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In this paper, a new information theoretic method called the greedy
network-growing algorithm is proposed. The method is called “greedy,”
because a network with this algorithm grows while absorbing as much
information as possible from outside. The method is based upon in-
formation theoretic competitive learning and can solve the fundamental
problems inherent in competitive learning, such as the dead neurons and
inappropriate number of neurons problems. The new model can grow
networks by repeatedly maximizing information content and by grad-
ually extracting salient features from input patterns. Because the new
model can cope with inappropriate feature detection in the early stage of
learning, extracted features should cover most of the input patterns. The
new method is applied to political data analysis, medical data analysis,
and information science education analysis. Experimental results confirm
that the new method can acquire significant information and that more
explicit features can be extracted.

1. Introduction

In this paper, we propose a novel approach to information acquisition
in neural networks. The method is called the greedy network-growing
algorithm (GNGA) because a network with this algorithm grows while
absorbing as much information as possible from outside.1 This new
network-growing method is based upon information theoretic compet-
itive learning. It has many characteristics different from conventional
competitive and network-growing learning methods. We discuss the
characteristics of the GNGA in three perspectives: (1) this is a new
competitive learning method; (2) it is a new type of network-growing
algorithm that repeatedly maximizes information content; and (3) the

!Electronic mail address: ryo@cc.u-tokai.ac.jp.
1We have already proposed a similar network-growing algorithm [1]. However, the

method in [1] is less greedy than the present one because the number of connections to
absorb information was limited to speed up learning.
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method can extract salient features explicitly and flexibly. Let us discuss
these three points in more detail.

First, the GNGA is based upon a new competitive learning technique
in which competition processes are simulated by maximizing mutual
information between input patterns and competitive units. Competitive
learning is one of the most popular methods in neural networks, and
is used for pattern classification as well as for regularity detection [2].
Though conventional competitive learning methods have turned out to
be useful and powerful in many applications, they have shown many
serious problems. When conventional competitive learning methods
are applied to complex problems underutilized neurons or dead neu-
rons can cause serious problems. The determination of the appropriate
number of competitive units is another serious problem, because con-
ventional competitive learning techniques significantly degrade with an
inappropriate number of classes. This means that unless the number
of competitive units is appropriately given before learning performance
significantly degrades. There have been many attempts to overcome
these problems, such as leaky learning [2, 3], conscience learning [4],
frequency-sensitive learning [5], rival penalized competitive learning [6],
and lotto-type competitive learning [7]. However, these methods do not
necessarily give satisfactory solutions to the problems. On the other
hand, the GNGA can give clear solutions to these problems. The dead
neurons can be suppressed in our method, because it includes the en-
tropy maximization of competitive units. By maximizing the entropy of
competitive units, all competitive units tend to be equally used. In ad-
dition, because neurons can be added during learning, the appropriate
number of neurons can easily be determined.

Second, the GNGA is a new type of information theoretic method
that always maximizes information during network growth [8]. Net-
work constructive or growing approaches have been used extensively,
because constructive approaches are computationally economical and
have a good chance of finding smaller networks for given problems. For
example, in supervised learning, one of the most popular constructive
methods is the cascade correlation network [9] that grows a network by
maximizing the covariance between the outputs of newly recruited hid-
den units and the errors of the network outputs [9, 10]. In the popular
back propagation method, a technique called constructive back prop-
agation was developed in which only connections to a newly recruited
hidden unit are updated [11]. In the RBF networks, Fritzke tried to
develop incremental RBF networks for the fast learning method [12].
In self-organizing maps, Fritzke [13–15] tried to extend Kohonen’s self-
organizing map into a network growing model. This model has been
extended to the self-organized tree algorithm [16, 17].

