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Cellular automata can be described in many different ways, one of which
is to use a special purpose description language. Here, the language CDL
is used as the source for translations into Java or C code for computer
simulations. Several coding styles are generated automatically: The state
transition function can be coded as Java, as C with stubs for integration
into a Java simulation environment, as a lookup table, or as Java code
consisting of boolean functions which allow the parallel simulation of
32 or 64 cells on one processor. The coding styles are compared for
several examples and it is found that the boolean function style (also called
multispin-coding) realized in Java is often, but not always, significantly
more efficient than even native C code.

1. Introduction

Since John von Neumann invented the concept of cellular automata
(CA) more than 50 years ago [1], many software systems have been
written for simulating them. Most of these were created to simulate
one specific CA, but many are capable of simulating a large class of
CA. An overview of some of these programs can be found in [2]. Here,
we describe a subsystem of the CA simulation environment JCASim
[3–5], which is implemented purely in Java to provide the best porta-
bility. In this system, CA can be specified in Java, cellang [6], CDL
[7], or a CDL-related XML dialect CAXL [8]. Descriptions in these
special-purpose languages are translated into Java for efficient execu-
tion in the simulation environment. In this translation, several different
coding styles can be used, which severely impact the efficiency of the
resulting simulation. We describe these different translation options and
measure the efficiency of the resulting code for several examples. Only
the speed of the evolution of a CA for many times steps is used as a
criterion, since initialization is done only once, and the speed of display
depends very much on the operating system, and should be considered
separately.
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This paper is organized as follows. First we describe the simple trans-
lation of CDL code into Java. We discuss a number of coding options
that are considered good practice in object-oriented programming, but
carry severe performance penalties. Section 3 describes the possibility
of using a look-up table for the state transition rule. In section 4, this
table is translated into a set of logical functions. This in itself does not
lead to a performance improvement, but if it is combined with a packed
coding, where the bits needed to store many cells are packed into one
integer, this option can lead to a dramatic time saving. Section 5 de-
scribes how performance can be improved by translation into C and
native code. This eliminates the overhead of current Java programming
environments for calculating the state transition function, while retain-
ing portability and flexibility for the remaining portions of the code.
Section 6 then describes measurements to compare the generated code
using the different coding styles and demonstrates that the logic coding
approach is significantly more efficient than the other approaches, when
it is applicable, and generates reasonably small boolean functions.

2. Translating CDL into Java

The language CDL is a Pascal-like special-purpose language for the
description of CA [7, 9, 10]. It contains language constructs for the def-
inition of a structured cell type, for defining the state transition function
using normal imperative programming language constructs, and some
special constructs to facilitate working with neighborhood cells.

The description of a CA in CDL can be translated fairly directly
into Java, since most of its language constructs have direct equivalents
in Java. These are: arithmetic and logical operators, assignment, if-
statement, blocks, and case-statements. Most primitive data types can
also be translated into Java primitive types, but Java does not have
primitive enumeration or range types. The range types of CDL can be
translated into suitable primitive integer types. The enumeration types
can be translated into integers as well, or into a type-safe system of
subclasses, which however is less memory-efficient. As an example, the
following translation is shown. More Java code than shown here is
generated for initialization and display.

CDL
cellular automaton T4;

type celltype = record
a: boolean;
b: 0..3;

end;

rule begin
*[0].a := ( *[-1].a AND *[0].a ) XOR *[1].a;
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if *[0].a AND *[-1].a AND *[1].a then
*[0].b := ( (*[1].b) + (*[0].b DIV 2) ) MOD 4

else
*[0].b := *[0].b;

end;

Java
public class T4 extends State {

protected celltype mystate;
protected class celltype implements Serializable {

boolean a;
/*0..3*/ int b;

}

public T4(){
mystate = new celltype();

}
/** The state transition function
*/
public void transition(Cell cell){

final State [] neighbors = cell.getNeighbors();
{

mystate.a = (((T4)neighbors[1]).mystate.a
&& ((T4)neighbors[0]).mystate.a)
ˆ ((T4)neighbors[2]).mystate.a;

if (( (T4)neighbors[0]).mystate.a
&& ((T4)neighbors[1]).mystate.a
&& ((T4)neighbors[2]).mystate.a

){
mystate.b =((((T4)neighbors[2]).mystate.b)

+ (((T4)neighbors[0]).mystate.b/2))%4;
}else{

mystate.b = ((T4)neighbors[0]).mystate.b;
};

}
}

}

2.1 Groups

One concept of CDL which does not exist in Java is that of a “group.”
This is similar to a vector in Java, with iterators defined to loop through
all elements of the group (in CDL:for, one, all, num, and sum). There
are two possible ways to translate this feature of CDL into Java. One
way is to translate it into vectors and iterators. The second possibility
exploits the fact that the group is (in our language definition) fixed;
that is, all elements are known, and thus the action of iterators can be
expanded explicitly into a sequence of statements (for) or expressions.
Both possibilities are used in JCASim: The first is used for groups
with the name “neighbors,” which makes it possible for CDL to be
written independently of the dimension and neighborhood of the lattice
(selection of the neighborhood is done in the simulation environment).
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The second possibility is used for all other cases, since it is more efficient
for small groups.

As an example, the following CDL-code is translated into Java using
the two different options.

