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Electroencephalography  (EEG)  as  an  example  of  electrophysiological
monitoring  methods  has  a  rather  long  history  of  successful  application
for  the  diagnosis  and  treatment  of  diseases,  and  this  success  would  not
have  been  possible  without  effective  methods  of  mathematical,  and
more  recently,  computer  analysis.  Most  of  these  methods  are  based  on
statistics. Among the methods of EEG analysis, there is a group of meth-
ods  that  use  different  versions  of  Shannon’s  entropy  estimation  as  a
“main component” and that do not differ significantly  from traditional
statistical approaches. Despite the external similarity,  another approach
is to use the Kolmogorov–Chaitin definition  of complexity and the con-
cepts  of  algorithmic  information  dynamics.  The  algorithmic  dynamics
toolbox  includes  techniques  (e.g.,  block  decomposition  method)  that
appear  to  be  applicable  to  EEG  analysis.  The  current  paper  is  an
attempt  to  use  the  block  decomposition  method  along  with  the  recent
addition  to  the  management  of  EEG  data  provided  by  machine  learn-
ing,  with  the  ultimate  goal  of  making  this  data  more  useful  to
researchers and medical practitioners. 
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Introduction1.

Electroencephalography  (EEG)  as  a  method  of  monitoring  electrical
activity  of  the  brain  has  been  successfully  used  for  over  one  hundred
years  [1].  In  a  clinical  setting,  EEG  refers  to  the  recording  of  the
brain’s  electrical  activity  over  a  period  of  time,  using  multiple  elec-
trodes  placed  on  the  scalp  or  implanted  in  the  brain  tissue,  the  latter
known as intracranial EEG (iEEG) [1, 2].  
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The  goals  of  using  EEG  as  a  monitoring  method  can  be  summa-
rized  as:  (a)  to  help  researchers  gain  a  better  understanding  of  the
brain; (b) to assist physicians in diagnosis and treatment choices; and
(c) to boost brain-computer interface (BCI) technology [3]. 

There are many ways to roughly categorize EEG analysis methods.
As shown in a survey article [2], most EEG analysis methods fall into
four  categories:  (i)  time  domain;  (ii)  frequency  domain;  (iii)  time-
frequency  domain;  and  (iv)  nonlinear  methods.  There  are  also  later
methods, including machine learning (ML). As for specific  mathemati-
cal  signal  analysis  methods,  there  is  a  multitude  of  approaches  in  all
of  the  domains  listed  above:  linear  prediction  (LP)  and  independent
component  analysis  (ICA),  fast  Fourier  transform  (FFT),  autoregres-
sive  (AR)  methods,  short-time  Fourier  transform  (STFT),  wavelet
transform (WT) and others.

Since the EEG signal is far from stationarity and may contain much
noise,  the  linear  methods  of  analysis  were  thought  not  to  be  the  best
choice,  at  least  in  some  situations.  Nonlinear  dynamical  analysis  has
been  a  powerful  approach  for  understanding  these  physiological  sig-
nals. It was observed that nonlinear dynamics theory would be a bet-
ter  approach  than  traditional  time  domain  and  frequency  domain
methods for analyzing and characterizing the EEG signals. The  collec-
tion  of  nonlinear  methods  also  looks  impressive:  higher-order  spectra
(HOS) techniques, phase space plot (PPS) methods, correlation dimen-
sion  (CD)  and  fractional  dimension  (FD)  methods,  largest  Lyapunov
exponent (LLE), entropy estimators and others. 

Among the nonlinear methods, there is a group of entropy estima-
tors  (e.g.,  spectral  entropy  (SEn),  approximate  entropy  (ApEn),  sam-
ple  entropy  (SampEn)).  Most  of  them  are  based  on  Shannon’s
entropy,  which is also presented as a measure of algorithmic complex-
ity (AC) [2, 4]. 

Recent  researchers,  however,  question  the  use  of  Shannon’s
entropy  as  the  best  (or  sometimes  even  appropriate)  estimation
for AC,  and the Kolmogorov–Chaitin definition  of AC  is used instead
[5–7]. 

The  current  paper  is  trying  to  combine  the  algorithmic  complexity
(by the Kolmogorov–Chaitin approach) as a metric and data represen-
tation method before data is fed to an ML algorithm. 

This  research  is  based  on  data  generated  by  the  epileptic  brain  as
well as a separate dataset from healthy individuals with a similar final
goal:  discriminating  between  interictal  and  preictal  EEG  clips  (in  the
case of epileptic subjects) or classifying healthy subjects depending on
their  abilities  concerning  certain  mental  activities  (e.g.,  arithmetic
counting). 
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Materials and Methods    2.

Data    2.1

There are two sets of data used in this study: the epileptic set [8]; and
the  non-epileptic/healthy  set  [9].  The  data  in  the  epileptic  set  is  pro-
vided  by  the  National  Institutes  of  Health,  the  Epilepsy  Foundation
and  the  American  Epilepsy  Society  for  the  international  competition
“American  Epilepsy  Society  Seizure  Prediction  Challenge,”  which
does  not  prohibit  the  use  of  the  data  for  education.  Its  goal  was  to
identify  the  best  model  for  discriminating  preictal  versus  interictal
(between seizures) iEEG clips. The competition was hosted on the Kag-
gle  platform  [8].  Intracranial  EEG  (iEEG)  was  recorded  from  five
dogs  with  naturally  occurring  epilepsy  and  two  humans  undergoing
iEEG  monitoring.  For  canine  subjects,  the  iEEG  signal  was  sampled
from  16  electrodes  at  400  Hz  and  voltages  were  referenced  to  the
group  average.  These  recordings  span  multiple  months  up  to  a  year
and  contain  up  to  100  seizures  in  some  dogs.  The  sample  rate  for
human  patients  was  5000  Hz  and  the  recorded  voltages  were  refer-
enced to an electrode outside the skull; the monitoring period was for
up to a week. For canine subjects, 16 channels were recorded, except
dog-5,  who  had  15  channels.  For  humans,  patient-1  and  patient-2
had  15  and  24  channels,  respectively.  The  data  is  organized  into  10-
minute-long  clips  of  preictal  and  interictal  activity.  Training  data  is
grouped  into  one-hour  sequences;  the  timing  of  the  test  clips  is
unknown.  The  preictal  period  starts  one  hour  prior  to  seizure  onset
with a five-minute horizon: from 1:05 to 0:05 before seizure.  

