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Existing procedures for model validation have been deemed inadequate
for many engineering systems. The reason of this inadequacy is due to the
high degree of complexity of the physical mechanisms that govern these
systems. It is proposed in this paper to shift the attention from modeling
the engineering system itself to modeling the uncertainty that underlies
its behavior. A mathematical framework for modeling the uncertainty
in complex engineering systems is developed. This framework uses the
results of computational learning theory. It is based on the premise that
a system model is a learning machine.

1. Introduction

Modeling of engineering systems is traditionally carried out in three
sequential steps.

1. Model development. The modeler collects available knowledge about the
studied system S in the form of first principles, empirical laws, and/or
heuristic hypotheses. Based on this knowledge, the modeler develops a
set of mathematical relationships (i.e., the system model!) among the
system state variables, which can generally be written in the form of a
differential equation:

ẋ " f (t,x,p) (1)

where t is the time, x is the system state vector, p is the model parameter
vector, and f is a mathematical function which is generally nonlinear.
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2. Model identification. After the model is developed, the modeler uses a set
$N (N being a natural number greater than 0) of empirical data:

$N % x
data(t1),xdata(t2), . . . , xdata(tN) (2)

collected from the real operation of the system to identify the model
parameters. This step usually requires the minimization of an objective
function J(p) of the form:

J(p) "
N!

k"1

""""x(p, tk) & xdata(tk)""""2 (3)

where x(p, t) represents the solution to the model equation (1). In most
cases, the data set $N would actually be divided into two subsets $N1

and $N2
(N " N1 'N2). The first subset (called identification sample) is

used for the model parameter vector identification and the second (called
validation sample) for model validation (step 3).

3. Model validation. In this step, the identified system model is tested on
the validation subset $N2

that it has never “seen.” If the model performs
well on this sample, then it is retained. Otherwise, the model structure is
adjusted and the validation procedure repeated.

The foregoing model validation procedure (called cross validation)
has been criticized in many areas of engineering. In wastewater engi-
neering, for example, in [1] Jeppsson pointed out that, “in a strict sense,
model validation is impossible” with the existing validation techniques.
Similarly, Zheng and Bennett in [2] noted that, in groundwater engineer-
ing, “models, like any scientific hypothesis, cannot be validated in the
absolute sense . . . They can only be invalidated.” Konikow and Brede-
hoeft suggested in [3] that terms like “model verification” and “model
validation” convey a false sense of truth and accuracy and thus should
be abandoned in favor of more realistic assessment descriptors such as
history-matching and benchmarking.

The engineering systems for which the cross validation procedure is
deemed inadequate all share one similar feature: the mechanisms that
govern each one of them are so complex that no single model can be
considered to describe these mechanisms in their entirety. The predic-
tions of a model, no matter how sophisticated it is, are not guaranteed
to match the reality. In this paper, it is proposed to shift the attention
from modeling the system itself to modeling the uncertainty that under-
lies its behavior. The aim is to answer questions such as: What makes
uncertainty high or low? How can it be controlled and to what extent
can it be reduced?

A mathematical framework for modeling the uncertainty in complex
engineering systems is developed in this paper. This framework is based
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on the premise that a system model is a learning machine. The model
identification procedure is viewed as a learning problem or, equivalently,
an information transfer from a finite set of real data $N into the sys-
tem model. Uncertainty is measured by the deviation " between the
system’s actual response function (see below for the definition of this
function) and the approximation delivered by the system model! (af-
ter identification) for this function. This deviation is also a measure of
the performance of the system model: the smaller the value of ", the
higher the performance of the model.

The framework leads to a set of inequalities (called uncertainty mod-
els, see equation (4)) that define bound functions ( on the deviation ".
These inequalities are of the general form " ) (. The bound functions
( are dependent on (among others): (1) the amount N of data used to
carry out the system model identification, and (2) the complexity of the
system model structure q. The inequalities " ) ( can be utilized to
evaluate the quality of a system model after it has been identified and
are useful for system modelers in many respects.

When a set of values of N and q is fixed (e.g., N " N0 and q " q0),
the inequalities allow the modeler to compute a bound (0 ((0 being the
value of ( for N " N0 and q " q0) on the deviation" which, as indicated
above, represents a measure of the model performance. The modeler then
obtains a guarantee on the model quality.

When the model structure complexity (i.e., q) is fixed (e.g., q " q0), the
inequalities allow the modeler to assess the rate of model performance
improvement as the value of N increases. This assessment can be done
by computing the partial derivative:

# *(
*N
$

q0

of the bound (.

When the amount of data N is fixed (e.g., N " N0), the inequalities allow
the modeler to select the optimal model structure complexity qopt that
minimizes the bound function (, N being set equal to N0.

Consequently, the inequalities" ) ( can potentially be used as replace-
ments for the traditional system model validation procedures, since they
provide the system modeler with a method of computing a guarantee
on the model performance.

The development of the framework is based on the extensive research
work by Vapnik in [4, 5, 6] and that of Vapnik and Chervonenkis in
[7, 8, 9] in the area of mathematical statistics and its applications to
computational machine learning theory. Section 2 shows why and how
a system model can be considered as a learning machine. The remainder
of the paper is devoted to the framework development.
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2. A system model is a learning machine

Assume that we are interested in the variations of one state variable
xi0

of the system S and consider the model differential equation that
governs the dynamics of this variable:

ẋi0
" f (t, x, p)

or

dxi0

dt
" f (t, x, p) (4)

where t is the time, x is the process state vector, p is the parameter
vector, and f is a real-valued function. This equation represents one
component of the vector differential equation:

ẋ " f (t, x, p)

of the system model!. However, the vectors x and p in equation (4) do
not necessarily contain all of their components. Normally, they should
be denoted as xxi0

and pxi0
and equation (4) should become:

dxi0

dt
" f (t, xxi0

, pxi0
) (5)

in order to highlight the fact that x and p contain only those state
variables and parameters, respectively, that influence the dynamics of xi0

.
This study will be limited to the case of autonomous systems, that

is, systems whose models do not depend explicitly on time. In other
words, the general model equation that governs xi0

can be written as:

dxi0

dt
" f (xxi0

, pxi0
). (6)

In addition to xi0
, all state variables; that is, components of xxi0

, are
assumed to be directly and separately measurable.

