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Brock University,
Department of Mathematics,
St. Catharines, ON L2S 3A1, Canada

Regularities are searched for in the sequences of numbers of preimages
for elementary cellular automata (CA). For 46 out of 88 “minimal” rules,
recognizable patterns are found, usually in the form of second order recur-
rence equations with constant coefficients. After introducing the concept
of asymptotic emulation of CA rules, it is shown how the regularities in
the sequences of preimage numbers can be used to find rules emulating
identity. It is also shown that the average density of nonzero sites after an
arbitrary number of steps (starting from a disordered configuration) can
be computed using the sequences of preimage numbers.

1. Introduction

One of the fundamental problems in the theory of cellular automata
(CA) is the enumeration of preimages. Preimages for a given spatial
sequence are defined as the set of blocks that are mapped to that sequence
by the automaton rule. Since the number of preimages for the sequence
provides information about the probability distribution associated with
the rule, it can be useful for a variety of problems, such as computations
of spatial measure entropy, identification of sequences with maximal
probability [5], and identification of the Garden of Eden [7].

For one-step preimages, E. Jen showed in [4] that the number of
preimages for arbitrary sequences satisfies a system of recurrence rela-
tions with coefficients depending on the automaton rule. No analytical
results, however, are known for the number of n-step preimages, that
is, the number of preimages under the rule iterated n times. In this
paper, we will show that the sequences of n-step preimage numbers
in many cases follow recognizable patterns, so the expression for the
general term of the sequence can be conjectured (and, in some simple
cases, proved). We will then present two possible applications of such
expressions, in finding asymptotical emulators of CA rules and densities
of nonzero sites after an arbitrary number of time steps.

Let ! ! "0, 1, ...N # 1$ be called a symbol set, and let "(!) be the set
of all bisequences over !, where by a bisequence we mean a function
on Z to !. The set "(!) is a compact, totally disconnected, perfect,

Complex Systems, 14 (2003) 29–43; % 2003 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.14.1.29



30 H. Fukś

metric space, and will be called the configuration space. Throughout
the remainder of this paper we shall assume that ! ! "0, 1$, and the
configuration space "(!) ! "0, 1$Z will be simply denoted by ".

A block of radius r is an ordered set b#rb#r&1 . . .br, where r ' N,
bi ' !. Let r ' N and let #r denote the set of all blocks of radius r over
!. The number of elements of #r (denoted by card#r) equals 22r&1. The
set of all blocks of finite radius will be denoted by # ! ()r!0#r.

A mapping f * "0, 1$2r&1 ! "0, 1$ will be called a cellular automaton
rule of radius r. Alternatively, the function f can be considered as a
mapping of #r into #0 ! ! ! "0, 1$. The set of all mappings of radius
r will be denoted by $r, and the set of all possible CA mappings by
$ ! ()r!0 $r.

Corresponding to f (also called a local mapping) we define a global
mapping F * S + S such that (F(s))i ! f (si#r, . . . , si, . . . , si&r) for any s ' S.
The composition of two rules f , g ' $ can now be defined in terms of
their corresponding global mappings F and G as (F ! G)(s) ! F(G(s)),
where s ' S. We note that if f ' $p and g ' $q, then f !g ' $p&q. For ex-
ample, the composition of two radius-1 mappings is a radius-2 mapping:

(f ! g)(s#2, s#1, s0, s1, s2) !
f (g(s#2, s#1, s0), g(s#1, s0, s1), g(s0, s1, s2)). (1)

Multiple composition will be denoted by

f n ! f ! f !" ! f
#$$$$$$$$$$%$$$$$$$$$$&

n times

. (2)

A block evolution operator corresponding to f is a mapping f *
# ! # defined as follows. Let r , p > 0, a ' #r, f ' $p, and let
bi ! f (ai#p, ai#p&1, . . . , ai&p) for #r & p - i - r # p. Then we define
f (a) ! b, where b ' #r#p. Note that if b ' B1 then f (b) ! f (b).

In what follows we will consider the case of ! ! "0, 1$ and r ! 1
rules, that is, elementary cellular automata. The set of radius-1 blocks
#1 has then eight elements, which will be denoted by

"Βi$
i!7
i!0 ! "000, 001, 010, 011, 100, 101, 101, 110, 111$, (3)

so that the binary representation of the index i defines the block Βi.
Given an elementary rule f , we will try to find the number of n-step
preimages of such basic blocks under the rule f .

