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We  investigate how the activation function can be used to describe neu-
ral firing  in an abstract way,  and in turn, why it works well in artificial
neural networks. We  discuss how a spike in a biological neuron belongs
to  a  particular  universality  class  of  phase  transitions  in  statistical
physics.  We  then  show  that  the  artificial  neuron  is,  mathematically,  a
mean-field  model  of  biological  neural  membrane  dynamics,  which
arises  from  modeling  spiking  as  a  phase  transition.  This  allows  us  to
treat selective neural firing  in an abstract way and formalize the role of
the  activation  function  in  perceptron  learning.  The  resultant  statistical
physical  model  allows  us  to  recover  the  expressions  for  some  known
activation  functions  as  various  special  cases.  Along  with  deriving  this
model  and  specifying  the  analogous  neural  case,  we  analyze  the  phase
transition  to  understand  the  physics  of  neural  network  learning.
Together,  it  is  shown  that  there  is  not  only  a  biological  meaning  but  a
physical justification  for the emergence and performance of typical acti-
vation functions; implications for neural learning and inference are also
discussed. 
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Introduction1.

The perceptron learning algorithm, developed by McCulloch and Pitts
in  1943,  is  one  of  the earliest  applications  of  biological  principles  for
computation  to  mathematics  or  to  machines  [1].  A  simple  model,  the
perceptron consists of a single logic gate and is only capable of classi-
fication  using  linearly  separable  functions,  like  AND  and  OR.
Nonetheless,  recent  algorithms  have  deviated  only  slightly  from  the
original  developments  by  McCulloch  and  Pitts;  in  many  cases,  these
simply  stack  perceptrons  or  add  features  onto  the  original  algorithm,
such  as  in  deep  neural  networks  or  convolutional  neural  networks.
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Clearly,  the  contribution  of  the  single-layer  perceptron  remains
relevant today.

Somewhat anomalous in the perceptron, and indeed in further mod-
els,  is  the  critical  importance  of  the  activation  function.  McCulloch
and  Pitts  recognized  that  neural  firing  occurs  in  an  all-or-none  fash-
ion,  and  that  any  function  with  a  rapid  transition  between  two  end
behaviors  would  suffice  to  describe  this  phenomenon  [2].  The  same
argument was later presented at the level of neural populations in [3],
by showing that for a realistic distribution of single neuron activation,
the  ensemble  activity  necessarily  looks  like  a  sigmoid  function.  In
other words, a specific  class of functions is generally used for an acti-
vation  function,  which  can  be  described  as  discontinuous  or  nearly
discontinuous at a “switching  point,”  vertically asymmetric about this
point and bounded from below.  Concrete examples include the Heavi-
side function originally used by McCulloch and Pitts, and Wilson  and
Cowan’s  sigmoid  function.  Interestingly,  a  class  of  activation  func-
tions  that  are  bounded  from  below  but  exhibit  asymptotically  linear
behavior  for  inputs  greater  than  a  critical  threshold,  such  as  ReLU,
ELU,  Mish  and  Swish,  has  been  experimentally  evaluated  as  provid-
ing the best performance for a large number of network architectures
and  tests  [4–6].  Much  like  the  Heaviside  activation  function,  how-
ever,  these  functions  are  justified  by  their  performance  and  are  given
heuristically.  

While the use of an activation function is and has been justified  by
the biological facts, and its success is obvious, it is still assembled pri-
marily  phenomenologically.  The  activation  function  was  certainly
integral  to  the  application  of  neural  networks  as  logical  devices  that
classify  nonbinary  variables—but  the  precise  mechanism  that  justifies
these  functions’  role  in  inference  and  the  physiological  relevance  of
this  function  both  remain  unclear.  Most  proofs  of  the  previous  state-
ment  also  yield  little  insight  into  the  relevance  of  the  activation  func-
tion  and  especially  of  the  specific  shape  elaborated  on  earlier.  These
proofs often rely on what could be summarized as the power of non-
linearity, which allows the approximation of nonlinear or nonpolyno-
mial  functions.  Consider  that  data-generating  processes  are  governed
by  a  dynamical  system,  which  could  be  a  high-dimensional  stochastic
system or partial differential equation, the solutions to which are typi-
cally  nonlinear  or  nonpolynomial  in  character.  Then  the  necessity  of
such  a  function  becomes  clear.  In  greater  detail,  a  theorem  offered  in
[7]  states  that  the  set  of  possible  neural  network  configurations    is
dense  in  the  space  of  continuous  real-valued  functions,  or  that  any
real-valued  function  is  contained  in  or  is  a  limit  point  of   ,  if  and
only  if  the  activation  function  on    is  nonpolynomial.  In  other
words,  given  arbitrary  width  and  depth,  the  property  of  being  a
“universal approximator” is precisely that of having a nonpolynomial
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activation  function.  Still,  this  proof  leads  to  little  insight  about  the
biological  plausibility  of  or  physical  motivation  for  the  specific  func-
tions used. 