Using the Euler method to numerically integrate equation (6), the
time is discretized with a time step of +t and then xi0

is computed at
times

t1 " +t , t2 " 2+t , . . . , tn " n+t , . . .

using the following equation:

xi0
(tn) " xi0

(tn&1) ' +t f (xxi0
(tn&1), pxi0

). (7)

Define w!tn
as the value of xi0

to be predicted by the model!, that is:

w!tn
" xi0

(tn).
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Similarly, define the vector vtn
as:

vtn
" [xi0

(tn&1), xxi0
(tn&1)T]T , (8)

where the superscript T denotes a transposed vector. The number w!tn

takes values from a subset W of the real line ,, and vector vtn
from a

multidimensional space V.
Now introduce the real-valued function H defined as:

H(vtn
, pxi0

) " xi0
(tn&1) ' +t f (xxi0

(tn&1), pxi0
). (9)

The expression of this function corresponds to that of the right-hand
side of equation (7). The latter equation then becomes:

w!tn
" H(vtn

, pxi0
). (10)

For a fixed parameter vector pxi0
, H( . , pxi0

) represents a mapping
function from V to W:

H( . , pxi0
) % V - W

vtn
! w!tn

" H(vtn
, pxi0

). (11)

The parameter vector pxi0
takes values from a multidimensional space

denoted here as .. Define the functional set #! of all mappings
H( . , pxi0

) with pxi0
/ .:

#! " 0H( . , pxi0
) 1 pxi0

/ .2. (12)

Now assume that a sequence of actual measurements of the couple
(vt, wt):

$N % (v1, w1), (v2, w2), . . . , (vN, wN)

can be obtained from the real process operation, and consider an algo-
rithm$ that receives the sequence$N as input and produces a parameter
vector (pxi0

)emp corresponding to the function H( . , (pxi0
)emp) / #! that

best approximates the real process response. In practice, this algorithm
corresponds to the system model identification procedure which consists
of minimizing an objective function of the form:

J(p) "
N!

k"1

%%%%wk &H(vk, p)%%%%2 (13)

or, equivalently:

Remp(p) "
1
N

N!
k"1

%%%%wk &H(vk, p)%%%%2 . (14)
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The subscript emp means “empirical” and the number 1wk &H(vk, p)12

represents a measure of the loss between the desired response wk cor-
responding to the vector vk and the model prediction represented by
H(vk, p).

A set of mapping functions equipped with an algorithm such as
$ is called a learning machine in the area of artificial intelligence
and computational learning theory. We have shown that the couple
%!S " (#!,$), composed of a system model and an identification
procedure, can be viewed as a learning machine. On the basis of this
result, it is possible to develop a mathematical framework that will
allow us to model the uncertainty that underlies the behavior of the
engineering system S, and rationalize the procedures of system model
identification and validation. The next sections of this paper are about
the development of this framework.

It should be noted that one of the objectives of the framework is to
abstract the basic notions (system, model, model parameter, and objec-
tive function) of the traditional system modeling approach (introduced
previously), in order to enhance the system model identification and
validation procedures. As a result of this abstraction work, several new
concepts are introduced in the following sections of the paper. For a full
and detailed explanation of the implementation of these concepts in the
case of modeling a concrete engineering system, the reader is referred
to Part II of this paper [10]. As a transition to section 3, however, the
following table presents some preliminary indications regarding the cor-
respondence between the traditional approach’s basic notions and the
framework’s new concepts.

Traditional approach basic notions Corresponding framework concepts
The system S itself. The transformer & .
The system surrounding S. The environment '.
The space #! (! being the system
model).

The decision rule space #.

The model parameters p. The parameters that characterize the
elements of#.

The objective function J(p). The empirical risk.

Note also that several concepts will be introduced in the framework,
with no corresponding notions in the traditional system modeling ap-
proach (e.g., the expected risk, the VC dimension).

Remark 1. Note that training of the machine

%!S " (#!,$)

associated with the system S is carried out for a specific time tn. This time
is arbitrary, but fixed. The examples (v1, w1), (v2, w2), . . . , (vN, wN) to
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be used for machine training should therefore correspond to a realization
of the system at time tn, for a fixed n (i.e., a realization in the ensemble
of the stochastic process (vt, wt), and not in time; see pages 372 and 442
of [11]). In practice, this is not possible, because the instance vector vt
and the outcome wt are measured only once at any time instant t. And
what is obtained from these measurements is actually a time series:

(vt1
, wt1

), (vt2
, wt2

), . . . , (vtn
, wtn

), . . .

whose terms represent the couples instance/outcome at successive time
instants t1, t2, . . . , tn, . . . . It corresponds to one realization of the system S
in time. This realization would usually—if not always—be the only one
that is available for investigating the system’s behavior. The property
that allows us to use the series (vti

, wti
) instead of (vi, wi) is called

ergodicity. This condition is quite weak and will be assumed to hold
true for the studied system S. A thorough discussion of this condition
and how it is utilized to implement this framework in the case of a
concrete engineering system is presented in Part II of this paper [10] as
well as in [12].

3. General description of the framework

In a certain environment ', at a time instant t, a situation vt arises
randomly and a transformer & acts and assigns to this situation vt
a number wt obtained as a result of the realization of a random trial.
Formally, situation vt represents a random vector that takes values from
an abstract space V called the instance space. It is generated according
to a fixed but unknown probability density function (PDF) Pvt

defined
on V. The number wt, which is dependent on vt, represents a random
variable that takes values from another space W 3 , called the outcome
space. It is generated according to a conditional PDF Pwt 1vt

defined on
W, also fixed but unknown. The mathematical object (vt, wt) arises then
in the product space Z " V 4W (called the sample space) according to
the joint PDF P(vt,wt)

" Pvt
Pwt 1vt

, which characterizes the probabilistic
environment '. In what follows, the couple (vt, wt) is denoted as zt
(meaning that it takes values from the sample space Z). Using this
notation, the joint PDF P(vt,wt)

is then denoted as Pzt
. The vector vt will

be indifferently called situation or instance and the number wt outcome
or transformer’s response.

In the context of this paper, the parameter t represents the time;
but, a priori, it could refer to some other continuous parameter such
as distance or angle [11]. It takes values in the set of real numbers ,.
The family 0zt, t / ,2 of the random variables zt is a stochastic process
in the environment '. The set (! " 0E(zt), t / ,2 of all possible
values of E(zt) can, in theory, cover the entire sample space Z. In
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practice, however, (! is a subset of Z that covers a specific region of
Z. This subset (! will be designated here as the operating mode of the
transformer & .

To illustrate what is meant by “operating mode” consider, for in-
stance, the behavior of an automotive engine. The operating conditions
of such an engine are not the same when the car is climbing a hill as when
it is taking a highway. In the first case, the engine develops a very high
torque and the speed is low, while in the second case, the same engine
operates under opposite conditions: the speed is high but the torque is
low. Another example that illustrates this concept of operating mode is
a wastewater treatment plant using the activated sludge process. The
operation of this plant can use a little return sludge and low solids in
the aeration tank in order to achieve the objective of removing soluble
substrate with relatively low oxygen supply. But this plant could also be
operated with the purpose of aerobically destroying all of the organic
solids in the waste, which can be done by returning all the sludge to
the aeration tank. Thus, the same plant could operate under different
operating conditions.