Contrary to these conventional network-growing methods, we use
an information theoretic method to grow networks, and thus, it is con-
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siderably different from those mentioned. Information theoretic ap-
proaches have been introduced in various ways into neural computing;
for example, a principle of maximum information preservation [18–
20], a principle of minimum redundancy [21], and spatially coherent
feature detection [22, 23]. In conventional information theoretic meth-
ods, maximum possible information is determined before learning. It is
impossible to increase information beyond a predetermined point, and
thus, information theoretic methods have not been used for network
growing algorithms. However, when considering the self-organization
processes in living systems, information capacity should be increased
with growth. We can intuitively see that, as living systems develop,
their complexity becomes larger; that is, their information capacity is
larger. In GNGA, the number of competitive units can be increased
during learning, and accordingly, the maximum possible information is
increased. Because information is defined directly for the competitive
units, it can be increased, as the number of competitive units becomes
larger. This permits networks to adapt flexibly to new input patterns.

Third, this method aims to flexibly extract salient features. In a pre-
viously developed network-growing algorithm [1] we tried to develop a
growing method that was as efficient as possible in computation. For
this purpose, in maximizing information content, only connections into
a new competitive unit are updated, as is the case with the construc-
tive back propagation method [11]. This means that networks always
update connections into one competitive unit, except during the ini-
tial cycle. Thus, the method from [1] is very efficient and is expected
to be applied to many large-scale problems. However, one of the se-
rious problems is that, if networks extract inadequate features at the
beginning of the growth cycles, feature extraction during later stages
degrades, because all connections after learning are frozen in the algo-
rithm. To overcome this shortcoming, we relax the severe restriction
of the earlier algorithm in which all previous connections must be fixed
in the later learning stage. By this relaxation, we have an algorithm in
which inappropriate feature extraction at the beginning of learning is
gradually remedied at the expense of computational efficiency. Thus,
the GNGA can be used to analyze actual complex data.

In section 2, we present the new algorithm, comparing it with our
previous model. In section 3, we show that similar results can be
obtained with either algorithm for a political data problem. In section 4,
we apply the method to artificial data whose features cannot be extracted
by using our previous model. In section 5, we apply our new method
to an actual data analysis, that is, the analysis of information science
education where we try to show that the GNGA can extract salient
features more explicitly than can conventional competitive learning or
multivariate analyses.
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2. Growing network

2.1 Growing algorithm

In the GNGA, we suppose that a network attempts to absorb as much
information as possible from the outer environment, because in the
outer environment there are many destructive forces against artificial
systems. Therefore, we assume at least that artificial systems must ab-
sorb as much information as possible as defense against the destructive
forces. To absorb information from the outer environment, the systems
gradually increase their complexity until no more complexity is needed.
When no more additional information can be obtained, the network
recruits another unit, and then it again tries to maximally absorb infor-
mation (Figure 1). This general idea of networks with a GNGA has been
realized for neural networks in [1]. The method in [1] aims at develop-
ing a growing mechanism that is as efficient as possible in computation.
Figure 2 shows an actual network architecture of a greedy algorithm.
Figure 2(a) shows a process of growing by our previous method. Fig-
ure 2(a1) represents an initial state of information maximization in
which only two competitive units are used. We need at least two com-
petitive units, because our method aims at making neurons compete
with each other. First, information is increased as much as possible with
these two competitive units. When it becomes difficult to increase infor-
mation, the first cycle of information maximization is finished, and all
connections are frozen. In this case, just one unit wins the competition,
while the other loses. Then, a new competitive unit is added, as shown in

Outer 
environment

Information
maximization

1st growing cycle

2nd growing cycle 3rd growing cycle

4th growing cycle

Figure 1. A process of greedy network growing in which the network grows by
absorbing maximum information from the outer environment.
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Figure 2. A process of network growing by (a) the method from [1] and (b) the
GNGA. In the conventional method (a), only variable connections are shown.

Figure 2(a2). Since connections into the previous two competitive units
are frozen, connections into the new competitive unit must be changed
to maximize information. Then, another competitive unit is added (Fig-
ure 2(a3)). At this stage, connections into the previous three competitive
units are fixed, and only connections into the new competitive unit are
adjusted to increase information as much as possible. These processes
continue until no more increase in information content is possible. The
algorithm is computationally very efficient, because networks only have
to update connections into one competitive unit. If it is possible to
extract features gradually, this will be one of the most efficient meth-
ods ever developed for feature extraction. We have found that, for
some problems, this method can extract basic features gradually as the
number of growing cycles is increased [1].

