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This paper is an attempt to systematically present the problem of various
N-person Prisoners’ Dilemma games and some of their possible solutions.
13 characteristics of the game are discussed. The role of payoff curves, per-
sonalities, and neighborhood is investigated. Experiments are performed
with a new simulation tool for multi-agent Prisoners’ Dilemma games.
Investigations of realistic situations in which agents have various person-
alities show interesting new results. For the case of pavlovian agents
the game has nontrivial but remarkably regular solutions. Examples of
nonuniform distributions and mixed personalities are also presented. All
solutions strongly depend on the choice of parameter values.

1. Introduction

The Prisoners’ Dilemma is usually defined between two players [1] and
within Game Theory which assumes that the players act rationally.
Realistic investigations of collective behavior, however, require a multi-
person model of the game [2] that serves as a mathematical formulation
of what is wrong with human society [3]. This topic has great practical
importance because its study may lead to a better understanding of
the factors stimulating or inhibiting cooperative behavior within social
systems. It recapitulates characteristics fundamental to almost every
social intercourse.

Various aspects of the multi-person Prisoners’ Dilemma have been
investigated in the literature but there is still no consensus about its real
meaning [4–26].

Thousands of papers have been published about the two-agent iter-
ated Prisoners’ Dilemma game, a few of these are [27–30]. The interest
in investigating various strategies for pair-wise interactions in multi-
agent Prisoners’ Dilemma computer tournaments is amazing because,
as Rapoport rightly noted in [31], these “tournaments demonstrated
neither evolution nor learning because nothing evolved and nothing
was learned” in the succession of two-person games. Nevertheless, the
obsession with these tournaments continues [32]. Even papers that
claim the simulation of multi-agent games are usually based on dyadic
interactions between the agents. A stochastic learning model was devel-
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oped by Macy in [33] to explain critical states where threshold effects
may cause shifting the system of agents from a defective equilibrium to
a cooperative one. Simple computer programs are written in [34, 35]
that demonstrate the dynamics of deterministic social behavior based on
pair-wise interactions between the participants. Akimov and Soutchan-
sky [36] presented a multi-agent simulation (not a succession of two-
person games) but their experiment was limited to six agents. Our own
simulation tool [37] was designed to simulate social dilemmas with a
wide range of user-defined parameters. It is suitable for an unlimited
number of agents with various personalities. We were able to perform
interesting nontrivial experiments with this tool [24, 26].

This paper is an attempt to systematically present the problem of the
N-person Prisoners’ Dilemma and some of its possible solutions.

2. N-person dilemmas

The N-person Prisoners’ Dilemma considers a situation when each of
N participants has a choice between two actions: cooperating with
each other for the “common good” or defecting (following their selfish
short-term interests). As a result of its choice, each participant receives
a reward or punishment (payoff) that is dependent on its choice as
well as everybody else’s (Figure 1). The participants can be individuals,
collectives of persons, organizations, or even computer programs. We
will simply call them agents.

Figure 1. Reward/penalty functions for defectors (D) and cooperators (C). The
horizontal axis (x) represents the ratio of the number of cooperators to the total
number of neighbors; the vertical axis is the reward/penalty provided by the
environment. In this figure, D(x) " #0.5 $ 2x and C(x) " #1 $ 2x.
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The dilemma can be formulated by the following two statements [11].

1. Regardless of what the other agents do, each agent receives a higher
payoff for defecting behavior than for cooperating behavior.

2. All agents receive a lower payoff if all defect than if all cooperate.

If m of the N agents are cooperating and C(m) and D(m) are the
payoffs to a cooperator and a defector, respectively, then the above
conditions can be expressed as

D(m) > C(m $ 1) (1)

and

C(N) > D(0). (2)

C(0) and D(N) are undefined; therefore, the value of m is between 0 and
N # 1 in equation (1). The game has N $ 1 distinguishable outcomes:
0, 1, 2, . . . , N # 1, N participants may choose cooperation.

At a first glance, it looks like a well-defined problem. However, at
least the following questions arise immediately.