CDL
cellular automaton TestGroup;

type celltype = 0 .. 2;
group neighbors = {*[0],*[-1],*[1]};
var n : celltype;

rule begin
for n in neighbors do

if n > 0 then
.....

end

Java with array
public void transition(Cell cell){

int n;
final State [] neighbors = cell.getNeighbors();
for (int i=0; i<neighbors.length; i++){

n = ((TestGroup)neighbors[i]).mystate;
if (n > 0){

.....
}

}
}

Java directly expanded
public void transition(Cell cell){

final State [] neighbors = cell.getNeighbors();
{

if (((TestGroup)neighbors[0]).mystate > 0){
.....

};
if (((TestGroup)neighbors[1]).mystate > 0){

.....
};
if (((TestGroup)neighbors[2]).mystate > 0){

.....
};

}
}

2.2 Statements in expressions

A small complication appears if we use the vector translation option
for the expressions one, num, all, and sum. The Java code uses
statements, but in CDL these are expressions, which can occur as part
of a more complicated expression. Java, different from C in this respect,
does not allow statements to occur inside expressions. One possible
solution is to use anonymous inner classes, but it is more efficient to
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generate temporary variables that are assigned a value directly before
the expression in which they are used. Here is an example.

CDL
r := (1+num( n in neighbors: n = 1)) mod 3;

Java directly expanded

Here no difficulty appears, as the num-expression is expanded into an-
other expression.

r = (1 + (
(((TestGroup)neighbors[0]).mystate == 1?1:0)

+(((TestGroup)neighbors[1]).mystate == 1?1:0)
+(((TestGroup)neighbors[2]).mystate == 1?1:0)

)) % 3;

Java with array

Here a temporary variable is used, since the num-expression expands
into statements.

int temp1_=0;
for (int i=0; i<neighbors.length; i++){

n = ((TestGroup)neighbors[i]).mystate;
temp1_+= ( n == 1)?1:0;

}
r = (1 + temp1_) % 3;

Note that the translation system has detailed type information for
determining the type of the temporary variable as boolean, integer, or
float.

2.3 Record types

CDL record and union types are translated into inner classes in Java. The
components of a record then become the member variables of the class.
Variables (which in CDL are temporary objects used in the calculation of
the transition function, but are not conserved from one iteration of the
CA to the next) of such a record type would normally be translated into
variables of the new class type, and be local to the transition function.
In this case they need to be instantiated (created) at the beginning of the
transition function. Unfortunately, creating objects is a very expensive
operation in Java, therefore we have to avoid any object creation in the
inner loop of the simulation. This can be done by re-using all objects,
for example, by making record variables static, unless multithreaded
simulation is intended.

2.4 Neighbor access

The access to neighboring cells, which in CDL uses a relative ad-
dress, can be done through two different mechanisms. One possibil-
ity is to translate each access to a neighboring cell into a call of the
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method “cell.getNeighborRelative (dx,dy)”. This method
must check the coordinates and access the lattice of cells to return the
appropriate State-object. These operations involve a certain amount
of overhead. Another possibility is to collect all neighboring states into
an array once, and access them using this array. In JCASim this array
is actually preserved since the neighborhood does not change between
time steps. This option is called “cache neighborhood” in the JCASim
system and can be turned on or off, since caching the neighborhood
involves a cost in memory but improves performance if enough memory
is available.

3. Table-lookup coding

A CA in the classical definition is a regular lattice of cells, each of which
contains a state selected from a finite set of states. The cells are updated
according to a state transition function depending on a finite number of
neighbors of each cell. Since both the set of states and the neighborhood
are finite, the number of different possible local configurations which
can occur as inputs to the state transition function is also finite. If
this number is small enough, we can store the result of the local state
transition function in a table, and use this table in the simulation instead
of the directly translated transition function.

The translation process proceeds along the following steps in the
JCASim system.

Determine the active neighborhood.

Calculate the size of the input configuration.

Generate masks and shifts for the neighbor components.

Fill the table.

Generate Java code to use the table.

3.1 Active neighborhood determination

First, the system collects the list of variables used as inputs to the state
transition function. These are just those components of the state of the
cell and of its neighbors, which appear as read-accesses in the transition
function. In many cases the relevant configuration does not contain all
parts of the state for all neighbors, but just one or a few components of
a neighbor’s state.

3.2 Calculation of the input configuration size

From the list of accessed (neighboring) state variables the size of the
input configuration is determined: For each distinct part, the number of

Complex Systems, 14 (2003) 175–199



Translations of Cellular Automata for Efficient Simulation 181

bits used to store this state component are calculated, and these numbers
are added for all parts of the active neighborhood. If the result is at most
22 bits, this means that the look-up table has at most 222 # 4194304
entries, which makes it feasible to store the entire table, and also makes
it possible to store the entire state of a cell in one integer variable.

3.3 Generation of masks and shifts

In order to use a look-up table, a method must be found to calculate
an index into the table (address) from the local configuration. For the
calculation, each active neighborhood component is assigned a bit-mask
and a shift for composition into an address. For the example T4 from
section 2, the following properties are calculated.

name size (bits) mask shift1 shift2
*[ 0].a 1 1 0 0
*[ 0].b 2 6 1 0
*[-1].a 1 1 – 3
*[ 1].a 1 1 – 4
*[ 1].b 2 6 – 4

Here shift1 is the bit position of this component in the integer repre-
sentation of the state. shift2 is the shift needed to place the masked bit
pattern into the address for access to the look-up table. The seven-bit
address into the table encodes the active neighborhood as follows.