However, once learning is finished in a particular growth cycle, all
connections at that point are frozen in this algorithm. These frozen
connections prevent networks from extracting appropriate features in
later cycles. For example, if networks capture inadequate features at
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the beginning of learning, they fail to extract appropriate features in
later cycles. One of the simplest ways to overcome this shortcoming
is to update all connections in every growth cycle at the expense of
computational time. Thus, we propose a novel GNGA in which all
connections are updated to maximize information content at the expense
of computational efficiency. Figure 2(b) shows a growing process using
the present model. As can be seen in Figure 2(b1)–(b3), all connections
are updated at every growth cycle. This allows the network to adjust
for inappropriate connections during later stages.

2.2 Learning rule

Now we can compute information content in a neural system. We con-
sider information content stored in competitive unit activation patterns.
For this purpose, let us define information to be stored in a neural sys-
tem. Information stored in the system is represented by a decrease in
uncertainty [24]. Uncertainty decrease, that is, information I(t) at the
tth epoch, is defined by

I(t) # $!
%j

p(j& t) log p(j& t) '!
%s

!
%j

p(s)p(j ( s& t) log p(j ( s& t), (1)

where p(j& t), p(s), and p(j(s& t) denote the probability of the jth unit in a
system at the nth learning cycle in the tth growth cycle, the probability
of the sth input pattern and the conditional probability of the jth unit,
given the sth input pattern at the tth epoch, respectively.

Let us present update rules to maximize information content during
every stage of learning. For simplicity, we consider the Mth growing
cycle, and t denotes the cumulative learning epochs throughout the
growth cycles. As shown in Figure 2, a network at the tth epoch
is composed of input units xs

k and competitive units vs
j (t). The jth

competitive unit receives a net input from the input units, and an output
from the jth competitive unit can be computed by

vs
j (t) # f

)*****
+

L!
k#1

wjk(t)xs
k

,-----
.

, (2)

where wjk(t) denotes connections from the kth input unit to the jth
competitive unit, and the sigmoid activation function f (u) # 1/(1 '
exp($u)) is used. The conditional probability p(j ( s& t) at the tth epoch
is computed by

p(j ( s& t) #
vs

j (t)"M'1
m#1 vs

m(t)
, (3)

where M denotes the Mth growth cycle. Since input patterns are sup-
posed to be given uniformly to networks, the probability of the jth
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competitive unit is computed by

p(j& t) #
1
S

S!
s#1

p(j ( s& t). (4)

Information I(t) is computed by

I(t) # $
M'1!
j#1

p(j& t) log p(j& t) '
1
S

S!
s#1

M'1!
j#1

p(j ( s& t) log p(j ( s& t). (5)

As information becomes larger, specific pairs of input patterns and com-
petitive units become strongly correlated. Differentiating information
with respect to input–competitive connections wjk(t), we have

/I(t)
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where

Qs
jk(t) #

1
S
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j (t))x

s
k. (7)

Thus, we have the update rules:

0wjk(t) # $
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s#1
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+
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.
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)*****
+
log p(j ( s& t) $
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.

Qs
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Finally, we should state how to stop learning and add a new com-
petitive unit. Let I(t) denote information content computed at the nth
learning cycle in the tth growth cycle. Relative increase in information
R(t) is computed by

R(t) #
(I(t) $ I(t $ 1)(

I(t $ 1)
, (9)

where t # 1, 2, 3, . . . . If R(t) is less than a certain point Ε for three con-
secutive epochs, the first information maximization process is finished.

Information maximization realizes the processes of competitive units.
When maximizing mutual information, the conditional entropy

$!
s

p(s)!
j

p(j ( s) log p(j ( s)
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should be as small as possible. In this case, a competitive unit is turned
on for a specific input pattern. Conditional entropy minimization does
not exclude a case where a competitive unit is always turned on for
any input pattern, corresponding to a dead neuron. However, because
entropy $"j p(j) log p(j) must be maximized, and competitive units must
be equally utilized on average, it is impossible for a competitive unit to
respond to all input patterns. When mutual information is maximized,
that is, entropy is maximized and conditional entropy is minimized,
different competitive units tend to respond to different input patterns.

