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Standard cellular automata (CA) are ahistoric (memoryless), that is, the
new state of a cell depends on the neighborhood configuration of only the
preceding time step. This article introduces an extension to the standard
framework of CA by considering automata with memory capabilities.
While the update rules of the CA remain unaltered, a history of all past
iterations is incorporated into each cell by a weighted mean of all its
past states. The historic weighting is defined by a geometric series of
coefficients based on a memory factor (@). A study is made of the effect
of historic memory on the spatio-temporal and difference patterns of
elementary (one-dimensional, two states, nearest neighbors) CA starting
with states assigned at random.

| 1. Introduction

Cellular automata (CA) are discrete, spatially explicit extended dynami-
cal systems. A CA system is composed of adjacent cells' or sites arranged
as a regular d-dimensional lattice (d is in most cases 1 or 2), which
evolves in discrete time steps. Each cell is characterized by an internal
state whose value belongs to a finite set. The updating of these states is
made simultaneously according to a common local rule involving only
a neighborhood of each cell (e.g., [1] for a definition of CA).

CA are discrete par excellence, all three of their dimensions (space,
time, and state) are discrete. This perfectly fits the features of digi-
tal computers, enabling exact computation. The synchronicity of the
updating mechanism, the regular topologies, and the locality of interac-
tions> make the CA paradigm ideally suited for parallel computers.

*Electronic mail address: ralonso@est.etsia.upm.es.

IThe bricks of an oversimplified microworld which do not try to emulate real particles
as in Molecular Dynamics.

2 A feature that relates CA with Markov Random Field models, used in spatial statistical
modeling and analysis.
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CA are often described as a counterpart to partial differential equa-
tions [2], capable of describing continuous dynamical systems. Roughly
speaking, two main levels are studied in a natural system, corresponding
to the scale of observation: the microscopic and the macroscopic. Of-
ten, the complexity of the macroscopic world is apparently disconnected
from that of the microscopic world, although the former is driven by
the latter: the microscopic details are lost when the whole system is seen
through a macroscopic filter. CA work at the microscopic level which
drives the macroscopic behavior: the idea is not to try to describe a
complex system from above—to describe it using difficult equations—
but to simulate it by the interaction of cells following easy rules. These
rules are often formulated in a natural language (with minimal or soft
mathematical demands) and are easily translated into a computer pro-
gramming language, as postulated by the Artificial Intelligence com-
munity (particularly when designing Expert Systems). In other words:
not to describe a complex system with complex equations, but to let the
complexity emerge by interaction of simple individuals following simple
rules.

From the theoretical point of view, CA were introduced in the late
1940s by John von Neumann and Stanislaw Ulam. One can say that the
cellular part comes from Ulam, and the automata part from von Neu-
mann. But CA were shunted onto a dead track for a couple of decades
[3] and did not reach the general public until 1970, when Martin Gard-
ner published an account of John Conway’s Game of “Life” in Scientific
American [4, 5]. Life was destined to become the most famous CA and
an inspiration to a generation of Artificial Life researchers.

A number of people at MIT began studying CA beyond Life dur-
ing the 1970s. Probably the most influential figure there was Edward
Fredkin, who around 1980 formed the Information Mechanics Group
at MIT along with Tommaso Toffoli, Norman Margolus, and Gérard
Vichniac. By 1984, Toffoli and Margolus had nearly perfected the
CAM-6 CA machine, a special computer designed for the lightning-
quick execution of CA, and were generating some publicity about it. In
addition, in the middle 1980s (perhaps the golden age of CA), Stephen
Wolfram was publishing numerous articles about CA [6] which hooked
a number of researchers. In these articles, Wolfram suggested that many
physical processes that seem random are in fact the deterministic out-
come of computations that are simply so convoluted that they cannot
be compressed into a shorter form and predicted in advance (he spoke
of these computations as incompressible).

During the following years, CA were developed and used in many
different fields. The requirements for the application of the CA ap-
proach to real problems (connecting different levels of detail) enlarged
the basic paradigm, leading to systems related to CA (mere extensions in
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some cases) such as: inhomogeneous,® asynchronous* continuous state

spaces,® Lattice-gas® or macroscopic’ automata. Today, some authors
use the more comprehensive term grid-based models [15] in order to be
freed of the restrictions that the CA paradigm imposes.

A vast body of literature has been produced on these topics.® To a
great extent, the papers on CA relate to many different, unrelated areas
of physics.’

But the aim of this contribution is not to present a comprehensive
review of the avatars of the CA approach but rather to enlarge the
paradigm in a relatively unexplored direction: the consideration of all
past states (history) in the application of the CA rules, as explained in
section 2. To materialize this, we start from the simplest scenario: one-
dimensional (d = 1) CA with two possible values (k = 2) at each site:
a € {0, 1}, with rules operating on nearest neighbors (r = 1). This is the
scenario of [28], a landmark review paper largely responsible for the
resurgence of interest in CA in the 1980s. The recent book by Wolfram
[29] will receive special attention in the CA community (see two early
comments by Casti [30] and Giles [31]).