1. Are the choices and actions of the agents simultaneous or distributed in
time?

2. Can individual agents see and adapt to the actions of others?

3. Can they form coalitions?

4. What are the agents’ goals in the game: to maximize their payoffs, to
win a competition, to do better than their neighbors, to behave like the
majority, or any other goal?

5. Is it a one-shot game or an iterated one? If it is an iterated game, how
will the next action be determined?

6. What are the personalities of the agents? (Surely, different people react
quite differently to the same conditions.) Can they change their person-
alities?

7. Can an agent refuse participation in the game?

8. Are the payoff curves the same for all agents?

9. What are the payoff curves?

10. How is the total payoff to all agents related to the number of cooperators?

11. How are the agents distributed in space? Can they move?

12. Do the agents interact with everyone else or just with their neighbors?

13. How is the neighborhood defined?
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With so many open questions it is obviously quite difficult to create a
general classification scheme for the N-person Prisoners’ Dilemma and
there is a great variety of possible games. It is, in fact, a whole family of
quite different games. Even in the case of a uniform game the number
of possible variations is infinitely large because of the infinite variety of
the payoff curves. In a uniform game the payoff curves are the same for
all agents, they are monotonically increasing functions of the number
of cooperators, and there is some minimum number of cooperators that
can gain by their cooperative choice [2]. It is, however, desirable to
investigate at least the most characteristic cases because each possible
variation may represent an important social situation. Let us first take
a closer look at each of the 13 questions.

1. There is a huge difference between simultaneous actions and those dis-
tributed in time. In the first case all agents see the same environment at the
moment of their simultaneous action. In most social settings, however,
agents act at different and noncorrelated times. Therefore, each agent
sees a slightly different world than another agent acting at a slightly dif-
ferent time [17]. Simulation of this case is a more sophisticated task than
that of the previous case.

2. Even if the agents’ actions are distributed in time, they may or may not
have information about the actions of others. You may look out of the
window and see how many cars are on the road before deciding if you
are going to drive your car or take a bus but you do not know how many
children will be born next year before deciding if you are going to have
another child.

3. Obviously, if you do not know the other participating agents, you cannot
form coalitions with them. Even if you know all of them, it is not
certain that you can communicate with them, let alone form a coalition.
However, coalitions may drastically change the outcome of the game.

4. The goals of the agents in the game is a critical issue. The game is totally
different if the goals are different and in real-life situations different agents
do have different goals. It is also possible that the agents simply react to
their own and to their neighbors’ payoffs without specific goals.

5. The one-shot game is less interesting than an iterated one where the
agents act repeatedly on the basis of their personalities, their neighbors’
situations, and the payoffs received for their previous actions. The next
choices are determined by updating schemes that are different for different
agents.

6. The personalities of the agents is one of the most important characteristics
of the game. The psychological literature on the impact of personalities
in social dilemmas is summarized in [19]. It is possible but not easy
to quantify personality profiles in the traditional psychological sense.
We will use the term “personality” in the sense of decision heuristics
(repeated-game strategies) in this work, to represent the fact that different
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agents react differently to the same stimulus from their environment. This
is a rather primitive approach but it is still much better than the unjustified
assumption of uniform response.

Personalities are usually neglected in the literature. In [24] N-person
Prisoner’s Dilemmas are considered with various personalities of the par-
ticipating agents. Different agents may have quite different personalities
in the same experiment. The agents’ personalities may also change in
time based on the influences of other agents.

Personalities of the agents may represent genetic as well as cultural dif-
ferences between them. The simplest and probably most important per-
sonality profiles are the following.

Pavlovian. The probability of taking a certain action p changes by an
amount proportional to its reward or penalty from the environment.
This personality is based on Pavlov’s experiments and Thorndike’s
law [38]: If an action is followed by a satisfactory state of affairs,
then the tendency of the agent to produce that particular action is
reinforced.

Stochastically predictable. p is a constant. Such an agent is not
influenced by the environment at all. Here are the special cases.

(a) Negatively stubborn. Never takes this action (p " 0).
(b) Positively stubborn. Always takes this action (p " 1).
(c) Unpredictable. Acts randomly (p " 0.5).

Accountant. p depends on the average reward for previous actions.

Conformist. Imitates the action of the majority of its neighbors.

Greedy. Imitates the neighbor with the highest reward.