! *[1].b *[1].a *[-1].a *[0].b *[0].a
! 6 5 4 3 2 1 0

The address is calculated as the disjunction of expressions of the
form (name & mask) << shift2 for each component of the active
neighborhood, in this example:

int adr = (*[0] & 7)
| ((*[-1] & 1)<<3)
| ((*[ 1] & 1)<<4)
| ((*[ 1] & 6)<<4);

where the first line collects all relevant components of the cell itself, and
the other lines refer to the neighbors.

3.4 Calculation of all table entries

To fill the look-up table, we use the state transition function translated
into Java in the normal way. We set up a special Cell object which
is given an index of the table and provides the appropriate states as
neighbors. The transition-method of the original Java class is then
called once to update the state. The resulting state is converted into an

Complex Systems, 14 (2003) 175–199

https://doi.org/10.25088/ComplexSystems.14.2.175



182 J. R. Weimar

integer (using the mask and local shifts calculated before) and stored in
the table. Even though this process must be performed for each table
entry, it takes at most a few seconds.

3.5 Java code generation

Finally, a new Java class is generated that uses the look-up table in
the state transition function, but otherwise behaves exactly as before
(e.g., for initialization and display). This is achieved by subclassing the
previously translated state-class. The transition-method is overrid-
den, and additional methods are provided for conversion between the
representation using one integer and the representation using separate
variables for the state components as in this example.

public class T4Table extends T4 {
protected int mys;

static final int table[] = {
0,0,2,2,4,4,6,6,0,1,2,3,4,5,6,7

.......
,1,1,3,3,5,5,7,7,1,6,3,6,5,0,7,0
};

public void transition(Cell cell){
final State [] neighbors = cell.getNeighbors();
int adr = (mys & 7)

| ((((T4Table)neighbors[1]).mys & 1)<<3)
| ((((T4Table)neighbors[2]).mys & 1)<<4)
| ((((T4Table)neighbors[2]).mys & 6)<<4);

mystatetable = table[adr];
}
private void toOriginal(){

mystate.a = (((mys & 1) >> 0)==1);
mystate.b = (((mys & 6) >> 1));

}
private void toTable(){

mys = ((mystate.a?1:0) << 0)
| ((mystate.b) << 1) ;

}
.....

3.6 Limitations

The translation from CDL and Java code into the table form has a num-
ber of limitations. Most importantly, the size of the active neighborhood
may be limited, since tables larger than about 222 entries are impractical
to generate and store. A second limitation is that probabilistic rules
are difficult to handle. If only one binary probabilistic choice appears
in the transition function, and this choice has a fixed probability (as
opposed to a data-dependent probability), then this choice can be incor-
porated as an extra input bit in the transition table, and a bit with the
appropriate statistics can be generated for each table-lookup operation.
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This approach only extends to a few binary choices or one probabilistic
choice with very few alternatives and no data dependency. Otherwise,
the table would become prohibitively large.

Obviously, the table method is not applicable to cell states that con-
tain floating-point numbers or integers without range limitation.

4. Coding as a logic function

The preceding section showed how the transition function can be trans-
lated into a lookup-table. In this section we describe a transformation
of this table into a set of logical formulas. The table can be regarded as
a function

f $ [0 . . .2k % 1] " [0 . . .2n % 1] (1)
f (x) # y (2)

where k is the number of input bits, and n is the number of output bits
(usually also the number of bits in the cell state). Alternatively, consider
the binary representation of x and y:

x #
k%1!
i#0

2i xi y #
n%1!
j#0

2j yj (3)

and decompose the function f into boolean functions

gj(x0, x1, . . . , xk%1), j # 0, . . . , n % 1 (4)

such that

f (x) # y #
n%1!
j#0

2j gj(x0, x1, . . . , xk%1). (5)

We can now try to find a compact representation of the functions gj
in terms of the logical functions available on a computer, namely AND
(&), OR (|), NOT (˜), and XOR (ˆ).

4.1 Logic minimization

The task here is to find a compact representation for a set of boolean
functions that are given as a set of input values, for which the output
(the jth bit in the table output) is 1 (true). There are several approaches
to this problem. Older methods, such as the Quine–McCluskey proce-
dure [11] or the approach used in the espresso software package [12]
aimed at producing a minimal two-level representation, for example, as
a disjunctive minimal form. In the case of computer code implementing
the logic function, where operations are applied sequentially, a repre-
sentation using more levels does not carry a performance penalty, and
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is most likely more compact. Such a representation can be found by
algorithms that manipulate a data structure called the binary decision
diagram (BDD).

4.2 Compact representation of logic functions with binary decision diagrams

BDDs [13, 14] are a graph-based representation of boolean functions.
A node in the BDD is labeled by a variable of the boolean function.
The node represents the Shannon decomposition of a function with the
cofactors flow and fhigh represented by the two child nodes vlow and vhigh
of node v. Using the conditional expression, node v labels with variable
xi represent xi?f_h:f_l. When implemented using logic functions
it represents (xi & f_h) | (˜xi & f_l), where f_h and f_l are
the expressions for nodes fhigh and flow.