Thus, this paper deals with elementary rules (d = 1,k = 2,r = 1),
which following Wolfram’s [28] notation, are characterized by a se-
quence of binary values (8) associated with each of the eight possible

30r nonuniform: where different cells may be ruled by different transition functions.
Nonuniform CA were investigated by Vichniac et al. [7] and Sipper [8]. Kauffman’s [9]
Random Boolean Networks allow arbitrary rules and connections which may be different
at each site. Cellular Neural Networks [10] include CA as a special case.

4Or lattice Monte Carlo simulations: cells are not updated simultaneously [11].

3Such as Coupled Map Lattices (CML), in which time and space are discrete but state
is continuous [12].

6In which the update is split into two parts: collision and propagation, intended to
guarantee propagation of quantities while keeping the proper updating rules (collision)
simple [13].

7State variables refer to macroscopic quantities; cell dimension is larger [14].

8The biennial Conference on CA for Research and Industry (ACRI, from its original
Italian acronym) aims to present an international forum for researchers who are active
in the CA field, as well as for those interested in evaluating the possibility of applying
them in their own fields [16, 19]. Tlachanski [20] has recently reviewed the subject. His
book contains an extensive bibliography and provides a listing of CA resources on the
World Wide Web. Outstanding, the freeware DDLab [21] is a useful tool, in permanent
upgrading, for studying both CA and Random Boolean Networks.

9The book by Chopard and Droz [22] might serve as an excellent textbook for physi-
cists. The updated book by Ilachanski [20] is also intended mainly for a physicist audience.
Some modern books on statistical mechanics; for example, Wilde and Singh [23], incor-
porate CA as a tool to study systems that are far from equilibrium. It has been argued that
CA , intimately related to discrete statistical models, will play an important part elucidat-
ing basic ideas and general principles of statistical mechanics. Conversely, Rujan [24] also
studies the usefulness of statistical physics methods to describe the properties of proba-
bilistic CA. The statistical mechanics of probabilistic CA was studied by Lebowitz, et al.
[25] and Alexander, et al. [26]. The book edited by Dieckmann, et al. [27] frames CA in
the context of (ecological) spatial analysis.
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The rules are conveniently specified by a decimal integer, to be re-
ferred to as their rule number, R. The rule numbers for elementary CA
range from 0 to 255. We will review in passing the recent literature
invoking elementary rules.

Special attention will be paid to legal rules [28]: rules that are re-
flection symmetric (so that 100 and 001 as well as 110 and 011 yield
identical values), and quiescent, that is, they do not transform a dead
cell with dead neighbors into a live cell (their binary specification ends
in 0). These restrictions leave 32 possible legal rules of the form:
B1B83B4BBeB40. Another set of 32 categorized rules are those re-
flection symmetric but nonquiescent, with binary codes of the form:
B1B2B3B4B>BsL41 (the binary specification of any nonquiescent rule ends
in a 1). There are 128 semi-asymmetric (either 8, # B or B, + f3;, but
not both) rules and 64 fully asymmetric (8, + B; and 8, # ;) rules.

There are 88 equivalence classes, that is, 88 fundamentally inequiva-
lent rules, formed under the negative, reflection, and negative + reflection
transformations [32].

I 2. Memory

Standard CA are ahistoric (memoryless); that is, memory of only the
previous iteration is taken into account to decide the next one. Thus,
if a!T is taken to denote the value of cell i at time step T, the site
values evolve by iteration of the mapping: a!T*! = ¢(MalT)), where ¢
is an arbitrary function which specifies the CA rule operating on the
neighborhood N of the cell i.

In this paper, a variation of the conventional one-dimensional CA
is considered, featuring cells by their mean state in all the previous
time steps. Thus, what is here proposed is to maintain the rules ¢
unaltered, but make them actuate over cells featured by their mean
state: all*! = ¢(N(fIT)), with £{T being the mean state of cell i after
iteration T. We refer to these automata considering historic memory
as historic (or CAM with Toffoli and Margolus’ permission), and to the
standard ones as abistoric.

It should be emphasized that the memory mechanism considered here
is different from that of other CA with memory reported in the literature.
Typically, they determine the configuration at time T + 1 in terms of the
configurations at both time T and time T — 1. Particularly interesting
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are the second order in time (memory of capacity two) reversible!'? rules
due to Fredkin. These rules (referred to by Adamatzky in [41] as the
class MEMO), are of the form:

(T-1
a™ =g(NMal")) @a, ",

with & denoting the exclusive OR (XOR) operation. As a natural

extension of the memory mechanism here proposed, history can be

incorporated into these rules in the form [42, 43]:

a™ =g e

But to preserve the reversibility inherent in the XOR operation, the re-
versible mechanism incorporating memory must be of the form (see [44]):

AT+ = ¢(N(fi(T>) o ai.T_l.

Some authors; for example, Wolf-Gladrow [13], define rules with
memory as those with dependence in ¢ on the state of the cell to be
updated. So in the r = 1 scenario, rules with no memory take the form:

T (T T T
alT*+l = ¢(a§_1,af-+1). Rule 90: a!T+! = a5_1 + a£-+1 mod 2, would be an

example of a rule with no memory. Our use of the term “memory” is
not this.

The effect of memory starting with a single-site seed was reported in
[42] regarding one-dimensional CA and in [43] regarding totalistic two-
dimensional CA. In an earlier work we analyzed the effect of memory in
other CA scenarios: (i) Conway’s Game of Life [45] and (i) the spatial
formulation of the Prisoner’s Dilemma [46-50]. These studies become
a starting point for the motivation of the present, projected in a more
general scenario.