Other profiles may include properties like aggression, sensitivity, devo-
tion, and so forth.

7. The iterated game may considerably change if an agent refuses participa-
tion in some iterations.

8. It is usually assumed that the game is uniform; therefore, the payoff
curves are the same for all agents. This condition is, however, not always
guaranteed.

9. When everything else is fixed, the payoff curves determine the game.
There is an infinite variety of payoff curves. In addition, stochastic factors
can be specified to represent stochastic responses from the environment.
Zero stochastic factors mean a deterministic environment. Even in the
almost trivial case when both payoff curves are straight lines and the
stochastic factors are both zero, four parameters specify the environment.
Attempts to describe it with a single variable are certainly too simplistic
[34, 39]. As shown later, the relative position of the two payoff curves
with respect to each other does not always determine the outcome of the
game. Ordinal preference is not enough to represent the payoff functions:
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the actual amounts of reward and punishment may be as important as
the relative situation of the two curves.

The N-person game is a compound game (it can be reduced to a series
of two-person games) if and only if both payoff functions are linear
[8]. Therefore, a dyadic tournament where every agent plays two-person
games against each of the N#1 other agents represents only a very limited
subset of the N-person game.

10. The total payoff to all agents is related to the number of cooperators but
the maximum collective payoff is usually not at maximum cooperation.

11. The agents may be distributed in space in many different ways. If there
are fewer agents than locations in space or if more than one agent may
occupy one location, then it is also possible that the agents move around
in space and their neighborhood constantly changes.

12. The agents may interact with everyone else or just with their neighbors.
In the latter case they behave like cellular automata (CA) [40].

13. The number of neighborhood layers around each agent and the agent’s
location determine the number of its neighbors. The depth of agent A’s
neighborhood is defined as the maximum distance, in three orthogonal
directions, that agent B can be from agent A and still be in its neighbor-
hood. An agent at the edge or in the corner of the available space has
fewer neighbors than one in the middle. The neighborhood may extend
to the entire array of agents.

To make our task manageable, in the following we assume that the
game is uniform and iterated, the agents are distributed in and fully
occupy a finite two-dimensional space, the updates are simultaneous,
the agents have no goals, know nothing about each other, and they
cannot refuse participation in any iteration. This restriction leaves the
problem of payoff curves, personalities, and neighborhood open for
investigation. These factors are mostly neglected in the literature. The
role of the parameters fixed in this study will be addressed in a future
work by the author.

We will use computer simulation to demonstrate the role of the above
mentioned factors on the outcome of the game. If the parameters are
selected appropriately, the simulation will exhibit behavior that is close
enough to the behavior of real people when they are placed in a similar
situation. It should be noted that even if only three factors are considered
there is a huge number of different variations. Therefore, we can only
show some characteristic examples in this paper.

3. The model

We have developed an agent-based model for the investigation of so-
cial dilemmas with a large number of decision-makers operating in a
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stochastic environment [37]. Our model has the following three distinc-
tive new features.

1. It is a genuine multi-agent model, not a repeated two-person game.

2. It is a general framework for inquiry in which the properties of the envi-
ronment, as well as those of the agents, are user-defined parameters. The
number of interacting agents is theoretically unlimited.

3. Our agents have various distinct, user-defined personalities.

The participating agents are described as stochastic learning CA, that
is, as combinations of CA [40, 41] and stochastic learning automata
[42, 43]. The CA format describes the environment in which the agents
interact. In our model, this environment is not limited to the agents’
immediate neighbors: the agents may interact with all other agents
simultaneously. Stochastic learning rules provide more powerful and
realistic results than the deterministic rules usually used in CA. Stochas-
tic learning means that behavior is not determined but only shaped by
its consequences, that is, an action of the agent will be more probable
but still not certain after a favorable response from the environment.
The model is described in detail in [37] and only its most important
features are briefly explained here.

A realistic simulation model of a multi-person game must include
parameters such as the size and shape of the simulation environment, the
payoff functions, updating schemes for subsequent actions, personalities
of the agents, and the definition of the neighborhood.

Our simulation environment is a two-dimensional array of the partic-
ipating agents. Its size is limited only by the computer’s virtual memory.
The behavior of a few million interacting agents can easily be observed
on a computer screen.

