I, III

II II

III I, III

IV II, IV

V V, VI

VI V, VI

VII VII

VIII I, VIII

Table 7. Class relationship between Ri and Rn-1.

◼ Table 8 is constructed by checking whether the compatibility class

between LP(n-1) (R(n-1)) and LPn (Rn): C(n-1)n has exactly two pairs of

self-loop NSRSs and no pair of multilength NSRSs.

Rules for Rn-1 Class for Rn

I I, II, III, IV

II II

III I, II, III

IV IV, VIII

V V, VI

VI V, VI

VII III, VI, VII, VIII

VIII I, VIII

Table 8. Class relationship between Rn-1 and Rn.

382 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

Class relationship between R1 and R2 (Table 5): In Table 5, we
have classified all 15 TACA rules into eight groups according to a self-
loop NSRS in each cell. The first column of Table 5 shows all the
eight groups, and the second column represents the members in the
groups that can be chosen as the first cell rule. The third column of
Table 5 shows the groups for second cell rule R2 when R1 is selected
as per column 2. The main criteria for selecting rule R2 is that it must
be compatible with the chosen rule R1. That is, the self-loop NSRS of
rule R2 must be the NCR of R1. For example, if rule 38 is chosen as
the first cell rule from Table 5, then the second cell rule R2 can be
selected either from group I or group II. Like all other rules from
group I, 46 is also compatible with rule 38 as the self-loop NSRS on
RMT T(0) of rule 46 is the NCR of the self-loop NSRS on RMT T(0)
of rule 38 and the self-loop NSRS on RMT T(4) of rule 46 is the
NCR of the self-loop NSRS on T(2) of rule 38. That is, the compatibil-
ity class between R1 and R2 has exactly two members.

Class relationship between R2 and Ri (Table 6): The first intermedi-
ate cell rule, that is, R3, can be selected from Table 6. Following a sim-
ilar strategy, rule R3 is selected by checking the compatibility class
between R2 and R3. For example, if rule 106 is chosen for the second
cell rule R2, we can then choose any of the rules from groups I, II and
III as a candidate rule for R3. Like all other rules from group II, 116
is also compatible with rule 106 as the self-loop NSRS on RMT T(0)
of rule 116 is the NCR of the self-loop NSRS on RMT T(0) of rule
106, and the self-loop NSRS on RMT T(1) of rule 116 is the NCR of
the self-loop NSRS on T(0) of rule 106. That is, the compatibility
class between R2 and R3 has exactly two members. While selecting
the rules for intermediate cells Ri, additional constraints need to be
considered. The rules for intermediate cell Ri and Ri+1 must belong to
the same group; that is, if rule 52 (member of group II) is selected as
Ri, then the next rule Ri+1 must also belong to the same group, that
is, group II.

Class relationship between Ri and Rn-1 (Table 7): The second to
last cell rule can be selected from Table 7. The first column of Table 7
lists the class of the final intermediate cell rule, and the second col-
umn lists the class of candidate rules for the second to last cell rule
Rn-1. For example, if rule 120 is chosen for Ri then any member of
groups II or IV can be selected as the second to last cell rule. So,
rule 180 can be selected as the second to last cell rule as the self-loop
NSRS on RMT T(0) of rule 180 is the NCR of the self-loop NSRS on
RMT T(0) of rule 120, and the self-loop NSRS on RMT T(1) of rule
180 is the NCR of the self-loop NSRS on T(2) of rule 120. That is,
the compatibility class between Ri and Rn-1 has exactly two members.

Class relationship between Rn-1 and Rn (Table 8): Based on the
group defined in Table 5, the last cell rule can be selected from

Characterization of TACAs Using NSRTD 383

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

Table 8. For example, rule 249, which is a member of group VIII, is
chosen as the second to last cell, (i.e., Rn-1); then any rule from
groups III, VI, VII and VIII can be chosen as the last cell rule Rn. So,
rule 254 can be selected as the last cell rule as the self-loop NSRS on
RMT T(6) of rule 254 is the NCR of the self-loop NSRS on RMT
T(3) of rule 249, and the self-loop NSRS on RMT T(6) of rule 254 is
the NCR of the self-loop NSRS on T(7) of rule 249. That is, the com-
patibility class between Rn-1 and Rn has exactly two members.

