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A simulation of crowd movement in a city is studied under various as-
sumptions about interactions between people. We find, in general, that
there are two modes of steady-state behavior. The crowd may be dis-
tributed across the city, or it may end up gathered in one place. A
mathematical model describes the long-term behavior and shows that this
change in behavior is sensitive to a critical parameter setting in our model.
Some alternative interpretations of the results are formulated.

1. Introduction

In Spanish cities, on summer nights, crowds of young people wander the
streets in search of a party. Often accompanied by “binge” drinking,
this phenomenon, known as El Botellón (the large bottle) is perceived
by local governments as a significant social problem [1]. One of the
key problems is that it is impossible to predict where a party will take
place. The people walk from square to square, meeting their friends
and stopping to drink. When a critical mass of people happen to arrive
in the same square at the same time, a party spontaneously erupts.

In an attempt to understand the dynamics of the crowds of people as
they move through a city, we have developed a simulation tool [2] for
running experiments. This has led to a mathematical model of the social
system that helps us to understand the conditions under which parties
self-organize. It turns out there is a critical threshold in the number
of people that can be accomodated by any area of a city. Below this
threshold, people can move freely about and are distributed around the
different squares. Above the threshold, large crowds start gathering in
a few places, which then act as bottle-necks. Our model helps predict
the conditions under which this critical phenomenon occurs.

The use of agent-based systems has been increasing within the social
sciences in recent years [3]. In some systems, agents are complex pieces
of code with sophisticated rules of behavior and interaction [4, 5]. How-
ever, we take the view that one should try to come up with the simplest
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possible set of rules that generate the desired behavior (at least qualita-
tively). Examples of similar work on the movement of people (though
more fine-grained than ours) can be found in [6, 7].

Notation

Throughout this paper, vectors will be in bold type. The notation [expr]
evaluates to one if the enclosed expression expr is a true statement,
otherwise it evaluates to zero.

2. Simulating crowd movement

We model the city as an undirected graph. The vertices are the squares
where people gather. Vertices are connected by edges if the correspond-
ing squares are directly connected by a street. People are simulated by
“agents” using the following simple set of rules.

1. Agents are located in the squares.

2. The probability that an agent remains in a square depends on how many
other agents are in the same square.

3. Some squares have bars. This increases the probability that an agent
remains.

4. If an agent decides to move, it moves to a neighboring square.

5. An agent is more likely to move to a square with a bar, than one without
a bar.

Let us first consider a simple model in which there are no bars. To
capture an agent’s behavior, we need to specify the probability that it
will remain in a square. We suppose there is a parameter c (called the
chat probability) which represents the probability that two agents will
talk to each other. If an agent finds no one to talk to in a square, it
leaves and moves to a neighboring square. If a square contains x > 0
agents the probability that an agent leaves is given by (1 " c)x"1. In
the case that an agent leaves, one of the neighboring squares is chosen
uniformly at random.

Now consider the effect of adding bars to the model. These alter
things in two ways: (1) They make a square more attractive to remain
in. (2) They make a square more attractive to move to. We measure
the attractiveness of bars by a parameter Α. The chat probability for an
agent in a square with a bar is Αc. The probability that a moving agent
goes to a square with a bar is Α times that of a square without a bar.

A computer simulation of this system has been implemented. Some
experimental results were presented in [2]. These results are analyzed
in more detail below, using a mathematical model.
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3. Predicting steady-state behavior

We number the vertices of the graph $1, 2,%, n&. Let pi be the number of
agents in square i. Then the state of the system at any discrete time step
is given by the vector p ' (p1, p2,%, pn). The total number of people in
the city is N ' !n

i'1 pi. We let the attractiveness of square i be denoted
by Αi.