I 3. Full history at work: Some simple examples

The simplest way to take history into account is to feature cells by
their most frequent state, thus not necessarily the last one. In case of
a tie, the cell will be featured by its last state. Rule 254 (1111110)
progresses as fast as possible (i.e., at the speed of light): it assigns a
live state to any cell in whose neighborhood there would be at least one
live cell. Thus, in the ahistoric model, a single-site live cell will grow

10Reversible systems are of interest since they preserve information and energy and
allow unambiguous backtracking [33]. They are studied in computer science in order
to design computers which would consume less energy [34]. Reversibility is also an
important issue in physics [35-38]. Gerald ’t Hoof in a speculative paper [39], suggests
that a suitably defined deterministic, local reversible CA might provide a viable formalism
for constructing field theories at Planck scale. Svozil [40] also asks for changes in the
underlying assumptions of current field theories to make their discretizations appear more
CA-like.
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Table 1(a). Rule 254 (11111110) starting with a single-site live cell until T = 8.
Historic and ahistoric models. Live cells: B last, O most frequent.

Table 1(b). Rule 90 (01011010) starting with a single-site live cell until T = 4.
Historic and ahistoric models. Live cells: B last, O most frequent.
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Table 1(c). Rule 233 (11101001) starting with a single-site live cell until T = 5.
Historic and ahistoric models. Live cells: ® last, O most frequent.

monotonically, generating segments whose size increases two units with
every time step. The dynamics are slower in the historic model (see
Table 1(a)): the outer live cells are not featured as live cells until the
number of times they “live” is equal to the number of times they were
“dead.” Then the automaton fires two new outer live cells.

As long as the local rules of both historic and ahistoric automata
remain unaltered, and both the latest and most frequent states coincide
after the first two iterations, the historic and ahistoric evolution patterns
are the same until T = 3. But after the third iteration, the last and the
most frequent states often differ, and consequently the patterns for the
historic and ahistoric automata typically diverge at T = 4.

This is the case in Table 1(a) and in Table 1(b) with rule 90 (01011010),
in this case, after T = 3 the most frequent state for all the cells is the
dead one.

Occasionally the last and the most frequent status may coincide after
the third iteration. In this case the historic and ahistoric configurations
will still be the same at T = 4. This is the case for Rule 233 (see
Table 1(c)). But the coincidence in the dynamics of the historic and
ahistoric Rule 233 automaton ceases at T = 5: the latest and the historic
(most frequent) configurations do differ after T = 4, as seen in the
patterns generated from T = 5.

Complex Systems, 14 (2003) 99-126
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Table 2. Rules 90 and 150 are not additive in the historic formulation. The true
evolution pattern starting with two adjacent live cells is shown on the left. The
XOR superposed configuration of those evolved independently starting with a
single seed is shown on the right. Evolutionup to T = 11.

In the standard (ahistoric) scenario, Rules 90 and 150 (together with
the trivial 0 and 204) are the only additive legal rules; that is, any ini-
tial pattern can be decomposed into the superposition of patterns from
a single-site seed. Each of these configurations can be evolved inde-
pendently and the results superposed (modulo two) to obtain the final
complete pattern. As illustrated in Table 2 starting with two adjacent
live cells, additivity of Rules 90 and 150 is lost in the historic model.

Every configuration in a standard (ahistoric) CA has a unique succes-
sor in time (it may however have several distinct predecessors). A (last)
configuration in the historic scenario may have multiple successors: the
transition rules operate on the most frequent state (MFS) configuration,
not on the last, so the successor of a given configuration depends on
the underlying MFS configuration. A primary example of this is given
with Rule 254 (Table 1(a)): in the fully historic model, live configura-
tions reproduce themselves for several iterations (mmmmm for example,
twice) but at a critical time step (T = 5 for the example), generate a new
(mmmmmmm) one. We envisage that this will notably alter the appearance
of the state transition diagrams in the historic scenario as compared to
those of ahistoric CA [32]. The irreversibility (a feature necessary for
the formation of attractors) of historic rules in Figure 1(a), often leads
to the generation of oscillators that appear fairly soon. Thus, the num-
ber of different configurations generated by the evolution of a single-site
seed is smaller in the historic model. This, generalized to any initial con-
figuration, would lead to conjecture the existence of a higher number of
“Garden-of-Eden” nodes (configurations for an automaton which could
only exist initially) in the historic scenario.

I 4. Discounting

Historic memory can be weighted by applying a geometric discounting
process in which the state a{~" obtained 7 time steps before the last
round is actualized to the value a”a{’ =7, with @ being the memory factor.

A given cell will be featured by the rounded weighted mean of all its
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past states. This well-known mechanism fully ponders the last round
(@ = 1), and tends to forget the older rounds.

After time step T, the weighted mean of the states of a given cell will
be:
Zz?;l Tt aSt

Zz;1 a,T—t :

Provided that states a are coded as 0 (dead) and 1 (live), the rounded
weighted mean state f will be obtained by comparing its weighted mean
m to 0.5, so that:

1 if mT>0.5

al if mT=0.5

0 if m{f<0.5.