2. Sequences of preimage numbers

The number of n-step preimages of the block b under the rule f is
defined as the number of elements of the set f#n(b). For surjective rules,
this number is always easily computed. As proved in [3], under the
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Block b Rule numbers of the rule f
001 0
010 0, 19, 46, 126, 200
011 0, 2, 4, 8, 12, 24, 32, 34
100 0
101 0, 1, 2, 3, 8, 10, 11, 36, 128, 136, 138
110 0, 2, 4, 8, 12, 24, 32, 34
111 0, 2, 4, 6, 8, 10, 12, 14, 18, 24, 28, 32, 34, 40, 42, 50, 56, 72, 76

Table 1. Blocks b which have no preimages under some elementary rules f .

surjective elementary rule every block has exactly four preimages, so
card[f#n(b)] ! 4n for every block b. For nonsurjective rules, however,
sequences of n-step preimage numbers can be highly nontrivial, and no
general method for obtaining them without direct counting is known.

Using a simple preimage counting computer program, sequences
an ! card f#n(b) can be constructed for a given rule f and a block b.
For some elementary CA rules and basic blocks, these sequences appear
to follow certain recognizable patterns, while for other rules no pattern
seems to emerge after computation of the first 10 terms (since the num-
ber of possible blocks increases exponentially with the block length,
it becomes increasingly difficult to go much beyond n ! 10 using di-
rect enumeration). The simplest pattern to recognize is the constant
sequence an ! const. Let us first consider the case when f#n(Βi) is empty,
that is, an ! 0 for every positive integer n. In order to prove that a given
block b ' #1 has no preimage under a given rule (i.e., card f#n(Βi) ! 0)
one just has to check that for every block c ' #2 (among 32 possible)
the condition f (b) / c is satisfied. We performed this check for all 88
minimal elementary CA rules and all basic blocks. Results are presented
in Table 1.

Another type of constant sequence is the case when the set f#n(Βi)
has only one element regardless of n, that is, an ! 1. All such cases are
shown in Table 2. Although this table was generated with the help of
a computer, it is not difficult to prove that card f#n(b) ! 1 for a given
basic block b. As an example, consider elementary rule 77 (for this rule,
f#1(0) ! "001, 100, 101, 111$). We claim the following.

Proposition 1. For rule 77, both sets f#n(000) and f#n(111) have only
one element for all positive integers n.

To see this, let us consider a block of ones 11 . . .1 of radius r, which will
be denoted by 1(r) (similarly, a block of zeros of radius r will be denoted
by 0(r)). It is easy to verify that f#1 !1(r)" ! 0(r&1). Indeed, if we assume
that there exists a block a ' #r&1 such that f (a) ! 1(r), with at least one
nonzero site, then block a must include at least one of the subblocks
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Block b Rule numbers of the rule f
000 77, 178
001 none
010 23, 128, 232
011 128,160, 162, 130, 132
100 none
101 23, 32, 44, 130, 232, 33
110 128, 130, 132, 160, 162,
111 77, 128, 130, 132, 134, 146, 160, 162, 178

Table 2. Basic blocks b and rules f for which card[f#n(b)] ! 1 for every positive
integer n.

001, 100, 101, or 111. All of these subblocks belong to f#1(0), so
f (a) cannot be 1(r&1). Therefore, for the rule 77 f#1 !1(r)" ! 0(r&1), and
similarly f#1 !0(r)" ! 1(r&1), which implies that f#n(000) and f#n(111) are
single-element sets for every positive integer n. Similar proofs can be
constructed for other entries in Table 2.

Cases with an ! const > 1 are not numerous. We found only seven of
them in all of the “minimal” elementary rules, with the largest possible
constant an equal to 5. These cases can be summarized in the following
conjecture.

Conjecture 1. The only minimal elementary CA rules and the only basic
blocks for which the sequence of preimage numbers an ! card[f#n(Βi)]
is constant (i.e., n-independent) and an > 1 are:

card[f#n
128(001)] ! card[f#n

128(100)] ! 2

card f
#n
32 (001) ! card[f#n

32 (100)] ! card[f#n
58 (000)] ! 3

card[f#n
32 (010)] ! 4

card[f#n
50 (000)] ! 5.

All of these expressions hold for any positive integer n.

The sequence an can be, of course, much more complicated than
an ! const. After experimenting with various possibilities, we found that
in many cases an appears to satisfy a second order difference equation
with constant coefficients

an&2 ! c1an&1 & c2an & c3. (4)

To check whether this is plausible, we performed the following test.
Using the first five terms of an (obtained using the preimage counting
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program) we can solve the system of three linear equations for c1, c2,
and c3:

a3 ! c1a2 & c2a1 & c3,
a4 ! c1a3 & c2a2 & c3,
a5 ! c1a4 & c2a3 & c3. (5)

The solutions c1, c2, and c3 can now be used to generate the next five
terms of the sequence a6 . . . a10. If they agree with the experimental
values of a6 . . . a10, we can conjecture that the sequence an is a solution
of the difference equation (4).

