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The development of many knowledge discovery methods provided us with
a good foundation for building hybrid systems based on rough set the-
ory for knowledge discovery in a database. The need for more effective
methods of generating and maintaining global nonfunctional properties
suggests an approach analogous to those of natural processes in generat-
ing emergent properties. An emergent model allows the constraints of the
task to be represented more naturally and permits only pertinent task-
specific knowledge to emerge in the course of solving the problem. This
paper describes some basics of emergent phenomena and its implemen-
tation in the hybrid system of rough sets combined with other methods.
Further, demonstrations and guidelines are presented on how to exploit
emergent intelligence and extend the problem-solving capabilities of these
hybrid systems.

1. Introduction

In the ensuing years, we have witnessed a systematic and worldwide
growth of interest in rough sets and their applications for knowledge
discovery in databases [1–3]. In another direction, there has been a
rapid development in our understanding of the detailed mechanisms
underlying the emergence of intelligent behavior [4, 5].

In [6] we introduced a hybrid system of rough sets and genetic pro-
gramming, and in [7] we presented the hybrid system of rough sets and
cellular automata. In this paper, we present a general model of hybrid
rough sets systems and apply this idea to the case of hybrid rough sets
and neural networks, which is presented in [8]. In the hybrid systems
of rough set theory, the behavior of the overall system emerges from
the interactions of the quasi-independent computational components or
agents. Each agent contains the entire specification for its behavior, in-
cluding interactions between it and its computational environment and
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other agents. These agents cooperate to make local teams that are able
to understand and apply any of the given local languages. Local teams
are merged into a scheme (e.g., assembling scheme or organizational
scheme) whose aim is to construct a global solution to a given specifi-
cation. Members of a scheme are local assembling teams that are fused
from some local teams of agents. Thus unlike traditional systems mod-
eling [9], there is no overall controlling entity that orders or otherwise
constrains the interaction between system components.

This paper is structured as follows. We propose the formalism nec-
essary to describe notions of rough set theory in section 2. Section 3
provides a brief introduction to emergent systems. Section 4 presents
attempts at using rough set theory as the base method for general hybrid
systems. In Section 5, rough sets are combined with neural networks
into one hybrid model. The paper concludes with section 6.

2. Rough set theory

In this section, we recall some notions related to information systems
and rough sets. The rough set concept was introduced by Pawlak in
[10]. One of its essential merits is its direct application to classification
problems [11] founded on the assumption that each object is associated
with some information (e.g., data or knowledge). Objects characterized
by the same information are said to be indiscernible in the view of avail-
able data. This induces the indiscernibly relation (equivalence relation)
which is the mathematical base of rough set theory.

Knowledge representation in rough sets is done via an information
system. An information system is a pair IS # (U, C), where U is a
nonempty finite set of objects called the universe, and C # $c1, . . . , cm%
is a nonempty finite set of mappings c & U ' vc; each c ( C is called a
condition attribute. A decision table DT # (U, C ) D) is a special case
of an information system introduced in rough set theory as a tool for
representing data, where the major different feature is the distinguished
attribute D, (D * C # Φ) which is called the decision attribute.

Let I , U - U denote the indiscernibly relation on U which can be
defined as:

I # $(x, y) ( U -U & b(x) # b(y),.b ( B%, (1)

where B , C is a set of attributes. Objects x and y satisfying the relation
I are indiscernible by attributes from B.

An ordered pair AS # (U, I) is called a Pawlak approximation space.
According to I, we can define two crisp sets BX and BX called the lower
and upper approximation of the set of objects X in the approximation
space AS:

BX # $x ( U & IB(x) , X%
BX # $x ( U & IB(x) *X / Φ%, (2)
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U Sex Clinical stage Infection
P1 F T Yes
P2 M T Yes
P3 F B No
P4 M T Yes
P5 M T Yes
P6 M T No
P7 F T Yes
P8 F B No
P9 M B No
P10 M T No

Table 1. An example of a decision table.

where IB(x) denotes the set of all objects indiscernible with x, that is,
the equivalence class which is determined by x. BX consists of all
objects that can be with certainty classified as elements of set X, and
BX consists of all objects that can be possibly classified as elements
of set X. The difference BNB(X) # (BX 0 BX) is called the boundary
of X, which contains all objects that cannot be classified either to X
or the complement of X. In [10] Pawlak defined a rough set to be
a family of subsets of a universe that have the same lower and upper
approximations.

Table 1 shows a decision table where the set of attributes C #
$Sex, Clinical Stage%, the values of the decision attribute are Vinfection #
$Yes, No%, and the set of objects is U # $P1, P2, . . . , P10%.

From Table 1, the upper and lower approximations of the decision
attribute “infection” can be formatted as follows:

X(infection#yes) # $P1, P7%

X(infection#yes) # $P1, P2, P4, P5, P7, P10%
X(infection#no) # $P3, P8, P9%

X(infection#no) # $P2, P3, P4, P5, P6, P8, P9, P10%.

The decision table is called consistent provided that a functional de-
pendency between the set of condition attributes and decision attributes
is fulfilled, otherwise the table is called inconsistent. That is, the table is
inconsistent when it contains rows, which for equal values of condition
attributes C, there are different values of decision D. It is possible to
determine the range of consistency in data as [12]:

ConsistB(X) #
!j 1BXj1

1U1
(3)

where 1A1 is the cardinality of a set A.
One of the problems related to the practical application of rough set

methods is whether the whole set of attributes is necessary and if not,
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how to determine the simplified and still sufficient subset of attributes
equivalent to the original. The rejected attributes are redundant since
their removal cannot worsen the classification. There are usually several
such subsets of attributes and those, which are minimal with respect to
inclusion, are called reduct.