Two terminal nodes labeled 0 and 1 represent the constant functions
0 and 1. The BDDs we consider here are ordered, that is, the variables
occur at most once in each path and in the same order in all paths from
the roots to the terminal nodes.

Figure 1 shows the BDD representation of a number of simple boolean
functions. A BDD can be reduced by the following two operations.

Type 1. If two subgraphs are isomorphic, they are identified.

Type 2. If the two cofactors of a node are identical, that is, the low and
the high child of the node are identical, it can be deleted and all references
to it can be replaced by references to the child node.

Applying these two operations until a fixed point is reached leads to a
reduced graph. For a given variable ordering, this graph is a unique
representation of the boolean function. Efficient algorithms exist for
the manipulation of such a BDD [14].

x 0

 0  1 

x0

x 0

 1  0 

˜x0

x 1

 0 

x 0

 1 

x0 & x1

x 1

x 0

 1  0 

x0 | x1

x 1

x 0 x 0

 0  1 

x0 ˆ x1

x 2

x 1

 0 

x 0 x 0

 1 

(x0 ˆ x1) & ˜x2

Figure 1. BDDs for simple boolean functions. The high edge is red (full line),
the low edge is blue (dashed line). These BDDs have only one root, marked by
a double circle.
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4.2.1 Minimization of binary decision diagrams

The size of a BDD depends very much on the ordering of variables.
Therefore one necessary optimization step is to find a good ordering
which leads to a small number of nodes in the graph [14]. The task to
find the best ordering has exponential running time, since there are n!
different orderings of n variables. An alternative is the sifting algorithm.
In this approach the variables, which correspond to levels in the diagram,
are ordered by the level size, which is the number of nodes labeled with
each variable. Then the variable with the largest level size is shifted to all
possible positions and the position which results in the smallest overall
BDD size is kept. This operation is then repeated for the other variables.
The algorithm only needs the exchange of neighboring levels as its basic
operation. The disadvantage of this algorithm is that closely coupled
variables can prevent the algorithm from finding a good ordering, since
only one variable can be shifted at a time the other closely coupled
variables can prevent it from moving away.

An alternative is the window permutation algorithm. Here a window
size is selected (e.g., 4) and this window is shifted over the variables.
Within the window all permutations of the variables are tested (window
size 4: 24 permutations), and the best permutation is kept. The window
is then shifted by one position and the process repeated. If during
one pass of this algorithm an improvement occurred, the algorithm
is repeated. The permutations are arranged in such a way that two
successive permutations are related by an exchange of two neighboring
variables. This is because the exchange of two variable levels in the
BDD can be implemented efficiently, while implementing an arbitrary
reordering of variables is very complicated.

Here are some examples for such permutation sequences.

Window size 2: (0,1) - (1,0).

Window size 3: (0,1,2) - (1,0,2) - (1,2,0) - (2,1,0) - (2,0,1) - (0,2,1).

Window size 4: (0,1,2,3) - (1,0,2,3) - (1,2,0,3) - (1,2,3,0) - (2,1,3,0) -
(2,1,0,3) . . . .

As a result, this algorithm leads to a simplified BDD in most cases
with a reasonable computational effort. A practical example can be
found in Figure 2.

4.2.2 Mapping into program code

Usually BDDs are used in the verification of logical circuits [15] (where
the uniqueness of the representation is important) or in the synthesis of
circuits. In this circumstance, the process of creating logical gates from
the BDD is called technology mapping. In our case, we want to gener-
ate Java code with the logical operators available in the Java language,
which are AND (&), OR (|), NOT (˜), and XOR (ˆ). The code should
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r0

in0

in4

in3

 0  1 

in4

r1

in0

in1 in1

in2 in2

in3 in3

in4

in5

in4

in5

in3 in3

in4 in4

r2

in0

in2 in2

in3 in3

in4

in6

in4

in5

in6

r0

in3

in4

in0

 0  1 

in4

r1

in3

in1

in0

in4

in5

in2 in2

r2

in3

in0

in4

in5

in6 in6

Figure 2. BDD for the example program T4. On the left, the initial variable
ordering produces a BDD with 29 nodes, while the permutation search produces
a variable ordering for which the BDD has only 17 nodes (right). The three
roots correspond to the three bits of the output and common expressions are
shared between the different functions.

store common subexpressions in temporary variables and generate one
expression for each output bit of the multi-valued function. One possi-
ble approach is to directly translate the BDD according to the definition
and generate code such as (˜xi & xi_low) | (xi & xi_high)
for node xi with children xi,low and xi,high, where xi_low would be the
expression resulting from the translation of node xi,low. This approach
can be simplified by recognizing common patterns and translating them
directly into more efficient code. Figure 3 shows some patterns that
are recognized. The following table contrasts the long version of all
recognized patterns with the reduced code.