Associated with the environment ' " (& ,(!, zt, Pzt
) is a learning

machine%!whose objective is to understand the behavior of the trans-
former & . It receives a finite sequence ΥN of N training examples:

ΥN % ((vt)1, (wt)1), ((vt)2, (wt)2), . . . , ((vt)N, (wt)N)

or, using z-notation:

ΥN % (zt)1, (zt)2, . . . , (zt)N

generated in the environment ', as a result of N distinct random trials
in the space Z.

Note. For the sake of simplifying the notations, we shall, in what fol-
lows, denote the variables:

((vt)i, (wt)i) and (zt)i

as simply:

(vi, wi) and zi

respectively.

The elements zi of ΥN are instances of the random vector zt that are
obtained by physically measuring the components of zt at the end of each
of the N random trials. Based on these training examples, the learning
machine %! selects a strategy that specifies the best approximation
w%! of the transformer’s response for each instance vt. Once this
strategy is selected, it will be used on all future situations vt arising in
the environment ', in order to predict the transformer’s responses. This
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strategy, which is mathematically a mapping function from V into W,
is called a decision rule and is chosen from a fixed functional space #
called the decision rule space.

The goal of %! is then to select, from the space #, that particular
decision rule which best approximates the transformer’s response. The
expression “best approximation of the transformer’s response” means
“closeness to the transformer’s ‘general tendency’ g& .” The latter func-
tion is defined as

g& (vt) " E(wt 1 vt) " &
W

wt Pw1vt
(wt 1 vt) dw. (15)

This function will be indifferently called general tendency or response
function. Closeness is understood in the sense of the metric " defined
in the following way:

5h / #, "(h, g& ) "
'

E( l(h(vt), g& (vt)) )

"

(&
V

l(h(vt), g& (vt)) Pvt
(vt) dvt (16)

where l is defined throughout this paper as the quadratic loss:

5(a, b) / ,2, l(a, b) " 1a & b12.

After receiving the sequence $N of training examples, the learning
machine %! selects that particular decision rule h0 which minimizes
"(h, g& ) on the space# (h designates an element of# and g& the trans-
former’s general tendency). Formally, this means finding the minimum
of the function:

"( . , g& ) % # - ,'
h ! "(h, g& )

and the decision rule h0 at which this minimum is attained. To do so,
%! implements an algorithm $ whose ultimate goal is to find h0 on
the basis of the finite sequence $N of training examples.

Note that wt is related to g& (vt) through the following relationship:

w " g& (vt) ' Ε (17)

where Ε is the noise associated with the probabilistic environment '. By
the properties of conditional expectation, it follows from equation (17)
that:

E(Ε 1 vt) " 0. (18)

Remark 2. The decision rule space # is considered to be indexed by a
subset of ,n for some n 7 1, that is, there exist an integer n 7 1 and a
subset T 3 ,n, such that the space # can be expressed as # " 0hp 1 p /
T2. This is the case for most engineering systems.
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4. Overcoming the first obstacle in minimizing the value of! over
the space"

The objective of the learning machine %! " (#,$) is to minimize the
distance "(h, g& ) over the entire decision rule space #. This distance
involves two functions: h and g& . The function h is an element of the
space # and, as such, it is well known to %!: once the components of
vt are measured, the value of h(vt) is readily computable. The problem
however is g& . Not only is it an unknown function and impossible
to derive from first principles (recall that the systems we are dealing
with are complex ones), but there is no operational way of getting
even sample measurements or any empirical information about it. g&

is indeed buried in noise. What we can measure, with respect to the
transformer’s response, is the outcome wt, and wt contains in it both
the value of g& and noise, all mixed up.

So how should %! proceed to minimize "(h, g& ), when the only
information it can get is in the form of noise-corrupted measurements
of the outcome wt and, of course, the instance vt? Theorem 1 will be of
great help. Before stating it, we need the following definition.

Definition 1 (Expected risk) Let ' " (& ,(!, zt, Pzt
) be a probabilistic en-

vironment and, associated with it, a learning machine %! " (#,$).
Let h / # be a decision rule. The expected risk R(h) of h is defined as
the expected value of the random variable:

l(h(vt), wt) " 1h(vt) &wt1
2

when the vector zt " (vt, wt) is drawn at random in the sample space Z "
V4W according to the PDF Pzt

" P(vt ,wt)
corresponding to environment

'. Formally, it is:

R(h) " E( l(h(vt), wt) ) " &
V4W

l(h(vt), wt) P(vt,wt)
(vt, wt) dvt dwt. (19)

Also, to simplify the notations, we need the following definition.

Definition 2 (Simplifying notations) Let' " (& ,(!, zt, Pzt
) be a probabilis-

tic environment and, associated with it, a learning machine %! "
(#,$). For every decision rule h / #, we define the real-valued func-
tion lh on the sample space Z " V 4W as follows:

5(vt, wt) / V 4W, lh(vt, wt) " l(h(vt), wt). (20)

Hence, using z-notation, equations (19) and (20) become:

5h / #, R(h) " E(lh(zt)) " &
Z

lh(zt) Pzt
(zt) dzt (21)

5zt " (vt, wt) / Z, lh(zt) " l(h(v), wt). (22)
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Theorem 1 (Transition!(h, g# )! R(h)) Let ' " (& ,(!, zt, Pzt
) be a prob-

abilistic environment and, associated with it, a learning machine %! "
(#,$). Let h0 / # be a fixed decision rule. Then the function:

h ! "(h, g& )

is minimal at h0 if and only if the function:

h ! R(h)

is minimal at h0.

Proof. Using equation (15), it can be shown that the equality

R(h) " &
V4W

[w & g& (vt)]
2 P(vt ,wt)

(vt, wt) dvt dwt ' ["(h, g& )]2 (23)

holds true for all h / #. Since the integral

&
V4W

[w & g& (vt)]
2 P(vt,w)(vt, w) dvt dw

is independent of h, it follows that "(h, g& ) is minimal if and only if
R(h) is minimal, and that both functions attain their minimum at the
same function h0.

Theorem 1 is very important in simplifying the learning problem
that %! is faced with. What it means is that minimizing "(h, g& ) or,
equivalently, the square of it ["(h, g& )]2 over# amounts to minimizing
R(h) over the decision rule space. Look at the expressions of these two
functions ["(h, g& )]2 and R(h):

["(h, g& )]2 " E( l(h(vt), g& (vt))) (24)

and

R(h) " E( l(h(vt), wt)). (25)

From these expressions, it can be seen that, in the course of minimizing
"(h, g& ), Theorem 1 allows us to replace the unknown and unmeasur-
able noise-free value g& (vt) by the measurable noise-corrupted value
wt, without losing information on that decision rule h0 at which the
minimum of "(h, g& ) is attained.