To  understand  how  activation  functions  arise  in  artificial  neural
networks and how they are connected to the fundamentals of biologi-
cally  inspired  computation,  we  employ  a  model  from  statistical
mechanics  called  the  Ising  model.  The  Ising  model  was  devised  by
Wilhelm  Lenz  and  Ernst  Ising  in  the  1920s  to  describe  magnetism  in
metals  and  the  loss  of  magnetization  when  magnets  are  heated  [8].
The  Ising  model  is  a  model  of  the  atomic  structure  of  a  metal,  where
the nuclei of metallic atoms are defined  with a property called “spin,”
pointed either up or down. When all spins are positively aligned or all
lattice  sites  take  values  of  +1,  the  system  is  magnetized.  Like  many
systems  in  nature,  it  exhibits  a  phase  transition  at  a  critical  tempera-
ture, in which the magnetization of a cooled metal is lost above a criti-
cal  temperature  or  regained  when  cooled.  In  fact,  many  other  phase
transitions  can  be  proven  to  take  characteristics  of  this  one—phase
transitions lie in one of a few universality  classes, meaning they show
the  same  characteristics  no  matter  what  the  underlying  dynamics  are.
The  Ising  universality  class  contains  such  different  phenomena  as  the
liquid-gas  critical  point  and  the  behavior  of  strings  in  string  theory
[9, 10].  Similar  to  this  class  of  behavior,  a  neural  spike  is  a  sort  of
transition  where,  once  past  a  critical  point  (a  threshold  potential),  a
spike  is  initiated,  and  the  system  goes  from  disordered  uptake
(random  diffusion  of  ions  across  the  membrane)  to  ordered  uptake

(uptake of Na+  and other positive ions to initiate depolarization). We
will use this correspondence to model the spiking behavior of the neu-
ral  cell  as  an  Ising  model  with  an  appropriate  phase  transition.  In  so
doing,  we  recover  expressions  for  both  the  hyperbolic  tangent  and
unbounded-above linear activation function. This shows that an artifi-
cial  neural  network  must  be  equipped  with  such  an  activation  func-
tion  if  it  is  to  be  a  meaningful  approximation  of  a  biological  neural
network, offering a new take on the manner in which activation func-
tions lead to neural computation. 

Main Results2.

Modeling Neural Dynamics 2.1

Neural  spikes  are  both  a  regular  phenomenon  and  a  highly  complex,
nonequilibrium process. As an example of self-organization, neural fir-
ing  emerges  from  complex  but  quantifiable  dynamics,  here  involving
ionic  equilibria  and  membrane  selectivity  [11].  The  neuron  is
surrounded  by  ions  in  its  extracellular  fluid,  meaning  it  is  subject  to
diffusion of these ions across its cell membrane through ion channels.
It  maintains  a  negative  resting  potential  of  around  -70  mV,  which
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requires  active  transport  of  positive  Na+  ions  out  of  the  cell.  This
results  in  a  persistent  concentration  gradient,  which  is  precisely  what
allows a spike to occur.  When  a critical voltage is reached, previously

closed  voltage-gated  ion  channels  open.  The  positive  Na+  ions  flow
along  this  concentration  gradient  through  these  now-open  channels,
leading to an upward spike in voltage.