This is equivalent to studying the sign of:

T
a2, aT) =z§;aTt };aTI=§;uan_

il
miT(a",a?, .., all) =

AT =
1

t=1 t=1
1 if >0
f}Tz{agT if af=0
0 if of<o.

After T = 3: d(a'l,al?,aP) = ?(2all — 1) + (24> - 1) + 2aP® - 1. Of
course, if all = a? = a3, hlstory does not alter the series and it will be
8 =al. Neither does hlstory take effect until T = 3 if a!* = a/® nor if
all = al (see [42]). But the scenario may change if a!! = a§2 * a§3:

4(0,0,1) = -9(1,1,0) = -’ —a+1 = 9

-1++/5
=05 a=""2"2 2061805 = 0y,

Thus, provided that @ > «,, cells with state history 001 or 110 will
be featured after T = 3 as 0 and 1 respectively instead of as 1 or 0 (last
states). Rule 90 starting with a single live cell, as in Table 1(b), provides
an excellent example of this: for @ > a after T = 3 all the cells, even the
two alive at T = 3 but dead at T = 1 and T = 2, are featured as dead, so
that the annihilation of the live pattern happens as early as T = 4. But for
@ < @, thetwocells alive at T = 3 are featured as live and will regenerate
the pattern at T = 4 as shown in Table 1(b) for the ahistoric model.

After T = 4: 9(0,0,0,1) = -0(1,1,1,0) = -2’ -?> —a+1 < 0 =
0= a=0.5437.

In general, in the most unbalanced scenario, ifal! = a? = --- = a!

T it holds that:
T-1
8(0,0,...,0,1) = -(1,1,...,1,0) = -Zai+ 1
i=1

- 7Y 15 9=0oa—2a+1=0.
a-1
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When T— oo, it is:
lim 4(0,0,...,0,1) = - lim 6(1,1,...,1,0)

T—co T—)oo

= +1=290=0= a=0.5.
1-a

It is then concluded that memory does not affect the scenario if @ <
0.5. Thus, the value 0.5 for the memory factor becomes a bifurcation
point that marks the transition to the ahistoric scenario.

Computationally, there is a saving if instead of calculating d = 2w —Q
for every cell, we calculate

T
w(a;, T) :ZaTt

t=1

all across the lattice and compare the w figures to the factor
Ly lelod
2 o 2 a-1"

This was done in the computer program written to perform the calculus
and generate the figures.

I 5. Spatio-temporal patterns

Most of the legal rules are either unaffected (e.g., simple rules [28]) or
minimally affected (e.g., Rules 250, 254, and 36) by memory, starting
from a random initial configuration. In this scenario, only the nine legal
rules which generate nonperiodic patterns in the ahistoric scenario [51,
52] are significantly affected by memory. Figure 1(a) shows the evolutive
patterns of eight of these rules starting with a random initial configura-
tion with uncorrelated values taken to be 0 or 1 with probability p(a =
1) = 0.5; the memory factor varied from 1.0 to 0.5 by 0.1 intervals. The
lattice size is N = 90 and evolution is shown up to 90 time steps.

Rule 18 was one of the first rules carefully analyzed. History has
a dramatic effect on Rule 18. Even at the low value of a = 0.6, the
appearance of the spatio-temporal pattern fully changes: a number of
isolated periodic structures are generated, which is far from the distinc-
tive inverted triangles world of the ahistoric pattern. For @ = 0.7, the
live structures are fewer, advancing the extinction found in [0.8,0.9]. In
the fully historic model, only a periodic pattern of live cells, appearing
twice, survives.

Rule 146 is affected by memory in much the same way as Rule 18.
This is because although their rule numbers are relatively distant, their
binary configurations differ only in their 8, value. The spatio-temporal

Complex Systems, 14 (2003) 99-126
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Figure 1(a). Evolution of legal (8,5,8;8.8,848.0) rules significantly affected by
memory. The values of sites in the initial configuration are chosen at random to
be 0 (blank) or 1 (M) with probability 1/2. The pictures show the evolution of
CA with 97 sites for 90 time steps. Periodic boundary conditions are imposed
on the edges. The evolution of the CA at successive time steps is shown on
successive horizontal lines. Memory factor a. Ahistoric model for @ < 0.5, fully
historic model for @ = 1.0 with k =2, r = 1.
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patterns of Rules 182 and 146 resemble each other, though those of
Rule 182 look like negative photograms (a — 1—a) of those of Rule 146.

The effect of memory on Rules 22 and 54 is similar. Their spatio-
temporal patterns in @ = 0.6 and @ = 0.7 keep the essential feature
of the ahistoric, although the inverted triangles become enlarged and
tend to be more sophisticated in their basis. A notable discontinuity
is found for both rules ascending in the value of the memory factor:
in @ = 0.8 only a periodic structure survives for both rules; in @ =
0.9 two live structures seem to survive for Rule 22; extinction of live
cells is found for Rule 54. But unexpectedly, the patterns of the fully
historic scenario differ markedly from the others, showing a high degree
of synchronization. The behavior of Rule 54 in the ahistoric model
has been featured to some extent as transitional between very simple
Wolfram’s Class I and II rules and chaotic Class III. Thus, Rule 54
appears among the two one-dimensional rules (with Rule 110) that
seem to belong to Wolfram’s complex Class TV.

