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In this paper cellular automata generated over group alphabets are exam-
ined. For abelian groups and numerous local update rules, time evolution
is additive and properties such as reversibility of systems can be examined
using algebraic techniques. In particular, a necessary and sufficient con-
dition for the reversibility of a finite one-dimensional cellular automata
generated over a finite cyclic group using a 2-rule is provided. Finally,
evolutions that respect permutations of the cellular configurations are
introduced and examined.

1. Introduction

A cellular automaton A is a discrete dynamical system consisting of a
lattice of cells, where each cell assumes values from some finite alpha-
bet, and a local update rule that determines the value of each cell at
the next time step. The update rule is a function defined in terms of
the neighbors of the cell in question. Updates are performed in parallel
so that all cells are updated simultaneously. One problem encountered
when studying cellular automata (CA) is that, for a fixed alphabet, the
number of possible states grows exponentially with the number of cells.
This makes understanding global properties of such systems difficult.
One of the goals of CA research is to understand the dynamics of large
systems without having to perform the evolution computations on every
possible initial state. For many systems (e.g., those capable of universal
computation) shortcut prediction techniques are not possible. Even for
many finite systems, it may be quite cumbersome to describe a system by
direct simulation. In this paper we focus on CA where algebraic tech-
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niques can provide predictive power and avoid the necessity of “brute
force” simulation.

Additive CA have been studied extensively in the literature since these
systems obey a superposition principle. That is, if a binary operation + is
defined on the states, s1 # w1 and s2 # w2, then s1$s2 # w1$w2. Here
s1, s2, w1, and w2 are states and # denotes one step of time evolution.
The advantage of an additive system is that the evolution of complex
states can be derived by decomposing the states into simple “seeds,”
understanding how the seeds evolve, and then adding the evolved states
together using the binary operation. In [1] global properties of finite
additive systems are studied via their characteristic polynomials and
updates are viewed as a dipolynomial multiplication. In this setting,
algebraic techniques are used to understand various global properties,
including transient and periodic behavior, of numerous systems. In
[2] a systematic treatment of linear and additive automata over binary
alphabets is provided, including group CA where the evolution transfor-
mation T is used to form a cyclic group. In particular, additive CA over
finite fields have received much attention, in large part because of the
availability of linear algebra. However, much of the analysis also can be
applied to CA generated over groups, with some minor modifications.

In this paper we consider CA generated over a group alphabet. Usu-
ally, we consider abelian groups and local update rules that are additive.
Our motivation is that, in addition to using algebraic techniques to an-
alyze certain systems, these automata often inherit algebraic structure
and properties of their own. When viewed as an algebraic structure,
these systems can be better understood using techniques from modern
algebra. This approach is taken in [3] where certain additive CA are
viewed as free R-modules, where R is taken to be a commutative ring,
usually finite-dimensional over a field. Evolutions that define linear
transformations of the system are considered. The state transition dia-
gram is recovered by examining properties of this map. In particular, the
in-degree of the nonGarden of Eden states is shown to be the cardinality
of the kernel of evolution.

Next let us fix some notation. Suppose A is a cellular automaton
(finite or infinite of any dimension) generated over the group (G, !).
Let at

i % G denote the value of cell i at time t. Throughout this paper
an n-rule will be a local update rule defined by multiplying n different
neighboring cell values of cell i using group multiplication. However,
these do not necessarily need to be the closest n neighbors to cell i. For
instance, at$1

i & at
i'2!at

i !a
t
i$1 and at$1

i & at
i$1!a

t
i$2!a

t
i$4 are both examples

of 3-rules for one-dimensional CA. at$1
i, j & at

i'1, j ! at
i, j$2 ! at

i, j ! at
i'2, j$1

is a 4-rule for a two-dimensional cellular automaton on a checkerboard
grid. When G is abelian we will write the group operation as +. A state
of the system is a configuration where each cell has a specific value.
CA can be finite or infinite, depending on the number of cells in the
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lattice. In the finite case, periodic boundary conditions can be used so
that each cell has the same number of neighboring cells. The null state
(or dead state) is the state where every cell value is the group identity.
For example, if we are using the cyclic group !n for an alphabet, each
cell value is the equivalence class of 0 for the null state. If !2 ( !2 is
used, then each cell value is (0,0) for the null state. The update rules
in this paper always satisfy the quiescence condition, that is, the rules
always map the null state to the null state.