We  have  simplified  this  model  of  neural  dynamics  to  be  a  station-
ary  process  coupled  to  a  bath.  We  can  then  approximate  the  system
as  being  in  a  local  equilibrium,  meaning  we  can  use  a  simple  equilib-
rium Ising model to describe the system. Consider a particular formu-
lation of the Ising model coupled to a thermal bath, which undergoes
a  rapid  quench  and  magnetizes  in  response  to  this  sudden  cooling.
When the quench is removed, the Ising model heats up again. For peri-
odic  quenching,  the  dynamics  themselves  will  be  periodic,  but  will

obey  the  typical  h  0  transition  in  magnetization.  The  phases
induced  by  the  quench  can  thus  be  made  distinct,  for  example,  alter-
nating  disordered  phases  with  thermal  fluctuations  and  ordered
phases  with  positive  magnetization.  This  provides  a  model  of  neural
dynamics  in  which  the  crucial  simplification  in  the  model  is  ignoring
the  source  of  the  external  quench,  thereby  restricting  us  to  only  local
(intracellular) interactions within the system. There  is no consequence
to the validity of our model, since firing  is the organization of channel
dynamics within the cell. 

The Ising Case for Neural Firing 2.2

As  stated,  both  systems  are  capable  of  exhibiting  two  differently
stereotyped  dynamics,  or  “phases.”  In  the  Ising  model,  one  is  a  high-
temperature paramagnetic phase, where the spins in the model are dis-
organized  and  unaligned,  weakly  correlated  with  one  another  and
subject  to  random  fluctuations.  The  magnetization  m,  or  average
spin,  is  zero  in  this  case;  this  is  a  result  of  the  random  configuration
of  spins,  such  that  approximately  half  of  the  spins  should  be  occupy-
ing states -1 and half occupying +1, for m  〈s〉  0.

We  also observe a ferromagnetic phase in which the spins are orga-
nized and aligned in one direction. Here, m is either -1 or +1, which
correspond  to  anti-ferromagnetism  and  ferromagnetism,  respectively.
A  quench  is  a  decrease  in  thermal  energy,  which  causes  the  spins  to
align  with  each  other  so  that  the  model  occupies  a  low  energy  state
and  m  〈s〉  1.  We  will  see  that  the  energy  in  the  Ising  model
depends  on  the  interactions  between  spins.  As  such,  to  get  the  total
energy,  we take the negative sum of spin states over all pairs of neigh-
bors.  Clearly,  when  pairs  of  neighboring  spins  are  aligned  in  the
positive direction, such that the sum of n spin pairs is -n, the energy
is  at  a  minimum.  The  converse  is  also  true:  when  the  energy  in  the
system  decreases,  spins  will  align  and  take  a  lower  energy
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configuration to satisfy this. The  final  state, -1 or +1, is “chosen”  as
the  magnet  cools  toward  the  critical  temperature,  according  to  the
boundary condition of the model. 

We  consider  the  neural  membrane  a  two-dimensional  lattice  of
channels  wrapped  around  a  cell  body.  The  transition  from  order  to
disorder  and  subsequent  ensemble  action  in  spiking  are  now  that  of
the  Ising  model.  It  is  well  known  that  a  threshold  potential  exists,  in
which  a  neuron  exhibits  sudden  spiking  in  response  to  a  critical  level
of  stimulation.  In  this  case,  the  state  of  the  neuron—the  voltage—is
the negative of Ising temperature, and as voltage increases toward the
threshold,  temperature  decreases  toward  a  critical  temperature  Tc.  In
this  case,  the  adaptation  of  the  standard  Ising  model  applies  well.
While it is coupled to a thermal bath that increases its temperature, it
remains  disordered  due  to  high  energy  fluctuations.  Similarly,  at  rest,
the  neuron  occupies  a  highly  entropic  and  thus  high  energy  state,
given the open and closed channels in the membrane; it is also subject
to fluctuations  that destroy order in the system as a result of constant
diffusion  and  pump  dynamics.  Together,  the  two  maintain  a  disor-
dered resting state, and along with the highly entropic channel states,
a spike is impossible without cooling. 

We  will  treat  events  discretely,  as  a  single  spike  in  response  to  an
input.  We  will  also  consider  the  neuron  as  being  in  disequilibrium
with its surroundings, with occasional field  interactions. As stated, for
modeling purposes, we simplify this as a local input effect. In the neu-
ral  case,  cooling  comes  in  the  form  of  the  summation  of  inputs  from
other neurons in the network. This  plays the role of a quench, in that
it moves the system’s state toward order.  

