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In general, a complex system consists of a large number of interacting
units, which when viewed in an information-theoretic perspective, could
be seen to possess gross redundant features. Further, a complex system is
inherently stochastical in its extensive spatiotemporal universe and hence,
some of its statistical features could manifest as patterns occurring more
frequently than others; and, likewise some other patterns could form
rare elements of the same set. In information-theoretic perspectives (in
Shannon’s sense) such more (or less) probabilistic occurrences of features
specify the redundant (or nonredundant) aspects of the complex system.

This attribute of information redundancy in a complex system could
be adopted to devise a useful complexity metric as described in this paper.
The use of such a complexity metric is demonstrated in differentiating
codon–noncodon domains in human and bacterial genomes (which con-
stitute a complex system when seen at the scale of observing a DNA
sequence made of vast domains of protein molecules).

1. Introduction

This paper refers to emphasizing the information-theoretic based re-
dundant characteristics of a complex system and elucidating thereof a
complexity metric in terms of the associated information redundancy.
Further studied is a potential application of such a metric in ascertain-
ing the border between the constituent subsets of a complex system by
delineating the information profile across the border.

To meet the stated objectives, considered here is a random (statistical)
mixture of two constituents to represent a complex system. That is, a
large-sized, binary mixture is regarded as a complex system where each
constituent subset (of the mixture) depicts a conglomeration of elements
occurring in a proportion as decided by some probabilistic distribution.
Relevant to such a complex set, an algorithm is developed to specify
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a metric that quantitatively evaluates the complexity (in terms of the
associated information redundancy).

A typical example of a complex system depicting a binary mixture
is the set of codon–noncodon constituents in a DNA structure. It is
well known [1] that a strand of DNA is made of a chain constituted by
four building molecules known as nucleotides that are linked covalently.
These four nucleotides are nucleic acid bases (or side-chains); namely,
Adenine (A), Guanine (G), Cytosine (C), and Thymine (T). The order
of these bases along a DNA strand is known as the sequence.

The nucleotide bases of the set #A, T, C, G$ can form triplets and
a DNA sequence is essentially made of two compositional domains:
(i) The coding DNA part where the triplets (made of nucleotide bases)
constitute the so-called codons and the codon usage is directed at en-
coding for a protein; and, (ii) noncoding (or “junk” codon part), which
is not involved in such protein encoding functions. In species like es-
cherichia coli about 90 percent of the DNA is coding by virtue of an
arranged set of nucleotide bases. However, such arrangement is uncom-
mon in homo sapiens because the coding content is less than 5 percent.
The noncodons are considered to have no defined functions, except of
some genetic relics [1], and many of their functions remain unknown.
There are many regulatory functions (e.g., promoters), which are known
to be located in this junk DNA part, mainly in regions that flank cod-
ing DNA. Regardless of their functional attributes, these codon and
noncodon parts can cohesively be regarded as a complex system.

The occurrence frequencies of triplet contents in the coding and non-
coding domains of a genomic DNA (representing a large scale of se-
quencing bases), constitutes the so-called coding statistics. The embodi-
ments of codons and noncodons and their random occurrences conform
to a statistical (binary) mixture description of the DNA structure as in-
dicated earlier. Further, the large-sized population of codon–noncodon
constituents and their interdependence characteristics with stochastical
attributes render such a mixture to be aptly described as a complex
system. Such complex system profiling of a DNA sequence is commen-
surate with the inherent stochastical attributes and the modular nature
of proteins constituting the DNA sequences. More so, the complex
functional attributes of a DNA structure are exhibited through their
structural units or domains and lead to the consensus of classifying DNA
structures as adaptive complex systems as portrayed in [2]. The justifi-
able considerations presented thereof can be summarized as follows.

Existence of a large number and gross features of the DNA constituents.

Dynamic interaction of the elements involved.

Richly interconnected attributes of underlying units.

Collective properties of interconnected units arising from nonlinear inter-
actions.
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Short-range based spatial interactions between the units.

Existence of recurrency in the interaction pathways.

Hysteresis-specified behavior of the units.