Decision rules can be perceived as data patterns, which represent
the relationship between attribute values in the classification system.
If V # )$vc & c ( C% ) vD is a set of values for attributes, then the
decision rule is a logical form: IF[(c1 # v1)& . . .&(cn # vn)] THEN (D #
vD). The decision rule is true in the decision table if $u ( U & c1(u) #
v1, . . . , cn(u) # vn% , $u ( U & D(u) # vD%.

The classification accuracy and coverage of a rule r are defined as
follows [3]:

Acc(r) #
1sup(r) * S1
1sup(r)1

(4)

Cov(r) #
1sup(r) * S1

1S1
(5)

where Acc(r) is the classification accuracy of the rule r, Cov(r) is the rule
coverage of r, sup(r) is the number of cases that match the condition
part of the rule r, and 1S1 is the number of cases that match the decision
part of the rule r.

We are also interested in the measurements of the set of rules [13].
The simple strength of a set of rules is defined as:

strength(Xj, ut) #
1MRul(Xj, ut)1
1Rul(Xj)1

, (6)

where ut 2 U is a tested object, Rul(Xj) is the set of all rules for decision
class Xj, and MRul(Xj, ut) , Rul(Xj) is a set of rules that matches the
tested object ut for decision class Xj.

3. Emergent phenomena model

Emergence of a system, in a broad sense, is said to be the properties or
behavior of a system that cannot easily be predicated from its internal
properties [14]. From an intuitive point of view, emergence is used as a
name for the creation of new structures and properties, in other words,
“the whole is more than the sum of its parts [15].” Emergent systems
[4] are philosophically and methodologically different from traditional
approaches. The simple definition of an emergent system can be formu-
lated as: System behavior that comes out of the interaction of many par-
ticipants. The emergent model replaces the traditional high-level control
scheme of functional modularization of behavior generating modules
[9]. The characteristics of emergent models are examined. Instead of
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high-level computation of behavior, the bottom-up self-organization of
simpler components produces a variety of behaviors depending on the
interaction of the component or agent with its environment. The struc-
ture coupling of the system’s component and its environment is this
source of the behavior, and not just this component’s control system
alone [9].

Emergence as the existence of properties in a system is not possessed
by any of its parts [4]. This, of course, is so ubiquitous a phenomenon
that it is not deeply predicated from the system’s parts. This phe-
nomenon can be observed in a few core examples of “emergence” such
as the following.

The Game of Life. High-level patterns and structures emerge from simple
low-level rules.

Connectionist networks. High-level “cognitive” behavior emerges from
simple interactions between dumb threshold logic units.

Evolution intelligence. This and many other interesting properties emerge
over the course of evolution by genetic recombination and mutation op-
erators.

We construct an emergent model in this paper; this needs a set of rules,
which are satisfied where we apply this model of emergence [15]. The
following rules together can be considered as a test for emergence.

1. The environment and system are complex enough to allow the mecha-
nisms of self-organization to occur in the situated interaction of system
parts in the environment.

2. The system is self-replicating.

3. The system has been constructed by describing local elementary interac-
tions between its components. There should be sufficient interaction to
have these agents constructing shared semantics by virtue of their situated
interactions with the world and each other.

These three points describe our rules for generally diagnosing emergence
in a system. Some of the above points deserve further elaboration, or
indeed invite debate. The emergent model has these characteristics.

Direct communication only happens between local neighbors.

There is no central control.

Individual participant components are not able to view the state of the
system from a global perspective.

The environment has sufficient initial richness and structure to allow for
embodied emergent classification of that environment/system coupling.

Let us now consider the mathematical foundation of emergence and
emergent properties. If we have the model A, we use Π(A) to denote
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the amount of computation required to simulate a system, and arrive
at a prediction of the given phenomenon. Let u(A) be the amount
of computation required to arrive at the result by performing a creative
analysis depending on our understanding of the symmetries of the system
that help us to deduce the future state whilst circumventing most of the
previously-required computation.

Let us consider an idealized means of prediction in that complex sys-
tem, requiring an amount of computation uopt(A) based on perfect un-
derstanding [9]. Now, the related measure of understanding is given by:

Λ #
uopt(A) 0 u(A)

Π(A)
. (7)

Then, to consider a system as emergent, two conditions should be held:

1. u(A) 5 Π(A)

2. Λ # 0.

Condition 1 means that the global result of the emergent model is not
equal to the sum of its parts. Therefore, the amount of computation
required to simulate the system is less than the actual amount, which we
predicate depending on the analysis of all the parts of the system. Con-
dition 2 happens when uopt(A) # u(A), that is, it gives us the necessary
condition of satisfying condition 1, where u(A) should be the optimal
when it is considered. Global nonfunctional properties of a system,
including those needed to fulfill mission requirements and performance,
often arise through the interactions among components of the system.
Global properties that prevail for a system as a whole, but cannot or
do not exist within individual components of that system, are called
emergent properties [9]. To focus on these emergent properties, let us
start out with a family of structures $Si%, i ( J (some index set, finite or
infinite). Then we apply our observation mechanisms O to obtain the
properties of the structures Si as O(Si). Next we assign to the Si a family
of interactions q using the properties registered under the observation.
Hence, we can get a new structure as follows:

S # R(Si, O(Si), q), i ( J (8)

where R stands for the result of the construction process. Here, S is a
second-order structure, which is induced from the first-order structures
Si. The interactions may be caused by structure themselves or imposed
by external factors. At each level of construction, new behaviors or new
properties may emerge, giving room for new interactions, and hence
each level is necessary in order to get the previous level’s properties.
Therefore, the Nth order structure is defined as follows:

SN # R(SN01
iN01

, ON01, qN01), iN01 ( JN01 (9)
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where N means the Nth order and iN01 means the ith structure of the
N 0 1 order. From this, we can introduce the definition of emergent
properties as: E is an emergent property of the system Sn if and only if:

E ( O(Sn) and E 2 On(sn01
in01

) for all in01. (10)

That is, the property E is an emergent property if and only if it is
observable in phase Sn, not below.