The Transition to Magnetization2.3

To  connect  macroscopic  observables  to  microscopic  state  variables,
we often rely on formalisms from statistical mechanics. One such tech-
nique  used  in  study  of  phase  transitions  is  a  particular  type  of  coarse
graining  called  mean-field  theory  (MFT),  which  formulates  a  model
of  the  macroscopic-level  change  that  results  from  certain  microscopic
changes.  MFT  is  quantitatively  incorrect  in  two  dimensions  and  is
only an approximation; nonetheless, for both computational and ped-
agogical  reasons,  we  will  demonstrate  this  using  the  mean-field
approach.

Here, we will briefly  state the derivation for the phase transition in
the Ising model. A spin lattice in zero field is described by its Hamilto-

nian H


 in the following way: 

H

 -J

i, j

sisj,
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with  sn ∈ {-1, 1}.  H


 gives  the  total  energy  of  the  system,  which  in
turn  gives  its  dynamics,  as  the  sum  over  all  neighboring  spins.  In  our
analogous neural model, a spin is a channel state, which at any time t

either contains an Na+ ion or does not.
MFT  assumes  that  at  large  length  scales,  a  system  converges  to  its

average  dynamics,  with  only  large  fluctuations  playing  a  role  in  the
dynamics  of  the  system.  We  use  this  to  coarse-grain  the  model  by
removing  second-order  fluctuations,  which  are  assumed  to  be  vanish-

ingly small. The local interaction term in H


 is 

sisj  (〈si〉 +σsi)sj +σsj,

which  is  a  product  of  two  variables  under  the  influence  of  a  random
displacement.  We  assert  that  in  this  system,  the  spins  tend  toward  a
similar  mean  and  fluctuations  necessarily  decrease;  therefore,  in
describing  the  dynamics  leading  to  an  ordered  transition,  we  may
assume the fluctuations  become small. This means that we can rewrite
sisj as the following:

〈si〉sj + sjσsi + 〈si〉σsj +σsiσsj.

Since  we  have  assumed  the  fluctuations  are  small,  the  final  term  will
vanish.  If  we  use  this  and  an  expansion  of  the  random  displacement
into a fluctuation about a mean, this becomes

sisj ≈ 〈si〉sj + sj(si - 〈si〉) + 〈si〉sj - sj.

We  also  use  the  fact  that  as  the  phase  transitions,  the  average  spin
value  〈sn〉  will  approach  a  magnetization  value  m,  corresponding  to
the  organization  of  spins  needed  to  produce  magnetization.  Then,  we

can rewrite H


 as

-J
i, j

msi + sj -m
2,

replacing  spins  with  the  mean  field  m.  If  we  take  spin  states  as  being
highly  correlated,  then  the  i’s  and  j’s  become  equal;  in  that  case,  the

sum over neighbors will reduce to the number of connections, half the
number of neighbors z, across all sites in the lattice. This  gives a scal-
ing factor of z / 2:

-
zJ

2


i1

N

2msi -m
2.
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We can further simplify to

H

MF  -zJm

i1

N

si +
NzJm2

2

by distributing the scaling factor into the sum.

This  mean-field  Hamiltonian  describes  what  the  total  energy  looks
like  at  a  phase  transition,  at  a  coarse  scale.  It  does  not,  however,
describe the transition itself. To  achieve this, we will need a partition
function,  which  uses  a  Hamiltonian  to  describe  the  statistical  proper-
ties  of  a  system,  giving  us  crucial  information  about  the  system’s

dynamics. Using H

MF with the canonical partition function yields 

Z  e-βH

MF,

where  β  is  a  particular  thermodynamical  quantity,  (kBT)
-1.  Expand-

ing the site-wise partition function and using some trigonometric iden-
tities, we have

Z  e-β
NzJm2

2 2 cosh(βzJm)N.

Finally,  to  find  our  magnetization  m,  we  must  minimize  the  free

energy of the system with respect to m. Using F  -(βN)-1ln{Z},

F 
1

2
zJm2 -

1

β
ln{2 cosh(βzJm)}.

The m that minimizes this free energy,  by solving ∂F / ∂m  0, is

m  tanh
zJm

kBT
,

where  we  have  used  the  previous  definition  of  the  thermodynamic

beta. If we define the critical temperature as Tc  zJ / kB, then this sim-
plifies to

m  tanh
Tcm

T
, (1)

the plot of which is contained in Figure 1.