Stochastical nature of the system as a whole and the associated proba-
bilistic considerations.

Inspired by these characteristics and relevant considerations of statistical
mixture theory (to be elaborated later) as applied to a DNA complex,
indicated in this paper is a strategy to develop a complexity metric that
can be adopted to locate transitions between coding and noncoding
regions of a DNA structure. This complexity metric is derived under the
premise of statistical mixture theory and considerations of information-
theoretics [3]. The approach pursued models the complex system, in
general, as a binary (statistical) mixture and relevant heuristics on the
associated information-theoretic considerations are elucidated in the
following section. Hence, an information redundancy (R) factor is
deduced and related to the complexity metric being defined. Use of this
metric (R) is then demonstrated in delineating the boundary between
the codons and noncodons of a DNA structure. The corresponding
simulated results are compared against those obtained by the so-called
entropy segmentation technique [4] (which is a traditional method used
in delineation strategies of bioinformatics), and relative merits of the
proposed metric are then indicated.

2. Information-theoretic framework of a complex system

Consider a complex system specified by a domain X as illustrated in
Figure 1. Suppose two constituent (interactive) subsystems #x(Μ)& i '
1, 2, . . . , Λ, . . . , n1$ and #x(Ν)& j ' 1, 2, . . . , Λ, . . . , n2$, are respectively char-
acterized by two sets of attributes #Μ$ and #Ν$, where x * X and
(n1 + n2) ' N depicts the cardinality of the total universe of the com-
positional domains. Further, the occurrence probabilities of the sets
#x(Μ)& i ' 1, 2, . . . , Λ, . . . , n1$ and #x(Ν)& j ' 1, 2, . . . , Λ, . . . , n2$ are #P1Λ$Λ'i
and #P2Λ$Λ'j with the subscripts 1 and 2 depicting the attribute sets #Μ$
and #Ν$ respectively.

Suppose the randomness associated with the subsets of Figure 1 is
expressed in terms of occurrence probabilities P1Λ(Μ& i , n1) and P2Λ(Ν& j ,
n2), corresponding to the attribute sets #Μ$ and #Ν$, respectively. Now, the
maximum entropy concept [5–7] applied to each group in the domain
X leads to the following entropy functionals:

H(si) ' ln(n1 + 1) - ln(n1) with n1 . 1 (1a)
H(sj) ' ln(n2 + 1) - ln(n2) with n2 . 1 (1b)
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Figure 1. The test complex system X , Ω depicting a mosaic of statistical mixture
with constituent binary subsystems (compositional domains).

where sΜ and sΝ refer to some metrics of gross complexity corresponding
to the extensiveness of the populations of the sets #x(Μ)& i ' 1, 2, . . . , n1$
and #x(Ν)& j ' 1, 2, . . . , n2$ respectively.

With reference to a complex system viewed in an entropy-based
framework, the global complexity (depicting sΜ and sΝ) has been de-
scribed in [5–7] by a complexity metric (s). It is defined in terms of
the associated disordered sets of constituents and corresponds to a solu-
tion equal to exp(/Β) where Β is a lagrangian that maximizes the entropy
functional of the complex system. Further, considering a large set of dis-
ordered entities (constituting a complex system), s defines a dichotomy
of two regimes [5]: (i) 0 1 s 1 1 and (ii) 1 < s < 2. When s is very
small (s 3 0), the system is regarded as “simple;” and, as s 3 2, the
system becomes totally complex. (The value of s ' 1 is a transition that
bifurcates the system of being simple or complex when viewed in terms
of the entropy involved.)