4. Hybrid rough sets systems

This section is an attempt to generalize an approach aimed at connecting
rough set theory with hybrid systems. Hybrid rough set methods are
inherently distributed in character, often involve unreliable information
and untrustworthy participants including those outside the administra-
tive control of the system, may be implemented on platforms that are
dynamically changing and not fully known, and may involve compo-
nents or agents that have been compromised.

To discuss general rough hybrid systems, we will consider that the
system is composed of parts or a set of agents Ag # $ag1, . . . , agp%,
where p > 0. Any agent from Ag is equipped with an information
system ISag # (Uag, Cag) where Uag is a set of objects and Cag is a set of
attributes associated with agent ag. The decision table of the agent ag
is a pair DTag # (Uag, Cag ) Dag) for any agent ag ( Ag where Dag is
the local decision attribute for agent ag. The lower and upper approx-
imations of the set of objects X with respect to condition attributes of
DTag describe the vagueness in understanding of X using agents from
the set Ag. Each agent is autonomous in the sense that it is not under
the control of a supervisor: all its decisions are derived from embodied
rules depending only upon local information accessible to the agent.
The agents differ in their learned behavior, and their consequential ex-
perience and performance. The result of agents cooperating to solve a
given problem will be a scheme of agents.

The team of agents of the hybrid rough system is involved in the
following activities: convert their specifications into specifications for
their children using local languages, manage the negotiation processes
leading to the emergence of assembling schemes, and assemble a product
from parts submitted by children.

Let L(ag) be a function that determines the set of immediate neighbors
for each agent ag. The function L can be defined as:

L(ag) # $agi & agi ( Ag and agi is an immediate neighbor of ag%. (11)

L provides the selection technique used in the hybrid rough system, for
example, in the system of combining rough sets and genetic program-
ming [6], each individual (agent) uses the function L to select another
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individual to interact with, such as in the crossover operation. Commu-
nication between agents can be defined as mapping

M(ag, L(ag)) & for x ( Uag, the value M(ag, L(ag))(x) ( UL(ag). (12)

According to M, each agent from the hybrid system can send or receive
information with other agents. The information can only be transmitted
through sequences of immediate neighbor communications. The undi-
rected communications and absence of complete information permit
these hybrid rough set systems to sometimes, but not always, succeed in
satisfying their goals.

One of the proposals from rough hybrid systems is the decomposition
scheme of an agent into simpler parts. Further, we will discuss how
each agent can be divided into subcomponents and the relation between
them. From an abstract point of view, this approach is actually about
establishing for any two objects (agent and subagent) a degree in which
one of them is a “part” of the other. We will use the notion of a rough
inclusion function [16], which gives for any two entities of discourse
a degree in which one of them is a part of the other. Rough inclusion
is an extension of the rough membership function, which is defined by
Pawlak in [10]. Rough inclusion is parameterized by a real parameter r
in the interval [0, 1]. Therefore, the predicate XΜrY means that X is a
part of Y in degree r.

We define rough inclusion Μr by letting

Μr(X, Y) #
1X * Y1
1X1

(13)

in the case X / Φ and Μr(Φ, Y) # 1.
Rough inclusion satisfies the following conditions; Μ(X, X) # 1 for

any object X, Μ(X, Y) # 1 implies that Μ(Z, Y) 5 Μ(Z, X) for any triple
X, Y, Z, and there is an Η such that Μ(Η, X) # 1 for any object X.

Let us define the relation part(Μ) on the set of agents Ag using rough
inclusion Μ as follows:

X part(Μ)Y 8 Μ(X, Y) # 1 and Μ(Y, X) < 1. (14)

The relation part(Μ) is a nonreflexive and transitive relation of the set
Ag. The formula x part(Μ)y reads: x is a part of y and satisfies the
axioms:

X part(Μ)Y 9 non(Y part(Μ)X) for any pair X, Y.

X part(Μ)Y and Y part(Μ)Z 9 X part(Μ)Z for any triple X, Y, Z.

5. Hybrid rough sets and neural networks

This section is an attempt to present an approach aimed at connecting
rough set theory with artificial neural networks [8]. First, we will use
what is called the “rough neuron” [17] to integrate rough sets into the
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structure of neural networks. Section 5.1 describes the use of rough
sets as a preprocessing step for determining the important features used
as input for the network. Following that, a new algorithm for neural
network pruning is presented. By setting the neurons in the form of a
decision table, rough sets can determine the need for deleting one or
more neurons from the network. Finally, we present the guidelines and
demonstrations of an emergent model in this hybrid system.

5.1 The reduction of input features

Rough set theory provides tools for expressing inexact dependencies
within data. A minimum description length principle (MDL-principle)
gives us the reason for using rough sets to reduce input features in
a hybrid system. It states, generally speaking, that rules of the most
simplified construction which (almost) preserve consistency with data
are likely to classify unseen objects with the lowest risk of error [16].
Therefore, to enable classifying more objects with high accuracy, it needs
to neglect features that are the source of redundant information, that is,
to use what is called a “reduct of attributes.” A reduct [18] is a subset
of attributes such that it is enough to consider only the features that
belong to this subset and still have the same amount of information.