The four remaining chaotic legal rules (90, 122, 126, and 150) show a
much smoother evolution from the ahistoric to the historic scenario: no
pattern evolves either to full extinction or to the preservation of only a
few isolated persistent propagating structures (solitons). Rules 122 and
126 (close in terms of rule number), evolve in a similar form (particularly
when comparing the ahistoric and fully historic patterns), showing a
high degree of synchronization in the fully historic model.

Some spatio-temporal patterns of rules in the ahistoric model are
reminiscent of the patterns of pigmentation observed on the shells of
certain mollusks [29, 53]. Wolfram [6] illustrates this idea by showing a
natural cone shell with a pigmentation intended to be reminiscent of the
pattern generated by Rule 90 in the ahistoric scenario. But the clearings
in the shell would suggest Rule 22 for some value of a between 0.6 and
0.7: with @ = 0.6 the clearings seem to be scarce, with @ = 0.7 the
clearings appear to be excessive.

Figure 1(b) shows the evolution of the average fraction of sites with
value 1 at time T, density p, up to 200 time steps, starting with an
initial density p, = 0.5. The simulation is implemented for the same
rules as in Figure 1(a), but with a notably wider lattice of N = 401. A
visual inspection of the plots in Figure 1(b), ratifies the general features
observed in the patterns in Figure 1(a).

Thus, starting with a disordered configuration of any nonzero density,
the evolution of the density p; according to Rule 18 in the ahistoric
model yields an asymptotic density p,, = 1/4 . Figure 1(b) illustrates
how this value is reached soon, and how history induces a depletion
of the asymptotic density, null for @ = 0.8 and @ = 0.9. In the fully
historic model, a smooth period two density oscillator (0.105 — 0.115)
is generated as early as T = 8.

Complex Systems, 14 (2003) 99-126
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04 RULE 18 04 RULE 146

1 50 00 150 200 1 50 100 150 200

1 0 100 150 200 1 50 100 150 20

Figure 1(b). Evolution of the average fraction of sites with value 1 at time step
T, density p;, starting with an initial density p, = 0.5, up to 200 time steps.
Results concerned with the same rules of Figure 1(a) are shown when operating
in a lattice with size N = 401. Note that in order to improve plot resolution,
y-axes scopes have been tailored. Plots code: unjoined dots — fully historic
model, dashed line —» a = 0.8, continuous line - ahistoric model.

Rule 146 density plots resemble those of Rule 18, but with a sharper
period two oscillator generated in the fully historic model (0.175 —
0.204). Rule 182 (not shown in Figure 1(b)) yields p_, = 3/4 in the
ahistoric model, the shape of its evolution density curves resembling the
complement to 1 of its equivalent Rule 146.

Wolfram [28] proved that for Rule 90, p_, = 1/2, independent of the
initial density p, (so long as p, # 0). When historic memory is taken
into account, p; varies erratically around 0.5 as shown in Figure 1(b)

Complex Systems, 14 (2003) 99-126
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for Rules 90 and 150, without either periodic evolution or tendency to
a fixed point. Not even in the fully historic model.

Quoting Grassberger [51], Rule 22 is the only one of the elementary
rules whose long-time behavior is not yet understood. Wolfram [28]
resorts to simulations to report p,, = 0.35 + 0,02 for evolution with
Rule 22. Rule 54, very notably absent in Wolfram’s [28] considerations,
again resembles Rule 22 with regard to Figure 1(b). For example, both
rules present a very low density in the [0.8,0.9] interval, null for & = 0.9
in Rule 54.

Wolfram [6, Table 6] reports p_, = 1/2 for Rules 122 and 126. In our
simulation, p; oscillates around values slightly over 1/2 in the ahistoric
model. Figure 1(b) makes apparent how the effect of memory differs
in both groups of rules: memory sharply depletes the density curves
of Rules 18 and 146, but leads them over the starting 0.5 value for
Rules 122 and 126. In the fully historic model, these rules do not lead
to low density values, but to synchronous behavior.

The high degree of synchronization visually appreciated for Rules 22,
54, 122, and 126 in the fully historic model in Figure 1(a), stands out
also in Figure 1(b) (unjoined dot plots). Synchronization!! in CA is not
a trivial task since synchronous oscillation is a global property, whereas
CA typically employ only local interactions; but the phenomenon of
synchronous oscillations occurs in nature in fairly striking forms.!2

I 6. Difference patterns

Figure 2 shows the difference patterns (DP) produced by evolution from
the disordered initial configuration taken in Figure 1(a) resulting from
changing the value of its initial center site value. The pictures show the
damaged region as black squares corresponding to the site values that
differed among the patterns generated with the two initial configura-
tions.

The perturbations in proper chaotic rules propagate to the right and
left at a single (maximum) velocity at any time. This behavior illustrates
the butterfly effect: a small perturbation grows, and finally rules the
whole system. The velocity in the damage spreading is quantified by
means of the left and right Lyapunov exponents (A, , Ag) which measure
the rate at which perturbations spread to the left and right, and are
given by the slopes of the left and right boundary of the growth of
the DP. Thus, zero values indicate periodicity, whereas negative velocity
indicates perturbation repair. The chaotic Class III rules in Figure 2

" Given any initial configuration, the CA must reach a final configuration, within a finite
number of time steps, that oscillates between all zeros and all ones at successive time steps.