This dataset consists of a total of 8012 subsets, each one represent-
ing  a  10-minute  multichannel  EEG  recording  clip.  Out  of  this,  4077
are included in the training set (3766 as interictal and 311 as preictal
segments)  and  3935  sets  represent  the  test  set.  The  human  portion
consists of 128 and 345 subsets (as training and test, respectively). 

As described in the coming sections, the current research used data
from  dog-1  and  dog-2  and  one  of  the  humans.  The  ML  system  was
built  using  the  dog-2  set,  since  this  training  set  is  one  of  the  largest
and  most  balanced  sets  (i.e.,  interictal  (500)  samples  versus  preictal
(42) samples). 

The  non-epileptic/healthy  set  contains  EEG  recordings  of  36
healthy volunteers before and during the performance of mental arith-
metic  tasks.  The  arithmetic  task  was  the  serial  subtraction  of  two
numbers.  Each  trial  started  with  the  oral  communication  of  4-digit
(minuend)  and  2-digit  (subtrahend)  numbers  (e.g.,  3141  and  42).
More  details  concerning  this  set  are  presented  in  Section  3,  where
data processing steps are described. 
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Data Processing Techniques     2.2

A  central  role  in  data  processing  flow  is  attributed  to  the  estimation
of  algorithmic  (Kolmogorov–Chaitin)  complexity  performed  via  the
block  decomposition  method,  coming  from  the  field  of  algorithmic
information dynamics [5, 10].  

Of  primary  importance  here  is  the  definition  of  algorithmic
(Kolmogorov–Chaitin  or  program-size)  complexity  (Kolmogorov,
1965; Chaitin, 1969) [10]: 

KT(s)  min{p, T(p)  s}, (1)

that  is,  the  length  of  the  shortest  program  p  that  outputs  the  string  s

running on a universal Turing  machine T.  
Algorithmic  information  dynamics  (AID)  is  an  emerging  field  of

complexity  science  based  on  algorithmic  information  theory,  which
comprises the literature based on the concept of Kolmogorov–Chaitin
complexity and related concepts such as algorithmic probability,  com-
pression,  optimal  inference,  the  universal  distribution,  Levin’s  semi-
measure and others. 

AID strives to search for solutions to fundamental questions about
causality:  why  a  particular  set  of  circumstances  leads  to  a  particular
outcome. In this aspect it essentially differs from traditional statistics.
As an applied science, AID is a new type of discrete calculus based on
computer  programming  and  aimed  at  studying  causation  by  gener-
ating  mechanistic  models  to  help  find  first  principles  of  physical  phe-
nomena, building up the next generation of machine learning [11]. 

In the AID toolkit, there is a special tool for providing reliable esti-
mations  to  uncomputable  functions,  namely  the  online  algorithmic
complexity  calculator  (OACC)  [12],  which  provides  estimations  of
algorithmic complexity and algorithmic probability for short and long
strings  and  for  two-dimensional  arrays  better  than  any  other  tradi-
tional  tool,  none  of  which  can  capture  any  algorithmic  content
beyond  simple  statistical  patterns.  The  OACC  uses  the  BDM  method
[12], which is based upon algorithmic probability defined  by the cod-
ing theorem method (CTM) [13, 14]: 

BDM  

n1

n

CTM(blocki) + log2(blocki) (2)

The  OACC  is  available  as  an  online  version  [15]  as  well  as
standalone packages in R and a number of other languages, including
Wolfram  Language  [12],  and  it  is  used  for  calculations  throughout
this paper.  

Every  file  (subset)  in  the  original  data  is  a  .mat  file  describing  the
EEG  signal  voltage  variations  for  n  channels  for  a  10-minute  dura-
tion. The subset is unfolded and a matrix with columns representing n
channels/electrodes  and  rows  denoting  observations  of  EEG  signal
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variation over time corresponding to particular channels is generated.
The  resulting  matrix  is  split  into  a  number  of  1616  (or  1515,
depending  on  the  number  of  channels/electrodes)  matrices,  keeping
the  tie  with  the  electrodes  and  time.  These  small  matrices  are  bina-
rized  (using  the  BASCA  method,  Binarize  package  in  R).  The  BDM
value  for  every  such  matrix  is  calculated,  with  BDM  values  arranged
over the time axis, obtaining time series that describe BDM value vari-
ation  over  time.  Since  the  volume  of  data  BDM  value  is  to  be  calcu-
lated  on  is  large,  neither  online  nor  the  regular  standalone  version  of
the OACC  is suitable. For the purpose of this paper,  the “core”  of the
R  version  of  OACC  was  extracted  and  integrated  into  the  data  pro-
cessing  flow.  The  binarization  and  BDM  calculation  on  this  large
dataset are computationally expensive. To  address this, the EC 2 Ama-
zon Web  Service is being used. Taking  into account the sampling rate
of  400  Hz  and  the  dimension  of  a  small  matrix  (e.g.,  1616)
described earlier,  with every 10-minute subset there are 15000 matri-
ces generated (i.e., 400Hz * 600 seconds/16). Once the BDM value is
calculated,  it  can  be  plotted  along  the  time  axis  with  a  total  number
of  steps  equal  to  15 000,  which  represents  the  BDM  value  dynamics
over  time  for  a  particular  patient.  A  detailed  explanation  of  the  data
processing steps is present in [16]. 