The following corollary will be helpful for system uncertainty model
development.

Corollary 1 (First inequality) Let ' " (& ,(!, zt, Pzt
) be a probabilistic en-

vironment and, associated with it, a learning machine %! " (#,$).
Then the inequality:

["(h, g& )]2 ) R(h) (26)

holds true for any rule h / #.

Proof. This inequality is a direct consequence of equation (23).
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5. Second obstacle: Pzt
is not known to $%

Theorem 1 is still not enough for %! to proceed to the determination
of the rule h0 that minimizes "(h, g& ). This is because R(h) is func-
tion of the PDF Pzt

: this PDF embodies all sources of uncertainty in
the environment ' and, as such, it is not known. The objective—and
the power—of the framework developed here consists in avoiding any
strong a priori assumption regarding the sources of uncertainty in '.
Consequently, in what follows, Pzt

is considered fixed but unknown.
Now, having taken this stand on Pzt

, we have to find a way of mini-
mizing R(h) on the basis of only a finite number N of training examples
z1, z2, . . . , zN. How to do that? By introducing a principle called
inductive principle of empirical risk minimization (IPERM). This prin-
ciple emerged in the 1980s as a result of the extensive research work in
[4, 5, 6] and that in [7, 8, 9].

6. Inductive principle of empirical risk minimization

Before we state the IPERM, we need to define the meaning of the em-
pirical risk of a decision rule.

Definition 3 (Empirical risk) Let ' " (& ,(!, zt, Pzt
) be a probabilistic en-

vironment and, associated with it, a learning machine %! " (#,$).
Let h / # be a decision rule and ΥN " (z1, z2, . . . , zN) a finite sequence
of N training examples generated and measured in the probabilistic en-
vironment ' as a result of one realization of this same environment.
The empirical risk RΥN

emp(h) of h on the sequence ΥN is defined as the
arithmetic mean of the sequence of numbers:

(lh(zi))i"1,2,...,N

that is,

RΥN
emp(h) "

1
N

N!
i"1

lh(zi). (27)

Having introduced the concept of empirical risk, we can now define
what is meant by an uncertainty model.

Definition 4 (Uncertainty model) Let ' " (& ,(!, zt, Pzt
) be a probabilistic

environment and, associated with it, a learning machine %! " (#,$).
Let ΥN be a finite sequence of N training examples from the environment
' and Η is a fixed real number in the interval ]0,1[. Let hΥN

emp be a decision
rule at which the empirical risk RΥN

emp(h) reaches its minimum. An Η-
uncertainty model (or simply uncertainty model) of the transformer &
is any inequality of the type:

"(hΥN
emp, g& ) ) ((e1, e2, . . . , el) (28)
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that satisfy the following two conditions.

1. Pr )"(hΥN
emp, g& ) ) ((e1, e2, . . . , el)* 7 1 & Η.

2. e1, e2, . . . ,el are a set of uncertainty control variables and( is a real-valued
function of these variables that satisfy the following:

+ the variables ei and the function (
are readily determinable/computable. (29)

Expected and empirical risks, R(h) and RΥN
emp(h), may seem to intro-

duce new concepts in this framework, but they are not if we go back to
the concepts of probability theory. To see that, fix a decision rule h in
the space#. Since zt is a random variable, the number lh(zt) is then also
a random variable. Denote it as Ξ, that is,

Ξ " lh(zt).

(Recall that h is fixed.) From probability theory, we know that there are
two measures of the central tendency of a random variable such as Ξ.

An empirical measure. Given a series of realizations Ξ1, Ξ2, . . . , ΞN of
the variable Ξ, this measure is constructed by computing the arithmetic
average (,i Ξi)/N of this series.

A mathematical measure. This measure is expressed in terms of the PDF
PΞ of Ξ, that is: - ΞPΞ(Ξ) dΞ. It is called the expected value.

In this framework, RΥN
emp(h) represents the empirical measure of the cen-

tral tendency of Ξ " lh(zt) and R(h) represents the mathematical one.
The former measure is approximate but computable, the latter is exact
but unknown. Also note that, under some conditions with respect to the
dependency and heterogeneity of the realizations Ξi, the empirical mea-
sure converges to the mathematical one when N is made infinitely large
[13]. This is known as the Law of Large Numbers in probability theory.
Applying this law to the case of the expected and empirical risks, we get
that RΥN

emp(h) converges (in probability) to R(h) as N is made infinitely
large. That is,

RΥN
emp(h) - R(h) as N - :. (30)

The reader should note a very important fact here: the convergence
equation (30) is valid for a fixed decision rule h in the space #. This
is called pointwise convergence, as opposed to another type of conver-
gence (called uniform convergence) that is discussed briefly in the next
sections. The term “pointwise” refers to the fact that the convergence
equation (30) occurs only for fixed points of# and not for all points of
this space simultaneously.

Now we state the IPERM. This principle consists of implementing
the following two actions.
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Action 1. Replace the expected risk R(h) by the empirical risk RΥN
emp(h)

computed on the basis of one training sequence ΥN.

Action 2. Take the decision rule hΥN
emp at which RΥN

emp(h) reaches its min-
imum as a good representation of the best rule h0 that minimizes the
expected risk R(h).

Therefore, the implementation of the IPERM comes down to minimiz-
ing the empirical risk RΥN

emp(h), instead of the expected one R(h), over the
space# and then choosing that decision rule hΥN

emp at which the minimum
of RΥN

emp(h) is reached to describe the transformer’s behavior. Engineering
systems modelers (in various areas of engineering such as chemical, civil,
or environmental) have been using this procedure for system model iden-
tification for years. The reader may then wonder: Why are we develop-
ing a new mathematical framework, if all we are going to do is turn back
to the traditional model identification procedure? What is the point?

This framework is not about inventing new procedures, but rational-
izing existing ones and modeling the uncertainty that is associated with
them. Engineering systems modelers have been using the traditional
identification procedure without being aware of the transitions

"(h, g& ) ; R(h); RΥN
emp(h). (31)

Their decision to rely on empirical risk minimization may be explained
by the fact that mechanistic models (as opposed to balck-box models)
are usually assumed to contain adequate a priori information about the
real system and, as a result, very little information would be lost in the
transition

R(h); RΥN
emp(h). (32)

Now we know that this is not true for a complex system, since all exist-
ing models represent just a simplified picture of the real system behavior.
If the sequence $N is a finite one, then there is definitely a loss of infor-
mation in the transition equation (32), that has always been ignored by
engineering systems modelers. The aim of this framework is to rational-
ize and investigate the validity of this transition. First, we determine in
what cases the replacement of R(h) by RΥN

emp(h) can be legitimized and,
second, evaluate the loss of information that occurs in the course of
this replacement. To do so, we need to examine the applicability of the
IPERM, for which Vapnik’s results will be of great help.