Long version Short
(˜xi & 0) | (xi & 1) xi
(˜xi & 1) | (xi & 0) ˜xi
(˜xi & 0) | (xi & y) xi & y
(˜xi & y) | (xi & 1) xi | y
(˜xi & y) | (xi & 0) ˜xi & y
(˜xi & 1) | (xi & y) ˜xi | y
(˜xi & y) | (xi & ˜y) xi ˆ y
(˜xi & y) | (xi & ((˜xk & y) | (xk & 0))) y & (˜xi | ˜xk)
(˜xi & y) | (xi & ((˜xk & y) | (xk & 1))) y | (xi & xk)
(˜xi & y) | (xi & ((˜xk & 0) | (xk & y))) y & (˜xi | xk)
(˜xi & y) | (xi & ((˜xk & 1) | (xk & y))) y | (xi & ˜xk)
(˜xi & ((˜xk & y) | (xk & 0))) | (xi & y) y & (xi | ˜xk)
(˜xi & ((˜xk & y) | (xk & 1))) | (xi & y) y | (˜xi & xk)
(˜xi & ((˜xk & 0) | (xk & y))) | (xi & y) y & (xi | xk)
(˜xi & ((˜xk & 1) | (xk & y))) | (xi & y) y | (˜xi & ˜xk)

4.3 Storing a cellular automaton for logic coding

The logic representation of a transition table can be directly applied to
the cell state as it is stored in the table update method. In this case
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x i

 0  1 

xi

x i

 1  0 

˜xi

x i

 0 

y

xi & y

x i

y

 1 

xi | y

x i

y

 0 

˜xi & y

x i

 1 

y

˜xi | y

x i

x k x k

y 1 y 2

xi ˆ f(xk,y)

Figure 3. BDD patterns recognized in the translation process. The triangular
shapes represent arbitrary subgraphs. Below each graph the translated form is
shown.

the different input bits are extracted from the address calculated for the
table.

int in0 = ((adr>>0)&1);
int in1 = ((adr>>1)&1);
.....
int in6 = ((adr>>6)&1);

Then the logic function is applied, which calculates the output bits
out0, out1, . . . , outn % 1, that are then combined to yield the new
state

mystatetable = out0 | (out1<<1) | (out2<<2);

In this example the automatically produced logic function is:

int t0 = ˜in2;
out0 = ((˜in3 & in4) | (in3 & (in0 ˆ in4)));
out1 = ((˜in3 & in1) | (in3 & ((˜in0 & in1)

| (in0 & ((˜in4 & in1) | (in4 & (in5 ˆ in2)))))));
out2 = ((˜in3 & in2) | (in3 & ((˜in0 & in2)

| (in0 & ((˜in4 & in2) | (in4 & ((˜in5 & in6)
| (in5 & (in6 ˆ in2)))))))));

Manual simplification is much too complicated already in this small
example.

Of course the resulting transition function is much more complex
than a simple table lookup, and therefore is very inefficient. The only
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case where it might be competitive is where the table is very large,
memory access is very slow but the logic representation is short and
logic operations are very fast.

4.4 Multispin storage

Fortunately, there exists an alternative storage scheme for which the
logic coding is very efficient. Note that the logic function in the naive
storage scheme above uses only one bit of the integers used for the cal-
culation. But the logic operations used here have the property that they
operate on all 32 or 64 bits of an integer in parallel and without inter-
ference between one bit and another (unlike operations such as + and *,
which generate carry bits). We can use this property and store the infor-
mation of 32 or 64 cells in one integer. Then one application of the logic
function updates 32 or 64 cells in parallel, which more than offsets the
inefficiency of the logic coding. This coding style is also called multispin
coding and has been used extensively in the study of Ising spin systems
[16–20], of the HPP lattice gas [21], and of traffic simulations [22, 23],
but an automatic conversion to this coding style has to the author’s
knowledge not previously been described. A similar conversion appears
in the preparation of a CA for simulation on programmable hardware,
such as the CEPRA machines [9, 10, 24, 25], where much of the opti-
mization is carried out by the (commercial) hardware synthesizer.

In the one-dimensional example automaton T4, the declaration for
the memory reads

int numberOfLongs = (lx+63)/64;
long mysOld[numberOfLongs][k];
long mysNew[numberOfLongs][k];

where k is the number of bits needed for storing the cell state and lx is
the size of the CA. Then the inputs for the transition function are

long in0 = mysOld[x][0];
long in1 = mysOld[x][1];
long in2 = mysOld[x][2];
long in3 = (mysOld[x][0]>>>1);
long in4 = (mysOld[x][0]<<1);
long in5 = (mysOld[x][1]<<1);
long in6 = (mysOld[x][2]<<1);

Here, in0 . . . in2 are accessing the cell itself, while accesses to
neighboring cells (in the first dimension) translate to a shift of the integer.
Note that those cells on the border of a 32/64 cell block need special
care for those neighbors which lie on adjacent blocks. Therefore the
following code is added:

if (x < numberOfLongs-1){
in4 |= ((mysOld[x+1][0]>>63)& 0x1L);
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in5 |= ((mysOld[x+1][1]>>63)& 0x1L);
in6 |= ((mysOld[x+1][2]>>63)& 0x1L);

}
if (x > 0){

in3 |= (mysOld[x-1][0]<<63);
}

The coding style described here is only applicable on the level of
a lattice, since it groups different cells together. This is realized in
the simulation system by generating a special subclass of the Lattice
class which implements the state transition function itself instead of
calling the method transition of the State objects. This results
in performance that for some rules is comparable to the performance
of native C code, and is 10 times faster than any other Java coding
style.

