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The sequences generated by a neuronal recurrence equation with memory
of the form x(n) " 1[!h

i"1 aix(n# i)#Θ], where h is the size of the memory,
are studied. It is shown that in the case where all the parameters (ai)1%i%h
are positive reals, there exists a neuronal recurrence equation of memory

length h that generates a sequence of period &(e
3
"

h(ln(h))2 ). This result
shows that in the case where all the weighting coefficients are positive
reals, the neuronal recurrence equation exhibits a complex behavior.

1. Introduction

In [1] it is suggested that the dynamic behavior of a single neuron
with memory length k that does not interact with other neurons can be
modeled by the neuronal recurrence equation:

x(n) " 1
'(((((
)

k#
i"1

aix(n # i) # Θ
*+++++
,

(1)

where we have the following.

x(n) is a variable representing the state of the neuron at time t " n,
x(n) - .0, 1/.

k is the memory length, that is to say, the state of the neuron at time
t " n depends on the state assumed by the neuron at the k previous steps
t " n # 1, . . . , n # k.

The values ai (i " 1, . . . , k) are real numbers called the weighting coeffi-
cients; ai represents the influence of the state of the neuron at time n# i on
the state of the neuron at time n. That influence is said to be excitatory if
ai > 0 , inhibitory if ai < 0, and null if ai is equal to zero.

!Electronic mail address: ndoundam@uycdc.uninet.cm. Also affiliated with LRI, Uni-
versité Paris-Sud XI, Bât 490, 91405 Orsay Cedex, Paris, France and The Abdus Salam
International Centre for Theoretical Physics, Trieste, Italy.
!Electronic mail address: tchuente@camnet.cm.

Complex Systems, 15 (2004) 79–88; 0 2004 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.15.1.79



80 R. Ndoundam and M. Tchuente

Θ is a real number called the threshold.

1[u] " 0 if u < 0, and 1[u] " 1 if u 1 0.

The system obtained by interconnecting several neurons is called a neu-
ral network (NN). Such networks were introduced in [2], and are quite
powerful. Indeed, it can be shown that they can be used to simulate any
Turing machine. More recently, NNs have been studied extensively as
tools for solving various problems such as classification, speech recog-
nition, and image processing. The application field of the threshold
functions is large. The spin moment of the spin glass is one example
from solid state physics that has been widely simulated by NNs. In
electronics, for instance, a threshold function represents a transistor; in
social science a threshold function is often used to represent vote laws.

Let p and T be two positive integers such that p > 0 and T 1 0.
Equation (1) is said to be of period p and transient T if and only if:

Y(p 2 T) " Y(T)

" T3 and p3(T3, p3) 4 (T, p) T 1 T3 and p 1 p3 such that Y(p3 2T3) " Y(T3)

where Y(t) " (x(t), x(t#1), . . . , x(t#k22), x(t #k21)). The period and
transient of sequences generated by a neuron are good measures of the
complexity of the behavior of the neuron.

We are interested in the longest period LP(k) that can be generated
by a neuronal recurrence equation with memory k. In [3], it was con-
jectured that if (ai)1%i%k - !, then LP(k) % 2k. This conjecture has been
disproved. The best known lower bound in LP(k) is O(e

"
k ln(k)), which

was proved in [4].
When all the weighting coefficients are positive, the influence of the

previous states of a neuron (at time n # k, n # k 2 1, . . . , n # 2, n # 1) on
its state at time n is excitatory, and from a physiological point of view,
it is important to know the behavior of that class of neuron. In [3], it
was also conjectured that if 5 i, i " 1, . . . , k, ai - !

2 (i.e., ai 1 0), then
LP(k) % k. This conjecture has been disproved in [5] where a neuronal
recurrence equation of memory length k and of period O(k3) has been
exhibited.

In this paper, we exhibit a neuronal recurrence equation of memory
length h where all the weighting coefficients are strictly positive that

generates a sequence of period &(e
3
"

h(ln(h))2
). This result more strongly

contradicts the conjecture than the aforementioned counter example [5].

2. Neuronal recurrence equation with positive weighting
coefficients

Let k be a positive integer. For a vector a - !k, a real number Θ - !,
and a vector z - .0, 1/k we define the sequence .x(n) 6 n - "/ by the
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following recurrence

x(t) "
788988
:

z(t) t - .0, . . . , k # 1/
1 $!k

i"1 aix(t # i) # Θ% t 1 k.
(2)

We denote by S(a, Θ, z) the sequence generated by equation (2) and
T(a, Θ, z) its period.

Let m be a positive integer greater than one, we denote the cardinality
of the set ! " .p 6 p prime and 2m < p < 3m/ by Ρ(m). Let us denote
with p1, . . . , pΡ(m) the prime numbers lying in .2m2 1, 2m2 2, . . . , 3m#
2, 3m#1/ and the sequence .Αi 6 1 % i % Ρ(m)/ is defined as Αi " 3m#pi,
1 % i % Ρ(m).