The input data to the model will be quantized first, that is, the features
defining the problem should be identified and labeled. If the input data
xi is given as real numbers in the preprocessing stage, one has to divide
the data into distinct sets and introduce a new logical input variable sk
such that:

IF(xi ( Xi,j) THEN (sk # label(xi) # T). (15)

Let us define what is called the “weighted information system” as WIS #
(U, C, W), where U is the set of objects, C is the set of attributes, and W
is the set of weights related to the set of attributes C connected with each
object. The weighted the decision table takes the form WDT # (U, C)
D, W). The values of the set of weights W are determined according to
the interactions between objects, and the interactions between objects
and their environment. If object p1 interacts with object p2, then the
weight values for attribute i related to object p1 is modified according
to the formula:

:wi # "Α, do1
# do2

0Α, do1
/ do2

. (16)

The value of Α is determined according to the similarity of attribute i
between these two objects:

Α # " Τ i(p1) # i(p2)
0Τ i(p1) / i(p2), (17)

where Τ is a constant. The weighted information system is a specific

Complex Systems, 14 (2003) 235–261

https://doi.org/10.25088/ComplexSystems.14.3.235



244 Y. Hassan and E. Tazaki

information table and, therefore, all concepts of the rough set analysis
can be adapted to it [7].

The algorithm for the reduction of attributes based on the idea of a
weighted decision table [7] can take the form:

1. Input: Decision table DT # (U, C )D)

2. Output: Reduct of attribute R

3. Process:

(a) Convert the decision table DT into the weighted decision table
WDT by adding the distinguished set W, that is, values associated
with the attribute values and interactions between objects.

(b) While (other objects exist to interact with) do

i. Interact object i with object j, i # $1, 2, . . . , n%, j # $1, 2, . . . , n%
ii. For (a # 1 to n)

A. Modify the weight value associated with attribute a and
object i

(c) R # Φ

(d) For (a # 1 to n)

If
=>>>>>>
?

n#
j#1

Ωij > 0
ABBBBBB
C

then R # R ) $a%.

Finally, after we determine the set of reducts for the input features, we
construct the model of rough neural networks by removing from the
input vector those attributes not included in any reduct set.

5.2 Rough neuron

Driven by the idea of decomposing the set of all objects into two parts:
the lower approximation and the upper approximation with respect to
a given set X of objects, Lingras introduced in [17] the idea of a rough
neuron to construct what is called the “rough neural network.” Each
rough neuron r is a pair, one for the upper bound value, called the upper
neuron r; and another one for the lower bound value, called the lower
neuron r. Those two neurons can exchange information between each
other and between other rough (conventional) neurons.

Rough neurons will be mainly used in the construction of this hybrid
system. They can be used as input neurons when the input value will
be a rough value (upper and lower bound). In the same way, a rough
neuron can be used in the hidden layer where it has provided better
results than conventional neurons [8, 13].

The outputs of a rough neuron r are calculated using the formulas:

outputr # max(g(inputr, g(inputr))
outputr # min(g(inputr), g(inputr)) (18)
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 Output Layer

Hidden Layers

Input Layer
 

Figure 1. An example of a rough neural network.

where g stands for any transfer function; for example, the sigmoid
function f , which takes the form:

f (x) #
1

1 D e0Βx (19)

where Β is the coefficient called “gain,” which determines the slope of
the function.

Figure 1 shows an example of a rough neural network that consists
of the input layer, which once the pattern is presented, distributes the
pattern throughout the net, and propagates the pattern down its con-
nections to the middle layers (one or more hidden layers). The neurons
in the hidden layer pass on the pattern in an appropriate manner, again
modified by weight connections, to evoke the desired response in the
output layer.

Connections between conventional neurons in rough neural networks
are made as in the usual case, that is, a single connection. Connections
between rough neurons and conventional ones are made by connecting
lower neuron r and upper neuron r separately [8]. Two rough neurons
in the networks can be connected to each other using either two or
four connections. A rough neuron r is said to be fully connected to a
rough neuron s, if r and r are connected to both s and s. If only two
connections exist from neuron r to neuron s, then the two neurons are
called partially connected. If a rough neuron r excites the activity of
rough neuron s (i.e., increasing the output of r will increase the output of
s), then we connect only s with r and s with r. In the opposite situation,
if r inhibits the activity of s (i.e., increasing the output of r decreases the
output of s), then we connect only s with r and s with r.

If the neuron j (conventional or rough) connects to neuron i (con-
ventional or rough), then the collected weighted input of neuron i is
calculated as:

inputi ##Ωij - outputj (20)

where Ωij is the connection weight between neurons i and j.
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The learning process for the network is based on the general learning
scheme, so the weights in the network are adjusted according to the
general equation:

Ωnew
ji # Ωold

ji D Α(t) . g(inputi) (21)

where g is any transfer function and Α(t) is a learning factor, which
starts with a high value at the beginning of the training process and
is gradually reduced as a function of time. The most popular learning
algorithm is the back-propagation algorithm. In this algorithm weights
are adjusted according to the formula:

Ωnew
ji # Ωold

ji D Α erri . f F(inputi) (22)

where f F is the derivative of the sigmoid function, Α is the learning
coefficient that remains constant during the learning, and erri is an error
for neuron i.

5.3 The structure adaptation of the network

Removing redundant neurons and their connections from the network
can reduce its complexity. Rough sets can be used to determine if the
network structure is sufficient for processing its function and whether or
not there are some redundant neurons [8]. The adaptation is regarded as
successful and will be executed if the new structure (offspring) improves
its parent’s performance by a certain margin.