Assume, to begin with, that there are no bars, that is, Αi ' 1 for all i.
Then the expected number of agents that will leave a square at a given
time step t is given by the function

fi(t) ' pi(t)(1 " c)pi(t)"1 (1)

and we write f (t) ' (f1(t), f2(t),%, fn(t)).
Let A be the matrix with i, j entries

Ai,j ' [i is connected to j]/dj (2)

where dj is the degree of vertex j. Ai,j thus gives the probability that
an agent will move from square j to square i. We can then write the
expected distribution of agents at a given time step as:

p(t ( 1) ' p(t) " f (t) ( Af (t). (3)

It is clear from equation (1) that if the number of agents pi in a
square is large, then the number that are expected to leave is very small
(fi ) 0 as pi ) *). This means that once a sufficient number of people
have gathered in a square, it will take a long time for the crowd to
disperse. However, there is also the possibility of a different kind of
steady-state behavior. Equation (3) tells us that we will have a steady
state when Af ' f . That is, when f is an eigenvector of the matrix A
corresponding to eigenvalue one. We show that d ' (d1, d2,%, dn) is
such an eigenvector:

(Ad)i '"
j

Ai,jdj '"
j

[i is connected to j] ' di. (4)

So a steady-state behavior of the system arises when the number of peo-
ple leaving a square (which must equal the number of people arriving)
is proportional to the number of streets connected to that square. It is
interesting to observe that this steady-state distribution does not depend
on the detailed topology of the graph: it only depends on the degrees of
the vertices, irrespective of how they are connected.

We now have two possible long-term behaviors for the system: (1) All
the agents can gather into large clumps in a few squares (corresponding
to the spontaneous emergence of a party). (2) They can flow freely
around the city, in a way described by the eigenvector just calculated.
It is of great importance for the social problem of El Botellón to un-
derstand the conditions under which each of these states arises. We
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can answer this question in part by considering the stability of the fixed
point p, which is the solution to the steady-state equations

pi(1 " c)pi"1 ' di. (5)

Formally, we define an operator G + !n ) !n by

G(p) ' p " f (p) ( Af (p) (6)

so that the expected distribution at time t ( 1 is p(t ( 1) ' G(p(t)). The
steady-state distribution given by equation (5) is then a fixed point of
G, that is, it satisfies G(p) ' p. We now give a condition under which
this fixed point becomes unstable, under the assumption that the graph
is regular (i.e., all vertices have the same degree).

Theorem 1. Suppose the graph of the city is regular, and that there
are no bars. Then the fixed-point distribution given by equation (5) is
unstable if c > n/N.

Proof. Suppose each vertex has degree d. Calculating the entries of the
Jacobian of G gives us:

(,G)i,j '
,Gi

,pj
' # 1 " f -i if i ' j

[i is connected to j] f -j
d if i . j

(7)

where f -i ' fi(log (1 " c)(1/pi). Now, at the fixed-point distribution, the
number of agents in a square depends only on the degree of that square.
Since these are equal for all squares, the population must be distributed
evenly throughout the city, that is, at the fixed point pi ' N/n for all i.
Moreover, we know that fi(p) ' d at the fixed point for all i. So at the
fixed point, the entries of the Jacobian are:

(,G)i,j ' # 1 " Β if i ' j
[i is connected to j]Β/d if i . j (8)

where Β ' d(log (1 " c) ( n/N).
Let Λ be any eigenvalue of the Jacobian matrix ,G evaluated at the

fixed point. By the Gershgorin Circle Theorem (see page 685 of [8]),
there exists a k such that$$$$(,G)k,k " Λ

$$$$ 1"
j.k

$$$$(,G)k,j
$$$$ . (9)

Therefore$$$1 " Β " Λ$$$ 1"
j.k

$$$$$$$[k is connected to j]
Β
d

$$$$$$$ ' 2Β2. (10)

Therefore, if we can show that Β < 0, then we have that all the eigen-
values are greater than or equal to one, which makes the fixed point
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unstable. Now

c > n/N3 c > 1 " e"n/N

3 log (1 " c) ( n/N < 0
3 Β < 0. (11)

We consider how accurate this bound is experimentally in section 4.
To adapt this model to include bars, we have to update the formula

for the number of people expected to leave a square (equation (1)):

fi(t) ' pi(t)(1 " Αic)pi(t)"1 (12)

and the probabilities of moving from one square to another (equa-
tion (2)):