Equation (1) is consistent with the so-called Jaynes’ principle of max-
imum entropy or maximum uncertainty and a class of distribution cor-
responding to the maximum entropy formalism has been identified in
[8] to exist. Further, equation (1) concurrently leads to the following
Shannon information formulations [3]:

I1 ' #x(Μ)& i ' 1, 2, . . .n1$ ' / !
x*X&Λ'i

P1Λ ln(P1Λ) (1c)

I2 ' #x(Ν)& j ' 1, 2, . . .n2$ ' / !
x*X&Λ'j

P2Λ ln(P2Λ) (1d)
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Equations (1c) and (1d) can be regarded as implicit representations
of gross complexity pertinent to the sets #x(Μ)& i ' 1, 2, . . . , n1$ and
#x(Ν)& j ' 1, 2, . . . , n2$ respectively, in lieu of the relations specified by
equations (1a) and (1b). While equation (1) depicts the maximum en-
tropy measuring the gross complexity (s) of the set #x(Μ)& i$ or #x(Ν)& j$, an
alternative metric can also be specified to measure the relative complex-
ity between these sets. It refers to a pair of cross-entropy functionals,
which can be written in the following forms [7]:

H(sΜ"sΝ) ' D(sΜ"sΝ) '!
Λ'i

P1Λ ln #P1Λ

P2Λ
$ (2)

H(sΝ"sΜ) ' D(sΝ"sΜ '!
Λ'j

P2Λ ln #P2Λ

P1Λ
$ . (3)

The cross-entropy functionals of equations (2) and (3) denote syn-
onymously the “statistical divergence” D(sΜ"sΝ) between the random
attributes of #x(i) , Μ$ versus #x(j) , Ν$, or vice versa. This cross-entropy
measure also refers to relative or mutual information content in Shan-
non’s sense [3]. Further, the measure specified via equations (2) and (3)
follows Kullback’s minimum (directed) divergence or minimum cross-
entropy principle [9].

The cross-entropy concept of depicting the relative complexity as
above, also implicitly implies an expected logarithm of the likelihood
ratio (L), namely,

L '
[(P1Λ)Λ'1]I

[(P2Λ)Λ'j]II
(4)

where [P1Λ]I and [P2Λ]II are respective probabilities of observations of the
attributes #Μ$ and #Ν$ in the complex system when a certain hypothesis
(hI, hII) is true. Corresponding to L, the log-likelihood ratio function
(LLR) given by ln(L), can be regarded as a “discrimination measure”
that provides a choice, whether to choose #Μ$ in preference to #Ν$ or vice
versa. The LLR is well known [7] as a useful metric in decision-making
efforts and can be considered identically to depict a measure of contrast
between the constituents involved.

Designated as the Jensen–Shannon measure (JS-measure) [10], is a
variation of the Kullback–Leibler divergence formulation that is explic-
itly given by the following expression:

JSΠ(P1Λ, P2Λ) ' H(Π1P1Λ + Π2P2Λ) / Π1H(P1Λ) / Π2H(P2Λ) (5a)

where (Π1, Π2) 5 0 and (Π1 + Π2) ' 1; and,

H(P1Λ) ' /!
Λ'i

P1Λ ln(P1Λ) (5b)
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H(P2Λ) ' /!
Λ'j

P21Λ ln(P2Λ) (5c)

H(Π1P1Λ + Π2P2Λ) ' /!
Μ'i
!
Ν'j

(Π1P1Μ + Π2P2Μ) ln(Π1P1Ν + Π2P2Ν). (5d)

The weights Π1 and Π2 for example, can be taken respectively as Θ '
n1/(n1 + n2) and (1 / Θ) ' n2/(n1 + n2) in the context of a mixture
complex.

3. Statistical mixture complex: Measure of complexity

Exclusive to a statistical mixture under discussion, a measure of global
complexity can be specified in terms of the maximum entropy associ-
ated with the disordered constituent entities (assuming each has a large
population namely, (n1 and n2) 3 2, and are mixed in a specified pro-
portion). Relevant considerations are discussed below.