7. Applicability of the inductive principle of empirical
risk minimization

In the transition

"(h, g& ) ; R(h) (33)
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there is absolutely no information loss, by virtue of Theorem 1. As a
result, R(h) can be considered as an exact measure of the performance of
the decision rule h when this rule is selected by%! as an approximation
of g& . The transition that is problematic is the second one:

R(h) ; RΥN
emp(h).

RΥN
emp(h) is indeed just an estimation of R(h). Of course, one may argue

that replacing R(h) by RΥN
emp(h), as suggested in Action 1 of the IPERM,

can be legitimized by the fact that, according to the Law of Large
Numbers, RΥN

emp(h) becomes a perfect estimation of R(h) when the size
N of the sequence ΥN is made infinitely large. But, this fact cannot be
used to justify Action 2 of the IPERM. Here is indeed the problem.

As was done above, denote the decision rules that minimize R(h)
and RΥN

emp(h) as h0 and hΥN
emp, respectively. This is equivalent to

writing

RΥN
emp(hΥN

emp) " inf
h/#

RΥN
emp(h) (34)

and

R(h0) " inf
h/#

R(h). (35)

Action 2 of the IPERM stipulates taking hΥN
emp as a good repre-

sentation of the best rule h0. For this to be justified, we need to
ensure that hΥN

emp is very “close” to minimizing the expected risk
R(h) which is, as pointed out previously, an exact measure of the
rule’s performance (meaning the rule’s closeness to g& in the sense
of "). In more concrete terms, we need that the value R(hΥN

emp) of
the expected risk at hΥN

emp be close to the minimum one R(h0), for N
sufficiently large. That is,

R(hΥN
emp) - R(h0) as N - : (36)

(convergence is understood in probability).

It has been shown [9] that the pointwise convergence equation (30)
does not guarantee the one that is really required for the purpose of the
IPERM, that is, convergence equation (36). In other words, it is possible
that convergence equation (30) be satisfied, but R(hΥN

emp) remains always
far from R(h0)—even for large values of N—meaning that hΥN

emp would
never constitute a good approximation to the transformer’s behavior. It
is therefore important to verify whether the IPERM is applicable or not
before using it in any learning problem.

Taking into consideration the foregoing comments, the following
definition shall be adopted for the meaning of the applicability of the
IPERM.
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Definition 5 (Applicability of the IPERM) Let ' " (& ,(!, zt, Pzt
) be a prob-

abilistic environment and, associated with it, a learning machine%! "
(#,$). Let ΥN be a finite sequence of N training examples from the en-
vironment ' and let hΥN

emp and h0 be two decision rules that minimize the
risks RΥN

emp(h) and R(h), respectively (refer to equations (34) and (35)).
The IPERM is said to be applicable to (',%!) if, for any " > 0, the
following equality holds true:

lim
N-:

Pr #sup
h/#

∆ )R(h), RΥN
emp(h)* > "$ " 0, (37)

with ∆ being a deviation measure defined on the real line.

Now that the applicability of the IPERM has been defined, we need
to develop a simple method of verifying it. In the foregoing discussion,
it has been pointed out that the pointwise convergence equation (30)
is not enough to guarantee the applicability of the IPERM. A more
stringent condition regarding the empirical risk convergence needs to be
imposed. Vapnik and Chervonenkis showed in [9] that, for the IPERM
to be applicable, it is necessary and sufficient that the empirical risk
RΥN

emp(h) converges uniformly to the expected risk R(h) over the whole
space # (convergence is understood in probability). Mathematically,
uniform convergence means that equation (37) holds true. Intuitively,
it means that, as N is made infinitely large, the whole curve of RΥN

emp(h)
converges to that of R(h) over the space #. In this presentation, the
theoretical part of such questions will not be detailed. Instead, the reader
is referred to Vapnik’s book Statistical Learning Theory [6] for details. In
what follows, Vapnik’s results are presented in a more practical fashion,
allowing direct application to the cases under study in this paper (i.e.,
engineering systems). The mathematical rigor is, however, preserved
throughout the whole presentation.

A criterion to verify the applicability of the IPERM is not the only
thing that is needed here. We also want to know how much information
is lost when R(h) is replaced by RΥN

emp(h). Here again, to evaluate this
information loss, we need to define a measure of the deviation between
R(h) and RΥN

emp(h). For this purpose, two deviation relative measures are
introduced.

Relative measure ∆1 defined by:

5(a1, a2) / ,2, ∆1[a1, a2] "
a1 & a2.

a1
. (38)

Relative measure ∆2 defined by:

5(a1, a2) / ,2, ∆2[a1, a2] "
a1 & a2

a1
. (39)
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Each of these measures will be associated with a different weak prior
information about (',%!).

Using these measures, Theorem 2 defines sufficient conditions for the
applicability of the IPERM and helps evaluate the loss of information
that occurs when R(h) is replaced by RΥN

emp(h).

Theorem 2 (Applicability of the IPERM) Let ' " (& ,(!, zt, Pzt
) be a proba-

bilistic environment and, associated with it, a learning machine %! "
(#,$). Let ΥN be a finite sequence of N training examples from the
environment ' and Η is a real number in the interval ]0, 1[. Let ∆ be
one of the deviation measures ∆1 or ∆2. If it is possible to establish some
weak prior information)*+ about (',%!) and construct a function
, dependent on N, the whole set #, )*+, and the number Η such
that both Statements 1 and 2 listed below hold true, then the IPERM is
applicable to (',%!). When such a function

, " ,(N,#,)*+, Η)

exists, the IPERM is said to be ∆-applicable to (',%!) with the bound
,(N,#,)*+, Η).

Statement 1. For any Η /]0, 1[, the inequality

sup
h/#

∆ )R(h), RΥN
emp(h)* ) ,(N,#,)*+, Η)

is satisfied with probability of at least 1 & Η.

Statement 2. When #, Η, and)*+ are fixed, then:

lim
N-:
,(N,#,)*+, Η) " 0.

Proof. Let " > 0 and Η /]0, 1[ be two fixed numbers. From Statement 2,
we infer that:

=N0 / >, 5N > N0, ,(N,#,)*+, Η) < ".

Then, from Statement 1, we get that for N > N0, the inequality

sup
h/#

∆ )R(h), RΥN
emp(h)* ) "

is satisfied with probability of at least 1 & Η. That is,

Pr #sup
h/#

∆ )R(h), RΥN
emp(h)* > "$ < Η.