Ai,j '
[i is connected to j]Αj

vj
(13)

where vj ' !k[k is connected to j]Αk is a normalizing factor. With these
changes, the equation of dynamics (equation (3)) still applies, and there
is still a fixed point satisfying Af ' f . We now show that the vector
v ' (v1, v2,%, vn) is such an eigenvector of A (with bars) with eigenvalue
one:

(Av)i '"
j

Ai,jvj '"
j

[i is connected to j]Αj ' vi. (14)

This fixed point tells us that, in the steady state, there will be more traffic
through squares connecting directly with squares of high attractiveness
(i.e., with bars), and that more people will be found in squares of
high attractiveness. The stability of this fixed point is more difficult to
analyze, but there again seems to be a critical transition value for c.

4. Empirical observations

We have conducted a number of experiments with different city topolo-
gies, varying the number of agents, and their probability of chatting.
Our simulation is written in Java, using the RePast libraries.1 We have
collected data from many different runs under different parameter set-
tings, in an attempt to understand the characteristics of such systems.

As predicted, we observe two distinct modes of long-term behavior.
If the chat probability c is sufficiently small, then the agents will tend to
diffuse around the city. The number of agents that, on average, are in
a square depends on the number of streets leading to that square, and
whether or not it contains a bar. A square will have a higher long-term

1http://repast.sourceforge.net/
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Figure 1. Screenshots of simulator showing long-term behavior with a low chat
probability. Left: with no bars. Right: with one bar.

population if it is highly connected to other squares, and if it contains
a bar. This situation corresponds to a quiet night in the city, where
people wander freely. This is illustrated by the results in Figure 1. In
this example, there are nine squares in a three-by-three grid, with no
bars. The population size is 100 and c ' 0.005. The population of
each square is shown for a typical run. The effect of adding a bar to the
central square is also shown. The population is still distributed about
the city but with more people gathered in the square with the bar.

However, if the chat probability c is above a critical value, then
all the agents gather very quickly together into a single square. This
corresponds to the spontaneous self-organization of a party. This phe-
nomenon occurs even if there are no bars around which such clusters
might be expected to form.

To test our critical bound c > n/N for the emergence of such clusters
in regular graphs we ran experiments on a city comprising only four
squares connected in a ring. We varied the population size and the
chat probability. For each run, we began with the entire population
in a specified square. Throughout the run (which took 100,000 ticks,
each tick corresponding to one action by a single agent), we observed
the proportion of the population that remained in that square. This
number was averaged over the entire run. The results are shown in
Figure 2. A clear phase transition is demonstrated. The bound c ' n/N
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Figure 2. Proportion of population remaining in their initial square (averaged
over entire run). The vertical line indicates the estimate of the critical chat
probability in each case.

gives a good estimate for the critical value of the chat probability, except
when the population is small, in which case it overestimates it.

5. Conclusions

We have presented a multi-agent model of crowd movement through
a city, in which the behaviors of the agents depend on their mutual
interactions (determined by the probability c which measures their will-
ingness to interact). It is found that this parameter c has a critical
threshold which separates two distinct modes of behavior. Below the
threshold, the agents move freely around the city. Above the threshold,
they clump together in a few isolated squares. This emergent behav-
ior captures (qualitatively, at least) the spontaneous self-organization of
parties, known as El Botellón.

There are, however, alternative interpretations. One can view the
vertices of the graph as representing different possible states in which
the agents may find themselves. Edges between graphs represent possible
changes of state. The parameter c then represents the conservatism of
an agent, that is, the tendency of an agent to remain in the same state as
others. Under this view, the system may be seen as a model of consumer
decisions between competing products, the vertices representing product
choices. An agent moves from one vertex to another if it changes its
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choice of product. The ability of this system to collapse into a single
product (rather than support a diversity of competitors) is similar to
Arthur’s economic model of “increasing returns” [9].
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