Let us define a neural network space N as a collection of formal
neural network models [19]. A reduct operator over the neural network
space is a mapping that transforms a neural network Pi ( N into a
neural network Pj ( N.

Since our goal is to find and eliminate as many unnecessary network
neurons as possible, it is important that we identify the effect of remov-
ing neuron connections on the output of the network. Let us denote
the weights of the connections between input and hidden units by wh

i ,
i # 1, 2, . . . , n; h # 1, 2, . . . , H and the weights of the connections be-
tween the hidden and output units by wo

h, h # 1, 2, . . . , H; o # 1, 2, . . . , m
where H is the number of hidden units, n is the dimensionality of the
input patterns, and m is the number of output units. The output of the
network [8] is:

Yo # f
=>>>>>
?

H#
h#1

wo
hf
=>>>>>
?

n#
i#1

xiw
h
i

ABBBBB
C

ABBBBB
C

, (23)

where f is a sigmoid function.
Let Yo be considered as a function of a single variable corresponding

to the connection between input unit i and hidden unit h. The derivative
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of Yo with respect to the weights of the network is:

GYo

Gwh
i

# Yo - (1 0 Yo) -wo
h - xi -

=>>>>>
?
1 0 f

=>>>>>
?

n#
i#1

xiw
h
i

ABBBBB
C

ABBBBB
C

f
=>>>>>
?

n#
i#1

xiw
h
i

ABBBBB
C

(24)

GYo

Gwo
h
# Yo - (1 0 Yo) - f

=>>>>>
?

n#
i#1

xiw
h
i

ABBBBB
C

. (25)

By the mean value theorem, and considering Yo as a function of a
single variable corresponding to the connection between input unit i and
hidden unit h, we have

Yo(w) # Yo(wh
i ) D

GYo(wh
i D ∆(w 0wh

i ))
Gwh

i

- (w 0wh
i ) (26)

where 0 < ∆ < 1. When we set w equal to zero, we obtain$$$$$Yo(0) 0 Yo(wh
i )
$$$$$ I $$$$$$$$wh

i -
GYo(wh

i )
Gwh

i

$$$$$$$$ . (27)

Assume that the sigmoid function belongs to the interval [00.5, 0.5], it
then follows that$$$$$$$$GYi(w)

Gwh
i

$$$$$$$$ I 1wo
hxi1
8

. (28)

From equations (27) and (28), then

1Yo(0) 0 Yo(wh
i )1 I

1wh
i wo

hxi1
8

. (29)

This inequality gives us an upper bound of the change in the output
of the network when the weight wh

i is eliminated. If xi ( [0, 1] then
equation (27) takes the form

1Yo(0) 0 Yo(wh
i )1 I

1wh
i wo

h1
8

. (30)

Similarly, by considering Yo as a function of a single variable v that
corresponds to the connection between hidden unit h and output unit
o, we have$$$$$$$GYi(v)

Gwo
h

$$$$$$$ I 1
8

. (31)

Hence, the change in the output of the network after the weight vo
h has

been eliminated is bounded by

1Yi(0) 0 Yi(w
o
h)1 I

1wo
h1

8
. (32)
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Equations (29) and (31) show the maximum error occurring in the
network if a connection is removed from any layer in the model.

We now describe the algorithm for reducing the redundant neurons
from the network.

1. Classify the output value of each neuron to the one cutoff from the logical
value set V as

IF oi ( [a, b] THEN vk # label([a, b]) # cutoffk.

2. Replace the value oi with the new logical value vk.

3. Construct a new decision table MDT # (U, V)D) where MDT is induced
from the regular decision table DT by replacing the set of attributes C
with the set of logical values V.

4. Apply the reduct algorithm described previously to the decision table
MDT to get a set of reducts.

5. Remove any neuron and its connections that does not exist in any of the
reducts.

5.4 Guidelines for emergent phenomena

The previously discussed characteristics of the system are also observed
to define the emergent properties. In this system, the interaction of the
dynamic representation and nonpositional interpretation provides some
innate emergent properties that assist in the acquisition of solutions
[15]. A global function emerges from the system unless this function
is not explicitly dictated in each of its components. In fact, each com-
ponent is always looking for maintaining a cooperative situation with
other components in this hybrid system. Those properties emerge not
because they were designed into the neural network itself, but because
the dynamics of the method determine them to be useful or necessary
for success. This hybrid system represents an emergent model on some
levels. First, the determination of the redundant features emerges from
the interactions between input features. Second, in the learning process
itself, the ability to recognize the pattern set (embodied in the connec-
tional topology and weights) emerges from the interactions of agents
(neurons and links). Third, once the net is trained, the appropriate pat-
tern at the output layer emerges from the interactions between agents
(neurons and links) in the static network. In addition, the adaptation of
the network structure emerges from the interactions between neurons
in the rough set environment.

The underlying strategy of emergent systems is that each neuron
should act independently to contribute to global objectives in a way
that, if sufficiently many other participating neurons acted with similar
objectives, the satisfaction of the global objectives would be assured.
Each neuron must not contribute directly to the objectives based on the
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resources that it has access to, but must anticipate the needs and poten-
tial contributions of its neighbors. Information that must be transferred
among neurons to fulfill the mission goals can be communicated when-
ever it is available, but additional synchronization and communication
to support the structure of the algorithm itself is not needed. Thus,
emergent models generally have lower communication costs than con-
ventional distributed models.