Immediately  we  observe  a  hyperbolic  tangent  function  arise  in  this
mean-field model. The curve bifurcates at the critical value of T, show-
ing  the  two  possible  magnetized  states.  We  clearly  see  either  m  -1
or  m  1,  given  by  the  ends  of  equation  (1).  We  disregard  the  zero
solution at T < Tc as energetically unfavorable. 
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Figure 1. Mean-field  magnetization  m  as  a  function  of  temperature.  A  phase

transition is evident in the graph of equation (1) at T  Tc  (here set such that

Tc  1), where magnetization becomes nonzero.

Note  that  this  tanh  curve  is  a  different  sort  of  activation  function;
rather than determining magnetization, it determines either of the pos-
sible  magnetized  states.  In  principle,  we  could  maintain  this  bifurca-
tion:  suppose  we  defined  two  different  firing  patterns,  where,  upon
receiving an input and crossing a critical point, all channels either con-

tained  an  Na+  ion  or  all  channels  did  not.  This  could  represent  the
firing  of  an  inhibitory  neuron  causing  selective  inactivity  in  a  firing
excitatory  neuron,  which  would  normally  communicate  a  signal.
Then,  we  would  have  something  corresponding  to  a  critical  input
creating  a  single  spike  according  to  the  statistics  of  the  input.  In  this
case, the activation function determines whether a stimulus is likely to
elicit excitatory or inhibitory neural spikes, perhaps comprising a dif-
ferent sort of classification. 

However,  much like this is not the main feature of the Ising model
phase transition, this is not the major point of this paper.  Instead, we
restrict  the  magnetization  to  m  1  and  examine  the  resultant  anal-
ogy to firing dynamics. This will also allow us to determine the salient
features of the previously mentioned class of activation functions. 

Recovering the Activation  Function from the Ising Model2.4

It is clear to see from Figure 1 that at temperatures above Tc, the only
solution is m  0. Below Tc  the solution is m  -1 or 1, given by the
two  ends  of  equation  (1).  When  restricted  to  m  1,  this  curve
behaves  like  a  different  hyperbolic  tangent  function,  going  from  zero
to one. So, for some parameter a, our function looks like

m(T)  -
1

2
tanh(a(T -Tc)) +

1

2
, (2)
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which  reverses  when  we  set  the  temperature  to  neural  state,  as  sug-
gested  earlier:  recall  the  neural  membrane  voltage  is  itself  negative,
and so T  -V. As seen in Figure 2, this reproduces the neural activa-
tion  function,  where  the  threshold  Tc  is  a  bias  and  the  switching
behavior represents spiking or not spiking.

Figure 2. Magnetization fitted  to a hyperbolic tangent. The previously defined
magnetization  curve  can  be  fitted  to  another  hyperbolic  tangent  curve,

satisfying the typical firing  or not-firing  activation function with V  increasing

like -T. The hyperparameter a is set to a  6, and Tc  1. A second hyperpa-
rameter  multiplying  the  critical  temperature  can  be  used  to  bring  the  fit  even
closer.

Since  T,  the  temperature,  depends  on  the  quench,  we  can  combine
the  temperature  of  the  bath  T  with  the  quench,  T(t)  T - δ(t - tc)Q.

Here, tc  is a time when cooling is applied, and the delta function δ(x)
returns one for an argument of zero, and zero everywhere else. Thus,
cooling only acts on the temperature when t  tc. Note that while an
interaction  with  a  thermal  field  could  have  been  included  in  the
Hamiltonian,  we  opt  to  couple  it  to  the  temperature  later  in  the
paper,  for  a  variety  of  reasons—in  particular  to  follow  through  on
our  approximation  of  anomalously  introduced  local  effects,  along
with  our  desire  to  begin  with  a  time-independent,  and  thus  equilib-
rium, Hamiltonian. 