It is easy to check that .2m 2 1, 2m 2 2, . . . , 3m # 2, 3m # 1/ contains
at most &(m # 1)/2' odd integers. It follows that

Ρ(m) % (m # 1
2
) . (3)

We set k " (6m # 1)Ρ(m) and 5 i - ", 1 % i % Ρ(m), we define:

Μ(m,Αi) " * k
3m # Αi

+
Β(m,Αi) " k # ((3m # Αi)Μ(m,Αi)).

From the previous definitions, we have k " ((3m#Αi)Μ(m,Αi))2Β(m,Αi).
It is clear that 5 i - ", 1 % i % Ρ(m):

2m 2 1 % 3m # Αi % 3m # 1.

This implies

(6m # 1)Ρ(m)
3m # 1

%
k

3m # Αi
%

(6m # 1)Ρ(m)
2m 2 1

.

Therefore

2Ρ(m) < Μ(m,Αi) < 3Ρ(m). (4)

5 i - ", 1 % i % Ρ(m), we want to construct a neuronal recurrence
equation .xΑi (n) 6 n 1 0/ with excitatory memory of length k that
evolves as follows:

00 . . .0!"""""#"""""$
Β(m,Αi )

100 . . .0!"""""""#"""""""$
3m#Αi

100 . . .0!"""""""#"""""""$
3m#Αi

% 100 . . .0!"""""""#"""""""$
3m#Αi

% 100 . . .0!"""""""#"""""""$
3m#Αi

% (5)

and which describes a cycle of length 3m # Αi " pi.
5 i - ", 1 % i % Ρ(m), let wΑi - .0, 1/k be the vector defined by

wΑi (0) . . .wΑi(k # 1) " 0 . . .0!""""#""""$
Β(m,Αi)

10 . . .0!"""""#"""""$
pi

% 10 . . .0!"""""#"""""$
pi

.

!""""""""""""""""""#""""""""""""""""""$
Μ(m,Αi)pi

(6)
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In other words, wΑi is defined by:

wΑi(j) "
788988
:

1 if ? ", 0 % " % Μ(m,Αi) # 1 such that j " Β(m,Αi) 2 "pi

0 otherwise.

Let Γ be a real number satisfying Γ > 0. We define the neuronal recur-
rence equation .xΑi (n) 6 n 1 0/ by the following recurrence:

xΑi (t) "
788988
:

wΑi (t) t - .0, . . . , k # 1/
1 $!k

j"1 ājx
Αi (t # j) # Θ̄% t 1 k

(7)

where

āj "
788988
:

Γ if j - F
0 if j - G

Pos(Αi) " .jpi 6 j " 1, . . . , 2Ρ(m)/
" .pi, 2pi, . . . , (#1 2 2Ρ(m))pi, 2Ρ(m)pi/, 1 % i % Ρ(m)

D " .i 6 i " 1, . . . , k/ " .1, 2, . . . , k # 1, k/

F "
Ρ(m),
i"1

Pos(Αi)

G " D - F
Θ̄ " Ρ(m)Γ.

By definition Pos(Αi) represents the set of indices j, 1 % j % k such that
xΑi (k # j) " 1.

From the definition of Pos(Αi) and from equation (6), one can easily
verify that

j - Pos(Αi) A xΑi (k # j) " 1 (8)
j - D - Pos(Αi) A xΑi (k # j) " 0. (9)

5 d - ", 0 < d < pi, we also denote PPos(Αi, d) as the set of indices j
such that xΑi (k 2 d # j) " 1, in other words:

PPos(Αi, d) " .j 6 xΑi (k 2 d # j) " 1 and 1 % j % k/.

5 i, d - ", 1 % i % Ρ(m), and 0 < d < pi, we denote:

Q(Αi, d) " .d 2 jpi 6 j " 0, 1, . . . , Μ(m,Αi)/, 0 < d % Β(m,Αi)
Q(Αi, d) " .d 2 jpi 6 j " 0, 1, . . . ,#1 2 Μ(m,Αi)/, Β(m,Αi) < d < pi

E(Αi, d) " Q(Αi, d) B F
z(Αi, d) " card E(Αi, d).
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The neuronal recurrence equation .xΑi (n) 6 n 1 0/ with excitatory mem-
ory of length k is defined by equations (6) and (7).

We will show that the neuronal recurrence equation .xΑi (n) 6 n 1 0/
evolves as specified in equation (5). An important property is presented
in the following proposition.

Proposition 1. 5 i - ", 1 % i % Ρ(m) and 5 d - ", 1 % d < pi:

z(Αi, d) % Ρ(m) # 1.