As an example, let us consider the rule 172 and the block 101.
This block has four preimages under f172, 12 preimages under f2

172,
40 preimages under f3

172, and so forth. The first few terms of an !
card[f#n

172(101)] obtained using the preimage counting program are

an ! "2, 6, 20, 64, 208, 672, 2176, 7040, 22784 . . .$. (6)

Solving equation (5) we obtain c1 ! 2, c2 ! 4, and c3 ! 0, that is,

an&2 ! 2an&1 & 4an. (7)

Although this difference equation was obtained using a1 . . . a5 only, it
is easy to check that it is satisfied for all 10 terms listed above. Its
solution is

an !
(1 &
#

5)n&2 # (1 #
#

5)n&2

8
#

5
. (8)

The same procedure can be applied to other elementary rules, and for
many of them expressions similar to equation (8) can be found. A table
in the appendix shows all such cases. They are presented as a set of eight
expressions, each representing an ! card[fn(Βi)] for all eight basic blocks
Βi, i ! 1 . . .7. Only rules for which we were able to conjecture all eight
expressions are shown, including cases when an ! const. Surjective
rules (i.e., 15, 30, 45, 51, 60, 90, 105, 106, 150, 170, 204, and 240)
are omitted, since for them we always have an ! 4n.

3. Asymptotic emulation in cellular automata

We say (after [6]) that f emulates g in k iterations (k , 0) or f is a kth
level emulator of g if

f ! f k ! g ! f k. (9)

If a CA f emulates g then after k time steps we can replace the rule
f by g and we will obtain the same result as if we had kept rule f .
For example, many elementary (r ! 1) rules emulate the identity rule.
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(a) (b)

(c) (d)

Figure 1. Examples of CA rules emulating identity: (a) rule 4, first-level emu-
lation; (b) rule 36, second-level emulation; (c) rule 172, asymptotic emulation;
and (d) rule 164, asymptotic emulation.

As proved in [6], these rules are 0, 4, 8, 12, 36, 72, 76, 200, and 204
(only minimal representatives are listed here), and the level of emulation
is always 0, 1, or 2. Spatiotemporal patterns generated by these rules
after a few time steps become identical with the pattern generated by the
identity rule (vertical strips), as shown in Figures 1(a) and 1(b). Visual
examination of patterns generated by elementary CA reveal that more
rules than those mentioned earlier produce patterns resembling rule
204 (identity rule). Among 88 “minimal” representatives of elementary
rules there are 16 other “identity-like” mappings, namely 13, 32, 40,
44, 77, 78, 104, 128, 132, 136, 140, 160, 164, 168, 172, and 232.
Typical patterns produced by these mappings are shown in Figures 1(c)
and 1(d). These patterns eventually become vertical strips, but the time
required to achieve such a state may be quite long. None of them, of
course, emulates identity in the sense of equation (9). We could say,
however, that these rules simulate identity “approximately,” and that
this approximation gets better and better with an increasing number of
time steps. A quantitative description of this phenomenon is possible if
we introduce a distance between rules. For f ' $p and b ' #q, where
q > p, we define f (b) ! f (b#r, . . . , bi, . . . , br). A metric in $ can be
constructed as follows.
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Proposition 2. Let f ' $m, g ' $n, and k ! max"m, n$. A function
d * $ 0 $ ! [0, 1] defined by

d(f , g) ! 2#2k#1 $
b'#k

%%%%f (b) # g(b)%%%% (10)

is a metric in $ .

Obviously, d(f , g) , 0 and d(f , g) ! 0 1 f ! g. Triangle inequality
holds too since 2x & y2 - 2x2 & 2y2 for all x, y ' "0, 1$.

A CA rule f asymptotically emulates rule g if

lim
n+)

d(f n&1, g ! f n) ! 0. (11)

Clearly, if f is a kth level emulator of g then f emulates g asymptotically.
We may think about asymptotic emulation as infinity-level emulation.

Let us now consider two rules f , g ' $ . Their sum modulo 2 will be
defined as (f 3 g)(b) ! f (b) & g(b)mod 2 ! 2f (b) # g(b)2 for any b ' #.
Note that (f 3 g)(b) ! 0 if f (b) ! g(b) and (f 3 g)(b) ! 1 if f (b) / g(b).