The payoff (reward/penalty) functions are given as two curves: one
(C) for a cooperator and another (D) for a defector. The payoff to
each agent depends on its choice, on the distribution of other players
among cooperators and defectors, and also on the properties of the
environment. The payoff curves are functions of the ratio of cooperators
to the total number of neighbors (Figure 1). The freedom of using
arbitrary functions for the determination of the reward/penalty system
makes it possible to simulate a wide range of dilemmas and other social
situations, including those where the two curves intersect.

In an iterative game the aggregate cooperation proportion changes
in time, that is, over subsequent iterations. The agents take actions
according to probabilities updated on the basis of the reward/penalty
received for their previous actions and of their personalities. The updat-
ing scheme may be different for different agents. This means that agents
with completely different personalities can be allowed to interact with
each other in the same experiment. Agents with various personalities
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and various initial states and actions can be placed anywhere in the
array. The response of the environment is influenced by the actions of
all participating agents.

The updated probabilities lead to new decisions by the agents that
are rewarded/penalized by the environment. With each iteration, the
software tool draws the array of agents in a window on the computer
screen, with each agent in the array colored according to its most recent
action. The experimenter can view and record the evolution of the
society of agents as it changes in time. The outcome of the game depends
on the personalities of the agents. For example, agents with short-term
rationality will always choose defection, benevolent agents will ignore
their short-term interests and will all cooperate, and so forth.

4. Experiments

4.1 Pavlovian agents

It is realistic and interesting to consider pavlovian agents first. Their re-
sponse is stochastic but their probability of cooperation p changes by an
amount proportional to their reward/punishment from the environment
(the coefficient of proportionality is called the learning rate). These
agents are primitive enough not to know anything about their rational
choices but they have enough “intelligence” to learn a behavior accord-
ing to Thorndike’s law. Such agents have been used in [29, 44, 45] and
others for the investigation of iterated two-person games.

A linear updating scheme is used for these agents: the change in
the probability of choosing the previously chosen action again is pro-
portional to the reward/penalty received from the environment (payoff
curves). Of course, the probabilities always remain in the interval be-
tween 0 and 1.

Let us assume that in a society of N pavlovian agents the ratio of
cooperators is x " m/N and the ratio of defectors is (1 # x) at a certain
time. We have shown [26] that when the cooperators receive the same
total payoff as the defectors, that is,

x C(x) " (1 # x)D(x), (3)

an equilibrium occurs. This may happen if C(x) and D(x) are either
both negative or both positive. In the first case, a small number of
cooperators are punished severely and a large number of defectors are
punished little. This leads to a stable equilibrium. In the second case, a
large number of cooperators are rewarded slightly and a small number
of defectors are rewarded greatly. This point corresponds to an unstable
equilibrium.

In the case of linear payoff functions the equilibrium equation is
quadratic. For the payoff functions of Figure 1 the solutions are
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Figure 2. Evolution of the game for the case when all agents are pavlovian, the
payoff curves are given by Figure 1, and the neighborhood is the entire collective
of agents. The graphs show the proportion of cooperating agents as a function
of the number of iterations. The initial cooperation ratios from top to bottom
curves are 0.90, 0.80, 0.75, 0.73, 0.71, 0.69, 0.65, and 0.00.

x1 " 0.180 (stable attractor) and x2 " 0.695 (unstable repulsor). Sim-
ulation results are shown in Figures 2 and 3. The graphs represent
the proportion of cooperating agents as a function of the number of
iterations for different initial cooperation ratios.

Figure 2 refers to the case when the neighborhood is the entire col-
lective of agents. When the initial cooperation ratio is below x2, the
solution of the game converges toward x1 as an oscillation while it sta-
bilizes exactly when the initial cooperation ratio is above x2. The latter
case does not result in the aggregate cooperation proportion converging
to 1, as might be expected. This is because, for an individual agent that
started off as a defector, there is always some likelihood that the agent
will continue to defect. This probability is initially small but continues
to increase because the agent is always rewarded for defecting. If the
number of agents is sufficiently large, then there will be some agents
that continue to defect until their cooperation probability reaches zero
due to the successive rewards they have received, and these agents will
defect forever.