3. Political data analysis

We attempted to classify congressmen in terms of their voting attitude.
The data were represented as a qualitative matrix of United States con-
gressmen with their voting attitude toward 19 environmental bills [25].
The first eight congressmen are Democrats, while the latter seven are Re-
publicans. In the data, 1, 0, and 0.5 represent yes, no, and undecided,
respectively (Table 1). By a cluster analysis [25],2 it was confirmed
that these data can be classified into two groups except for Republican
No. 6(14), who responds to the bills according to the line of Democrats.
In addition, Democrat No. 7 was misclassified as a Republican, as shown
in Figure 3. The number of input units corresponds to the 19 environ-
mental bills, and the number of competitive units is gradually increased.
Figure 4 shows information as a function of the number of epochs by
the model from [1] and the GNGA, respectively. We can see that at the
beginning of each growing step, information drops temporarily. At the
beginning of each growing cycle, a new competitive unit with new con-
nections is added. Because new connections are initialized with small
random values, the activation of a new unit is close to the intermediate
level of 0.5. Thus, the probability distribution of competitive units at
the new stage are away, or more distributed, from that of the previous
growth stage. Thus, information temporarily drops at the beginning of
each growing cycle. As can be seen in Figure 4, there is no difference
between the two methods. Information is increased gradually in the first
to the third growth cycles and reaches a stable point in the fourth.

Figure 5 shows competitive unit activations p(j ( s) by the previous
and present models. In the figure, as the magnitude of black squares is
larger, the probability p(j ( s) is higher. The white part shows that the
corresponding probabilities are almost zero. As is evident in Figure 5,
little difference can be seen in any competitive unit activations. In the
first growth cycle, all congressmen are grouped into two classes, Repub-
licans and Democrats. Compared to the results by the cluster analysis

2In the cluster analysis, the Euclid distance and Ward method were used.
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No. 1 2 3 4 5 6 7 8
Party D1 D2 D3 D4 D5 D6 D7 D8

1 0 1 0 1 1 1 1 0.5
2 0.5 0 0 0 0 0 0 0
3 0 0.5 1 1 1 1 1 1
4 1 0.5 1 1 1 1 0 0
5 1 0.5 1 1 1 1 1 0
6 1 0.5 0 0 0 0 0 0
7 1 1 1 0.5 1 1 1 1
8 0 0 0.5 0 0 0 0 0
9 1 1 0.5 1 1 1 0.5 1

10 1 1 1 1 1 1 0 1
11 1 1 1 1 1 1 0 1
12 1 0.5 1 1 1 1 1 1
13 0 1 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
16 0 0.5 0 0 0.5 0 0.5 0
17 0 0 0 0 0 0 0 0
18 1 1 1 1 1 1 1 1
19 1 1 1 1 0 0 0 1

No. 9 10 11 12 13 14 15
Party R1 R2 R3 R4 R5 R6 R7

1 0 0 1 1 1 1 0
2 1 0 0 0 1 0 1
3 1 0.5 1 1 0.5 1 1
4 0 0 0 0 0 1 0
5 0 0.5 0 0 0 1 1
6 1 0.5 0 1 1 0 1
7 0 0 1 1 1 1 1
8 1 1 1 0 0 0 1
9 0 0 0 0 0 1 1

10 0 0 0 0 0 1 0
11 0 0 1 0 0 1 0
12 0 0.5 0 0 0 1 0
13 1 0.5 0.5 0 1 0 0
14 0 0.5 0 0 1 0 0
15 1 0.5 1 0 1 0 1
16 0.5 0.5 1 1 1 0 1
17 0.5 0.5 1 0 1 0 0
18 1 1 0.5 0 1 1 0
19 0 0 0.5 0 0 1 0