Following the concept of statistical mixture theory due to Lichte-
necker and Rother [11], the underlying heuristics specifies a weighted
probability r that describes the effective statistical attribute of the mix-
ture proportioned by the attributes #Μ$ and #Ν$. This weighted probabil-
ity is given by:

r(Θ) ' PΘ1ΛP
1/Θ
2Λ (6)

which is valid, however, within the statistical upper and lower bounds,
namely, rmin 1 r 1 rmax. Explicitly, rmin and rmax are given by:

rmin ' % ΘP1Λ
+

(1 / Θ)
P2Λ
&/1

(7a)

rmax ' ΘP1Λ + (1 / Θ)P2Λ. (7b)

With reference to the set #r , rmin and rmax$, the corresponding Shannon
measure of entropy (negentropy) can be written as follows:

H(r) ' /r ln(r) (8a)
H(rmin) ' /rmin ln(rmin) (8b)
H(rmax) ' /rmax ln(rmax) (8c)

Suppose one of the constituent entities of the statistical mixture; say,
the one with a population n2, has a uniform distribution implying that
the occurrences of its elements (in the statistical mixture space) are
equally likely. That is, (P21 ' P22 ' P23 ' ! ' P2n2

' 1/n2); and,
[P21 + P22 + P23 +! + P2n2

' 1]. In contrast, the other constitutive
entity (with a population n1) is presumed to be of elements each bearing
a distinct probability of occurrence. That is, (P11 7 P12 7 P13 7 ! 7
P1n1

); and, [P11 + P12 + P13 +! + P1n1
' 1].
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Considerations on equally-likely occurrences as above are true, for
example, in the case of noncodons coexisting with codons in a mixed
state within a DNA system [4]. Inasmuch as the functions of the non-
codons in the DNA structure are not defined, the presence of noncodons
denotes a state of maximum entropy resulting from a uniformly dis-
tributed statistics. On the contrary, pertinent to each protein-encoding
codon, prevails a distinct (unequal) occurrence probability (as decided
by the designated encoding function). Hence, codons are an informative
(negentropy) part of the DNA sequence.

From an information theory point of view, it is known that equally-
likely occurrences of entities or events of a set of random variates mean
a degree of certainty, whereas random (unequal) chances of occurrences
imply an associated uncertainty of the set. The certainty considera-
tion will bring down the negative entropy (or information content) of
the set while any uncertainty involved will augment the negative en-
tropy.

Thus, the existence of equally-likely probabilities associated with
the elements (such as junk codons) of a set amounts to an efficiency
of the associated information content of the whole set; and, relevant
consideration leads to a redundant information-theoretic attribute [3]
to the set under discussion (in Shannon’s sense). Such a measure of
redundancy (R) can be specified with reference to a statistical mixture
as indicated below (relevant details are furnished in the Appendix):

R ' 1 /
H(r)

[H(r)]M
(9a)

where [H(r)]M refers to the maximum value of H(r) over the fraction
0 1 Θ 1 1 (or 1 5 (1 / Θ) 5 0) of the binary mixture constituents.
Referring to the upper and lower bounds on r specified by equation (7),
the corresponding range of R can be deduced as follows:

Rmin ' 1 /
H(rmax)

[H(rmax)]M
(9b)

Rmax ' 1 /
H(rmin)

[H(rmin)]M
. (9c)

The complexity metric of a statistical measure evaluated in terms
of the redundancy measure (R) as above can be used to delineate the
binary constituents of such mixtures. That is, considering a heteroge-
neous DNA sequence of codons and noncodons, the borders between
the compositional (codon–noncodon) domains can be distinctly iden-
tified using the parameter R. For this purpose, additional details on
codon–noncodon population mix and the related coding statistics con-
siderations are furnished in the following section.
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4. DNA coding statistics and codon–noncodon delineation

As mentioned earlier, the concept of DNA coding statistics envisaged
in bioinformatics allows assaying the likelihood that a given DNA se-
quence is coding for a protein. Considering the set of nucleotide bases
#A, T, C, G$ forming a set of 64 triplets, the coding statistics ascertains
whether a portion of the DNA sequence is a codon (namely, an iden-
tifiable triplet that is part of the coding for a protein) or a noncodon
(namely, the junk parts of the triplets not involved in coding for a pro-
tein). In essence, the models developed towards such coding statistics en-
able discriminating a coding from a noncoding DNA sequence. Knowl-
edge of relevant coding statistics is important to develop gene identifi-
cation programs of bioinformatics and interpret their predictions [1].