We  may now parameterize motion along this curve due to changes
in  temperature  in  time.  Recall  we  have  negated  temperature,  as  it  is
equal to neural membrane voltage, -V. We  have already coupled our
quench  to  temperature  as  a  subtractive  element  that  restores  it  to
order.  Suppose  the  model  heats  up  linearly.  This  is  accurate  with
respect  to  the  neuron,  which  uses  pumps  to  eject  positive  ions  at  a
constant  rate.  Indeed,  we  have  previously  defined  a  quench  as  a per-
turbation  from  equilibrium.  In  reality,  it  is  the  influx  of  positive  ions
due  to  some  firing  event  adjacent  to  the  neural  cell.  The  model  will
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heat  up  again  as  soon  as  it  loses  heat  or  pumps  ions  out  of  its  cell
body.  We  assume the neural pump acts with a constant speed, so that
the  time  spent  in  the  m  1  regime  can  be  parameterized  as  linear  in
time t. Suppose also that this rate is one degree per second, such that
T / t  1  and  T(t)  t -Q  for  tc < t ≤ Q.  Then,  the  number  of  spikes

emitted or the time spent in m  1 is the integral of equation (2) from
zero to Q. This  is because, under our assumptions, the time to cool is

equal  to  one  kelvin  per  unit  time.  In  that  case,  the  time  to  cool  back
to zero perturbation when Q is subtracted from T is exactly Q. 

Given the analogy drawn in Sections 2.1 and 2.2 holds, clearly the
mean-field  description  of  neural  firing  leads  to  a  function  that
describes  neural  firing  based  on  perturbations  to  equilibrium,  as
described  earlier.  Then,  the  number  of  spikes  emitted  in  this  time  is
the time spent in m  1, or the time before cooling, which is the previ-
ously  described  integral  of  equation  (2)  with  respect  to  temperature.
This integral is evaluated as follows: 

1

2

0

Q

[tanh(T) + 1]dT  Q +
1

2
ln{2} +

1

2
ln1 + e-2Q +C.

Clearly,  we  have  the  linear  term  dominating  for  Q ≫ 0;  in  which

case,  for  C  0,  we  recover  our  ReLU  function.  This  behavior  also
reproduces  that  of  the  exponential  linear  unit  for  C  -α,  differ-
ing by  no  more  than  α  anywhere.  In  general,  we  have  an  expression
for  linear  or  approximately  linear,  unbounded-above  activation
functions. 

If we choose to fit  a sigmoid function to our magnetization, rather
than the hyperbolic tangent, then we have a similar result: 


0

Q 1

1 + e-T
dT  Q + ln1 + e-Q +C.

The relevance of this with respect to neural firing is that the saturat-
ing  activation  function  is  only  a  binary  classification  case  with  one
spike—a single logic gate. More complex learning, such as the encod-
ing  of  complex  stimuli,  on  the  other  hand,  requires  many  spikes.
Hard quenches, or strong inputs, mean more time spent in the m  1
regime;  thus,  stronger  inputs  mean  more  spikes  get  emitted.  We  then
recover ReLU and ELU as functions for firing  rate, by counting spikes
over time. Since time spent magnetized, or time before heating, corre-
sponds directly to quench strength, so too does spike count. 

Discussion3.

To  summarize  our  argument,  we  have  shown  that,  for  underlying
physical  dynamics  that  are  complicated  enough  to  perform  inference
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at some (coarse-grained) level, the sigmoidal nonlinearities of an acti-
vation  function  arise  by  simple  scaling  arguments  from  mean-field
theory. Conversely,  scaling arguments reveal that sigmoidal activation
functions are necessary for a model of neural dynamics that is capable
of  inference.  This  suggests  a  principled  reason  for  the  ubiquity  of
these two classes of activation functions: artificial  neural networks are
physically  realistic  coarse-grainings  of  biological  neural  networks  if
and  only  if  their  firing  dynamics  look  like  sigmoid  functions  (or,
when extended through time, rectifiers).

Given  their  comparatively  small  number  of  units  and  reduced
computational  power,  we  do  indeed  expect  artificial  neural  networks
to  be  mean  fields  of  biological  neural  networks.  In  fact,  it  has  been
shown that one biological neuron can be modeled using multiple deep
or  artificial  neural  networks  [12],  suggesting  that  many  interacting
mean-field  units  are  needed  to  recover  the  microscopic  activity  of  a
real  neuron.  We  recall,  for  instance,  [13],  where  a  thermodynamic
limit  is  postulated  when  making  sense  of  the  firing  statistics  of  large
neural networks (suggesting finite  size effects in the absence of a large
number  of  neurons);  also  [14],  where  it  is  shown  that  pairwise
correlations  contain  important  information  in  biological  neurons.
That  the  design  of  traditional  artificial  neural  networks  follows  from
mean-field analysis, and the consistency of this observation with previ-
ous  results  in  the  literature,  confirm  the  general  idea  that  biological
neural  networks  are  orders  of  magnitude  more  complex  than  their
artificial  counterparts.  It  remains  to  be  seen  how  the  analysis  here
lends  itself  to  numerical  estimates  of  the  complexity  of  a  biological
neural network. 