Two kinds of dynamic evolution could be considered in this hybrid
system: modification of the structure by re-organization of the acquain-
tances network, and modification of behavior. The goal here is to
demonstrate the self-organization of the rough neural network. Conse-
quently, rough neural networks need to be used in an emergent way and
perform their roles; therefore, a duplication system is required. We will
define a duplication operator that an agent can use. In the same manner,
a removable operator can be defined. This idea was first discussed in
[19] as an adaptation of a neural network structure but in a way differ-
ent from our approach: this process was under the control of an overall
system error. Nevertheless, in our hybrid system, the adaptation process
is local for the agent and no global control exists. Therefore, each agent
has the ability to produce new agents and it can remove itself from the
system only under local control. To define local control for each agent,
we assign a fitness value for each agent or neuron. This fitness value
not only depends on individual performance, but also on how this agent
performs “better” than other agents. Let us define a fitness function
in a simple form as the summation of two terms. The first term is the
performance of an agent, it is the average between the input and the
output values of this agent. The second term of the fitness function is
for measuring how this agent is better than other agents in the network.
Therefore, the fitness function can take the form:

Fag # Α1 . V D Α2 . B, (33)

where Fag is a fitness function for agent ag ( Ag, Α1 and Α2 are param-
eters, V is the average of input and output values for agent (neuron)
ag ( Ag, and B is how the agent ag is better than other agents in Ag.
In the first experiment using data from California State University, we
set V as the average of input and output values for the neuron. That is,
Vi # (outputi D inputi)/2. But for the medical dataset we change this to
be how the weight vector values that connect to this neuron are modified
after some number of iterations, and the highest value is the best one (it
has the best value of V). That is, Vi #

00'Winew 0
00'Wiold, where 00'Winew is

the weight vector that connects the lower layer to neuron i after some
number of iterations from 00'Wiold.

Depending on the value of the fitness function Fag, the agent or neu-
ron ag can be spilt into two neurons using a duplication operator, that
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is, it produces another neuron that interconnects exactly the same as its
parent because the attributes are inherited. If a neuron does not form
the correct interconnections between other neurons or it is redundant
in the network, then it will die. We will limit this property to the hid-
den layers only; the input and output layers will be fixed. We can say
that this hybrid system is not designed but evolved. From generation to
generation, the system learns its structure through interactions with its
environment. By embedding this modification within an ongoing evo-
lutionary scenario and by allowing the processes of agent/environment
interaction to take place within each agent’s lifetime, we can reliably
obtain good performance.

Some additional characteristics of the hybrid system are observed to
define the emergent properties in this system such as the following.

No agent globally controls the dynamics of the entire system. The agents
are limited and are unaware of some parts of the global system. Therefore,
each agent has a local environment. Each participant can neither read
nor write directly to agents, in other words, the system can make use of
neither global visibility nor central control.

The agents act and modify this environment locally. Each agent has
only a partial view of other agents and of the environment, in which it
is immersed, and in the absence of global control, every agent must be
able to communicate with its immediate neighbors without depending on
knowledge of the overall system topology.

Interaction is a basis mechanism for agents, and the system considers
a result as emerging from exchanges between agents. Each agent can
communicate directly only with a number of immediate neighbors that is
less than the total number of agents in the system.

The network here is a group of agents, none of which can deal with
a difficulty alone, but only do so when each cooperates. Emergence in
our model is not something unpredictable. The carving of a process in
a set of neurons gives a basis in terms of expected results and then some
events can be predicated, as they become a goal for the process. The
resulting design emerges from the various competencies of the members
of the team and is something unpredictable as to content, but not as an
expected goal and then event.

6. Experiments

If one is modeling phenomena, biological processes, or social systems
that involve emergent properties, performance may not be a major con-
cern. The purpose of the experiments described in this section is not to
propose better methods for solving the particular problem, while our
new model of rough neural networks does provide better results. In-
stead, this section tries to verify the emergent properties in this hybrid
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system. We will show the results for some different applications; namely,
a California State Univeristy dataset and two medical datasets. For com-
paring the results, we construct three models of neural networks. Model
1 is a conventional neural network, Model 2 is a standard rough neural
network as defined in [17], and Model 3 is a rough neural network with
modifications described in this paper.

6.1 California State Univeristy dataset

The data contains information about the representation of students from
California State Univeristy taking the equivalent of a 15-unit course
load. The task is to predict the volume of students for year 2000 using
data from previous years. The input to the rough neural network model
consists of the rough pattern, that is, the upper and lower bounds of
annual attendance. The data are divided into three-year sections and
the upper and lower bound of values that exist in each section is taken.
The data is for years 1991 to 2000. The data sections are: section 1,
1991–1993; section 2, 1994–1996; and section 3, 1997–1999.

For Models 2 and 3 (standard rough neural network and proposed
model), there are three rough input neurons, one for each section, and
one hidden layer with eight rough neurons. Since the output is a unique
value, the output layer uses one conventional neuron. For the conven-
tional neural network of Model 1, the inputs are the average values for
each section of data. The model consists of three conventional input
neurons, one hidden layer with eight conventional neurons, and one
conventional neuron in the output layer.

Now we will discuss the experimental results from these three mod-
els. Initially, for each network, the connections are assigned somewhat
random weights. The input training set is presented to the network sev-
eral times. Figures 2, 3, and 4 show the average global output reduction
error during the training process, taken every 1000 generations for each
neural network model. From the figures, we observe that the average
error of the proposed Model 3 appears more natural than the standard
rough neural network Model 2 and the conventional neural network
Model 1.