Results    3.

Preliminaries    3.1

The  data  representing  the  original  EEG  signal  from  multiple  elec-
trodes  is  split  into  square  matrices,  keeping  the  ties  with  electrodes
and time, and a matrix BDM is calculated after binarization. The data
obtained this way resembles a time-series–like structure (or univariate
time  series)  with  the  x  axis  for  time  and  the  y  axis  for  BDM  value

(e.g., Figure 1).  
A  simple  visualization  can  provide  a  general  view  concerning  the

difference in BDM value trace of EEG segments coming from distinct
classes  (“interictal”  versus  “preictal”).  This  is  valid  only  for  typical
cases, while most segments cannot be classified based on simple visual-
ization.  In  this  way,  conventional  exploratory  data  analysis  does  not
provide too much information. 

Many  natural  processes  are  of  a  nonstationary  nature.  A  common
way  of  representing  them  is  through  time  series  [17],  which  will  also
be nonstationary in this case. A stationary time series is one whose sta-
tistical  properties  such  as  mean,  variance,  autocorrelation  and  others
are  all  constant  over  time.  The  processes  in  the  brain  represented  by
the  EEG  signal  are  considered  to  be  far  from  stationary,  and  accord-
ingly,  the EEG signals are treated as nonstationary time series. 
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(a) (b)

Figure 1. Time-series–like  BDM  value  over  time:  (a)  data  from  an  interictal
clip; and (b) data from a preictal clip.  

Time  series  consisting  of  BDM  value  over  time  (hereafter  denoted
as  BDM-TS),  calculated  based  on  EEG,  should  be  expected  to  inherit
the nonstationarity,  which can be checked by a number of methods. 

As  can  be  seen  in  Table  1,  there  are  ambiguities  between  the  ADF
and  KPSS  tests.  Without  going  into  detail,  we  can  assume  that  the
structure  of  the  BDM-TS  apparently  has  a  rather  complex  nature,
which can be difficult to capture using traditional analytical tools. 

Test  Test P-Value  Threshold P-Value  

ADF <0.01 0.05

KPSS from <0.01 to 0.1 0.05

Table 1. The  results  of  applying  augmented  Dickey–Fuller  (ADF)  and
Kwiatkowski–Phillips–Schmidt-Shin  (KPSS)  tests  to  1000  BDM-TS  based  on
the dog-2 test set. 

Most  statistical  forecasting  methods  are  based  on  the  assumption
that the time series can be rendered approximately stationary (i.e., sta-
tionarized) through the use of mathematical transformations. But one
of the shortcomings of this approach is that tools using the “stationa-
rizing”  and  similar  approaches  can  “erase”/skip  any  nonlinear  and
algorithmic  regularity  if  it  does  not  show  a  statistical  property.  This
may  be  especially  valid  when  applying  such  methods  to  BDM-TS  by
making the most important characteristics of BDM as a metric of non-
linearity and algorithmic complexity vanish. 

For  solving  the  task  of  classifying  the  BDM-TS,  a  number  of  tools
designed for time series analysis (e.g., dynamic time wrapping (DTW),
k-means  clustering  and  anomaly  detection)  were  applied.  As  one  of
the  most  promising,  the  text  analysis  (TA)  approach  was  selected.  It
includes  some  tools  and  procedures/algorithms  that  are  specially
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adapted for the purposes of this research. These methods were used as
separate exploratory tools and, finally,  as ways to generate features to
be fed to neural network (NN) models. 

The  current  research  is  limited  to  using  NN  models  [17]  for  ML
and up to a certain depth, three main types of neural networks (NNs)
were  used:  namely,  multilayer  perceptron  (MLP)  or  fully  connected
version,  convolutional  neural  networks  (CNNs)  and  recurrent  neural
networks  (RNNs),  the  last  mainly  as  the  long  short-term  memory
(LSTM) version. MLP is built on the H2O.ai  platform, and for CNN
and RNN the MXNet R package is used. 

Initial feeding of “raw”  BDM-TS to different types of networks for
a  binomial  classification  did  not  provide  satisfactory  results:  the  best
accuracy  (slightly  over  0.6)  was  with  MLP/H2O,  while  RNN-LSTM
refused  to  converge.  Although  it  provided  some  useful  insights/intu-
itions  for  further  work  (which  is  described  below),  this  “raw-data
approach” was not further developed. 

Initial Exploratory Data Analysis    3.2

Since  exploratory  data  analysis  (EDA)  is  critical  to  ML,  especially  in
terms  of  preparing  the  data  for  ML,  EDA  can  help  identify  the
preparatory steps.  

After the simple visualization of BDM-TS described in Section 3.1,
an  approach  to  continue  with  was  density  distribution  by  computing
BDM  density  estimates  for  BDM-TS  using  a  Gaussian  kernel  (base  R
density() function). The  datasets used for EDA  represent the BDM-TS
calculated  on  EEG  segments  of  10  minutes  duration  that  are  present
in the training sets (dog-1, dog-2 and patient-1) from the Kaggle com-
petition  [8].  These  sets  consist  of  preictal  and  interictal  subsets.  For
each  subset  and  in  some  cases  for  individual  segments,  simple  statis-
tics were calculated. 

Figure  2  shows  the  density  distribution  for  the  dog-2  training  set.
BDM was averaged for every time step. On the left plot, there can be
noticed  an  evident  shift  to  the  right  of  the  preictal  curve.  The  sets
used  for  estimations  and  presented  on  the  plot  consist  of  42  preictal
subsets (or full preictal set in the case of dog-2 subject) and 42 interic-
tal subsets randomly sampled out of 500 interictal segments (or from
the dog-2 full interictal set). 