The models of coding DNA are based on stochastical considerations
depicting the occurrence population of codon and noncodon parts. Tra-
ditional measures to score the coding statistics (in a query sequence) are
based on metrics such as the LLR mentioned before. Alternatively, as
described in [4], entropy-based considerations can also be used to seg-
ment and discriminate the codon and noncodon regions in a query se-
quence. Essentially, the entropy segmentation technique uses the Jensen–
Shannon form of cross-entropy measure of equation (5) for the purpose
of ascertaining the border between codon and noncodon regions (con-
sistent with the relative proportions of the compositional domains in
the DNA sequence). In the state-of-the-art advances concerning gene
recognition efforts, especially in prokaryotes, relevant solutions have
been obtained via a comprehensive set of statistical measures yielding
fair results. Nevertheless, contemporary methods and new algorithms
are constantly being proposed as indicated recently [4] for finding the
borders between coding and noncoding DNA regions by an entropic seg-
mentation method. Such methods are aimed at developing algorithms
depicting better and “sensitive scoring schemes,” especially when one
of the entities (such as codons in a mixed population of coding and
noncoding parts) constitute a sparse percentage. The present study
leads to an algorithm which is more sensitive than that of [4] as will be
demonstrated via computed results.

Hence, in lieu of the traditional codon–noncodon delineation tech-
nique of [4], proposed here is the information-redundancy based com-
plexity metric (R) of equation (6) to score the statistics of codon–
noncodon occurrences. And, the efficacy of this R-measure as a discrim-
ination function (for codon–noncodon delineation) is analyzed relative
to other measures such as the entropy segmentation method [4].

5. Complexity-based metric for codon–noncodon delineation

The existing method for ascertaining the borders across coding–
noncoding DNA regions; namely, the entropic segmentation technique

Complex Systems, 14 (2003) 215–233



Redundancy Attributes of a Complex System: Application to Bioinformatics 223

[4], introduces the concept of a contrast function (via the JS-measure)
for estimating the difference in composition in question between the
two regions. That is, a comparative function based on the JS-measure
is indicated in [4] that reaches low values when the DNA regions
being compared (or contrasted) are similar, namely codons–codons
or noncodons-noncodons; and, this comparative function attains a
large value when the compared entities are dissimilar, namely codon–
noncodon or noncodon–codon.

The JS-measure adopted in [4] is based on the Kullback–Leibler (KL-
measure) concept of cross-entropy (or mutual information) arising from
divergence in the statistical attributes of the two regions being compared
[9]. The KL-measure essentially compares two vector spaces Vc,Λ and
Vnc,Λ corresponding to the codon and noncodon regions respectively, so
as to elucidate the divergence in the associated stochastical characteris-
tics. Each of these vector spaces are constituted by the triplets composed
of the nucleotide set Λ * #A, T, C, G$.

In general, the codon and noncodon regions being compared can be
regarded as parts of a total sequence length N as considered earlier.
Designating the codon region by subscript 1 and the noncodon region
by subscript 2, the fractional regions being compared are proportioned
as n1/N and n2/N respectively; so that, (n1 + n2) ' N constitutes the
universe of statistical mixture of codons and noncodons. Each of the
triplets or phases of the nucleotide set Λ * #A, T, C, G$ occurs with a
particular probability in a given genome type. For the regions 1 and
2, these probabilities can be specified as P1,Λ and P2,Λ respectively. For
example, with reference to human genes, the set of probabilities P1,Λ
are specified in terms of relative frequencies of occurrence of the codon
triplets as listed in Table 1 [12].