We now dissect some consequences of this argument. 

Firing Rates and Sparse Neural Codes3.1

Evidence  suggests  that  neurons  rely  on  sparse  coding  to  efficiently
communicate  stimuli,  especially  in  high-noise  or  high-dimensional
environments.  In  fact,  many  separate  neural  coding  schemes  have
been  considered  to  emerge  from  sparsity,  which  neural  networks
employ  due  to  energy  constraints  and  to  cope  with  dimensionality
[15].  Broadly,  sparse  coding  states  that  different  firing  rates,  which
contain representations of information by encoding features of a stim-
ulus,  will  be  sparsely  distributed  in  a  neural  network.  In  large  neural
populations,  key  neurons  will  be  firing  at  various  rates  and  most
other neurons will not be firing  at all. Such a sparse code is advanta-
geous  for  efficient  learning  by  decorrelating  inputs,  which  allows  fea-
tures  to  be  coded  independently.  Crucially,  this  leads  to  a  robust
representation  and  is  equivalent  to  reducing  the  coding  of  redundant
features while preserving coded information [16].
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The  rectifier,  or  the  unbounded-above  activation  function  we  dis-
cuss, has indeed been shown to improve representation in deep neural
networks by precisely these mechanisms [17]. Some neurons are firing
with  a  particular  rate,  lying  on  the  linear  portion  of  the  curve,  and
others  are  resting,  lying  on  the  portion  of  the  curve  valued  at  zero.
The coding benefits  highlighted are exactly those found in sparse rep-
resentations  in  biological  neural  networks,  where  disentangling  is
referred  to  as  decorrelating  inputs,  which  assists  in  learning  high-
dimensional  data.  These  networks  also  utilize  sparsity  as  a  rich  but
energy-efficient  coding scheme, showing that in deep neural networks,
sparse representations take fewer computational resources while show-
ing high training accuracy.  

In  our  model,  this  sparsity  is  reproduced  by  local  effects  such  as
quenches  of  different  magnitudes  acting  on  particular  neurons  in  the
network. It can be shown that, for Gaussian distributed quenches, our
results  imply  the  results  in  [3]:  calculating  the  transfer  function  of  a
network of neurons under quenches fluctuating  about a mean of zero
follows the argument in [3] exactly.  

Energy-Based Learning3.2

Recently,  a  broad  theory  of  machine  learning  and  inference  has  been
formulated  in  an  energy-based  framework—in  particular,  a  paradigm
based  on  energy  minimization  has  been  proposed  in  [18],  where
choosing a network configuration  that minimizes energy is equivalent
to  finding  an  output  that  minimizes  loss.  These  follow  on  older  ideas
where  free  energy  minimization  is  employed  in  statistical  learning,
such as the Boltzmann machine or spin glass models. Here, the energy
of  a  configuration  is  used  as  a  penalty,  following  the  idea  that  physi-
cal  systems  seek  to  minimize  free  energy  and  that  this  underlies  the
stability  of  a  given  state.  This  appeals  to  statistical  mechanical  ideas
about energy minimization, which we have already used in discussing
the Ising model—the configuration  chosen by a system always obeys a
minimization principle. As such, this can be used as a measurement of
error,  where  we  designate  high  energy  states  as  being  incorrect  in
both the physical and statistical sense.

A  useful  way  of  thinking  about  the  idea  of  free  energy  minimiza-
tion is that free energy is defined as 

F  E -TS.

For  clamped  energy  levels,  clearly,  maximizing  entropy  is  equivalent
to minimizing free energy,  since

ΔF  -TΔS

for  constant  energy  and  temperature.  Then,  free  energy  minimization
is a natural consequence of the second law of thermodynamics, which
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states  that  systems  will  always  produce  greater  entropy.  In  the  infor-
mation-theoretic sense, defined  in [19] as essentially equivalent to the
thermodynamical  sense,  maximizing  entropy  is  choosing  the  best
model  of  observed  variables.  Thus,  we  have  a  direct  application  to
our inference or learning process.