Table 1. United States congressmen with their voting attitude on 19 environ-
mental bills. The first eight congressmen are Democrats, while the latter seven
(from 9 to 15) congressmen are Republicans [25]. In the table, 1, 0, and 0.5
represent yes, no, and undecided, respectively.
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Figure 3. A dendrogram by a cluster analysis for the congressional data.
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Figure 4. Information as a function of the number of epochs for the political
analysis. (a) and (b) denote information by the previous and the present model,
respectively.

in Figure 3, Democrat No. 7(7) is appropriately classified as a Demo-
crat. In the second growth cycle, Democrat No. 7(7) and Republican
No. 4(12) are detected by the third competitive unit as shown in Fig-
ure 5(a2) and (b2). By the cluster analysis (Figure 3), these politicians
are grouped together. In the third growth cycle (Figures 5(a3) and (b3)),
the fourth competitive unit detects Republicans No. 1(9) and 2(10).
As expected, the cluster analysis grouped these politicians together as
shown in Figure 3.

Because there is no objective criterion for correctness, this makes
algorithm comparisons difficult. However, we can say at least that the
greedy methods can classify the politicians into two groups with the
same performance as the cluster analysis. However, we could not see
any difference between the GNGA and the model in [1]. This means
that the previous model is much better than the present model, because
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Figure 5. Competitive unit activations by (a) the previous model and by (b) the
present model. Black squares represent normalized competitive unit activations
(probabilities) p(j ( s), and their size denotes the activation level.

it only has to update connections into a newly recruited competitive
unit. However, we have found that several problems cannot be solved
by this method. Sections 4 and 5 show two examples in which the
previous model performs poorly.

4. Artificial data analysis

In the second experiment, we attempt to show a problem that cannot
be solved by the algorithm from [1]. In the problem, we have the 30
input patterns shown in Figure 6. The number of competitive units is
increased gradually up to six, with five growth cycles (right portion of
Figure 6). The number of input units is 30. The learning parameter
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Figure 6. Artificial data (left) and an example of growing cycles (right).

Β is 1 for updates using the GNGA. For the conventional method, the
learning parameter Β is the same, but only connections into the new unit
are updated. In learning, momentum is used with the parameter value
0.8 to speed up and stabilize learning.

Figure 7(a) shows information as a function of the number of epochs
t by the conventional greedy network-growing method. Information
is slowly increased and reaches a stable point. On the other hand,
Figure 7(b) shows information as a function of the number of epochs
using the GNGA. As shown in the figure, information is significantly
increased during different learning cycles and reaches its stable point
in the fifth learning cycle. We can see that information is significantly
larger than that achieved by the previous model.

Figure 8 shows competitive unit activation patterns obtained after the
first to the fifth growth cycles by (a) the conventional and (b) the new
method. As shown in Figure 8(a1) and (b1), in the first growth cycle,
input patterns are arbitrarily classified into two groups. Beginning with
the second growth cycle, some problems occur with the conventional
method. As expected, a network tries to classify input patterns into
three classes in the second growth cycle with three competitive units.
However, as shown in Figure 8(a2), classification is not possible by
using the conventional method. On the other hand, by the GNGA,
input patterns are clearly classified into three classes, with some minor
exceptions (Figure 8(b2)). With the third growth cycle, the difference
becomes much clearer. As shown in Figure 8(a3), clear classification is
impossible by the conventional method, because weights frozen after the
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Figure 7. Information by the conventional greedy algorithm (a) and the novel
algorithm (b).

first growth cycle prevent the network from classifying input patterns
correctly. On the other hand, with the GNGA, four clear classes can be
seen, as shown in Figure 8(b3). From the fourth growth cycle on, the
conventional method shows great confusion in classification, as shown
in Figure 8(a4) and (a5). On the other hand, the GNGA continues to
classify input patterns correctly, as shown in Figure 8(b4) and (b5).