Proposition 3. Let f , g ' $1 and h ! f 3 g. Let A0 ! h#1(1), and let
An ! f#n(A0). Then

d(f n&1, g ! f n) !
card An

22n&3 . (12)

Proof. Mapping f n&1 is a rule of radius n & 2, therefore using the def-
inition of the distance equation (10) and properties of block evolution
functions we have

d(f n&1, g ! f n) ! 2#2n#3 $
b'#n&1

%%%%fn&1(b) # g ! fn(b)%%%% , (13)

or d(f n&1, g!f n) ! 2#2n#3cn, where cn is a number of blocks b ' #n&2 such
that fn&1(b) / g ! fn(b). Similarly, the set A0 is a set of all blocks b ' #1
such that f (b) / g(b). Let us now consider a block a ' Bn&1 such that
fn&1(a) / g!fn(a). The last relation can be written as f 4fn(a)5 / g 4fn(a)5,
and this is possible if and only if fn(a) ' A0, which is equivalent to
a ' f#n(A0). This proves that block a ' #n&1 satisfies fn&1(a) / g ! fn(a)
if and only if a ' An, so finally cn ! card An.

Proposition 3 can be useful in finding asymptotical emulators. As an
example, consider the case of rule 77 discussed earlier, where we have

A0 ! (f77 3 f204)#1(1) ! "000, 111$. (14)

We already proved (in Proposition 1) that both f#n
77 (000) and f#n

77 (111)
have only one element for all n. Note that

card[f#n
77 "000, 111$] ! card[f #n

77 (000)] & card[f#n
77 (111)]

! 1 & 1 ! 2, (15)
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since the preimage of the union of two sets is always the union of the
preimages of the sets. This leads to the conclusion that

d(f n&1
77 , f204 ! f n

77) !
2

22n&3 ! 2#2n#2. (16)

Of course, the above distance goes to zero with n, therefore rule 77
asymptotically emulates the identity (rule 204). Almost identical rea-
soning can be presented for rules 128 and 132, both of which asymp-
totically emulate identity and

d(f n&1
128 , f204 ! f n

128) ! 3 6 2#2n#3

d(f n&1
132 , f204 ! f n

132) ! 2#2n#2. (17)

A slightly different analysis can be performed for rule 32. Here, from
Table 1, we read that card[f#n

32 (101)] ! 1. Since

(f32 3 f0)#1(1) ! 101,

we conclude that d(f n&1
32 , f0 ! f n

32) ! 2#2n#3, and therefore rule 32 em-
ulates the zero rule asymptotically. It also emulates the identity rule
asymptotically, as a consequence of the following general property.

Proposition 4. If f ' $ emulates the zero rule asymptotically, then it
also emulates the identity rule asymptotically.

Proof. Using the triangle inequality, we have

0 - d(f n&1, f204 ! f n)
- d(f n&1, f0 ! f n) & d(f0 ! f n, f204 ! f n). (18)

Since f0 ! f n ! f0 and f204 ! f n ! f n, we obtain

d(f0 ! f n, f204 ! f n) ! d(f0, f n) ! d(f n, f0 ! f n#1). (19)

Equation (19), and the fact that f asymptotically emulates f0, implies

lim
n+)
!d(f n&1, f0 ! f n) & d(f0 ! f n, f204 ! f n)" !

lim
n+)

d(f n&1, f0 ! f n) & lim
n+)

d(f n, f0 ! f n#1) ! 0,

so finally limn+) d(f n&1, f204!f
n) ! 0, as required for f to emulate identity

asymptotically.

Of course, we could directly use expressions from the appendix and
find that

d(f n&1
32 , f204 ! f n

32) !
5

22n&3 . (20)

For other identity-like rules mentioned at the beginning of this sec-
tion, the mechanism of emulation is not as simple as in previous cases.
Nevertheless, experimental evidence suggests the following conjecture.
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f dn ! d(f n&1, f204 ! f n) f dn ! d(f n&1, f204 ! f n)
13 7 6 2#n#4 132 2#2n#2

32 5 6 2#2n#3 136 2#n#2

40 2#n#1 140 2#n#3

44 7 6 2#2n#3 160 3 6 2#n#2 # 4#n#1

77 2#2n#2 164 5 6 2#n#3 # 4#n#1

78 4#1 if n ! 1 168 3n&1 6 2#2n#3

15 6 2#n#6 if n > 1
104 163 6 2#2n#3 if n > 5 172 #(1#

#
5)n&3&(1&

#
5)n&3

22n&6#5

128 3 6 2#2n#3 232 2#2n#2

Table 3. Distance dn ! d(f n&1, f204!f
n) for rules asymptotically emulating identity.