Thus, we have shown that, for any " > 0:

5Η /]0, 1[, =N0 / >, 5N > N0, Pr #sup
h/#

∆ )R(h), RΥN
emp(h)* > "$ < Η
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which means, by definition, that

lim
N-:

Pr #sup
h/#

∆ )R(h), RΥN
emp(h)* > "$ " 0.

Now recall that the objective of this study is to develop uncertainty
models (see Definition 4) for complex engineering systems. The follow-
ing theorem defines a way of developing such models.

Theorem 3 (Uncertainty model) Let ' " (& ,(!, zt, Pzt
) be a probabilistic

environment and, associated with it, a learning machine %! " (#,$).
Let ΥN be a finite sequence of N training examples from the environment
' and Η is a real number in the interval ]0, 1[. Let)*+ be some weak
prior information about (',%!) and hΥN

emp a decision rule at which the
empirical risk RΥN

emp(h) reaches its minimum.

If the IPERM is ∆1-applicable to (',%!) with the bound,(N,#,)*+, Η),
then the inequality

["(hΥN
emp, g& )]2 ) RΥN

emp(hΥN
emp) '

,2(N,#,)*+, Η)
2

4
?@@@@@@@@@
A

1 '

/
1 '

4 RΥN
emp(hΥN

emp)

,2(N,#,)*+, Η)

BCCCCCCCCC
D

(40)

holds true with probability of at least 1 & Η.

If the IPERM is ∆2-applicable to (',%!) with the bound,(N,#, Η,)*+),
then the inequality

["(hΥN
emp, g& )]2 )

R
ΥN
emp(h

ΥN
emp)

(1 & ,(N,#,)*+, Η))'
(41)

holds true with probability of at least 1 & Η, where (a)' " sup(a, 0).

Proof. If the IPERM is ∆1-applicable to (',%!) with the bound ,(N,#,
Η,)*+), then, from Theorem 2, it follows that (all inequalities hold
with probability of at least 1 & Η):

R(hΥN
emp) & RΥN

emp(hΥN
emp)'

R(hΥN
emp)

) ,(N,#,)*+, Η).

Hence:

R(hΥN
emp) ) RΥN

emp(hΥN
emp)

'
,2(N,#,)*+, Η)

2

?@@@@@@
A
1 '

(
1 '

4 RΥN
emp(hΥN

emp)

,2(N,#,)*+, Η)

BCCCCCC
D
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and then, from Theorem 1, it follows that

["(hΥN
emp, g& )]2 ) RΥN

emp(hΥN
emp)

'
,2(N,#,)*+, Η)

2

?@@@@@@
A
1 '

(
1 '

4 RΥN
emp(hΥN

emp)

,2(N,#,)*+, Η)

BCCCCCC
D

.

Similarly, if the IPERM is ∆2-applicable to (',%!) with the bound
,(N,#, Η,)*+), then, from Theorem 2, it follows that

R(hΥN
emp) &RΥN

emp(hΥN
emp)

R(hΥN
emp)

) ,(N,#,)*+, Η)

and then

["(hΥN
emp, g& )]2 ) R(hΥN

emp) )
RΥN

emp(hΥN
emp)

(1 & ,(N,#,)*+, Η))'
.

The bound on the squared distance ["(hΥN
emp, g& )]2, when it exists, is

called the guaranteed deviation between hΥN
emp and g& , and denoted as (

or as

((N,#, RΥN
emp(hΥN

emp),)*+, Η).

8. The Vapnik–Chervonenkis dimension

One of the objects which the guaranteed deviation ( is dependent on is
the whole set # of decision rules. Now we need to know exactly what
characteristic of# affects ( and the uncertainty equations (40) and (41).
Intuitive analysis of uncertainty in engineering systems shows that this
characteristic is the complexity of # [12]. The objective of this section
is to define a measure of this complexity. This measure is known as the
Vapnik–Chervonenkis dimension, or simply VC dimension, named in
honor of its originators, Vapnik and Chervonenkis [7]. The definition
of this dimension is quite difficult to assimilate from the first reading.
Because of this, an intuitive interpretation of the VC dimension will be
given first and, at the end of this section, a series of illustrative examples
are presented.

8.1 Intuitive introduction

Consider the following concrete example:

V1 " , and W1 " ,;

# " #line is the set of all functions h from V into W such that:

5x / V, h(x) " p1x ' p2

with p " (p1, p2) / ,2 as the parameter vector.
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If we had to assign a number to the complexity of this set of functions,
then intuitively the number two, corresponding to the number of pa-
rameters, would be the most suitable one. Consider now this second
example:

V2 " , and W2 " ,;

# " #sine is the set of all functions h from V into W such that:

5x / V, h(x) " p1 sin(p2x)

with p " (p1, p2) / ,2 as the parameter vector.

Since the number of parameters that define this set is also two, we may
be tempted to again assign the number two to the complexity of this set.
If we do so, it would mean that #line and #sine have the same degree
of complexity, which is obviously not correct: the set #line is a family
of just straight lines, while #sine is a complex family of curves that can
take many different shapes. The “expressive power” of #sine is indeed
much higher than that of #line. As a result, it should be expected that
the complexity of #sine be much higher than that of #line, and that is
what we get when we consider the VC dimension as a measure of the
complexity of the decision rule space.

Intuitively, the VC dimension may be considered as equal to the
maximum number of points that the curves representing the functions
of the decision rule space can pass through simultaneously. Straight lines
(functions defined by h(x) " p1x'p2, space#line) can pass through any
two points, but not any three points. Parabolas (functions defined by
h(x) " p1x2 ' p2x'p3, space#parab) can pass through any three points,
but not any four points. Sine functions (h(x) " p1 sin(p2x), space #sine)
can pass through any number of points. Hence, if the VC dimension of
a space # is denoted as q(#), then:

q(#line) " 2
q(#parab) " 3

q(#sine) " :.

The foregoing intuitive interpretation of the VC dimension is approx-
imate. A more precise definition of it is given in section 8.2.

8.2 Definitions

For every set I, the notation 2I will designate the set of all subsets of I.

Definition 6 (VC dimension of a family of sets) Let G be some space (,n with
n > 0, for example, or any other space). Let - be a family of subsets of
G (examples of - in the case of G " ,2 are the family of all open [or
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closed] balls of ,2 or the family of all half planes of ,2) and I is a finite
subset of G. Let E-(I) be the subset of 2I defined as follows:

E-(I) " 0F / 2I 1=F / -,F " F G I2.