Table 2 compares the average errors for each neural network model
through all generations. From the table we observe that Model 2 (stan-
dard rough neural network) has the best average error and it is very
close to the average error of our new model. Results for both Models 2
and 3 are better than the results of the conventional neural network.
Table 3 shows the maximum error of the three models through 100,000
generations. Our proposed Model 3 and the standard rough neural
network Model 2 have the same maximum error value, which is bet-
ter than the error value of the conventional neural network. Table 4
shows the minimum error values through 100,000 generations for each
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Figure 2. The average error through 100,000 generations produced by Model 3.
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Figure 3. The average error through 100,000 generations produced by the stan-
dard rough neural network Model 2.
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Figure 4. The average error through 100,000 generations produced by the con-
ventional neural network Model 1.
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Model 3 Model 2 Model 1
0.00055 0.00044 0.02866

Table 2. Average error through 100,000 generations.

Model 3 Model 2 Model 1
0.00397 0.00397 0.04804

Table 3. Maximum error through 100,000 generations.

Model 3 Model 2 Model 1
0.00005 0.00020 0.02747

Table 4. Minimum error through 100,000 generations.

model. From the table we observe that our proposed Model 3 provides
very good results, the error value produced is better than the values of
Models 1 and 2.

Some emergence can be observed in our proposed model. From gen-
eration to generation, the group of agents or neurons interact with each
other. Each agent has the ability to produce itself and the ability to die
and delete itself from the network structure. Through the interactions
between agents, the weights of connections; that is, the attributes of
agents, are modified. In this experiment for the new Model 3, we find
through 100,000 generations, that agent number 6 used the duplication
operator the most at 31%. For the removable operator, neuron number
5 used it at the same rate of 31% against all agents in the network.

6.2 Meningitis dataset

We now report results of experiments on a meningitis dataset. This
data was colleted at the Medical Research Institute, Tokyo Medical and
Dental University. We modified this data to be used with our proposed
model, so we set up the attribute values as rough patterns (upper and
lower bound values).

For Models 2 and 3 (standard rough neural network and proposed
model), there are 17 rough input neurons, one for each attribute, and one
hidden layer with 51 rough neurons. Since the output is a unique value,
the output layer has one conventional neuron. For the conventional
neural network, Model 1 consists of 17 conventional input neurons,
one hidden layer with 51 conventional neurons, and one conventional
neuron in the output layer.

Initially, the connection weights are assigned somewhat random val-
ues. The input training set is presented to the network several times.
Figure 5 shows the average reduction of global output errors during the
training process that are taken every 1000 generations for each model.
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Figure 5. The average error through 100,000 generations for Models 1, 2, and 3.

Model 3 Model 2 Model 1
0.00466 0.00304 0.02050

Table 5. Average error through 100,000 generations.

Model 3 Model 2 Model 1
0.07770 0.07770 0.04234

Table 6. Maximum error through 100,000 generations.

Model 3 Model 2 Model 1
0.000348 0.00099 0.00042

Table 7. Minimum error through 100,000 generations.

From the plots, we observe that the average error of the proposed model
is close to zero and better than both the standard rough and conven-
tional neural networks.

Table 5 shows the comparison between average errors of each neural
network model through all generations. From the table we observe that
Model 2 (standard rough neural network) has the best average error.
Table 6 shows the maximum error of the three models through 100,000
generations. The standard rough neural network has the same value
as the proposed model, and the conventional neural network Model 1
has the best maximum error value. Table 7 shows the minimum error
values through 100,000 generations for each model. From the table we
observe that the proposed Model 3 has the best value.
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We observe some emergence in this model. Each neuron has the
ability to produce itself with the same connection and it has the ability
to die and delete itself from the network structure. In this experiment,
for Model 3, we find through 100,000 generations that neuron number
7 used the duplication operator the most at 21%. For the removable
operator, neuron number 43 used it the most at 22% against all agents
in the network.

6.3 Prostate cancer datasets

We report results of experiments on two medical datasets: prostate
cancer dataset PSA and biopsy dataset. The datasets were obtained
from the Department of Urology and Pathology, Kitasato University
School of Medicine, Japan. More details about the data are given in
[20, 21].

6.3.1 Prostate cancer dataset PSA
This dataset contains 178 male patients treated with a radical retropubic
prostatectomy. This data is used to predict the pathological outcome and
early biochemical failure following radical prostatectomy in Japanese
males. In this data, pathological results (e.g., maximum cancer length
in biopsy specimen and number of biopsy cores with cancer) were added
to standard clinical features (e.g., serum PSA, clinical stage, primary and
secondary Gleason grade, and Gleason sum in biopsy specimens).

The data consists of eight condition attributes and four decision at-
tributes as in Table 8. In our experiment, the whole dataset was parti-
tioned randomly into a training set (n # 89) and a testing set (n # 89).
The testing set was not seen by the network during the training phase
and is only used for testing the generalization of neural networks after
they are trained. The problem is nontrivial and difficult to solve, as the
dataset is complex and relatively small.

The target of the data is to predict the combination of four decision
attributes together by classifying data according to condition attributes.
The error is calculated as:

E ##WkEk, (34)

where Ek is the number of misclassified patients divided by the total
number of patients for decision attribute k. Wk is the decision weight
for decision attribute k. The weight values for decision attributes are as
follows: WECE # 3/22, WSV # 5/22, WNode # 8/22, and WMargin # 6/22.

In the three neural network models, the output layer contains four
conventional neurons corresponding to the decision attributes of the
dataset. The input layer in Model 1 has eight conventional neurons,
each of which corresponds to one input attribute. In the rough neural
network of Model 2, the input layer contains one conventional neuron,
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Attribute name Description
Condition attributes

Age The patient’s age.
IMX PSA Prostate specific antigen in serum.
Clin stage Clinical stage (finding of digital rectal examination).
Pos core Positive core (number of biopsy specimens with cancer).
Max ca length Maximum cancer length in biopsy specimens.
P GI Core Primary grade of cancer in biopsy specimens.
S GI Core Secondary grade of cancer in biopsy specimens.
G S Core P. GI core + S. GI core.