Conjecture 2. Among the 88 “minimal” elementary CA rules, only
rules 14, 40, 44, 78, 104, 136, 140, 160, 164, and 172 asymptoti-
cally emulate the identity rule.

Postulated expressions for the distance d(f n&1, f204 ! f n) are shown in
Table 3. For completeness, rules for which the proof is known (i.e., 32,
77, 128, and 132) are included as well.

4. Density of nonzero sites

The simplest statistical quantity characterizing a configuration is the av-
erage fraction of sites with value 1 at time t, denoted by ct. The question
we want to address now is as follows: If we start from a disordered con-
figuration with c0 ! 0.5 (i.e., equal probability of 0 and 1), what is the
density ct at a later time t? When c0 ! 0.5, a disordered configuration
contains all eight possible basic blocks with equal probability. Applying
a CA rule to this initial state yields a configuration in which the fraction
of sites with value 1 is given by

c1 !
card[f#1(1)]

8
, (21)

or in other words, by the fraction of the eight possible basic blocks
which yield 1 according to the CA rule [8]. Similarly, the density of
ones after two time steps will be given by the fraction of the 32 blocks
of radius 2 which yield 1 when f 2 is applied. In general, we can write

ct !
card[f#t(1)]

22t&1 , (22)

where card[f #t(1)], as usual, denotes the number of preimages of 1 under
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Rule ct Rule ct

1 7/16 & 5
16 (#1)t 2 1/8

3 7/16 & 3
16 (#1)t 4 1/8

5 7/16 & 3
16 (#1)t 7 15/32 & 3

32 (#1)t # (#2)#t#4 # 2#t#4

8 0 10 1/4
12 1/4 13 7/16 # (#2)#t#3

19 1/2 & 3
32 (#1)t 23 1/2

24 3/16 27 17/32& 1
32 (#1)t

28 1/2 & 1
48 (#1)t # 5

24 2#t 29 1/2
32 2#1#2t 34 1/4
36 1/16 38 9/32
40 2#t#1 42 3/8
44 1/6 & 5

6 2#2t 46 3/8
50 1/2 # 2#2t#1 72 1/8
76 3/8 77 1/2
78 9/16 108 5/16
128 2#1#2t 130 1/6 & 1

3 2#2t

132 1/6 & 1
3 2#2t 136 2#t#1

138 3/8 140 1/4 & 2#t#2

156 1/2 160 2#t#1

162 1/3 & 1
6 4#t 164 1/12 # 1

3 4#t & 3
4 2#t

168 3t2#2t#1 172 1/8 & (10#4
#

5)(1#
#

5)t&(10&4
#

5)(1&
#

5)t

40622t

178 1/2 200 3/8
232 1/2

Table 4. Density of ones for a disordered initial state with c0 ! 0.5.

f t. To make use of the table in the appendix, we can rewrite the last
equation as

ct ! 2#2t#1 $
f (Βi)!1

card[f#t&1(Βi)], (23)

where the sum runs over all radius-1 blocks Βi which yield 1 according
to the CA rule, which can also be written as

ct ! 2#2t#1
7$

i!0

f (Βi) card[f#t&1(Βi)]. (24)

Applying this procedure to rules listed in the appendix, we obtain ex-
pressions for ct, as shown in Table 4. The following three kinds of ct
behavior can be observed in this table.
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Rule Approximate c) Exact c)
7 0.469 7 0.001 15/32

13 0.437 7 0.001 7/16
27 0.531 7 0.001 17/32
44 0.167 7 0.001 1/6
78 0.562 7 0.001 9/16

130 0.167 7 0.001 1/6
162 0.333 7 0.001 1/3
164 0.083 7 0.001 1/12

Table 5. Rules for which exact values of asymptotic density can be found using
n-step preimage counting.

1. ct is constant, like in rule 4.

2. ct oscillates and the asymptotic density is undefined, like in rule 5.

3. ct converges exponentially to the final density like in rule 44, sometimes
oscillating like in rule 13.

Note that no rule listed in Table 4 converges to the final density slower
than exponentially. This is due to the fact that all rules for which
we were able to conjecture exact expressions for the number of n-step
preimages were either class 1 or class 2 rules according to Wolfram’s
classification. It is well known that some class 3 and class 4 rules (e.g.,
rule 18) exhibit power law relaxation to the final state, but we failed to
find any patterns in their n-step preimage sequences, thus no expressions
for ct could be postulated.