Proof. The proof will be done by contradiction. Let us suppose that:

z(Αi, d) 1 Ρ(m). (10)

By considering the fact that 0 < d < pi, we deduce that:

Q(Αi, d) B Pos(Αi) " ∅. (11)

Equations (10) and (11) imply that ? " - ", 1 % " % Ρ(m) and " 4 i such
that card(Q(Αi, d) B Pos(Α")) 1 2.

Consequently, there exists j1, j2 - .0, 1, . . . , Μ(m,Αi)/, j1 4 j2 such
that d 2 (j1 C pi) - Pos(Α") and d 2 (j2 C pi) - Pos(Α"). We have the
following.

d 2 (j1 C pi) - Pos(Α") implies that ? c1 - ", 1 % c1 % 2Ρ(m) such that:

d 2 (j1 C pi) " c1 C p". (12)

d 2 (j2 C pi) - Pos(Α") implies that ? c2 - ", 1 % c2 % 2Ρ(m) such that:

d 2 (j2 C pi) " c2 C p". (13)

j1 4 j2 implies that c1 4 c2. From equations (12) and (13), we deduce
that:

(j1 # j2)pi " (c1 # c2)p". (14)

1 % c1, c2 % 2Ρ(m), and c1 4 c2 imply that:

0 < Dc1 # c2D % 2Ρ(m) % 2 (m # 1
2
) . (15)

j1, j2 - .0, 1, . . . , Μ(m,Αi)/ and j1 4 j2 imply that:

0 < Dj1 # j2D % Μ(m,Αi) % 3Ρ(m) % 3 (m # 1
2
) . (16)
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From equation (14), we can deduce that:

j1 # j2 is a multiple of p" (17)

c1 # c2 is a multiple of pi. (18)

From the fact that 2m 2 1 % pi, p" % 3m # 1, from equation (15), equa-
tion (16), equation (17), and equation (18) we have a contradiction. #

The following lemma characterizes the evolution of the sequence
.xΑi (n) 6 n 1 0/ at time t " k.

Lemma 1. xΑi (k) " 1.

Proof. We have:

k#
j"1

ājx
Αi (k # j) " #

j-Pos(Αi)

ājx
Αi (k # j) 2 #

j-D-Pos(Αi)

ājx
Αi (k # j)

" #
j-Pos(Αi)

ājx
Αi (k # j) by application of equation (9)

" #
j-Pos(Αi)

āj by application of equation (8)

" card(Pos(Αi)) C Γ
" 2Ρ(m)Γ. (19)

It follows that:

xΑi (k) " 1
'((((((
)

k#
j"1

ājx
Αi (k # j) # Θ̄

*++++++
,

" 1 .2Θ̄ # Θ̄/ by application of equation (19)

" 1. #

From Lemma 1 and equation (6), it is easy to verify that

PPos(Αi, 1) " Q(Αi, 1). (20)

From the definition of E(Αi, 1), from equation (6), from equation (20),
and from Lemma 1, we check easily that:

" - E(Αi, 1) A xΑi (k 2 1 # ") " 1 and ā" " Γ (21)
" - D - E(Αi, 1) A xΑi (k 2 1 # ") " 0 or ā" " 0. (22)

The values of the sequence .xΑi (n) 6 n 1 0/ at time t " k21, . . . , k#12pi
are given by the following lemma.

Lemma 2. 5 t - " such that 1 % t % 3m#1#Αi, we have xΑi (k2 t) " 0.
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Proof. The result follows from the definitions of E(Αi, d), D, z(Αi, d),
and by application of Proposition 1. #

It is easy to verify that 5 i - ", 1 % i % Ρ(m), we have:

PPos(Αi, j) " Q(Αi, j) 5 j, 1 % j % 3m # 1 # Αi.

Lemma 3. There exists ā, wΑi - !k with āj 1 0 for every j " 1, . . . , k,
and Θ̄ - ! such that

T(ā, Θ̄, wΑi) " pi.

Proof. By application of Lemmas 1 and 2 we deduce the result. #

We showed that the recurrence neuronal equation .xΑi (n) 6 n 1 0/
with excitatory memory of length k describes a cycle of length pi and
evolves as described in equation (5).

From line 11 to line 15 of page 15 in [6], it is written:

This shows that, if there is a neuronal recurrence equation with
memory length k that generates sequences of periods p1, . . . , pr,
then there is a neuronal recurrence equation with memory length
kr that generates a sequence of period lcm(p1, . . . , pr)r, where lcm
denotes the least common multiple.

This allows us to write the following fundamental lemma of composition
of a neuronal recurrence equation.