But  visualizing  the  same  metric  for  a  pair  of  individual  segments
from  the  dog-2  training  set  (i.e.,  preictal  segment  0006  and  interictal
segment  0015)  reveals  an  opposite  direction  shift  (see  Figure  2(b)).
Thus, the simple mean BDM value seems to hardly bear any discrimi-
native  power.  On  the  other  hand,  this  does  not  exclude  the  existence
of nonlinear relations with discriminating properties in the data. 

In order to identify other features that can be of help for discrimi-
nating purpose, more complex approaches have been tried. 
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(a) (b)

Figure 2. BDM distribution for: (a) the entire dog-2 training set; and (b) sepa-
rate  segments/clips.  N  denotes  the  number  of  observations.  Bandwidth  is
selected automatically with the “nrd0” method.  

Encoding BDM Values over Time as  Images    3.3

This  approach  is  intended  for  two  purposes:  (a)  to  get  some  useful
details  concerning  “inner”  data  structure  that  may  be  of  help  for  the
discriminatory  task;  and  (b)  to  use  these  images  as  an  appropriate
form  of  data  representation  to  be  fed  to  a  CNN.  Two  methods  were
tried: recurrence plots and Gramian angular fields.  

A  recurrence  plot  (RP)  [18,  19]  is  a  technique  of  nonlinear  data
analysis  and  represents  a  visualization  of  a  square  matrix,  in  which
the matrix elements correspond to those times at which the state of a
dynamical system recurs. The  RP reveals all the times when the phase
space  trajectory  of  the  system  visits  roughly  the  same  area  in  the
phase  space.  Figure  3  presents  some  images  obtained  by  building  RP
based on BDM-TS. 

Figure 3. The  recurrence  plots  (RPs)  of  three  BDM-TSs  generated  based  on
three EEG clips from dog-2 set.  

Gramian angular fields (GAF) [20, 21] is another method of encod-
ing  time  series  as  images  with  the  aim  to  apply  convolutional  neural
networks (Figure 4). Using GAF,  a time series can be represented in a
polar  coordinate  system  instead  of  the  typical  Cartesian  coordinates.
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In  the  Gramian  matrix  on  which  GAF  is  based,  each  element  is  actu-
ally  the  cosine  of  the  summation  of  angles.  The  same  BDM-TSs  used
earlier are transformed using GAF.  As  can be noticed, there are some
similarities  between  the  corresponding  images,  the  GAF  method  con-
taining an additional “color” dimension. 

Figure 4. The  Gramian  angular  fields  for  three  BDM-TSs  generated  based  on
three EEG clips from dog-2 set.  

Both  methods  indicate  the  presence  of  highly  diverse  structures  in
the  data  based  on  the  texture  of  the  images:  from  poorly  correlated
stochastic data (single dots on RP left image above) to changing states
with transitions resembling laminar/recurrent states (vertical and hori-
zontal  lines  on  RP  image  in  the  middle)  and  abrupt  changes  (the
image on the right).

Text  Analysis Approach     3.4

This  section  describes  the  use  of  some  text  analysis  tools  that  proved
to be quite effective in solving the problem of finding  the possibilities
of using BDM-TS in the workflow  to achieve the specific  goal of clas-
sifying EEG segments into two groups: preictal versus interictal.  

The  first  step  in  applying  tidy  text  analysis  to  BDM-TS  consists  of
preparing the data to be accepted by the respective tools (e.g., R pack-
ages tidytext, tdyr,  stringr and topicmodels). This  includes converting
the  BDM-TS  to  a  specific  text  format.  For  this,  the  BDM  values  in
every  TS  were  converted  to  text  by  a  specially  designed  but  simple
function  that  converts  numbers  to  letters.  Since  the  BDM  values  are
doubles with a number of decimals, prior to conversion the BDM val-
ues were rounded to units. After  conversion, a flat  text file  containing
a  collection  of  words  corresponding  to  rounded  BDM  values  in  the
original file was generated, as shown in Figure 5(a). 

The  text  organized  in  this  way  is  tokenized,  cleaned  and  grouped
(into  interictal  and  preictal),  with  the  resulting  data  frame  in  the  for-
mat shown in Figure 5(b).
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Data  is  split  into  interictal  and  preictal  subsets  and  words/letters
are converted back to numbers, and as the next step, the correspond-
ing density plots are generated (Figures 6 and 7). 

(a) (b)

Figure 5. (a) A fragment of the original BDM-TS file  converted to text in case
of  dog-2  preictal  segment  0006:  dec  encodes  a  BDM  value  of  453,  cbi
encodes  329,  ddc  encodes  443  and  so  forth.  Total  word  count  equals  14985
(i.e.,  the  number  of  observations  in  this  time  series).  (b)  The  words  grouped
by  class  (i.e.,  eeg.intericatal/eeg.preictal).  The  head  and  tail  of  the  tibble  data
frame  are  shown.  The  “word”  column  contains  unique  BDM  values  con-
verted to words and the “n”  column shows the frequency of occurrence of the
corresponding word in the dataset.  

(a) (b)

Figure 6. Plots  representing  dog-2  BDM  unique  values  (after  conversion  of
words  to  numbers).  These  plots  show:  (a)  the  unique  values  occurrence  for
the interictal; and (b) preictal sets in dog-2.  
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(a) (b)

Figure 7.  Plots  representing  dog-2  and  dog-1  BDM  unique  values  (after  con-
version of words to numbers). Superposition of the previous plots (i.e., in Fig-
ure  6)  with  the  parts  that  differ  (and  can  be  used  to  infer  the  difference  that
would  count  for  discriminative  purpose),  marked  by  the  purple  dotted
frames: (a) dog-2; (b) dog-1.