However, even for “simple” rules like those listed in Table 4, our
method yields some interesting results. For example, [8] lists asymptotic
densities for all “minimal” elementary rules, but for many of them only
experimental (i.e., computer simulation) values are given. For eight such
rules we were able to find exact values of c), simply by computing the
limit of ct as t + ). These rules are presented in Table 5, along with
experimental values of c) quoted from [8]. We also verified some exact
values of c) given in [8]. For example, the density of nonzero sites for
rule 132 is

ct !
1
6
&

2#2t

3
, (25)

hence c) ! 1/6, not 1/8 as [8] suggests.

5. Conclusion and remarks

Some experimental results are presented regarding sequences of num-
bers of n-step preimages under elementary cellular automata (CA) rules.
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Many of these sequences exhibit apparent regularities, and the expres-
sions for the general term of the sequence can be conjectured for 46 out
of 88 “minimal” CA rules. Expressions obtained this way can be used to
find asymptotic emulators of rules as well as the density of nonzero sites.

All rules discussed in this paper were either class 1 or class 2 according
to Wolfram’s classification. Sequences of preimage numbers for chaotic
rules (except surjective rules) appear to be much more complex, and
no patterns seem to appear. If any regularities exist, their detection will
most certainly require computation of many more terms of the sequence,
and a more efficient algorithm may be necessary. P. Grassberger pro-
posed such an algorithm in [1], but even with his method going beyond
n ! 20 becomes impractical. Another method proposed in [2], called
the statistical inverse iteration, is unfortunately only approximate, thus
not very usable for the purpose of exact enumeration.
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Appendix

Table of preimage sequences

The following table shows the sequence numbers of n-step preimages
for some elementary cellular automata rules. They are presented as a
set of eight expressions (although not all of them are independent), each
representing an ! card[fn(Βi)] for all eight basic blocks i ! 1 . . .7. Only
rules for which the author was able to conjecture all eight expressions
are shown.