An alternative layout would be to pack cells together that are 64 sites
distant from one another into one word. This is the approach used in
most of the multispin-coding for Ising systems. It replaces the use of bit
shifts to access the neighbors by more memory accesses. On modern
CPUs with large register sets and memory caches, it is more efficient to
use the shifts than to use more memory words.

The method as described so far is only applicable to deterministic
CA. However, it is possible to extend it to probabilistic automata if
the number of probabilistic choices is small. For a discussion of such
approaches in the context of Ising systems see [16, 19].

5. Native C code

In the same way that Java code can be generated from CDL code, it is
also possible to generate C code. The differences in the core transition
function are actually very small, since C and Java use the same syntax
for most expressions and statements. Nevertheless, it would take con-
siderable effort to translate the complete simulation system into C. In
addition, one would probably lose platform-independence. Therefore,
a good interface between fast C code and a portable Java environment
must be found. To place the interface at the individual cell level leads to
very inefficient code, since the conversion of the cell state from Java to
C and back takes more time than the actual calculation of the transition
function. Therefore we use specialized Lattice classes which do the
conversion once for all cells, then execute a number of time steps com-
pletely in C, and finally convert back to Java for displaying the data.
The interface between C and Java uses the Java Native Interface [26].
The C code can be split into two parts: subroutines that are common to
all translated native codes; and subroutines and data type declarations
specific to the CA being simulated.
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5.1 General code for native transition functions

The code for the use of transition functions in C consists of a Java-class
Lattice2DNative, which has methods that are declared as native
and implemented in C.

protected native void resetNative(int lx, int ly);
public native void beginBlockBorderNative();
public native void endBlockBorderNative();
public native void beginBlockNative();
public native void endBlockNative();
public native void transitionNative();
public native void backupNative();

A simulation proceeds through the following steps.

Reset loads the native library and allocates data for all cells.

beginBlock converts Java cells into C cells.

backup copies new C cells into old C cells.

transition executes one time step for each cell.

endBlock converts C cells back to Java cells.

The additional methods beginBlockBorder and endBlockBorder
are used to interconvert just those cells between Java and C which
are located at the boundary, so that the different boundary handlers
of the simulation system (which operate on Java data types) function
correctly. Since the number of boundary cells is small compared to the
total number of cells, converting these cells at each time step is feasible.

As an example of the general routines, we show the code for the
conversion from Java to C cells, together with the relevant declarations.
One can see that only the subroutine for converting a Java cell into a C
cell must be specially coded for each CA. Note that the C array is larger
than the Java array by dist cells on each side. These cells are used
to store the neighboring cells (they are filled by beginBlockBorder)
with those states that the appropriate BoundaryHandler delivers.

int lx, ly; /* Size of the lattice */
int dist; /* boundary width */
celltype **Cstate; /* Array of C-cells */
celltype **Cold; /* old state of C-cells */
jobject **Jstate = 0; /* Array of Java-cells */

/* Routine for conversion of one cell */
/* specific to each CA model. */
void java2c(JNIEnv *env, jobject jc, celltype *cc);

/* write Java fields into C fields.
*/
JNIEXPORT void JNICALL
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Java_casim_Lattice2DNative_beginBlockNative
(JNIEnv *env, jobject this)
{

int x,y,xx,yy;
jobject Jstatel;
celltype *Cstatel;

if (Jstate == 0) collectStaterefs(env,this);

for(x=dist; x<lx+dist; x++){
for(y=dist; y<ly+dist; y++){

java2c(env,Jstate[x][y],&(Cstate[x][y]));
}}

}

5.2 Cellular automaton specific code

For each CA, some specific code is generated from the CDL description.
This code includes declaring a structure for storing the cell content
for access in the C code, conversion routines between C and Java, and
backup and transition functions, which do most of the simulation work.

The example automaton T4 is translated into the following declara-
tions.

#include <jni.h>
#include <Lattice2DNative.h>

typedef struct ct {
char a;
int b;

} celltype;

#include <Lattice2DNative.c>
static jfieldID fid_a, fid_b;

The conversion routines then use JNI-methods to access data in the
Java cells.

void java2c(JNIEnv *env, jobject jc, celltype *cc){
cc->a = (*env)->GetBooleanField(env, jc,fid_a);
cc->b = (*env)->GetIntField(env, jc,fid_b);

}

The transition function makes a state transition for each cell of the
lattice. Access to neighbor cells is translated directly into accesses of the
neighboring elements of the d-dimensional array used to store the cells.

JNIEXPORT void JNICALL
Java_casim_Lattice2DNative_transitionNative
(JNIEnv *env, jobject this)

{
int x,y;
for (x=1; x<lx-1+2; x++){
for (y=1; y<ly-1+2; y++){
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Cstate[x+0][y+0].a =
(Cold[x+-1][y+0].a && Cold[x+0][y+0].a)
ˆ Cold[x+1][y+0].a;

if (Cold[x+0][y+0].a && Cold[x+-1][y+0].a
&& Cold[x+1][y+0].a

){
Cstate[x+0][y+0].b =((Cold[x+1][y+0].b)+

(Cold[x+0][y+0].b / 2)) % 4;
}else{

Cstate[x+0][y+0].b = Cold[x+0][y+0].b;
};

}}
}

The result of this combined approach using general routines and CA
specific code is that very little additional code needs to be generated
for each CA. The resulting code is very efficient while retaining the full
functionality of the JCASim simulation system. Of course, this efficiency
can only be observed when the simulation runs over many time steps
without needing to convert back to Java. Comparative measurements
are presented in section 6.