12The synchronization task has been investigated by Das, et al. [54] and Sipper [8], who
conclude that Rules 21 and 22 are the best performing synchronizer rules.
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Figure 2. DP produced by evolution from the disordered initial configuration
taken in Figure 1(a) and that resulting from reversing its center site value. The
pictures show as black squares the site values that differed. Evolution up to 90
time steps. Memory factor @. Ahistoric model for @ < 0.5, fully historic model
fora=1.0withk=2,r=1.
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reach the maximum A attainable when » = 1,4 = 1. The Lyapunov
exponents of ahistoric elementary CA are tabulated in [6].

As a rule, the effect of memory on the DP mimics that of spatio-
temporal patterns, so that the rule parallelisms found for the spatio-
temporal patterns are again applicable to the DP.

Rule 18 may serve as an example: a periodic structure (with only
two elements) appears in the fully historic scenario; the differences die
out when @ € [0.8, 0.9], the perturbation remains localized (again in the
form of periodic structures) when @ € [0.6, 0.7]. Finally, in the ahistoric
model, the perturbation grows at the speed of light: A, = A = 1.
The pattern shown in Figure 2 conforms to this property, although the
picture appears delimited in growth. This is because the lattice size
N = 97 is not large enough for free expansion during T = 90 time steps
(which would be feasible with N = 181; recall that with r = 1, after T
time steps, an initial sole mutation may affect the values of at most 2T
sites). This distortion operates on every ahistoric pattern in Figure 2
and is found, to a lesser degree in some rules and in @ > 0.5 values.
Examples are Rule 90, 122, and 150 for @ = 0.9. The DP of Rule 146
resembles that of Rule 18, and evolves in a similar way. In turn, the DP
of Rule 182, fully resembles that of its equivalent Rule 146. The DP of
Rules 22 and 54 are again similar:!'? the DP is constrained when history
begins to actuate [0.6,0.7], and ceases, or is localized near the central
site, at higher @ values. The group of Rules 90, 122, 126, and 150 show
a fairly gradual evolution from the ahistoric to the historic scenario,
so that the DP appear more constrained as more historic memory is
retained, with no extinction for any a value.

The patterns with inverted triangles dominate the scene in the ahis-
toric DP in Figure 2 (the exception is the peculiar DP of Rule 54), but
history destroys this common appearance (and that of Rule 54), even
at the lowest value of @ with memory effect in the figure: o = 0.6.
Thus, there is a sort of discontinuity implied in the consideration of
historic memory (perhaps with the exception of Rule 22) regarding the
DP, which Rule 90 might exemplify: memory, at the low rate @ = 0.6,
destroys the structures characteristic of ahistoric DP. To avoid coined
terms such as “chaotic” or “random,” the DP generated for @ = 0.6
could be described as “helter-skelter.” Regarding the central site, for
Rules 22, 54,90, 122, 126, and 150, the disruption induced by its initial
reversion, is in some manner more unpredictable in the historic model
with @ = 0.6 than in the ahistoric. Extreme examples are: Rule 90
(after initial reversion, the original evolution is restored in the ahistoric
model) and Rule 150 (the initial reversion remains forever).

13This coincidence in behavior agrees with their complexity: they are the only legal rules
with no extreme Lyapunov exponents: 1; = Az = 0.75 for Rule 22 and 2; = Az = 0.55
for Rule 54 (see Table 6 in [6]).
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The conclusions drawn from Figure 2 are supported by the N = 401
simulations run for Figure 1(b). Again, the central site has been re-
versed and two types of plots are implemented to feature the DP:
(i) the Hamming distance (H, the number of nonzero site values of
the DP), and (if) the width of these patterns. From these plots (not
included here to avoid graphical overloading) the overall conclusion
drawn from Figure 2 remains valid: memory implies a depletion in
the damaged region (i) and in the speed of propagation of perturba-
tion (7).

In order to systematize the analysis of the DP, one can resort to
equivalence classes. Memory is expected to affect all the rules of an
equivalence class in a similar way.

This was already observed in the legal class {146,182}. Figure 3
shows the DP of the remaining rules equivalent to the legal ones. A
fairly consistent correspondence in the appearence of the DP is observed
between equivalent rules: {18,183}, {22,151}, {54,147}, {90,165},
{122,161}, and {126,129}. The DP of Rule 150 resembles that of
its complementary Rule 105. This is so despite the fact that Rules 150
and 105 do no belong to the same equivalence class (some classes are
formed by a single rule, as in the case of Rule 150 [55]).

We have also explored the effect of memory in asymmetric rules.
Figure 4 shows the DP of some such rules affected by memory in the
scenario stated in Figure 2(a).

Rules in which almost all changes in initial configuration die out, and
rules with A; = 0 are not greatly affected by memory (e.g., Rules 156
and 100). A considerable number of equivalence classes of asymmetric
rules have |A;| = 1Ag] = A with A = £1 or A = —-1/2 as their minimal
representative rule. These rules present a diagonal as DP in the ahistoric
model, which is rectified (i.e., both Lyapunov exponents evolve to zero)
and/or led to extinction by memory. But either extinction or rectification
of the trajectory of the perturbation are not always achieved in a uniform
way. Numerous examples of unexpected evolution have been found in
this context.