The situation is different when the neighborhood is only one layer
deep. In this case each agent has a maximum of eight neighbors whose
behavior can influence its reward/penalty. Accordingly, the result is a
more gradual dependence on the initial convergence ratio (Figure 3).

Naturally, the results are strongly dependent on the payoff functions.
In the case of pavlovian agents the relative situation of the two payoff
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Figure 3. Evolution of the game for the case when all agents are pavlovian, the
payoff curves are given by Figure 1, and the neighborhood is one layer deep.
The graphs show the proportion of cooperating agents as a function of the
number of iterations. The initial cooperation ratios from top to bottom curves
are 0.90, 0.80, 0.75, 0.73, 0.71, 0.69, 0.65, and 0.00.

curves with respect to each other does not determine the outcome of the
game. It is equally important to know the actual values of the payoff.
For example, consider the simple payoff functions shown in Figure 1.
If we shift the horizontal axis up and down, the following cases are
possible.

(a) Both curves are positive for any value of x. In this case only the unstable
equilibrium is possible and the solution of the game depends on the value
of this equilibrium and on the initial ratio of cooperators. When the
initial cooperation ratio is below x2, the solution of the game stabilizes
at a lower value between 0 and x2. When the initial cooperation ratio is
above x2, the final stable ratio has a higher value between x2 and 1.

(b) The D(x) curve is entirely positive but C(x) changes sign from negative to
positive as the value of x grows. The situation is similar to case (a). The
only difference is that in this case the region where both C(x) and D(x)
are positive may be too narrow to produce a solution other than total
defection.

(c) The most interesting case is when both C(x) and D(x) change sign. In
this case both equilibria exist and we have the solutions discussed above
(Figures 2 and 3).

(d) The C(x) curve is entirely negative but D(x) changes sign from negative
to positive as the value of x grows. Only the stable equilibrium exists.
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However, the region where both C(x) and D(x) are negative may be too
narrow to produce a solution substantially different from total defection.

(e) Both C(x) and D(x) are negative for all values of x. In this case only the
stable equilibrium exists and the solution always converges to x1.

Our experiments totally confirm these findings.
Pavlovian solutions can be predicted for any situation. We have

developed an algorithm that accurately predicts the final aggregate out-
come for any combination of pavlovian agents and any payoff function
[26]. The predictions are exact for an infinite number of agents but the
experimental results of the simulation approximate the predictions very
closely even for a few hundred agents.

A systematic formal analysis of equilibria of the pavlovian learning
model in the N-person game shows that in the case of a linear payoff
function and low initial cooperation rate the equilibrium cooperation
rate cannot exceed 50 percent [25].

4.2 Conformist agents

The conformist agent imitates the action of the majority. If all agents
are conformists and the neighborhood extends to the entire society of
agents, then the outcome depends on the exact relationship between the
initial number of cooperators and defectors: every agent will immedi-
ately imitate the majority and stay there. The behavior becomes quite
interesting for the one-layer deep neighborhood. In this case, while the
proportion of cooperators will not change substantially, their distribu-
tion will. Both cooperators (black spots) and defectors (white spots)
will form mutually intertwined clusters (Figure 4).

4.3 Greedy agents

The greedy agent always imitates the behavior of the neighbor with
the highest reward (this is the case investigated for dyadic interactions
in [34]. If all agents are greedy and the neighborhood extends to the
entire organization, they will all defect immediately at the first iteration
because they will all imitate the defectors that received a higher reward
for their initial action. The situation is not so hopeless for a one-layer
deep neighborhood but the behavior will stabilize with a relatively small
number of cooperators. Interesting oscillating patterns arise when the
payoff functions are those shown in Figure 5 (see Figures 6 and 7).

4.4 Accountants

The accountant’s payoff depends on the average reward for its previous
actions. If initially the number of cooperators is approximately equal to
the number of defectors for a one-layer deep neighborhood, the result
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Figure 4. Graphics output of the 100th iteration for the case when all agents
are conformists, the payoff curves are given by Figure 1, and the neighborhood
is one layer deep. The black spots represent cooperators, the white spots are
defectors. The initial ratio of cooperation is equal to 0.50 and the final ratio is
0.49.