We have shown that the new method is superior to the previous one
in terms of feature extraction. However, we should note that the method
in [1] had been developed to be as efficient as possible in computation.
Thus, the conventional method is a fast and computationally inexpen-
sive method, compared with the GNGA. For example, we computed the
number of epochs to finish five growing cycles by the new and conven-
tional methods. As can be seen in Figure 7, by the conventional method,
the number of epochs to finish the fifth growth cycle is 1468 on average
(65 in S.D.). On the other hand, the number of epochs by the new
method is increased to 2023 (116 in S.D.). Considering the fact that the
conventional method always updates connections into one competitive
unit, the efficiency of the conventional method is quite prominent. We
expect both methods to be used according to different purposes.

5. Information science education data analysis

The third experiment shows to what extent the GNGA can extract some
characteristics of students who take introductory courses in information
technology. We did a survey on this subject at Tokai University in Japan
in January, 2002. We prepared a questionnaire composed of seven group
features, such as attribute, the use of information, personal computers,
and so on. In these seven groups, there were 26 basic features, such
as sex, major, the concept of information, and so on, as shown in
Table 2. 89 students participated in this questionnaire. From the 89
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No. Macro featues Micro features
Attribute

1 Sex
2 Major
3 Grade
4 Computer knowledge

Use of information
5 Concept of information
6 Information representation
7 Information processing procedures

Personal computers
8 Types of computers and their applications
9 Mechanism and performance of personal

computers
10 Types of software and their characteristics
11 Roles of operating systems

Information devices
12 Types of information devices and their op-

eration
13 Setting of information media and devices

and their operation
Computer networks

14 Basic knowledge of computer networks
15 Personal computer and networks
16 Internet and intranet
17 Computer networks and the next genera-

tion media
Use of application software

18 Use of Windows operating systems
19 Japanese word processing
20 Spreadsheet software
21 Database software
22 DTP
23 Computer graphics

Information society
24 Basic knowledge of information society
25 Information technology in ordinary life
26 Problems in information society

Table 2. Feature description in our data. In the sex feature, 1 and 0 denote male
and female students, respectively. In the major, 1 and 0 represent humanities,
and science and engineering, respectively. In the grade feature, 1 and 0 represent
freshmen and higher, respectively. In the knowledge on computer feature, 1 and
0 denote some and little computer knowledge, respectively. In all the other
features, 1 and 0 denote some and little interest in the features, respectively.
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Figure 9. Information as a function of the number of epochs by (a) the previous
method and by (b) the new method.

samples we extracted only 71 by eliminating exceptional samples, such
as those having regular response patterns. The number of input units
corresponds to the 26 basic features. The number of competitive units is
gradually increased. The learning parameter Β is 1, with the momentum
parameter 0.8.

Figure 9 shows information as a function of the number of epochs
by the method from [1] and by the GNGA. As shown in Figure 9(a),
information is gradually increased and reaches its stable point in five
growing cycles. On the other hand, by using the new method, informa-
tion is more significantly increased and reaches its stable point in eight
growing cycles, as shown in Figure 9(b). This suggests that by using the
GNGA, a network can obtain much larger information.

Figures 10(a) and 11(a) show connection weights in the first growth
cycle by the previous and new methods, respectively. We can immedi-
ately see that students are classified into two groups. One is a group
that has a high level of interest in information technology and related
matter, because the group members respond positively to the major-
ity of the features, as shown in the upper portion in those figures.
In particular, they have a high level of interest in information devices
(12), (13), computer networks (14), (15), (17), and information society
(24), (25), (26). In addition, the first two features, sex and major, are
strongly negative, meaning that the typical students of this group are
females majoring in science and engineering. We should note that this
does not exclude male students from this group, but the typical student
represented by the first competitive unit is female. Another group is
composed of students who have little interest in information technology
or related matters, as shown in the lower portion of Figures 10(a) and
11(a). Students in the group respond negatively to the majority of the
features, except Japanese word processing. The use of Japanese word
processors is absolutely necessary in university life. Thus, even students

Complex Systems, 14 (2003) 127–153



Progressive Feature Extraction with a Greedy Network-growing Algorithm 143

1   2   3   4   5   6  7    8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1   2   3   4   5   6  7    8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

(a) 1st growing cycle
Input unit

1   2   3   4   5   6  7    8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
(c) 3rd growing cycle