Although for patient-1 the set of interictal and preictal segments is
much smaller than the sets in the cases of dog-1 and especially dog-2,
this  is  to  some  extent  compensated  by  higher  EEG  resolution  (5000
Hz versus 400 Hz) providing similar final  data volumes. On the origi-
nal  EEG  files  of  patient-1,  the  BDM  value  was  estimated  using  33
(1515)  matrices  conditioned  by  the  number  of  electrodes  (15  chan-
nels  versus  16  with  the  dogs).  The  resulting  BDM-TSs  were  aggre-
gated by summing every two cells/time step values. The plots for these
final  BDM-TSs  are  slightly  different  from  the  ones  for  the  dogs
(Figures 8 and 9). 

As  can  be  noticed  on  the  plots,  the  BDM  value  interval  that  can
serve  for  a  discriminating  purpose  is  the  one  starting  with  BDM
approximately 720 and higher,  denoted by the purple frame. 

(a) (b)

Figure 8. Plots  representing  patient-1  dataset  BDM  unique  values  (after  con-
version  of  words  to  numbers):  (a)  the  preictal  subset;  and  (b)  the  interictal
subset.  
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(a) (b)

Figure 9. Plots  representing  patient-1  dataset  BDM  unique  values  (after  con-
version  of  words  to  numbers.  (a)  The  superposition  of  previous  plots  (i.e.,  in
Figure  8),  with  the  purple  frame  denoting  the  difference  that  can  potentially
have discriminative value. (b) The BDM density distribution for the full set of
BDM  values  in  this  set  by  replicating  these  values  according  to  their  fre-
quency in the set.  

In fact, some of the plotting could be performed based on numeric
data, not necessarily converting original BDM-TS data to a letter/text
format  and  then  back  to  numeric.  But  text  mining  tools  (that  require
these  number-to-letter  transformations)  can  provide  some  additional
benefits  that can be of help in solving the discriminating/classification
task.  In  addition,  this  format  can  be  used  for  building  a  DL  model,
which is described in Section 3.5). 

Among  TA  tools,  there  is  latent  Dirichlet  allocation  (LDA),  which
is based on Dirichlet distribution and works as follows: 

It treats every collection of words (i.e., documents) as a mixture of
topics  and  every  topic  as  a  mixture  of  words.  This  allows  documents
to  “overlap”  each  other  in  terms  of  content,  rather  than  being  sepa-
rated into discrete groups, in a way that mirrors typical use of natural
language. LDA  is a mathematical method for estimating both of these
(i.e.,  mixture  of  topics  and  mixture  of  words)  at  the  same  time:  find-
ing the mixture of words that is associated with each topic, while also
determining  the  mixture  of  topics  that  describes  each  document.  In
our  case,  original  BDM-TS  files  converted  to  text  files  serve  as  docu-
ments and BDM values in them, converted to letters, as words. Using
the R package topicmodels, a model with two topics is generated. Dur-
ing  this  procedure,  the  per-topic-per-word  probabilities,  called  β,  can
be  extracted  from  the  model.  Figure  10  shows  the  top  30  terms,
which represent the unique BDM values included in each of these top-
ics, and we can see the most common words (which are the most com-
mon BDM values) for each topic. 

After converting these words back to numbers and plotting the dis-
tribution  of  the  top  100  BDM  values  for  each  topic,  we  get  the  plots
in Figures 11 and 12. 
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Figure 10. Top  30  terms  (BDM  unique  values).  These  are  terms  (i.e.,  BDM
values as “words”) that are most common within each topic.  

Figure 11. Topic  1 and topic 2 BDM unique values density distribution.  

With LDA  modeling, words (in our case BDM values as digits con-
verted  to  letters)  are  the  observable  variables,  and  the  other  variables
are latent variables. A sparse Dirichlet prior is used to model the topic-
word distribution, following the intuition that the probability distribu-
tion over words in a topic is skewed, so that only a small set of words
has high probability.  
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(a) (b)

Figure 12. (a)  The  superposition  of  the  plots  in  Figure  11.  Non-overlapping
parts  of  the  plots  represent  the  difference  between  these  plots.  (b)  The  same
superposition  with  a  larger  bandwidth  (15.74  versus  0.4),  which  makes  the
skewedness more obvious.  

The difference between interictal and preictal segments using topics
can  be  visualized  using  box  plots  (Figure  13),  and  although  the
extreme  BDM  values  are  not  accounted  for,  we  can  see  that  for  the
preictal set there is a unique situation when the highest priority words
of the topics are located far away from each other (red frames), while
with the interictal set, an overlap is present (green frame). 

Figure 13. The difference between topic 1 and topic 2 as box plots.  

A  reason  why  the  LDA  approach  works  may  be  the  similarity  in
the  inner  mechanics  of  this  approach  and  algorithmic  information
dynamics (AID): both give high priority to generative processes. In the
case  of  AID,  this  is  the  shortest  computer  program  that  can  generate
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the  object.  The  LDA  modeling  can  also  be  seen  as  a  generative  pro-
cess  whereby  the  documents  are  created,  so  that  we  may  infer,  or
reverse  engineer,  it.  Documents  are  represented  as  random  mixtures
over  latent  topics,  where  each  topic  is  characterized  by  a  distribution
over all the words. 

As  stated  earlier,  preictal  and  interictal  subsets  are  the  equivalents
of  groups  of  documents,  BDM  time  series  (based  on  EEG  segments)
represent  documents,  and  BDM  values  (where  digits  are  converted  to
letters)  are  the  equivalent  of  words.  Possible  three-element  permuta-
tions of 10 letters provide 1000 options, and adding two-element per-
mutations  (i.e.,  100),  we  get  a  total  of  1100.  In  fact,  permutations
that  start  with  “0”  can  be  excluded.  Since  the  lower  bound  for  a
BDM value for a 1616 matrix (e.g., an all-zero or all-one matrix) is
26.0067,  values  lower  than  this  can  also  be  excluded,  getting  964  as
the  final  number  of  permutations.  For  further  data  processing,  the
1100 version continues to be used. 