Rule 0 * 32 6 4n#1, 0, 0, 0, 0, 0, 0, 0

Rule 1 *
#5 6 4#45n & 7 6 4n

2
, 2 6 4n#1,

#3 6 4#45n & 5 6 4n

32
,

3 6 4#45n & 11 6 4n

32
,

2 6 4n#1, 0,
3 6 4#45n & 11 6 4n

32
,

77 6 4#45n & 85 6 4n

32
Rule 2 * 20 6 4n#1, 4n, 4n, 0, 4n, 0, 0, 0

Rule 3 *
#3 6 4#45n & 5 6 4n

2
, 4n,

#4#45n & 3 6 4n

8
,
4#45n & 5 6 4n

8
, 4n,

0,
4#45n & 5 6 4n

8
,

11 6 4#45n & 15 6 4n

8
Rule 4 * 21 6 4n#1, 3 6 4n#1, 4n, 0, 3 6 4n#1, 4n#1, 0, 0

Rule 5 *
#6 6 4#45n & 9 6 4n

4
,
#3 6 4#45n & 9 6 4n

16
, 5 6 4n#1,

3 6 4#45n & 7 6 4n

16
,

#3 6 4#45n & 9 6 4n

16
,

3 6 4#45n & 9 6 4n

8
,

3 6 4#45n & 7 6 4n

16
,

9 6 4#45n & 11 6 4n

8
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Rule 7 *
#3 6 4#45n

4
&

3 6 4#25n

8
#

17 6 2n

8
&

13 6 4n

4
,
#4#25n

8
&

3 6 2n

8
&

4n

2
,

3 6 2n#1,
4#25n

4
&

3 6 2n

4
&

4n

2
,
#4#25n

8
&

3 6 2n

8
&

4n

2
,

3 6 !4#25n & 5 6 2n"
8

,
4#25n

4
&

3 6 2n

4
&

4n

2
,

3 6 4#45n

4
# 4#25n #

7 6 2n

2
&

11 6 4n

4
Rule 8 * 8 6 4n # 12In, 4In, 4In, 0, 4In, 0, 0, 0

Rule 10 * 12 6 4n#1, 6 6 4n#1, 4n, 2 6 4n#1, 6 6 4n#1, 0, 2 6 4n#1, 0

Rule 12 * 10 6 4n#1, 6 6 4n#1, 8 6 4n#1, 0, 6 6 4n#1, 2 6 4n#1, 0, 0

Rule 13 *
#3 6 4#25n

4
&

7 6 2n

4
,
#4#25n

2
& 4n,

#4#25n

8
#

21 6 2n

8
&

7 6 4n

2
,

3 6 4#25n

8
&

7 6 2n

8
,
#4#25n

2
& 4n,

3 6 4#25n

4
#

7 6 2n

4
&

5 6 4n

2
,

3 6 4#25n

8
&

7 6 2n

8
,

3 6 4#25n

8
&

7 6 2n

8
Rule 19 * 3 6 (#4)n#1 & 5 6 22n#1, 3 6 4n#1, 0, 3 6 4n#1 & In, 3 6 4n#1, In, 3 6 4n#1 & In,

5 6 22n#1 # 3 6 (#4)n#1 # 3In

Rule 23 * #2 &
1 & 2 6 4n&1

3
,

1 & 2 6 4n

3
, 1,

1 & 2 6 4n

3
,

1 & 2 6 4n

3
, 1,

1 & 2 6 4n

3
,

#2 &
1 & 2 6 4n&1

3
Rule 24 * 14 6 4n#1 # 4In, 6 6 4n#1, 6 6 4n#1 & 2In, 0, 6 6 4n#1, 2In, 0, 0

Rule 27 * (#4)n#1 & 5 6 4n#1, 4n, 2 6 4n#1, 4n, 4n, 2 6 4n#1, 4n,#(#4)n#1 & 7 6 4n#1

Rule 28 *
5 6 2n

2
,
#4#45n

6
&
4#25n

2
&

5 6 2n

3
&

4n

2
,
#4#45n

6
# 4#25n #

10 6 2n

3
& 3 6 4n,

4#45n

6
&
4#25n

2
&

5 6 2n

6
&

4n

2
,
#4#45n

6
&
4#25n

2
&

5 6 2n

3
&

4n

2
,

4#45n

6
# 4#25n #

25 6 2n

6
& 3 6 4n,

4#45n

6
&
4#25n

2
&

5 6 2n

6
&

4n

2
, 0

Rule 29 * 3 6 4n#1, 3 6 4n#1, 7 6 4n#1, 3 6 4n#1, 3 6 4n#1, 7 6 4n#1, 3 6 4n#1, 3 6 4n#1

Rule 32 * #11 & 32 6 4n#1, 3, 4, 0, 3, 1, 0, 0

Rule 34 * 10 6 4n#1, 6 6 4n#1, 8 6 4n#1, 0, 6 6 4n#1, 2 6 4n#1, 0, 0

Rule 36 * 26 6 4n#1 # 10In, 2 6 4n#1 & 2In, 2 6 4n#1, 2In, 2 6 4n#1 & 2In, 0, 2In, 2In

Rule 38 * 47 6 4n#2 #
11
4

In, 21 6 4n#2 #
1
4

In, 3 6 4n#1, 3 6 4n#1, 21 6 4n#2 #
1
4

In,

3 6 4n#2 &
1
4

In, 3 6 4n#1, 3In

Rule 40 * #9 6 2n & 32 6 4n#1, 4 6 2n#1, 4 6 2n#1, 2n, 4 6 2n#1, 2n, 2n, 0

Rule 42 * 7 6 4n#1, 5 6 4n#1, 4n, 4n, 5 6 4n#1, 3 6 4n#1, 4n, 0

Rule 44 * #7 & 4n&1,
1
3

(4n&1 # 1),
1
3

(4n&1 # 1) # 3 & In, 4 # In,
1
3

(4n&1 # 1),

1, 4 # In, 2 & In

Rule 46 * 38 6 4n#2 # 7 6 In/2, 18 6 4n#2 # In/2, 0, 6 6 4n#1,

18 6 4n#2 # In/2, 6 6 4n#2 & In/2, 6 6 4n#1, 4In

Rule 50 * 5, 3 &
2 6 4#1 & 4n5

3
,

8 6 4#1 & 4n5
3

,
2 6 4#1 & 4n5

3
, 3 &

2 6 4#1 & 4n5
3

,

#3 &
8 6 4#1 & 4n5

3
,

2 6 4#1 & 4n5
3

, 0
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Rule 72 * 97 6 4n#2 # 41In/4, 7 6 4n#2 & 9In/4, 4In, 22n#1, 7 6 4n#2 & 9In/4,

4n#2 & 7In/4, 22n#1, 0

Rule 76 * 5 6 4n#1, 5 6 4n#1, 8 6 4n#1, 2 6 4n#1, 5 6 4n#1, 5 6 4n#1, 2 6 4n#1, 0