Lemma 4. [6] If there is a neuronal recurrence equation with memory
length k that generates sequences of periods p1, p2, . . . , pr, then there is
a neuronal recurrence equation with memory length kr that generates a
sequence of period r E lcm(p1, . . . , pr).

The following lemma is also shown.

Lemma 5. [7] If there is neuronal recurrence equation with memory
length k that generates a sequence .x$(n) 6 n 1 0/, 1 % $ % g of transient
length T$ and of period p$, then there is a neuronal recurrence equation
with memory length kg that generates a sequence of transient length
g Emax(T1, T2, . . . , Tg) and period of length g E lcm(p1, p2, . . . , pg).

Now, we want to build a neuronal recurrence equation with exci-
tatory memory of length kΡ(m) that describes a cycle of length Ρ(m) E
lcm(p1, p2, . . . , pΡ(m)). Let us denote Λ(m) " G

Ρ(m)
i"1 pi and h(m) " kΡ(m) "

(6m # 1) E (Ρ(m))2.

Corollary 1. For every positive integer m, m 1 2, there exists c - !h(m),
Θ̄ - !, and v - .0, 1/h(m) such that ci 1 0 for every i " 1, . . . , h(m) and
with T(c, Θ̄, v) " Ρ(m)Λ(m).
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Proof. From Lemma 3, we know that for 3m # Αi - ! we have that
T(ā, Θ̄, wΑi ) " 3m#Αi with āj 1 0 for every j " 1, . . . , k. We construct the
vector c as in the fundamental lemma of composition of automata [6].
By construction, the vector c satisfies ci 1 0, for every i " 1, . . . , h(m).
From wΑi with 3m#Αi - !, we construct v as in the fundamental lemma
of composition of automata [6]. By application of Lemma 4 or 5, we
deduce that T(c, Θ̄, v) " Ρ(m)Λ(m). #

The technique used in Corollary 1 defines several coefficients ci as
zero. We now show that it is possible to modify the coefficients (ci) and
ensure that all of them are strictly positive.

Corollary 2. For every positive integer m, m 1 2 there exists d - !h(m),
Θ3 - !, and v3 - .0, 1/h(m) such that di > 0 for every i " 1, . . . , h(m) and
with T(d, Θ3, v3) " Ρ(m)Λ(m).

Proof. It suffices to apply Proposition 1 of [5] to Corollary 1. #

Notation 1.

Π(x) is the number of prime numbers less than or equal to x.

I(x) " !p%x, p prime ln(p).

In [8], it is estimated that:

I(x) < x 01 2 1
2 ln(x)

1 for 1 < x (23)

x 01 # 1
ln(x)

1 < I(x) for 41 % x. (24)

From these estimations, we deduce that for x 1 e5, we have:

2
10

x < I(3x) # I(2x) <
17
10

x. (25)

This allows us to state the result in Corollary 3.

Corollary 3. 5 m 1 e5, e0.2m < 2
2m<p<3m, p prime

p < e1.7m. #

From estimations in [8], we have:

Π(x) <
1.25506x

ln(x)
for 1 < x. (26)
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It follows that

h(m) " (6m # 1) JΡ(m)K2

< 6m C JΠ(3m)K2 because Ρ(m) % Π(3m)

< 6m 01.25506 C 3 Cm
ln(3m)

12
<

85.0595m3.ln(3m)/2
<

85.0595m3.ln(m)/2 .

We deduce

m3 >
h(m) .ln(m)/2

85.0595

m >
3

3
h(m) .ln(m)/2

85.0595

m >
3

4
h(m) 0ln 0 3

5
h(m)(ln(m))2

85.0595 112
85.0595

m >
3

4
h(m) $ln $ h(m)(ln(m))2

85.0595 %%2
32 C 85.0595

.

This allows us to deduce that:

m " & 0 3
5

h(m)(ln(h(m)))21 . (27)

On the basis of Corollary 3 and equation (27), we deduce Corollary 4.

Corollary 4. 2
2m<p<3m, p prime

p " & 0e 3
"

h(m) (ln(h(m)))2 1 .
Theorem 1. For every positive integer m there exists d - !h(m), Θ3 - !,
and v3 - .0, 1/h(m) such that di > 0 for every i " 1, . . . , h(m) and with

T(d, Θ3, v3) " & 0e 3
"

h(m) (ln(h(m)))2 1 .
Proof. From Corollaries 4 and 2, we deduce the result. #

3. Conclusion

The existence of a neuronal recurrence equation of memory length

h(m) which describes a cycle of length & 0e 3
"

h(m) (ln(h(m)))2 1 shows that
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the behavior of neuronal recurrence equations is complex when all the
weighting coefficients are positive. The technique used is inscribed in the
framework of structural construction. Structural construction methods
are the general and more powerful tools used in the study of sequences
generated by neuronal recurrence equations [7, 9].
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