A disadvantage of this approach is that platform-independence is re-
duced, since the C code must be compiled separately for each platform
(but this is possible for all platforms on which Java is available). Nev-
ertheless, if the library with the compiled C code is not available, the
system automatically uses the Java code, which has the same function-
ality, but is somewhat slower.

6. Measurements

In order to demonstrate the different compilation options, we have mea-
sured the performance for a number of example CA. Table 1 summarizes
some information on the different CA.

The different compilation methods are all automated in the transla-
tion from CDL and can be summarized as follows.

Normal. The CDL source is translated into Java code, creating a subclass
of State. This Java class is then compiled into byte-code using the
standard javac compiler (with optimization). The byte-code is further
compiled into machine code by the Just-In-Time (JIT) compiler of the Java
virtual machine. The strictly object-oriented structure of the simulation
system leads to the fact that each cell consists of a number of objects.

Lattice. One optimization is to directly compile code that subclasses
Lattice2D and includes a loop that runs over all cells. The updating of
each cell is then performed directly on the data values of the cell, without
calling methods of the objects comprising the cell. This approach violates
the object-oriented philosophy, but leads to some improvements in speed.
Since this translation is performed automatically, the turnaround-time is
not significantly affected.
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Cell state
Name CDL Java
MFTest42 -1..1 int
GH3 0..3 int
Bact2 2 boolean, 4& 0..10 2& boolean, 4& int
T4 boolean, 0..3 boolean, int
vonNeumann3 0..5, boolean, 2& -1..1, 0..6 boolean, 4& int
DiffAverage3 0..15 int
SpeedTest1 0..4 int

Bits Size Function calls Logic
Name Cell Neigh bytec t getN rand ops
MFTest42 2 6 161 d 1 1 12
GH3 2 10 127 y 1 0 19
Bact2 18 90 618 n 1 4
T4 3 7 163 y 1 0 37
vonNeumann3 10 50 2144 n 1 0
DiffAverage3 4 12 79 d 1 1 5677
SpeedTest1 2 2 18 y 0 0 3

Table 1. Properties of the seven examples used for speed measurements. Column
headings: Bits Cell, bits for storing the cell state; Bits Neigh, bits for storing
the complete neighborhood (needed for table addressing); Size bytec, size of
byte-code for the transition function, giving an indication of complexity; t, can
be translated into table form (y: yes, d: deterministic, loose probabilistic part,
n: no); Function calls, number of function calls; getN, getNeighbors(); rand,
Random()/Prob(); Logic ops, number of logic operations in the logic coding
style.

Table. The conversion to table-lookup coding is described in section 3.
The current implementation is limited to tables with less than about 22
inputs, which excludes the test automata “Bact2” and “vonNeumann3,”
which would need 90 inputs (about 1028 bytes) and 50 inputs (1016 bytes),
respectively. In addition, the current implementation cannot handle prob-
abilistic rules correctly. Instead, it uses a different probabilistic choice for
each neighborhood configuration. For some automata, this can approxi-
mate the probabilistic rule, since different choices are stored in the table
for similar configurations, which might occur with similar probabilities
(see [27] and [28] for discussions on “error diffusion”). The table coding
implies that the state of one cell is stored in one integer, which reduces
memory used for storing cells. On the other hand, the size of the table in-
creases memory usage. If the frequently used portion of the table exceeds
the available cache size, performance degrades (see below).

Logic. If the table is converted into a logic function operating on one cell
(see section 4), the additional storage needed for the table is avoided.
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LogicLattice. The big advantage of logic coding is that one logic operation
can operate on many bits at once. This advantage is realized by creating
a subclass of Lattice which uses an array of long variables to store
64 cells each. The logic operations than operate on all 64 cells at a
time. This bit-level parallelism offsets the speed disadvantage of the logic
methods for many CA. This method is not useful if the cell state needs to
be displayed regularly, since it must be converted back into the normal
storage mode before display, and this is a fairly expensive operation. The
logic coding method currently is based on the transition table, so it has
the same limitations. The multispin coding method can handle very large
lattices, since the memory is used very efficiently (almost all bits are used).
In the measurements, we achieved the best speed with the largest lattices
tested (500 & 500 cells).

Native. Translation into native (C) code is described in section 5. In
the current measurements, many time steps were used (on the order of
30000), so the time for the conversion between Java and C-storage modes,
which is done once at the beginning and at the end, does not influence
the measurements.

TableNative. The table coding method can also be converted to native
(C) code, using exactly the same table as in the Java version.

The speed of a CA simulation depends on a number of factors. We
consider the most important ones and try to give estimates or measure-
ments of their influence. Measurement results are shown in Table 2 and
Figure 4 for the different coding styles applied to all test cases.