Figure 5. Reward/penalty functions for the case of D(x) " 1.65x and C(x) " x.
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Figure 6. Evolution of the game for the case when all agents are greedy, the
payoff curves are given by Figure 5, and the neighborhood is one layer deep.
The graph shows the proportion of cooperating agents as a function of the
number of iterations. The initial cooperation ratio is equal to 0.9.

Figure 7. A snapshot of the 1000th iteration for the case when all agents are
greedy, the payoff curves are given by Figure 5, and the neighborhood is one
layer deep. The black spots represent cooperators, the white spots are defectors.
The initial ratio of cooperation is equal to 0.90 and the final ratio is 0.29.
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Figure 8. Graphics output of the 500th iteration for the case when the initial
actions of all pavlovian agents are random but the array of agents is equally
divided into two parts: agents in the upper half initially defect while those in
the lower half initially cooperate. The neighborhood is one layer deep.

is universal defection because the defectors’ payoff is always higher
than that of the cooperators. If, however, the initial distribution is
unequal, clusters will form. Agents situated at the borders of cooperative
clusters will receive smaller and smaller payoffs. As a result, they will
eventually defect, these clusters become smaller and smaller and after
several thousand iterations universal defection takes over.

4.5 Nonuniform distributions and mixed personalities

Realistic simulations must take nonuniform distributions of different
agents into account. Consider, for example, pavlovian agents with the
payoff functions of Figure 1 for the case when the initial actions of all
agents are random but the society is equally divided into two parts:
agents in the upper half initially defect, those in the lower half initially
cooperate. If the neighborhood is one layer deep, the upper half will be
gradually infected with cooperators (Figure 8). On the other hand, if
the neighborhood is the entire society of agents, change will start in the
lower region (Figure 9) and gradually spread to the entire society.

Beautiful oscillating symmetric fractal patterns arise when a single
defector initially occupies the middle spot in a sea of greedy cooperators
with a one-layer deep neighborhood (Figure 10). It is instructional to
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Figure 9. Graphics output of the 63rd iteration for the case of Figure 8 when the
neighborhood is the entire array of agents.

Figure 10. Snapshot of the 1000th iteration for the case when a single defector
initially sits in the middle of a sea of greedy cooperators. The payoff functions
are given in Figure 5. The neighborhood is one layer deep.

investigate the emergence of these patterns. As the D(x) curve is al-
ways above the C(x) curve, a layer of defectors will surround the lonely
defector after the first iteration. After the second iteration, however,
further development depends on the actual shape of the payoff curves.
Accordingly, the result may be universal defection, a small stable de-
fection pattern around the center, oscillation in the same region, or the
symmetric oscillating pattern of Figure 10. If we allow a small number
of individual defectors randomly distributed among cooperators, these
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patterns interact with each other and can produce other interesting pat-
terns (Figure 11).

The number of variations is infinitely large. We can change all the
parameters simultaneously and mix different personalities in arbitrary
ways. Figure 12 shows situations similar to that of Figure 6 but with
mixed personalities.

5. Conclusion

Experiments performed using a new simulation tool for multi-agent
Prisoners’ Dilemma games in realistic situations with agents that have
various personalities show interesting new results. For the case of pavlo-
vian agents the game has nontrivial but remarkably regular solutions.
All solutions strongly depend on the choice of parameter values. Our
results show that a viable model for the study of N-person Prisoners’
Dilemmas must be based on a more careful selection of parameters than
that offered in the literature.

This work is only the first step in analyzing a game with such a high-
dimensional parameter space. A more thorough analysis will have to
utilize new visualization methods such as the careful use of colors and
three-dimensional animation techniques.

Many questions remain open. Future research will find answers to
many of them. For example, we will learn the mechanism of cluster
formation and the interactions of clusters with each other, the explana-
tion of oscillatory behavior of greedy agents, the role of group size in
the emergence of cooperation, and so forth. As a result, the study of
N-person Prisoners’ Dilemmas may lead us to a better understanding
of some basic social dynamics, the emergence of social norms, and may
even give some insight into changing human behavior.
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