The important Rule 110'* and the others of its equivalence class,
may serve as a paradigmatic example of the expected effect of mem-
ory: the damage induced by the reversal of the initial central site value
becomes more constrained as the memory factor increases, with no dis-
continuities in the preserving effect. The same applies to all the rules of
the equivalence classes of the three that have one irrational Lyapunov
exponent:"> Rules 30,16 45, and 106.

14This rule shows highly complex properties of information transmission, associated
with particle-like structures [56].

15Tn Rules 22 and 54 (Figure 2(a)) both the Lyapunov exponents are irrational.

16Wolfram uses Rule 30 for random sequence generation in [57].
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Figure 3. DP of reflection symmetric but nonquiescent rules (3,5,8;8.8,8:541)
affected by memory in the scenario of Figure 2(a).

History however has an unexpected effect on most of the rules whose
damage propagation direction alternates: A; = (-1,1), Az = (1,-1).
Figure 4 shows the case of fully asymmetric Rules 43, 57, and 184.
Particularly curious are the DP generated for @ > 0.6 in Rules {43, 113}.
The DP of Rules {184,226} are rectified when history is taken into
account (that of Rule 184 becomes extinct for @ in [0.6,0.8]). Rules 184
and 226 have proved particularly effective in solving the density problem
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Figure 4. DP of some asymmetric rules affected by memory in the scenario of Fig-
ure 2. The rules are grouped by equivalence classes. The left and right Lyapunov
exponents of the lowest rule number of each class (minimal representative) in
the ahistoric model are given after rule codes.
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[58]: to decide whether an arbitrary initial configuration contains a
density of ones above or below p.. As in synchronization, the density
task comprises a nontrivial computation for small-radius CA: again,
density is a global property of a configuration, where small-radius CA
rely solely on local interactions.

| 7. Other memories

This work deals only with the memory mechanism described in section 4.
Nevertheless, some alternative memory mechanisms are reported in this
section. We expect to feature them in a subsequent work.

1 7.1 Exponential weighting

The decay in the weighting factor can be implemented in an exponential
way instead of in the geometric one:

(t

ZtT: exp(-B(T -1 4,
Tyl = =1 exﬁ(_m—t)» |

1
This is equivalent to a geometric discount model with & = e, so B =
—Ina. Thus, the fully historic model (@ = 1) corresponds to g = 0.
The parameter B8 ranges in R, but as has been seen in section 4, below
@ = 1/2 memory has no effect, therefore history has no effect for g
beyond In2 = 0.6931.

I 7.2 Inverse memory

The weighting mechanism may be designed in an inverse way, so that
the older rounds are remembered more than the more recent ones. The
idea is implemented in the following way:

ZT= at-14(t
T (all,al, .., all) = 2184
2= @
1 if mT>0.5
l=41-a if mT=0.5
0 if mT<0.5.

Recall that in the case of an equality, the opposite to the most recent
state is registered, so the configuration at T = 3 will be the same as at
T = 2 regardless of the rule ¢. This will alter the evolution patterns in
the inverse memory mechanism as compared to the standard (direct) one
as from T = 3, even in the fully historic model. For example, starting
with a single-site live cell, the pattern at T = 3 for any quiescent, 8; = 1
rule will be again, as at T = 2, a 3 x 3 square. After T = 3 these cells
are featured as live:
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1 7.3 Accumulative memory

The weighting memory mechanism described in section 4 is holistic in
its information demands: for evaluating the weighted mean of a cell, it
is necessary to know the entire series of states in time. In order to avoid
this demand, previous states can be pondered in the following way:

T Lk
(M) = S thaf
B PIFES

The rounded weighted mean state f will be obtained, as in section 4,
by comparing

to

or, in order to work only with integers, by comparing 2w to 2Q. This
mechanism is not holistic but accumulative in its demand of knowledge
of past history: for evaluating w(a;, T) it is not necessary to know
the whole {af«t} series because it is determined by the accumulation of
the contribution of the last state (T*a!’) to the already accumulated
w(a,T-1): w@,t <T) = wal,t <T-1)+Tal. In fact we
have already considered two such accumulative mechanisms, (i) inverse
memory: w(al,t < T) = w(a\,t < T—1)+a"'a\T and (ii) the full
memory scenario described in section 3: w(af«t,t <T) = a)(af-t,t <T-
1) +all.

For k = 0, we have the full historic model of section 3; for k = 1 it is

T
20T =t =
=1

T(T + 1)
—

The larger the value of & is, the more heavily the recent past is taken
into account and consequently closer to the ahistoric scenario.
Choosing integer k values allows working only with integers (d la
CA). There is a clear computational advantage of this model over that
of section 4. But the accumulative memory mechanism just described
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>

ko«

has a serious drawback: * “explodes,” even for k = 2, when ¢ grows

(see [59]).

I 7.4 Parity memory

Cells can be featured by the parity with the sum of previous states:

T
p" =() a')mod 2.

t=1

I 7.5 Interest memory

In the interest memory scenario, a cell will be featured as dead if all its
previous states are equal (zero interest means boring), and as alive if any
of them are different.