 Algorithm 3 formalizes the steps for the synthesis of an n-cell
TACA.

Algorithm 3. Construct a hybrid TACA in linear time.

Input: length of TACA (n), Tables 5–8

Output: The CA rule vector RV  〈R1, R2, …, Rn〉

Start; 1:

Choose rule R1 from Table 5 randomly from any row (group I to

VIII);
2:

Determine the class of R2 (cl2) from the appropriate row of Table 5; 3:

R2 must be chosen from the appropriate row of cl2 of Table 5; 4:

Determine the class of R3 (cl3) from the appropriate row of Table 6; 5:

R3 must be chosen from the appropriate row of cl3 of Table 6; 6:

if n > 5 then 7:

for i  3 to (n - 3) do 8:

cli+1cli; 9:

Choose Ri+1 from the same group as rule Ri; 10:

end for 11:

end if12:

Determine the class of Rn-1 (cln-1) from the appropriate row of
Table 7;

13:

Rn-1 must be chosen from the appropriate row of cln-1 of Table 7; 14:

Determine the class of Rn (cln) from the appropriate row of Table 8; 15:

Rn must be chosen from the appropriate row of cln of Table 8; 16:

Output: 〈R1, R2, …, Rn〉 17:

Stop. 18:

Complexity: Algorithm 3 selects rules R1, R2, R3, Rn-1 and Rn

from Tables 5–8, respectively. Each rule selection takes O(1) time. If
the length of the CA is greater than five, then the loop is iterated for
n - 5 times and each iteration takes constant time. Therefore, the run-
ning time of Algorithm 3 is O(n).

384 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

Example 2. Consider synthesis of a five-length hybrid TACA using
Algorithm 3. At step 1, rule R1 is randomly chosen from Table 5. For
example, rule 52 is selected for the first cell rule. As the first cell
rule 52 belongs to group II, the second cell rule R2 must belong to any
one of the groups II, IV, V, VI or VIII. Suppose rule 235 (from
group V) is selected as R2. From Table 6, we can observe that the
next cell rule must belong to either group V or VI. Now, rule 239
(member of group VI) is selected as R3. Similarly, the next cell rule R4

must belong to either group V or VI as listed in Table 7. So rule 239
is selected, as it is a member of group VI. Finally, rule 235 is selected
as the last cell rule. The candidate rule for the last cell must belong to
either group V or VI, and 235 is selected as it is a member of group V.
From Figure 10, we can observe that there exist only two paths with

self-loop NSRSs, that is, (T1(1), T2(3), T3(7), T4(6), T5(4)) and

(T1(1), T2(3), T3(7), T7(7), T5(6)) in the NSRTD and no additional
path with multilength NSRSs. So the resulting hybrid CA
〈52, 235, 239, 239, 235〉 is a TACA.

Figure 10. NSRTD for hybrid CA with rule vector 〈52, 235, 239, 239, 235〉.

Conclusion 5.

Cellular automata (CAs) have progressed since von Neumann’s early
days through Wolfram’s elementary form, and eventually to the cur-
rent research trends using this straightforward yet attractive model.
Along the way, different forms of CAs targeting various applications
have been developed. In this paper, we have discussed the next-state
rule minterm transition diagram (NSRTD) in order to gain a deeper
understanding of how CAs with fixed points behave during state tran-
sitions, and an algorithm for synthesizing a nonuniform single length
cycle two-attractor CA (TACA) in linear time is proposed.

References

[1] S. Wolfram, Cellular Automata and Complexity: Collected Papers , Read-
ing, MA: Addison-Wesley, 1994.