Decision attributes
ECE Extra capsular extension in surgical specimens.
SV Seminal vesicle invasion in surgical specimens.
Nodes Lymph node metastasis in surgical specimens.
Margin Margin in surgical specimens.

Table 8. The attribute descriptions of the PSA dataset.
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Figure 6. The rate of classification error for three models of neural networks:
Model 1: standard neural network; Model 2: rough neural network; and
Model 3: proposed model.

which corresponds to input attribute “age” and seven rough neurons.
With respect to the new Model 3, the structure of the input layer is
determined according to the result of a preprocessing rough set step.
Model 3 ignores the values of attribute “age” where it is not included
in all reduct sets.

Figure 6 shows the rate of global classification error with the training
data for the three neural network models. From the result, we observe
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Attribute name Description
Age The patient’s age.
Total PSA Prostate specific antigen.
Free PSA Free prostate specific antigen.
Free total ratio Free PSA / Total PSA.
PSA density Total PSA / Gland volume.
PSATZ Total PSA / Transitional zone volume in prostate.
Gland volume Prostate size.
TZ volume Transitional zone in prostate.
DRE Digital rectal examination.

Table 9. The attribute descriptions of the biopsy dataset.

that the maximum errors are almost the same for all three models.
For Model 1 (conventional neural network) and Model 2 (standard
rough neural network), the maximum error is 0.2176; and for Model 3
(proposed model) it is 0.1547. The convergence for Model 1 starts
after 940 iterations, while the convergence for Model 2 starts at time
540. For our proposed Model 3, the convergence happened after 970
iterations.

6.3.2 Biopsy dataset

The second dataset contains 246 patients; we randomly divide the
dataset into a training set (n # 123) and a testing set (n # 123).

The description of the attributes is shown in Table 9. The decision
attribute is the pathological result: 0 means no cancer and 1 means
cancer exists.

The output layers of all models contain one conventional neuron.
The input layer in the conventional neural network Model 1 has nine
conventional neurons, each of which corresponds to one input attribute.
In the rough neural network Model 2, the input layer contains one
conventional neuron for attribute “age”. In Model 3, we find that four
attributes will be not included in any of the reduct sets; namely, Total
PSA, Free PSA, PSATZ density, and age. Therefore, we will ignore one
attribute only because removing more than one attribute from this data
is not acceptable from the medical domain. Then, we will omit the
attribute age.

Figure 7 shows the rate of global classification error with the training
data for the three neural network models. Table 10 has information
about the classification error rate for the training and testing data with
respect to each model for both datasets. We observe that the best
classification error for the training and testing data is obtained from the
proposed method. Additionally, the error of the rough neural network
Model 2 is better than the conventional neural network Model 1.

Figure 8 illustrates the difference in the classification error arising
from the use of a pruning algorithm to reduce the size of the network.
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Figure 7. The rate of classification error for the three neural network models.

PSA dataset Biopsy dataset
Model Training Testing Training Testing

1. Standard neural network 0.1609 0.1899 0.1229 0.1557
2. Conventional rough neural network 0.1649 0.1742 0.1475 0.1475
3. Proposed rough neural network 0.0082 0.0787 0.0656 0.0574

Table 10. The result of the three neural network models with the two medical
datasets.
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Figure 8. The difference error is caused by pruning the network.

We observe from the figure that the maximum error is 0.008 when one
or more connections are removed from the network. This indicates that
the reducing algorithm did not affect the global error of the network
very much.

The results showed high sensitivity and specificity rates in predicting
biopsy result and recurrence after radical prostatectomy. The proposed
Model 3 showed the highest accuracy for predicting the pathological
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stage after radical surgery and biopsy results. As a new strategy, this
model is essential for diagnosis and treatment selection of prostate can-
cer. Therefore, the proposed model represents a new, good method for
classification and decision making algorithms. These results suggest that
our method can be considered as a promising tool for extracting laws
from experimental datasets and its performance is fully comparable with
the performance of other systems. The application we introduced; that
is, the combination of rough set theory and artificial neural networks,
represents emergent computation in the strict sense.

7. Conclusions

In recent years, an approach called “emergent computation” has gained
popularity in a variety of fields. The concept of emergence has been
focused as a result of research in nonlinear dynamics, artificial life, com-
plex systems, and behavior-based systems. This paper thus provides a
way in which the development of complex intelligent behaviors might
involve evolutionary processes, learning processes, agent/environment
interaction, and representation development. The learning method pro-
vided by the rough set forms a bridge between neural network paradigms
on the one hand, and the representation list paradigm on the other.

We begin this paper with an introduction to emergence and illus-
trate properties of an emergent model with some examples of existing
emergent systems. Following that, we summarized the approach of com-
bining rough set theory and artificial neural networks and described this
hybrid system. In the next part of this paper, we illustrated the emer-
gent properties that exist in rough neural networks, and showed how to
exploit emergence to extend problem-solving capabilities by combining
rough set theory and artificial neural networks. Two new operators
were added: duplicate and remove, and new functions were defined to
assign fitness values for each neuron in the network. By using these
new modifications, rough neural networks can perform their roles and
be used in an emergent way. In the last part of the paper, we described
experiments with real-life data from California State University and
some medical datasets. We compared the results of conventional neural
networks, rough neural networks, and our new model of rough neural
networks.
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