Following  this,  we  examine  why  a  neural  Ising  model  spikes.
Clearly,  when the temperature decreases, the entropic contribution to
free  energy  decreases  as  well.  Hence,  minimization  of  free  energy
occurs  when  total  energy  is  minimized.  We  observed  this  happen
when  the  Hamiltonian  was  in  a  magnetized  state.  In  the  sense  of  an
error  signal,  when  an  input—a  temperature-lowering  quench—
arrives, the error in the system is high as long as the Ising model occu-
pies a high energy state, which is unlikely given the physical and statis-
tical  scenario.  By  magnetizing,  or  spiking,  the  system  decreases  this
error  through  responding  to  the  input,  which  is  equivalent  to  choos-
ing a free-energy-minimizing stable state. In the energy-based learning
scheme,  loss  functions  are  often  arrived  at  by  explicitly  considering
the marginalized Gibbs distribution over the inputs to the system, and
learning  is  performed  by  minimizing  the  resultant  free  energy  in  the
zero-temperature limit. 

This  accords  with  other,  more  biological  ideas  concerning  energy
minimization in learning, wherein neural spikes learn the relationship
between  stimulus  and  evoked  response,  and  minimization  of  energy
underlies  learning.  It  has  been  found  that  real  neural  networks,  in
vitro,  minimize  variational  free  energy  when  learning  representations
of  stimuli  [20].  Variational  free  energy  is  an  information-theoretic
notion closely related to the thermodynamical Helmholtz free energy,
although  whether  only  by  statistical  mechanical  analogy  or  also  by
physical principles remains controversial [21, 22]. 

Self-Similarity and Criticality3.3

We  note  one  final  implication  by  suggesting  a  relationship  between
this  result  and  MFT  applied  to  neural  populations.  In  particular,  we
note that to recover nonlinear firing  statistics, the collective dynamics
of  neural  populations  are  almost  ubiquitously  described  using  a  sig-
moid function [23]. The importance of the sigmoid function in statisti-
cal  approximations  of  neural  population  dynamics—especially  mean-
field  models—was  first  suggested  in  [3],  wherein  it  was  shown  that
for a realistic model of population firing,  the proportion of firing  cells
naturally  followed  a  sigmoid.  In  following  work  by  Amari,  nonlinear
functions  were  also  necessary  to  model  the  collective  dynamics  of  a
neural  field  as  a  self-organized  pattern  [24].  More  recently,  transfer
functions  in  biologically  realistic  mean-field  models  have  taken  the
form  of  a  rectifier  [25],  corresponding  to  our  own  unification  of
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unbounded-above  functions  with  sigmoid-type  functions  as  a  firing
rate.  The  results  in  this  paper  undoubtedly  extrapolate  to  the  case  of
neurons  as  a  subunit  and  neural  populations  as  a  mean  field,  a  rela-
tionship  consistent  with  the  approximate  self-similarity  observed  in
the  human  cortex.  We  note  that  self-similar  systems,  including  the
Ising model around Tc, are generally in a state of criticality; this is the
so-called  “edge  of  chaos”  close  to  a  phase  transition.  Signatures  of
criticality  have  been  observed  in  the  brain  [26,  27],  and  critical
dynamics are known to be important for computation in both biologi-
cal and artificial neural networks, which have been shown to perform
best at criticality [6, 13, 28, 29]. This congruence adds a dimension to
these results, as they capture the dependence of ideal computation on
the scale invariance of certain expressions.

Conclusion4.

We  have  shown  that,  as  a  model  of  the  key  features  of  real  neural
dynamics, an artificial neural network is a mean-field model of biolog-
ical  neural  networks.  This  model  falls  in  the  Ising  universality  class,
and thus an artificial  neural network naturally exhibits a sigmoidal or

tanh-like  switching  behavior  between  firing  and  not  firing.  Various
conventional  activation  functions  can  be  easily  arrived  at  from  this
mean-field  model; as such, we have motivated the designs of historical
and  modern  artificial  neural  networks,  and  in  particular,  the  concept
and typical form of the activation function. In so doing, we have also
examined  how  ideal  learning  necessarily  invokes  the  nonlinear  pro-
cesses  in  the  neuron  and  utilizes  energy  minimization,  by  modeling
this process with an Ising model and applying other statistical mechan-
ical ideas.
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