CPU speed. The speed of the CPU and the processor architecture play
an important role. We can estimate this influence by comparing simula-
tion speeds of the same CA coded in C on different architectures. For
the two architectures used in measurements here, a SGI O2 (200 MHz
R10000 processor) and an Intel-based Linux system (700 MHz P-III), the
difference is about a factor of 3 to 6.

Style MFT GH3 B2 T4 vN3 DA3 ST1
Normal 0.48 0.36 1.7 0.44 0.54 0.74 0.38
Lattice 0.24 0.12 1.4 0.20 0.27 0.53 0.11
Table 0.38 0.40 – 0.38 – 0.38 0.34
Logic 0.40 0.44 – 0.45 – 10 0.34
Multispin 0.007 0.008 – 0.010 – 0.35 0.005
Native 0.14 0.048 0.89 0.11 0.18 0.31 0.045
TNative 0.05 0.066 – 0.057 – 0.050 0.041

Table 2. Measured speed (in Μ s/cell update) on the Intel platform with IBM
JDK 1.3.0. Abbreviations: MFT: MFTest42, B2: Bact2, vN3: vonNeumann3,
DA3: DiffAverage3, ST1: SpeedTest1. For comparison: one function call to
Random() or getNeighbors() takes about 0.2..0.5Μ s.
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MFTest42 GH3 Bact2 T4 vonNeuman3 DiffAverage3 SpeedTest1
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Figure 4. Speed (in millions of cell updates per second) comparison for different
CA and different coding schemes. Measurements were made on a Linux system
(800 Mhz, IBM JDK 1.3.0) and the result for the fastest CA size (between
30 & 100 and 1000 & 1000) was used.

Java VM. The virtual machine and the JIT compiler used in the VM play
an important role, but are difficult to judge. From the test we conclude
that the difference between the two environments (SGI JDK 1.2.1 and
IBM JDK 1.3.0) is about another factor of 2 (IBM Java 1.3.0 is 2 times
faster) [29].

Memory usage. All modern processors use one or several levels of cache
to reduce memory latency. Both machines tested have a secondary cache
size of one megabyte. This means that simulations which need less than
a total of one megabyte during the cell updating phase fit completely in
the cache. Bigger simulations lead to a complete replacement of the cache
content during every time step. The amount of memory needed differs
greatly between the different coding styles. For the simple Java style,
this is around 200 bytes per cell, which means that simulations with less
than about 50000 (or 50 & 100) cells run fastest. For the native coding
methods, between 8 and 40 bytes per cell are used, and correspondingly
bigger lattices are handled efficiently. The difference in speed between
cache-based simulations and memory-based simulations is a factor of 2
for the SGI system and a factor of 4 for the Intel system (which is much
faster overall).

Overhead. During each simulation step some time is lost due to the spe-
cial treatment of the borders, which leads to reduced performance (if
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measured in cell updates per second) for smaller lattices compared to the
biggest lattice that still fits into the cache. If a lattice size of 30 & 30
is compared to a lattice size of 100 & 100, we observe a difference of a
factor of 2 for the native coding methods, up a factor of 7 to 20 for the
LogicLattice coding, and only small differences (less than 15%) for the
other Java methods.

Coding styles. The speed differences between different coding styles de-
pend very much on the memory usage pattern. Compared to the normal
coding, we find the following differences.

– Lattice. The Lattice coding is faster by a factor between 1.2 and 2.5
with a median around 2.

– Table. The Table coding is only applicable to five out of the seven
models, and neglects the probabilistic choices for two other models
(see Table 1). Only in these cases does it give a performance ad-
vantage, in the other cases the speed is at most 10% faster than the
normal coding.

– Logic. The simple logic coding is about as fast as the normal coding,
except for the “DiffAverage3” model with its 5677 logical opera-
tions, where it is slower by a factor of 6.

– LogicLattice. The multispin coding which collects different cells
together is the fastest option for most automata where it is appli-
cable. For the automata with simple logic functions (“MFTest42,”
“GH3,” “T4,” and “SpeedTest1”), it is faster by a factor between
30 and 70.

– Native. The native coding is faster than the Java coding by factors
of 1.8 to 8 (SGI) or 5.7 to 15 (Linux). It is applicable to all CA
coded in CDL, and treats probabilistic choices correctly.

– TableNative. The table method coded in C is only slightly faster
than the native method. It has the advantages of using a more
compact storage (only one integer per cell) and through the fact
that no random numbers are generated.

7. Conclusion

We have demonstrated how cellular automata (CA) descriptions coded
in a language like CDL or cellang can be translated into different coding
styles for use in a CA simulation environment. Direct translation of all
language constructs into equivalent Java constructs is the easiest option.
For some automata, a lookup table can be constructed, so that the
transition function consists only of collecting the state of all cells in the
neighborhood into an address and looking up the result in a table. This
option turns out to be not more efficient than the simple translation. A
huge performance gain can be achieved by using the multispin storage
method, where each word contains 32 or 64 bits for storing part of
the state of 32/64 cells. The transition function must be converted
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into a boolean logic function, which can be done automatically. A
conversion to native C code is not as efficient as this multispin coding,
but by far outperforms the other possible Java coding styles. We have
compared the different options on a number of examples and discussed
the limitations of each approach. When CA are visualized at every time
step, the visualization is the limiting factor, and the simple translation
is adequate.
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