Rule 77 * 1,
1 & 2 6 4n

3
,#2 &

1 & 2 6 4n&1

3
,

1 & 2 6 4n

3
,

1 & 2 6 4n

3
,

#2 &
1 & 2 6 4n&1

3
,

1 & 2 6 4n

3
, 1

Rule 78 * 3 6 2n#1, 3 6 2n#1, 5 6 22n#1 # 9 6 2n#1 & 4In, 3 6 2n#1 & 4n # 2In, 3 6 2n#1,

7 6 22n#1 # 9 6 2n#1 & 2In, 3 6 2n#1 & 4n # 2In, 3 6 2n#1 # 2In

Rule 108 * 32 6 4n#2 # 3In, 26 6 4n#2 # 3In/2, 24 6 4n#2 # 3In, 6 6 4n#2 & 3In/2,

26 6 4n#2 # 3In/2, 4n#1, 6 6 4n#2 & 3In/2, 4n#1 & 6In

Rule 128 * #8 & 32 6 4n#1, 2, 1, 1, 2, 0, 1, 1

Rule 130 * #3 & 4n&1,
#1 & 4n&1

3
,
#1 & 4n&1

3
, 1,
#1 & 4n&1

3
, 1, 1, 1

Rule 132 * #4 &
17 6 4n

4
,

2
3
&

13 6 4n

12
,
#1 & 4n&1

3
, 1,

2
3
&

13 6 4n

12
, 4n#1, 1, 1

Rule 136 * #8 6 2n & 8 6 4n, 4 6 2n#1, 2n, 2n, 4 6 2n#1, 0, 2n, 2n

Rule 138 * 8 6 4n#1, 6 6 4n#1, 3 6 4n#1, 3 6 4n#1, 6 6 4n#1, 0, 3 6 4n#1, 3 6 4n#1

Rule 140 * #2 6 2n &
5 6 4n

2
, 6 6 4n#1,#2n & 2 6 4n, 2n, 6 6 4n#1, 2 6 4n#1,

2n, 2n

Rule 156 * 2n, 2n &
4n

2
,#3 6 2n & 3 6 4n, 2n &

4n

2
, 2n &

4n

2
,#3 6 2n & 3 6 4n,

2n &
4n

2
, 2n

Rule 160 * 3 # 10 6 2n & 8 6 4n,#1 & 2n&1,#3 & 4 6 2n, 1,#1 & 2n&1,#1 & 2n&1, 1, 1

Rule 162 *
#1 & 4n&1

3
,
#1 & 4n&1

3
,#2 &

1 & 2 6 4n&1

3
, 1,
#1 & 4n&1

3
,
#1 & 4n&1

3
, 1, 1

Rule 164 * 4 # 9 6 2n & 6 6 4n,#
2
3
& 2n &

2 6 4n

3
,

1 & 2 6 4n

3
,#1 & 2n&1,

#
2
3
& 2n &

2 6 4n

3
, 2n,#1 & 2n&1,#1 & 2n&1

Rule 168 * #7 6 3n & 8 6 4n, 3n, 3n, 3n, 3n, 3n, 3n, 3n

Rule 172 * 20 6 4n#1 #
#&1 ##5'n&2

& &1 &#5'n&2

8 6
#

5
#
#&1 ##5'n&3

& &1 &#5'n&3

4 6
#

5
,

4n, 4n #
#&1 ##5'n&1

& &1 &#5'n&1

2 6
#

5
,

# (#&1 ##5'n&2
& &1 &#5'n&2)

8 6
#

5
&
#&1 ##5'n&3

& &1 &#5'n&3

8 6
#

5
,

4n,
#&1 ##5'n&2

& &1 &#5'n&2

8 6
#

5
,
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# (#&1 ##5'n&2
& &1 &#5'n&2)

8 6
#

5
&
#&1 ##5'n&3

& &1 &#5'n&3

8 6
#

5
,

#&1 ##5'n&3
& &1 &#5'n&3

8 6
#

5

Rule 178 * 1,
1 & 2 6 4n

3
,#2 &

1 & 2 6 4n&1

3
,

1 & 2 6 4n

3
,

1 & 2 6 4n

3
,

#2 &
1 & 2 6 4n&1

3
,

1 & 2 6 4n

3
, 1

Rule 200 * 13 6 4n#1, 3 6 4n#1, 0, 4n, 3 6 4n#1, 4n#1, 4n, 4n

Rule 232 * #2 &
1 & 2 6 4n&1

3
,

1 & 2 6 4n

3
, 1,

1 & 2 6 4n

3
,

1 & 2 6 4n

3
, 1,

1 & 2 6 4n

3
,

#2 &
1 & 2 6 4n&1

3
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