Toffoli and Margolus [1987] use the interest idea when considering
the time-tunnel, a reversible mechanism based on the rule: ¢(MV(a!T)) = 0
if all the states in N are equal, 1 in the contrary case.

I 7.6 Continuous valued memory

Historic memory can be embedded in Coupled Map Lattices, in which
the state variable ranges in R, by considering m instead of f in the
application of the updating rule: a!T*! = g(N(mT)).

1 7.7 Fuzzy rules

Fuzzy CA, with states ranging in the real [0,1] interval, may be obtained
by fuzzification of the disjunctive normal form of boolean CA rules by
replacing: aV b by min(1,a + b), a A b by ab, and —a by 1 — a [60].
Featuring cells by the unrounded weighted mean of their past states;
that is, m, will provide fuzzy historic CA. An illustration of the effect
of memory in fuzzy CA, starting with a single crisp live cell, is given in
[42]. The illustration operates on Rule 90:

(T (T (T (T
alT+t = (@i-1 A =aiv1) V (=aic1 A gist),

after fuzzification:

(T (T

741 (T (T
(Tl — 43y + aj1 — 2ai1ai41,

a;
which gives the historic formulation:

T+1 (T (T (T (T
df» = mis + mi — 2misimie.

1 7.8 Imperfect memory transmission

The standard CA and the CA with memory models can be combined by
considering two types of cell characterization of the neighborhood M.
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Thus for a subset of A, let it be S, the cells can be featured by their last
state and the remaining S = N — S by their weighted mean states. For
example, history can feature the cells of the strict neighborhood but not

the cell to be updated: a{T*! = ¢(f£-_T1, all, £1), or, the contrary, the cell
to be updated but not the outer cells: @/T*! = ¢(al’,, f{T, ah).

The different memories mentioned can be considered to implement
new reversible mechanisms. For example, by using partial memory

transmission, a{T*! = ¢(a\", f T, p\T)) ® al" .

| 8. Conclusion

The consideration of historic memory of past states has been found to
produce an inertial (or conservation) effect. According to this principle,
historic memory:

1. Leads chaotic Class III rules in the ahistoric model to turn to Class II-
like behavior (separate simple stable or periodic structures) in the fully
historic model.

2. Induces a preserving effect regarding the damage caused by the reversal
of a single site value. Thus, memory tends to confine the disruption
measured by the difference patterns (DP).

Discounting memory, as implying less historic information retained, im-
plies an approach to the ahistoric model. Considering discount,

3. On increasing the value of the memory factor from a < 0.5, for which the
evolution corresponds to the standard (ahistoric) model, to @ = 1.0 (fully
historic), there is usually a gradual variation of the effect of memory.
Nevertheless,

4. An appreciable number of exceptions (and discontinuities) in such a grad-
ual effect have been found.

These conclusions agree qualitatively with those found when starting
with a single-site live cell [42, 43], which could be considered as a special
case of reversion of a single site.

In general, it is possible to distinguish two main approaches to cellu-
lar automata (CA): forward and backward. The forward (theoretical)
approach implies the study of transition rules of a given cellular space
in order to establish its intrinsic properties (dynamical behavior, pattern
growth, and so on). The backward (practical) approach involves the
design of sets of transition rules to match the “correct” behavior of the
CA system of a given complex system (physical, biological, social, and
so on).

This paper adopts the forward approach: it introduces a kind of
CA with memory (CAM), and surveys its properties in the simplest
(elementary) scenario in a fairly qualitative (pictorial) form. Borrowing
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an expression from Vichniac [1990], this paper deals with the CAM
“zoology,” that is, the study of CAM for its own sake. Following
this metaphor, CAM increases the CA-(bio)diversity. A more complete
analysis of the class CAM is left for future work. For example, the
dynamics of CAM in the state (phase) space is to come under scrutiny.
Another interesting open question is the analysis of the effect of memory
on solving computational tasks such as synchronization, density, and
ordering. The study of » = 2 CAM will inform on the effect of memory in
complex (Wolfram’s Class IV) rules. The study of two-dimensional CAM
will follow. In this future work, the pioneer papers by Wolfram [62, 63]
will again be an important reference.

The forward and backward (or inverse) approaches are obviously
interrelated. A major impediment in the backward approach stems from
the difficulty of utilizing complex CA behavior to exhibit a particular
behavior or perform a particular task. This has severely limited their
applications and hindered computing and modeling with CA [64].

CAM structurally exhibit a growth inhibition feature found excep-
tionally in standard CA [28]. The extent of the growth inhibition can
be modulated by varying the memory factor @. This could mean a po-
tential advantage of CAM over standard CA as a new tool for modeling
slow diffusive growth from small regions, a common phenomenon in
nature.

The question of how errors spread and propagate in cooperative
systems has been studied in a variety of fields. Given the difficulty of
creating analytical models for any but the simplest systems, most investi-
gations have been conducted by computer simulations, especially in the
area of statistical physics of many-body systems [8, 65]. Errors reverse
the state in elementary CA. In CAM, the damage induced by a single
error is generally confined to the proximity of the site where it occurred.
From this point of view, CAM can be featured as resilient in the face
of errors. Fault tolerance is an important issue when considering sys-
tems with a large number of components, in which faults will be highly
probable. The robust CAM could play a role in this (nanotechnological)
scenario.
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