Codon Relative Codon Relative Codon Relative Codon Relative
triplet frequency triplet frequency triplet frequency triplet frequency
GGG .01645 AGG .01162 TGG .01296 CGG .01175
GGA .01636 AGA .01166 TGA .00137 CGA .00631
GGT .01081 AGT .01201 TGT .01012 CGT .00468
GGC .02260 AGC .01937 TGC .01236 CGC .01081
GAG .04033 AAG .03255 TAG .00059 CAG .03444
GAA .02895 AAA .02399 TAA .00077 CAA .01190
GAT .02208 AAT .01666 TAT .01207 CAT .01057
GAC .02571 AAC .01927 TAC .01548 CAC .01503
GTG .02873 ATG .02231 TTG .01267 CTG .04013
GTA .00703 ATA .00718 TTA .00733 CTA .00701
GTT .01093 ATT .01579 TTT .01707 CTT .01293
GTC .01460 ATC .02128 TTC .02043 CTC .01954
GCG .00756 ACG .00617 TCG .00448 CCG .00702
GCA .01598 ACA .01485 TCA .01187 CCA .01675
GCT .01865 ACT .01294 TCT .01475 CCT .01734
GCC .02839 ACC .01912 TCC .01753 CCC .02003

Table 1. Relative usage frequencies of triplets in human codons [12].
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With reference to Table 1, it is implied that the statistical feature of
coding regions refers to a nonuniform codon usage. That is, inside the
coding regions, not all triplets of nucleotides (namely, the codons) occur
with the same probability; also, the probability of the appearance of a
nucleotide is different in each of the three positions of the triplets. The
reason for this has been identified as possible restrictions imposed by the
genetic code and also probably due to preferential (synonymous) codon
usages. Regardless of the causative mechanism involved, this attribute
of nonuniform probability distribution of codons does not prevail in the
so-called noncoding or junk codon part of the DNA. This distinguish-
ing feature (of probabilities of occurrence) leads to identifying codon
and noncodon regions in a DNA sequence; and, the entropic segmenta-
tion method of [4], in essence, prescribes a strategy of delineating such
codon and noncodon regions using the aforesaid statistical distinction
expressed in terms of entropy considerations. Further, the entropy seg-
mentation efforts as mentioned before essentially conform to divergence
measures such as the JS-measure. It partitions a heterogeneous DNA
sequence into homogenous subsequences (or compositional domains);
and, it is shown that the relevant approach could lead to predicting
accurately the borders between coding and noncoding regions without
any a priori training details on known sets.

As an alternative to the entropy segmentation algorithm, proposed
here to discern the codon–noncodon borders is the R-measure, which
accounts for the informative profile of the constituents of a DNA struc-
ture. Such constituents are vast when viewed in terms of their attributes,
variety, stochasticity, and interactions between the associated units; and
hence, they represent the gamut of informative complex systems de-
liberated earlier; and the R-metric assesses the demarcation (between
the codon and noncodon regions). That is, the R-measure is an alter-
native extensive measure towards entropic segmentation viewed in the
information-theoretic framework. The R-metric is also closely related
to entropy, but in terms of the information content of the compositional
domains identified through the redundant features in the complex struc-
ture of the DNA system. In the following section, computations using
this redundancy measure (R) (as well as the JS-measure depicting the en-
tropic segmentation metric [4]) in delineating the codon and noncodon
compositional domains of DNA sequences are presented and compared.

6. Computed results

The R- or JS-measure provides a contrast function to distinguish coding
and noncoding DNA composition. The procedure for the delineation
as adopted in [4], refers to a controlled experiment in which, first a
known set of coding and noncoding DNA sequences is taken and these
sequences are then concatenated. Next, a pointer is used along the
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Figure 2(a). The JS- and R-measure versus fractional populations of human
codons (statistical data is pertinent to human codon usage of Table 1). (i) JS-
measure of equation (5) specified by [JS(r1, r2)] with Π1 ' Θ and Π2 ' (1 / Θ),
r1 ' ΘP1Λ and r2 ' (1/Θ)P2Λ. (ii) Corresponding R-measure ascertained in terms
of equation (9a) with [H(r1, r2)]max 8 [JS(r1, r2)].

concatenated sequence to bifurcate (the sequence) into two sections; and
the resulting (bifurcated) subsequences are contrasted via the JS-measure
in terms of the statistics of codons and noncodons. That is, in computing
the JS-measure, the probabilities P1Λ (of Table 1) are used for codons
and the probabilities P2Λ (each equal to 1/64) are used for noncodons.
A similar procedure can also be adopted with the R-measure.