The finite set I is said to be shattered by the family of sets - if E-(I) "
2I. The largest integer q such that some finite subset I H G of size
q is shattered by - is called the Vapnik–Chervonenkis dimension (VC
dimension) of the family -. It is denoted by q " q(-). If such an integer
q does not exist, then the VC dimension of - is said to be infinite.

Definition 7 (VC dimension of a family of functions) Let . be a family of real-
valued functions on some space G and I is a finite subset of G. For every
function f / . , define the subset pos(f ) of the space G as follows:

pos(f ) " 0a / G1 f (a) > 02.

Then define the family pos(. ) of subsets of G as follows:

pos(. ) " 0pos(f )1 f / . 2.
The finite set I is said to be shattered by the family of real-valued
functions . , if it is shattered by the family of subsets pos(. ). The VC
dimension q(. ) of the family. of real-valued functions is, by definition,
equal to the VC dimension of the family of subsets pos(. ):

q(. ) " q(pos(. )).

The VC dimension is then a purely combinatorial concept that has, a
priori, no connection with the geometric notion of dimension. In most
situations, it is difficult to evaluate the VC dimension by analytic means.
Usually, all that is possible is to determine a bound on the VC dimension,
that is, establish an inequality of the form: q(. ) ) q0 (q0 / >). Also
in some cases the VC dimension is simply approximated by the free
parameters of the family . . Theorem 4 shows how to determine it
in some particular cases. It also establishes a link with the geometric
notion of dimension.

Theorem 4 (VC dimension and vector space) Let. be a family of real-valued
functions on some space G. Fix any function f0 from G into , and let .0
be the new family of functions defined by .0 " f0'. " 0f0' f 1 f / . 2. If
. is an m-dimensional real vector space, then the VC dimension q(.0)
of .0 is equal to m:

q(.0) " m.

Proof. Refer to [14] for the proof of this theorem.
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8.3 Examples

Example 1. Consider the family of functions hp defined from the space
G " ,n (n / ># ) into 00, 12 by:

5x " (x1, x2, . . . , xn) / ,n, hp(x) " Ψ
?@@@@@
A

n!
i"1

pixi

BCCCCC
D

where p " (p1, p2, . . . , pn, Θ) / ,n'1 is the parameter vector and Ψ is
defined by (real threshold Θ):

Ψ(a) " + 1 if a 7 Θ,
0 if a < Θ.

This family of functions is known as the perceptron and is used in
pattern recognition. Its VC dimension is equal to n ' 1 [15].

Example 2. Consider the family of real-valued functions hp defined on
some space G by

5x / G, hp(x) "
n!

i"1

piΨi(x)

where p " (p1, p2, . . . , pn) / ,n is the parameter vector and Ψ1, Ψ2, . . . ,
Ψn is a sequence of n linearly independent real-valued functions. The
VC dimension of this family of functions is equal to n [4]. Note that the
determination of this VC dimension results directly from Theorem 4.

Example 3. Consider the family of functions hp defined on G " ,2 by

5(x, y) / ,2, hp(x, y) " (y & polyn(x, p))2

where p " (p0, p1, p2, . . . , pn) / ,n'1 is the parameter vector and polym(x, p)
is a polynomial function of degree n defined by

5x / ,, polyn(x, p) " p0 ' p1x ' p2x2 '" ' pnxn.

The VC dimension of this family of functions hp is at most 2n ' 2 [5].

Example 4. Consider the family of functions hp defined on G " , by

5x / ,, hp(x) " p1 sin(p2x)

where p " (p1, p2) / ,2 is the parameter vector. The VC dimension of
this family of functions is infinite [6].

From these examples it can be seen that, generally speaking, the VC
dimension of a family of functions is not always related to the number of
parameters. It can be larger (Example 4), equal (Examples 1 and 2), or
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smaller (see [5] where new types of learning machines were constructed)
than the number of parameters.

9. Vapnik–Chervonenkis dimension and applicability of the inductive
principle of empirical risk minimization

In section 7, the concept of applicability of the IPERM and that of
guaranteed deviation between the decision rule hΥN

emp that minimizes the
empirical risk and the transformer’s response function g& were intro-
duced. However, no methodology has been developed to determine the
expression of the function , " ,(N,#,)*+, Η) (see Theorems 2 and
3), which is the key function in implementing those concepts. In this
section, some fundamental results with respect to determining such a
function are presented. These results make use of the VC dimension
concept defined in section 8 and are due to [6]. Extensive discussion
and application of these results to model identification and quality eval-
uation can be found in [12].

Before stating these results, we need to define a new space l# and five
different conditions.

Definition 8 (Space l") Let ' " (& ,(!, zt, Pzt
) be a probabilistic environ-

ment and, associated with it, a learning machine %! " (#,$). For
every decision rule h / # and a real number Β / ,', we define the
real-valued functions lh, Β on the sample space Z " V 4W as follows:

5zt / Z, lh, Β(zt) " lh(zt) & Β.

The functional space of all functions lh, Β will be denoted by l#:

l# " 0lh, Β1 (h, Β) / # 4 ,'2.

Now we define the conditions C.1, CL.1, C.2, C.3, and CL.3.

C.1 Weak prior information (1). There exists a positive number M / ]0,':[
such that:

sup
h/#,zt/Z

lh(zt) " M.

CL.1 Weak prior information (2). There exists a pair (s, Τ) / ,2 with s > 2
and Τ < ': such that:

sup
h/#

E1/s([lh(zt)]
s)

R(h)
< Τ.

C.2 VC dimension. The VC dimension q " q(l#) of the functional space l#
is finite.
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C.3 I.i.d. condition. The training examples z1, z2, . . . , zN of the sequence ΥN
are independent and identically distributed (i.i.d.).

CL.3 Weaker i.i.d. condition. The real-valued random variables

lh(z1)N lh(z2)N "N lh(zN)

obtained by computing the values of lh at each one of the training
examples zi of the sequence ΥN, are i.i.d. for any h / #.

Corollary 2 (IPERM applicability and VC (1)) Let ' " (& ,(!, zt, Pzt
) be a

probabilistic environment and, associated with it, a learning machine
%! " (#,$). Let ΥN be a finite sequence of N training examples
from the environment ' and Η is a real number in the interval ]0, 1[.
If the conditions C.1, C.2, and C.3 are satisfied, then the IPERM is
∆1-applicable to (',%!) with the bound:

, "
'

M Ζ (42)

where the number Ζ is:

Ζ " 4
0q 1ln 1 2N

q 2 ' 12 & ln 3 Η4 45
N

and q is the VC dimension q(l#) of the space l#.