Final Version:  Features Generated by Text  Analysis Approach  

Fed to Neural Network/Multilayer  Perceptron     

3.5

The  dataset  provided  by  Kaggle  [8]  and  described  in  Section  2  is
highly  unbalanced.  For  example,  the  dog-2  dataset,  which  is  one  of
the  largest  among  training  sets,  contains  500  interictal  and  only  42
preictal segments. To  address this issue, the following new-data gener-
ation technique was used.  

Based  on  the  original  BDM  series,  new  ones  were  generated  by
adding  elementwise  to  the  value  of  the  original  BDM  values  a  ran-
domly  generated  number  in  the  interval  [-1, 1].  It  was  thought  that
these small changes would not distort the overall picture concerning a
separate time series. 

After  converting  BDM  values  from  digits  to  letters  and  generation
of text files, the final datasets to be used for ML consist of 500 interic-
tal  and  274  (of  which  232  are  replicas  of  the  original  TS  or  syntheti-
cally  generated)  preictal  segments.  The  preictal  and  interictal  subsets
are tokenized and a two-topic LDA  model generated according to the
procedure  described  in  the  previous  subsection.  Further  processing
would include estimation of the beta-spread matrix for every segment.
As  an  alternative,  we  could  consider  the  terms  that  had  the  greatest
difference in β between topic 1 and topic 2. 

This can be estimated based on the log ratio of the two: log2 β1 / β2

(a  log  ratio  is  useful  because  it  makes  the  difference  symmetrical:  β1
being  twice  as  large  leads  to  a  log  ratio  of  1,  while  β2  being  twice  as
large results in -1) [22]. 

To  constrain  it  to  a  set  of  especially  relevant  words,  we  can  filter
for relatively common words, such as those that have a β greater than
1/1000 in at least one topic. 
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A  general  view  of  such  a  matrix  is  presented  in  Table  2.  Theoreti-
cally,  the maximum number of rows in such a matrix will not exceed
1100  (i.e.,  the  maximum  length  of  the  dictionary).  In  practice,  the
number  of  words  (i.e.,  unique  BDM  values  converted  to  words)  in  a
particular  file  (i.e.,  BDM-TS  as  text)  ranges  from  400  to  500  (or
vocabulary length). For further research, a matrix template was gener-
ated with 1100 rows and two columns (the first  column for the word
and the second for the beta log ratio of this word). 

A  schematic  view  over  data  preprocessing  steps  is  presented  in
Figure 14. 

Word  Beta Log Ratio

... ...

bcg -0.02116

bch 0

... ...

czh 0

czi -1.28421

daa -3.24629

dab 0.41629

... ...

Table 2. The  beta  log  ratio  matrix  (a  fragment).  Zeros  denote  BDM  unique
values (as words) not present in the file that is analyzed.  

Figure 14. Data  preprocessing  steps:  A,  original/numeric  BDM-TS;  B,  BDM-
TS converted to words; C, vocabulary; D, dictionary,  consisting of 1100 possi-
ble words. The  resulting array has 1100 cells, and the cells for the words that
are missing in the respective BDM-TS (gray color) are filled with zeros.  
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While  generating  LDA  topics,  the  number  of  top  terms  in  a  topic
was  also  set  to  the  maximum  value  of  1100.  Each  matrix  generated
from  a  particular  segment  is  mapped  against  this  template,  and  the
beta  log  ratio  for  the  words  existing  in  this  segment  is  placed  in  the
corresponding cells in the second column. For a missing word, the cor-
responding cell is filled with zeros. 

Such matrices are generated for the preictal and interictal data sub-
sets. Subsequently they are fed to NN as the training set, out of which
20 percent of data is reserved for validation. 

The NN type used for this part of research is an MLP built on the
H2O.ai  platform.  As  the  first  step,  the  autoML  approach  is  used.
Based  on  the  results,  the  first  few  models  are  then  used  for  a  grid
search.  After  some  parameter  tuning,  the  best  few  models  are  trained
based on an autoencoder built on a test dataset. The  best models can
finally be used for prediction. Table  3 presents an example of a confu-
sion matrix of one of the models. 

Using  the  preprocessing  steps  described  earlier  and  feeding  data  to
MLP,  the results shown in Table  4 were obtained. 

 0 1 Error Rate

0 311 79 0.202564  79 / 39

1 17 287 0.55921  17 / 304

Totals  328 366 0.138329  96 / 694

Table 3. An  example  of  confusion  matrix  (vertical:  actual;  across:  predicted)
for F1-optimal threshold.  

NN Type  Architecture Data (EEG) Perform (AUC)

4 layers total, Training  

Multilayer 2 hidden layers 500 interictal 0.936 

Perceptron with 50 units, 274 preictal Validation  

(MLP) Rectifier With- 1000 test 0.937 

Dropout 0.5/0.5 (autoencoder) 5-fold CV  

Output Softmax 0.874 

Table 4. Results  of  building  MLPs  that  are  fed  with  pre-processed  BDM-TS
data. AUC—area under the curve. 

Exploring and Processing Non-epileptic Data    3.6

The datasets used here are available at [9].  

In this experiment, all subjects are divided into two groups: 

◼ Group  G  (or  good-counters)—performing  good  quality  count  (mean
number of operations per 4 minutes  21, SD  7.4). 
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◼ Group B (or bad-counters)—performing bad quality count (mean num-
ber of operations per 4 minutes  7, SD  3.6). 