1   2   3   4   5   6  7    8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
(d) 4th growing cycle

(b) 2nd growing cycle

C
om

pe
tit

iv
e 

un
it

Use 
of information

Personal 
Computer Information

 devices
Computer
networks

Application
software

Information
society

Figure 10. Connection weights obtained in the first to fifth growth cycles by
the conventional greedy algorithm. Black and white squares represent posi-
tive and negative connections, respectively. Their size denotes the strength of
connections.
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with little interest in information technology feel the need to study word
processing at the university. In addition, since connections to the first
and the second feature are positive, this competitive unit represents
male students that major in the humanities, economics, and so on (not
students of science and engineering). Figure 12 shows response rates by
the previous method (a) and the new method (b). The response rates
are actually the probability of competitive units p(j). These probabilities
denote how many input patterns can activate a competitive unit, because
conditional probabilities p(j ( s) tend to be close to 1. As shown in
Figure 12, about 70 percent of all students are classified as a group that
has a high level of interest in information technology. On the other
hand, about 30 percent are classified as a group whose members have
little interest in information technology.

As shown in Figure 11(b), the third competitive unit positively re-
sponds to features No. 24 (basic knowledge of information society),
No. 25 (information technology in ordinary life), and No. 26 (problems
in information society). The feature group “information society” is
composed of these three features. Thus, it is certain that the third com-
petitive unit represents students who have more interest in information
society than the other two. The type of students in this class is almost
the same as the first group. However, the freshman feature (No. 3) plays
some importance in this group, because a connection weight into the
future No. 3 is slightly positive. Figure 12(b2) shows response rates by
the GNGA in the second growth cycle. The second competitive unit still
responds to about 30 percent of the students, while a group that has
more interest in information technology (70 percent) is distributed over
two groups represented by the first and third competitive units.

Figure 10(b) shows connections obtained after the second growth
cycle using the previous method. The method from [1] freezes connec-
tions after learning is finished in each growing cycle. Thus, it becomes
difficult to decompose some features that were extracted in the previous
growth cycle. As can be see in the figure, the third competitive unit
tries to extract features on information societies. However, because
connections into the previous two competitive units have already been
frozen, the network shows some difficulty in extracting this feature, as
shown in Figure 10(b). Figure 12(a2) shows the response rates of the
previous method. Because connections are frozen, the third competitive
unit seems to extract information on both the first and second compet-
itive units. This means that the response rates for the first and second
competitive units decrease to compensate for the response rate of the
third competitive unit.

Figure 11(b3) shows connection weights after the third growth cycle.
Because the fourth connections are relatively small, interpreting them
is difficult. Relatively large positive connections correspond to features
No. 9 (mechanism and performance of personal computers), No. 12
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Figure 11. Connection weights obtained in the first to fifth growth cycles. Black
and white squares represent positive and negative connections, respectively.
Their size denotes the strength of connections.
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(type of information devices and their operation), No. 16 (Internet and
intranet), and No. 25 (information technology in ordinary life). We can
call these connections “information technology in ordinary life.” As can
be seen in Figure 12(b3), the third competitive unit is divided into the
new third and fourth competitive units. Finally, the fifth competitive unit
responds positively to No. 9 (mechanism and performance of personal
computers) and No. 20 (spreadsheet software). These connections can
be called “personal computers and their applications.”

Comparing these connections with those found by the GNGA, it is
difficult to interpret connections and extract some features using the pre-
vious method, because positive connections are smaller. Figure 12(a3)
shows the response rates by the previous method. As can be seen in
Figure 12(a3), because connections are frozen, the response rates by the
previous method for the previous three competitive units are the same.
Thus, the competitive unit tends to respond to an extremely small num-
ber of students. Finally, in the fourth growth cycle, by the previous
method Figure 12(a4), the response rate by the fifth competitive unit is
further decreased, and almost all connections are strongly negative, as
shown in Figure 10(d). These results show that the GNGA can more ex-
plicitly extract features from these input patterns, because the previous
method cannot extract new features during later stages.