Characterization of TACAs Using NSRTD 385

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.25088/ComplexSystems.31.4.363

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[3] E. F. Moore, “Machine Models of Self Reproduction,” in Proceedings
of Symposia in Applied Mathematics, Vol. 14, (R. E. Bellman, ed.),
Providence, RI: American Mathematical Society, 1962 pp. 17–33.

[4] D. A. Rosenblueth and C. Gershenson, “A Model of City Traffic Based
on Elementary Cellular Automata,” Complex Systems, 19(4), 2011
pp. 305–322. doi:10.25088/ComplexSystems.19.4.305.

[5] K. Sutner, “De Bruijn Graphs and Linear Cellular Automata,” Complex
Systems, 5(1), 1991 pp. 19–30. complex-systems.com/pdf/05-1-3.pdf.

[6] T. Yang, “Morphology Analysis of Urban Traffic Based on Multilevel
Cellular Automata Networks Dynamics,” in Proceedings of 6th Interna-
tional Congress on Image and Signal Processing (CISP), Hangzhou,
China, Piscataway, NJ: IEEE 2013 pp. 980–984.
doi:10.1109/cisp.2013.6745307.

[7] L. Zaloudek and L. Sekanina, “Increasing Fault-Tolerance in Cellular
Automata-Based Systems,” in Unconventional Computation (UC’11),
Turku, Finland (C. S. Calude, J. Kari, I. Petre and G. Rozenberg, eds.),
Berlin, Heidelberg: Springer-Verlag, 2011 pp. 234–245.
doi:10.1007/978-3-642-21341-0_26.

[8] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Envi-
ronment for Modeling, Cambridge, MA: MIT Press, 1987.

[9] N. Bacquey, “Complexity Classes on Spatially Periodic Cellular
Automata,” in 31st International Symposium on Theoretical Aspects
of Computer Science (STACS 2014), Lyon, France (E. W. Mayr and
N. Portier, eds.), Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2014 pp. 112–124.

[10] H. Betel, P. P. B. de Oliveira and P. Flocchini, “On the Parity Problem
in One-Dimensional Cellular Automata,” Electronic Proceedings in
Theoretical Computer Science, 90, 2012 pp. 110–126.
doi:10.4204/eptcs.90.9.

[11] A. Wuensche and M. Lesser, The Global Dynamics of Cellular
Automata, Santa Fe Institute Studies in the Sciences of Complexity,
Reading, MA: Addison-Wesley, 1992.

[12] P. Pal Chaudhuri, D. R. Chowdhury, S. Nandi and S. Chattopadhyay,
Additive Cellular Automata: Theory and Applications, Los Alamitos,
CA: IEEE Computer Society Press, 1997.

[13] P. Dasgupta, S. Chattopadhyay and I. Sengupta, “An ASIC for Cellular
Automata Based Message Authentication,” in Proceedings of the 13th
International Conference on VLSI Design (VLSID ’00), Calcutta, India,
Los Alamitos, CA: IEEE Computer Society, 1999 pp. 538–541.
doi:10.1109/ICVD.2000.812663.

386 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

https://doi.org/10.25088/ComplexSystems.19.4.305
http://complex-systems.com/pdf/05-1-3.pdf
https://doi.org/10.1109/cisp.2013.6745307
https://doi.org/10.1007/978-3-642-21341-0_26
https://doi.org/10.4204/eptcs.90.9
https://doi.org/10.1109/ICVD.2000.812663

[14] H. Gutowitz, “Cryptography with Dynamical Systems,” Cellular
Automata and Cooperative Systems (N. Boccara, E. Goles, S. Martinez
and P. Picco, eds.), Dordrecht: Springer, 1993, pp. 237–274.
doi:10.1007/978-94-011-1691-6_21.

[15] M. Mukherjee, N. Ganguly, A. Chaudhuri and P. Pal Chaudhuri, “Cell-
ular Automata Based Authentication (CAA),” in Cellular Automata
(ACRI 2002), Geneva, Switzerland (S. Bandini, B. Chopard and
M. Tomassini, eds.), Berlin, Heidelberg: Springer, 2002
pp. 259–269. doi:10.1007/3-540-45830-1_25.