The resulting graphs of the R- and JS-measures versus the fractional
population (0 1 Θ 1 1) of human codons used in a concatenated test
sequence are illustrated in Figure 2(a) where the redundancy measure
(R) is computed as per equation (9c), namely,

R ' 1 /
H(r1, r2)max

[H(r1, r2)max]M

with

Π1 ' Θ,
Π2 ' (1 / Θ),
r1 ' ΘP1Λ,
r2 ' (1 / Θ)P2Λ

H(r1, r2)]max 8 [JS(r1, r2)].
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Figure 2(b). The slopes dk/dΘ (k: JS- or R-measure) of Figure 2(a) versus Θ. (i):
[dk/dΘ]k'JS-measure and (ii): [dk/dΘ]k'R-measure.

Using the computed results on JS- and R-measures as above, the
corresponding slopes of (dk/dΘ) versus Θ (where k represents JS- or R-
values) are computed for human codons. They are plotted in Figure 2(b).

The computational details as above are also extended to three bacte-
rial genomes, namely: escherichia coli, rickettsia prowzekii, and metha-
nococcus jannaschii [12]. The results on k versus Θ and (dk/dΘ) versus
Θ on the codon data pertinent to these bacterial genomes are presented
in Figures 3 to 5. The data on relative frequency of occurrences of the
codons of the three bacteria types indicated are available in [12].

7. Discussions on results

In the computational recognition of codon to noncodon borders, it is
necessary to consider how effectively the algorithm used enables such
recognitions or differentiation, even when there is a subtle statistical
difference in their relative populations. In prokaryotic genomes, for
example, the coding regions may be separated by a very small noncoding
region, sometimes too small for distinct identification of the borders on
a statistical basis.

It is therefore preferable to have a metric that yields a significant mea-
sure of contrast even for small fractions of codon populations (relative
to noncodon populations). In other words, the efficacy of the algorithm
used for distinguishing codon–noncodon regions can be specified by the
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Figure 3(a). The JS- and R-measure versus fractional populations of escherichia
coli codons. (i) JS-measure of equation (5) specified by [JS(r1, r2)] with Π1 ' Θ
and Π2 ' (1 / Θ), r1 ' ΘP1Λ and r2 ' (1 / Θ)P2Λ. (ii) Corresponding R-measure
ascertained in terms of equation (9a) with [H(r1, r2)]max 8 [JS(r1, r2)].

 

Figure 3(b). The slopes, dk/dΘ (k: JS- or R-measure) of Figure 3(a) versus Θ. (i):
[dk/dΘ]k'JS-measure and (ii): [dk/dΘ]k'R-measure.
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Figure 4(a). The JS- and R-measure versus fractional populations of rickettsia
prowzekii codons. (i) JS-measure of equation (5) specified by [JS(r1, r2)] with
Π1 ' Θ and Π2 ' (1 / Θ), r1 ' ΘP1Λ and r2 ' (1 / Θ)P2Λ. (ii) Corresponding R-
measure ascertained in terms of equation (9a) with [H(r1, r2)]max 8 [JS(r1, r2)].
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Figure 4(b). The slopes, dk/dΘ (k: JS- or R-measure) of Figure 4(a) versus Θ. (i):
[dk/dΘ]k'JS-measure and (ii): [dk/dΘ]k'R-measure.
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Figure 5(a). The JS- and R-measure versus fractional populations of methanococ-
cus jannaschii codons. (i) JS-measure of equation (5) specified by [JS(r1, r2)] with
Π1 ' Θ and Π2 ' (1 / Θ), r1 ' ΘP1Λ and r2 ' (1 / Θ)P2Λ. (ii) Corresponding R-
measure ascertained in terms of equation (9a) with [H(r1, r2)]max 8 [JS(r1, r2)].
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Figure 5(b). The slopes, dk/dΘ (k: JS- or R-measure) of Figure 4(a) versus Θ. (i):
[dk/dΘ]k'JS-measure and (ii): [dk/dΘ]k'R-measure.
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slope (dk/dΘ) where k denotes the computed value (JS- or R-value in
Figures 2–5) of the metric used.