Proof. In [6] Vapnik showed that, for any " > 0, the following inequal-
ity holds true:

Pr #sup
h/#

∆1[R(h), RΥN
emp(h)] > "$ < 4 exp

PQQQQQQQQQQQQR

?@@@@@@@
A

q 1ln 12N
q 2 ' 12
N

&
"2

4M

BCCCCCCC
D

N

STTTTTTTTTTTTU
(43)

when conditions C.1, C.2, and C.3 are satisfied [6], (see inequalities
5.24 and 5.12 at pages 197 and 192 of [6] respectively). Set the right-
hand side of the above inequality equal to Η. Then the expression of
" is

" "
'

MΖ

and, therefore, from Vapnik’s inequality, it follows that the inequality

sup
h/#
∆1[R(h), RΥN

emp(h)] <
'

MΖ

holds true with probability of at least 1 & Η.

Corollary 3 (IPERM applicability and VC (2)) Let' " (& ,(!, zt, Pzt
) be a prob-

abilistic environment and, associated with it, a learning machine%! "
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(#,$). Let ΥN be a finite sequence of N training examples from the
environment ' and Η is a real number in the interval ]0, 1[. If the condi-
tions CL.1, C.2, and C.3 are satisfied, then the IPERM is ∆2-applicable
to (',%!) with the bound

, " Γ(s) Τ
'
Ζ (44)

where

Γ(s) "
s
(

1
2
#s & 1
s & 2

$s&1

,

the number Ζ is:

Ζ " 4
0q 1ln 1 2N

q 2 ' 12 & ln 3 Η4 45
N

,

and q is the VC dimension q(l#) of the space l#.

Proof. In [6] Vapnik showed that, for any " > 0, the following inequal-
ity holds true:

Pr #sup
h/#

∆2[R(h), RΥN
emp(h)] > Γ(s) Τ "$ <

4 exp

PQQQQQQQQQQQQR

?@@@@@@@
A

q 1ln 1 2N
q 2 ' 12
N

&
"2

4

BCCCCCCC
D

N

STTTTTTTTTTTTU
(45)

when conditions CL.1, C.2, and C.3 are satisfied [6], (see inequalities
5.43 and 5.12 at pages 210 and 192 of [6] respectively). Set the right-
hand side of the above inequality equal to Η. Then the expression of
" is:

" "
'
Ζ

and, therefore, the inequality:

sup
h/#

∆2[R(h), RΥN
emp(h)] < Γ(s) Τ

'
Ζ

holds true with probability of at least 1 & Η.

Note that)*+ is represented by the number M in Theorem 2 and
by the numbers s and Τ in Theorem 3.

Theorem 5 uses a weaker i.i.d. condition (CL.3).

Theorem 5 (Using condition C".3) If the third condition C.3 in Theorems 2
and 3 is replaced by the condition CL.3 and the two other conditions,
C.1 and C.2 for Theorem 2 and CL.1 and C.2 for Theorem 3, are kept
unchanged, then the IPERM is still applicable to (',%!) with respect
to the same deviation measures ∆1 and ∆2 and with the same bounds of
equations (42) and (43), respectively.
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Proof. To prove equations (43) and (45), Vapnik [4, 5] made use of
the weaker i.i.d. condition only. As a result, these inequalities remain
true if condition C.3 is replaced by condition CL.3. Consequently, the
foregoing proofs of Theorems 2 and 3 are still valid with condition
CL.3.

Using Theorems 2, 3, and 5, it is now possible to develop uncer-
tainty models for (',%!) with a guaranteed deviation ( that is readily
computable.

Corollary 4 (Uncertainty model and VC) Let ' " (& ,(!, zt, Pzt
) be a prob-

abilistic environment and, associated with it, a learning machine%! "
(#,$). Let ΥN be a finite sequence of N training examples from the
environment ' and Η is a real number in the interval ]0, 1[. Let hΥN

emp be
a decision rule at which the empirical risk RΥN

emp(h) reaches its minimum.

If the conditions C.1, C.2, and CL.3 are satisfied, then the inequality

["(hΥN
emp, g& )]2 ) RΥN

emp(hΥN
emp) '

MΖ
2

?@@@@@@
A
1 '

(
1 '

4 RΥN
emp(hΥN

emp)
MΖ

BCCCCCC
D

(46)

holds true with probability of at least 1 & Η.

If the conditions CL.1, C.2, and CL.3 are satisfied, then the inequality

["(hΥN
emp, g& )]2 )

RΥN
emp(hΥN

emp)

(1 & Γ(s) Τ
.
Ζ)'

(47)

holds true with probability of at least 1 & Η.

$ (a)' " sup(a, 0) for any number a / ,.

$ Γ(s) " s
'

1
2 3 s&1

s&2 4s&1.

$ The number Ζ is

Ζ " 4
0q 1ln 1 2N

q 2 ' 12 & ln 3 Η4 45
N

. (48)

$ q is the VC dimension q(l#) of the space l#.

Proof. This theorem is a direct consequence of Theorems 5 and 3.

Theorem 4 establishes two uncertainty models,/!1 and /!2, for
(',%!). The first one, /!1, is based on the weak prior information
)*+(1) and is defined by equation (46). The right-hand side of this
inequality represents the guaranteed deviation (1 between hΥN

emp and
g& , developed on the basis of )*+(1). Using this function (1, the
uncertainty model /!1 can be rewritten as follows:

/!1 % ["(hΥN
emp, g& )]2 ) (1(N,#, RΥN

emp(hΥN
emp),)*+(1), Η) (49)
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with

(1(N,#, RΥN
emp(hΥN

emp),)*+(1), Η) "

RΥN
emp(hΥN

emp) '
MΖ
2

?@@@@@@
A
1 '

(
1 '

4 RΥN
emp(hΥN

emp)
MΖ

BCCCCCC
D

. (50)

The second model, /!2, is based on the weak prior information
)*+(2) and is defined by equation (47). Denoting the right-hand side
of this inequality as (2 (guaranteed deviation developed on the basis of
)*+(2)), the uncertainty model /!2 can be rewritten as

/!2 % ["(hΥN
emp, g& )]2 ) (2(N,#, RΥN

emp(hΥN
emp),)*+(2), Η) (51)

with

(2(N,#, RΥN
emp(hΥN

emp),)*+(2), Η) "
RΥN

emp(hΥN
emp)

(1 & Γ(s) Τ
.
Ζ)'

. (52)

10. Conclusions

A mathematical framework for modeling the uncertainty in complex
engineering systems is developed. This framework uses the results of
computational learning theory and is based on the premise that a system
model is a learning machine. A definition of an uncertainty model is
given and a principle called inductive principle of empirical risk min-
imization (IPERM) is introduced. The applicability of this principle
is examined and the concept of “guaranteed deviation” defined. The
system model complexity is measured using the Vapnik–Chervonenkis
(VC) dimension. Based on this dimension, two different uncertainty
models were developed.
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