Experimental results have shown that students are mainly classified
into three groups, as shown in Figure 13. The first group is composed of
students with a high level of interest in information technology and its
related matter. This group is further divided into two subgroups. One is
a group that has a high level of interest in information technology in gen-
eral. We should note especially that these students major in science and
engineering and thus have a special interest in new information media.
Another group is composed of students who have interest in information
society. On the other hand, the second group is composed of students
who have little interest in information technology and its related matter.
However, even if they have no interest in information technology, they
know the importance of information technology in campus life, because
the students in this class respond strongly to Japanese word processing.

We compared these results with those by conventional competitive
learning and the principle of component analysis. First, we present
results by a conventional competitive method. The method used in the
experiment was the frequency-sensitive competitive learning method by
Ahalt, et al. in [5]. In this method, the winner is selected by the equation# wj! $ x # cj! 3 # wj $ x # cj, (10)

where j! denotes the winning neuron and cj! denotes the total winning
number. As a neuron wins frequently, the total winning number cj!

increases, and then the neuron tends to win less frequently. Note that
the learning parameter was 0.1. Figure 14 shows connection weights
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Figure 13. An interpretation of connection weights obtained by the GNGA.

using this conventional competitive learning method when the number
of competitive units is increased from two to five. As can be seen in the
figure, it is extremely difficult to interpret connection weights. As the
number of growth cycles is larger, it is much more difficult to interpret
the meaning of connections.

Then we analyzed the education data by the principal component
analysis method, which is one of the most popular conventional mul-
tivariate data analysis methods. Figure 15 shows the contribution rate
of the first 10 principal components. The contribution rates are very
small, meaning that there are no dominant principal components. Fig-
ure 16 represents the scores of the first five principal components. The
first principal component separates subject attributes such as sex, major,
and grade (Features No. 1 to 4) from the answers to the questionnaire
(Features No. 5 to 26). From the second principal component onwards,
it is extremely difficult to interpret the meaning. These results show
that the GNGA detects features in a way fundamentally different from
the conventional data analysis method, and that it can detect significant
information that principal component analysis does not extract.

6. Conclusion

A new network-growing algorithm called the greedy network-growing
algorithm (GNGA) was proposed. This new method is based upon
information theoretic competitive learning techniques that can maxi-
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Figure 14. Connection weights with two to five competitive units by the conven-
tional competitive method. Black squares represent positive connections, and
their size denotes the strength of connections.
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Figure 15. Contribution rate of the first 10 principal components using principal
component analysis.

Figure 16. Category scores of the first five principal components.

mize mutual information between input patterns and competitive units.
In maximizing mutual information, the entropy of competitive units is
maximized. By using entropy maximization, the problem of dead neu-
rons can be avoided, because all competitive units tend to be equally
used. In addition, this model has been proposed to extend a previous
model [1], whose principal objective was to learn input patterns as ef-
ficiently as possible. In the previous model, only connections into new
units were updated for computational efficiency. Because connections,
except those to a newly recruited competitive unit, are frozen, networks
sometimes fail to extract salient features successively. To overcome this
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shortcoming, we relax the condition of the previous model, and all con-
nections are updated to capture features gradually, at the expense of
efficient computing.

For further development, several problems should be mentioned.
First, we did not use any acceleration learning methods, except for
the momentum term. However, a more sophisticated learning method
should be used to tune parameters. For example, the learning parameter
should be changed according to the magnitude of information obtained.
Second, we should combine the method from [1] with the GNGA for
efficient and explicit feature extraction. As mentioned, our previous
method is very computationally efficient because only connections into
a newly recruited competitive unit are updated. However, the method
in [1] cannot extract salient features in later stages of learning. To
overcome this shortcoming, when inappropriate feature detection is ob-
served, a network should take on a new method in which all connections
are updated. By this technique, we can overcome the shortcoming of the
previous method and extract salient features comparable to those ex-
tracted by the GNGA. Finally, though much remains to be done to find
a compromise between computational efficiency and feature extraction,
the present research certainly opens up a new perspective in network-
growing algorithms as well as information theoretic neural computing.
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