Since  datasets  are  unbalanced  (i.e.,  more  subjects  in  group  G)  two
equal-size  groups  of  10  subjects  each  were  created  by  random  sam-
pling.  After  estimating  BDM  values  for  every  file  (pretest  and  during
the  test),  the  BDM  value  density  distribution  was  estimated  on  mean
per time step BDM values for each group (Figure 15) and both groups
(Figure 16). 

(a) (b)

Figure 15. (a)  BDM  value  distribution  (pretest  versus  during  the  test)  for  the
good-counters  group.  A  shift  of  mean  BDM  to  the  right  (or  increased  com-
plexity)  can  be  seen  while  performing  the  task.  (b)  BDM  value  distribution
for the bad-counters group. The curves look quite similar.   

Figure 16. The  BDM  value  distribution  for  both  groups  (i.e.,  good  and  bad
counters).  

A  shift  of  complexity  (by  BDM)  toward  increased  complexity  can
be  noticed  in  the  good-counters  group  (G-group)  when  performing
the  arithmetic  task.  In  the  bad-counters  group  (B-group),  such  a  shift
is almost missing. Analyzing  the combined plot, it looks like there are
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noticeable  changes  in  complexity  within  the  G-group,  while  the  B-
group always shows a high complexity,  comparable with the complex-
ity of the G-group during the test. 

The  dataset  generated  by  this  research  consists  of  108  pretest  sub-
sets  and  36  during  the  test  subsets,  which  is  of  a  too-limited  volume
for building an ML model. This  was addressed by splitting every sub-
set  into  four  segments,  with  a  resulting  segment  representing  15  sec-
onds  of  the  original  EEG.  On  these  short  segments,  BDM  value  was
calculated  and  respective  BDM-TSs  generated.  These  final  BDM-TSs
have  been  converted  to  images,  applying  the  GAF  method.  At  this
stage,  the  potential  training  set  consisted  of  142  images  (one  of  the
original  subsets  was  excluded  because  of  the  nonstandard,  i.e.,  less
than 1-minute duration of the EEG record). 

For  a  further  increase  in  the  number  of  images  in  the  training  set,
the  minimal  information  loss  sparsification  (MILS)  algorithm  [12]
was used (Figure 17). This algorithm is one of the most recent tools in
the  AID  field,  designed  to  maximally  preserve  computable  elements
that  contribute  to  the  algorithmic  information  content  of  the  data.
Along  with  generating  additional  images  for  the  training  set,  MILS
also  leads  to  data  dimensionality  reduction,  which  may  be  important
when dealing with large datasets used for building ML models. 

Figure 17. MILS  applied  to  an  image  from  the  pretest  set:  on  the  left—origi-
nal image, to the right—resulting images after applying MILS with number of
reduced rows as follows: 5, 10, 20, 50 rows. Respective dimensionality reduc-
tion is: 46.2 KB (original image), 17.7 KB, 17.1 KB, 15.9 KB and 12.2 KB.

For  the  purpose  of  this  research,  the  core  of  MILS  was  extracted
from  the  R  version  available  on  GitHub  [23]  and  integrated  into  the
data  processing  pipeline.  Using  MILS,  the  final  training  set  was
upgraded  to  808  images  (i.e.,  600  images  in  the  pretest  subset  and
208 images in the during the test subset). This includes the original set
and a few rounds of MILS with the number of rows by which the orig-
inal image is reduced equivalent to 5, 10 and 20. 

The  training  set  was  used  to  train  a  CNN  model  with  a  simple
architecture  that  is  close  to  an  early  version  of  LeNet  proposed  by
Y. LeCun  [24]  with  small  adjustments  suggested  by  [20].  Figure  18
presents this architecture.
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Figure 18. CNN  architecture:  Conv-1  is  the  first  convolution  layer  with  a

55  kernel,  20  filters  and  tanh  activation  function;  Max_Pooling_1—first

pooling layer with max pooling function, 22 kernel and 22 stride. Conv-2

is the second convolution layer with a 55 kernel, 50 filters  and tanh activa-
tion  function;  Max_Pooling_2—second  pooling  layer  with  maximum  pooling

function,  22  kernel  and  22  stride;  fully  connected—consists  of  two  fully
connected layers with 500 units and tanh activation in the first  layer and two
units for the output with softmax activation.  

The validation accuracy achieved with this model was 0.79, which
is quite low.  It can be eventually increased by adjusting the kernel size
or  the  number  of  filters,  enlarging  the  volume  of  the  training  set  and
so  on.  Thus,  the  results  in  this  paper  are  a  preliminary  lower  bound
on the potential best performance. 

Since  the  scope  of  this  research  was  to  check  the  possibility  of
using  NN  for  a  BDM-TS  classification  task  in  principle,  obtaining  a
state-of-the-art model is left for further research. 

Limitations    3.7

Limitations to this research can be conventionally divided into several
groups, the most relevant being connected with:  

◼ Conceptual  aspects  (or  using  traditional  statistical  methods  for  tasks
where algorithmic aspects are of primary importance)

◼ Data (i.e., data format, volume, etc.) 

◼ Technical  details

An important aspect to take care of when using tools based on sta-
tistical properties is the poor ability of these tools to preserve algorith-
mic  information  while  processing  the  data.  This  is  described  in  more
detail in [5, 16]. 

Depending  on  the  method  that  is  used  to  transform  the  data,  its
intermediary  and  final  format  are  different  (e.g.,  time  series,  arrays
and images) and can bear the shortcomings as well as the advantages
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of the respective methods. This  research uses combinations of statisti-
cal  and  algorithmic  tools,  and  it  may  be  difficult  to  monitor  the
dynamics of their mutual influence.  This is especially valid when feed-
ing  data  that  is  originally  of  an  algorithmic  nature  (i.e.,  BDM-TS)  to
ML models (which are mostly based on statistical principles). 