From Figures 2–5, it is obvious that the initial slope #dk/dΘ9k'R&Θ30$
is much larger than the initial slope #dk/dΘ9k'JS,Θ30$. That is, the R-
measure deliberated in this study offers a better sensitivity in discerning
the codon–noncodon compositional domains at low values of Θ, (i.e.,
when Θ 3 0) as compared to the entropy segmentation method (using
the JS-measure) proposed in [4].

8. Closure

In conclusion, the present study indicates that a complex system can be
modeled in terms of the associated information redundancy. Hence an
information-theoretic metric (R-measure) can be elucidated to specify
the complexity involved. It is further shown that this R-measure can
be determined in terms of the statistical divergence, such as the Jensen–
Shannon measure (JS-measure). An application of the R-measure is
demonstrated in delineating the codon–noncodon regimes of a DNA
structure. The efficacy of the R-measure discerning such a border across
the codon-to-noncodon domains is compared with the results obtained
via the entropy segmentation technique [4], especially when low popu-
lation fractions of codons are present in the DNA complex.

Instead of the JS-measure specified for the entropy segmentation tech-
nique in [4] and adopted for the R-measure in the present study, a host
of other divergence measures (called Csiszár measures [6, 13, 14]) can
also be used as metrics for the redundancy measure (and adopted to
contrast the compositional domains of codons and noncodons). Simi-
larly, the family of so-called distance measures [15–17] can be probed
for the same purpose. Relevant investigations, however, are still open
questions.

Appendix

A note on information redundancy in a DNA sequence

In a DNA sequence, the inherent mapping of codons corresponds to a
set of encoded messages constituted by the codons composed of triplets
from the set #A, T, C, G$. Each such codon occurs at a specified proba-
bility in the sequence in conformance with the formation of the encoded
structure. Pertinent to the statistics of the codon part, one can associate
an efficiency factor, which should enable an implicit optimization of a
cost function in constituting the DNA chain. The underlying consider-
ations follow.

Suppose a constant ci is assigned as a cost figure to each codon whose
occurrence probability is P1Λ. Then, the average cost per codon can be
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written as follows:

Cav ' !
i'1,N'64

P1ici. (A.1)

The optimization of the cost function (in the constitution of the
codons in the layout in the DNA sequence) would refer to a value
of Cav equal to C and subject to certain restrictions on the encoding
rule, the lowest bound (infimum) of C is given by,

C9inf '
H(x)

ln(N ' 64)
(A.2)

where H(x) is the entropy of the ensemble of codons and N ' 64 is the
cardinality of the encoding codons.

The constrained optimization exercised on the DNA sequence rele-
vant to the codon layouts as above can be expanded in its scope by
taking into account the junk codons (namely, the noncodon part does
not contribute toward encoding for the proteins). That is, inasmuch as
the codons and noncodons prevail in a DNA sequence complex as mix-
ture constituents, the entropy of the ensemble of the mixture should be
viewed in terms of redundancy arising from the noncodon population
(that contributes negentropy rather than posentropy to the system).

Hence, it is possible to define an information efficiency (Η) factor of
the encoded structure of a DNA structure using the classical concepts
of information theory. It is the ratio of the average information (per
codon) of the encoded ensemble to the maximum possible (average)
information (per codon). That is,

Η '
H(x)

C ln(N ' 64)
. (A.3)

And concurrently, (1 / Η) can be regarded as the redundancy factor (R)
indicated in equation (9a). It is the reduction in information content of
an ensemble from the maximum possible and is specified as:

R ' 1 /
H

Hmax
(A.4)

where H is an entropy functional such as the Jensen–Shannon measure
(JS-measure). In [4], the JS-measure is adapted (in lieu of the R-measure
proposed in this study) to ascertain the delineation information on ran-
dom codon–noncodon assembly across the DNA complex. The JS-
measure essentially assays the statistical divergence between the codon
and noncodon parts using the cross-entropy (or mutual information)
considerations. The ratio JS/JSmax used in equation (A.4) identically
represents a redundancy based information efficiency factor Η defined
above. Explicitly, the JS-measure is given by equation (5).
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