[16] M. Dalui and B. K Sikdar, “Design of Directory Based Cache Coherence
Protocol Verification Logic in CMPs around TACA,” in 2013 Interna-
tional Conference on High Performance Computing & Simulation
(HPCS 2013), Helsinki, Finland, IEEE, 2013 pp. 318–325.
doi:10.1109/HPCSim.2013.6641433.

[17] S. Das, S. Mukherjee, N. Naskar and B. K.Sikdar, “Characterization
of Single Cycle CA and Its Application in Pattern Classification,” Elec-
tronic Notes in Theoretical Computer Science, 252, 2009 pp. 181–203.
doi:10.1016/j.entcs.2009.09.021.

[18] S. Das, N. N. Naskar, S. Mukherjee, M. Dalui and B. K. Sikdar, “Char-
acterization of CA Rules for SACA Targeting Detection of Faulty Nodes
in WSN,” in Cellular Automata (ACRI 2010), Ascoli Piceno, Italy
(S. Bandini, S. Manzoni, H. Umeo and G. Vizzari, eds.), Berlin,
Heidelberg: Springer, 2010 pp. 300–311.
doi:10.1007/978-3-642-15979-4_32.

[19] M. Saha, M. Dalui and B. Sikdar, “A Cellular Automata Based Highly
Accurate Memory Test Hardware Realizing March C-,” Microelectron-
ics Journal, Elsevier, 52, 2016 pp. 91–103.
doi:10.1016/j.mejo.2016.03.009.

[20] M. Dalui, “Theory and Application of Cellular Automata for CMPs
Cache System Protocol Design and Verification,” Ph.D. thesis, IIEST
Shibpur, West Bengal, India, 2014.

[21] N. Ganguly, “Cellular Automata Evolution: Theory and Applications in
Pattern Recognition and Classification,” Ph.D. thesis, Bengal Engineer-
ing College (DU), 2004.

[22] P. Maji, “Cellular Automata Evolution for Pattern Recognition,” Ph.D.
thesis, Bengal Engineering College (DU), 2004.

[23] H. V. McIntosh, Linear Cellular Automata via de Bruijn Diagrams,
preprint, 1991.

[24] N. S. Maiti, S. Ghosh, B. K. Sikdar and P. Pal Chaudhuri, “Rule Vector
Graph (RVG) to Design Linear Time Algorithm for Identifying the
Invertibility of Periodic-Boundary Three Neighborhood Cellular
Automata,” Journal of Cellular Automata, 7(4), 2012 pp. 335–362.

Characterization of TACAs Using NSRTD 387

https://doi.org/10.25088/ComplexSystems.31.4.363

https://doi.org/10.1007/978-94-011-1691-6_21
https://doi.org/10.1007/3-540-45830-1_25
https://doi.org/10.1109/HPCSim.2013.6641433
https://doi.org/10.1016/j.entcs.2009.09.021
https://doi.org/10.1007/978-3-642-15979-4_32
https://doi.org/10.1016/j.mejo.2016.03.009
https://doi.org/10.25088/ComplexSystems.31.4.363

[25] N. S. Maiti, S. Ghosh, S. Munshi and P. Pal Chaudhuri, “Linear Time
Algorithm for Identifying the Invertibility of Null-Boundary Three
Neighborhood Cellular Automata,” Complex Systems, 19(1), 2010
pp. 89–113. doi:10.25088/ComplexSystems.19.1.89.

[26] S. Hazra and M. Dalui , “Synthesis of Single Length Cycle Two
Attractor CA Using NSRT Diagram,” in Proceedings of First Asian Sym-
posium on Cellular Automata Technology (ASCAT 2022), Howrah,
India (S. Das and G. J. Martinez, eds.), Singapore: Springer, 2022
pp. 235–246. doi:10.1007/978-981-19-0542-1_17.

388 S. Hazra and M. Dalui

Complex Systems, 31 © 2022

https://doi.org/10.25088/ComplexSystems.19.1.89
https://doi.org/10.1007/978-981-19-0542-1_17