A  serious  limitation  is  the  volume  of  data,  especially  their  non-
epileptic  portion  and  especially  for  building  ML  models.  New  data
generation techniques address this issue only partially.  

Technical  limitations generally relate to a specific  NN architecture/
model.  An  example  of  technical  details  that  depend  on  the  tools  that
are  used  in  this  research  would  be  text  mining  tools:  one  of  the  steps
in  text  data  processing  is  removing  stopwords  (stopwords  are  words
you  do  not  want  to  track,  like  “he,”  “hi”  or  “e.g.”).  In  a  BDM-TS,
after  conversion  to  words  such  words  may  be  present  (e.g.,  the  word
“big”  that  encodes  BDM    297  in  the  dog-2  set  is  present  1485
times).  Using  a  regular  approach,  these  words  are  removed  and  this
will distort the picture. 

Conclusion and Final Notes    4.

A  number  of  tools  used  in  this  research  are  of  a  statistical  nature.
Many  of  these  tools  are  based  on  statistical  properties  (e.g.,  statisti-
cally driven pattern recognition), and with them there is a risk of miss-
ing  any  nonlinear  and  algorithmic  regularity  if  it  does  not  show  a
statistical  property  [12].  Because  of  this,  applying  such  methods  to
BDM  value  over  time  (BDM-TS)  is  probably  not  the  best  idea  and
should be performed with the required amount of care.  

There  are  tools  of  a  more  or  less  pure  algorithmic  information
dynamics  (AID)  nature  (e.g.,  minimal  information  loss  sparsification
(MILS)  [23,  24]  and  online  algorithmic  complexity  calculator
(OACC)  [15]),  but  the  set  of  such  tools  is  of  a  still-limited  size.  In
many  instances,  the  current  research  was  an  attempt  at  using  avail-
able  tools  (including  the  ones  appropriate  for  time  series  analysis)  to
get  some  intuition  concerning  the  dynamics  of  the  complexity  of  an
object of interest, which in this framework is the brain, and try using
the result to infer some conclusions. 

One  of  the  behind-the-scene  concepts  for  this  research  is  the  con-
cept  of  spikes  and  sharp  waves  as  forerunners  of  an  epileptic  state
(i.e., preictal period). Once present on electroencephalography (EEG),
we can expect they should be captured by BDM-TS generated by this
EEG  as  well.  Taking  into  account  that  the  duration  of  a  spike  is
approximately 80 milliseconds and of a sharp wave 200 milliseconds,
and the time step of the BDM-TS for the dog subjects (with EEG reso-
lution  of  400  Hz)  is  25  milliseconds,  there  is  a  chance  for  spikes  and
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sharp  waves  to  be  present  on  BDM-TS  as  distinct  events.  For  the
human subjects, where the EEG resolution in this dataset is 5000 Hz,
the  BDM-TS  is  much  more  fine-grained,  with  duration  of  the  time
step  of  only  2  milliseconds;  the  chance  for  detecting  such  events  of
interest might be higher.

For  an  eventual  clinical  application,  the  machine  learning  (ML)
models  described  here  evidently  need  further  refinement,  but  some
aspects  concerning  BDM-TS  revealed  by  this  research  can  pave  the
way  for  doing  this  as  well  as  serve  as  possible  avenues  for  future
research. 

This  paper  is  mostly  focused  on  what  can  be  done  and  presents
some  ways  to  do  it.  The  question  of  how  it  works  is  mostly  beyond
the  scope  of  the  research  and  can  serve  as  quite  a  captivating
exploratory field for future projects. 

And  finally,  we  would  like  to  believe  that  the  results  of  this
research  give  some  insights  and  contour  some  directions  in  using
BDM  in  particular  and  AID  concepts  and  tools  in  general  for  more
knowledgeable decision-making in a clinical and paraclinical setting. 

To  demonstrate the main steps of data processing, including classi-
fying  a  certain  clip  from  the  dog-2  set  (i.e.,  interictal  or  preictal),  a
Shiny application was built, described in the Appendix. 

AppendixA.

The  algorithmic  complexity  (by  BDM)  EEG  Analyzer  is  available  at
viapascurta.shinyapps.io/ISAAC_EEG_1_2_2. 

This  is  a  demo  Shiny  (R)  application  for  the  analysis  of  an  EEG
clip,  including  estimation  of  its  algorithmic  (Kolmogorov)  complexity
by  BDM.  The  application  is  built  using  concepts  and  tools  described
in the current paper.  

The application accepts EEG clips as .mat files provided by the Kag-
gle  competition  [8]  form,  where  such  a  file  can  be  downloaded  after
registration. A sample file to play with is available at
www.dropbox.com/s/ou6bcjk4rkcenbd/Dog_2_interictal_segment_
0003.mat?dl0. 

The  first  step  in  running  the  application  is  importing/loading  the
file  (it should be on the user's computer). By clicking the “Convert  to
csv” button, the file is converted to .csv,  and it should be saved on the
user’s  computer.  Then the .csv file is loaded and a number of possibili-
ties  become  available:  (a)  displaying  the  16-channel  EEG  for  a
selected subsegment; (b) separately visualizing any of the 16 channels;
(c)  calculating  and  displaying  the  BDM-TS  for  the  selected  subseg-
ment; and (d) applying text analysis tools for displaying the first  seven
beta log ratios for the respective subsegments. 
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Figure A.1. The GUI of the algorithmic complexity EEG analyzer.

And  finally,  the  classification  task  can  be  performed  by  selecting  a
sample  for  classification.  The  application  randomly  selects  a  sample
out  of  258  preprocessed  samples.  The  result  will  be  shown  on  the
main panel under “Prediction  results” after clicking the “Classify  seg-
ment” button. 
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