We intend for this paper to be accessible to researchers from a variety
of disciplines, including physicists, computer scientists, and mathemati-
cians. While we do assume some familiarity with group theory, the
presentation should be at a level appropriate for researchers from nu-
merous backgrounds.

2. The evolution homomorphism

Suppose that A is an n-dimensional cellular automaton, finite or infinite.
Let T0 denote the set of all possible states and, in general, Ti denote the
set of all states present after i time steps of evolution. Then T0 ! T1, for
example, denotes the Garden of Eden states. Time evolution defines a
map Φ * T0 # T0. Furthermore, Φ * T0 # T1 is onto and the following
holds:

T0 + T1 +! + Tn + Tn$1 +!.

If T0 is finite, there exists a positive integer f such that ,Ti, & ,Tf , for all
i - f . We call Tf the set of final states. Note that Tf consists precisely
of the states that lie along oriented cycles in the state transition diagram
of the automaton.

Now suppose A is constructed over a group alphabet (G, !). Then T0
is a group under cell-by-cell multiplication. That is, T0 . G (G(!G,
where the direct product is taken over the number of cells copies of G.
For the rest of this section assume the generating alphabet is an abelian
group (G,$) and that the update rule is additive, that is, time evolution
commutes with the group operation $ defined on T0. In terms of the
evolution map, this can be written compactly as Φ(s1$ s2) & Φ(s1)$Φ(s2)
for all s1, s2 % T0. In this case, since T0 is a group, Φ is a homomorphism.
As a result, the set of states at time t forms an algebraic structure of its
own, that is, the set of states at time t $ 1 is a subgroup of the set of
states at time t.

Proposition 1. T0 - T1 -! - Tn - Tn$1 -!.

Now consider a finite cellular automaton over (G,$) and the chain
T0

Φ
# T1

Φ
# !

Φ
# Tf'1

Φ
# Tf . The composition of these maps / & Φf
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defines a homomorphism from the set of all states onto the set of final
states. We call this the evolution homomorphism. Note that ker/ is the
subgroup of all states that eventually “die,” that is, evolve to the null
state over time. Also, Φ becomes one-to-one after time t & f . So for the
higher time steps t - f , Φ * Tt # Tt$1 is an automorphism corresponding
to permuting the states of Tt & Tt$1 & Tf around the oriented cycles of
the state transition diagram. By forming the quotient group of T0 with
ker/ we have Proposition 2.

Proposition 2. T0/ ker/ " Tf .

In other words, if we take the group of all states and mod out by
the subgroup of states that eventually die, the resulting quotient is iso-
morphic to the group of final states. This provides us with some useful
global properties of the system. For example, if two states s1 and s2 lie
in the same coset of the quotient, then they both evolve to the same final
state in Tf after f time steps. That is, if s1 & k $ s2 for some k % ker/,
then /(s1) & /(s2 $k) & /(s2)$/(k) & /(s2). Since , ker/, is the number
of states that eventually die and ,Tf , is the number of states that lie along
oriented cycles, we obtain the following:

number of states
number of states that die

& number of states on cycles.

Proposition 2 also allows us to form a “quotient automaton,” which
is a transition diagram constructed as follows. For each coset, draw
a node in the quotient graph. Note that each coset contains exactly
one final state. Suppose s $ ker/ is such a node. Then /(s) & u % Tf
lies in the coset u $ ker/ of the quotient. Draw an arrow from node
s $ ker/ to node u $ ker/. This arrow construction is well defined
since each element of the coset s $ ker/ gets mapped to u via /. The
new diagram is simply the cycle portion of the original state transition
diagram. In other words, when you mod out by the states that die over
time, the transient behavior is stripped away and only the long term
cyclical (reversible) portion of the system remains.

A similar technique is used to simulate finite state machines. Suppose
that the set of states of a finite state machine M1 can be partitioned so
that the blocks of partitioned states form the states for a second finite
state machine M2. If all states in a given block are mapped by the tran-
sition function to states that are all in the same block, then M2 is called
a quotient machine of M1. Certainly the more complicated machine
M1 can simulate M2. But M2 can also simulate the block behavior,
although not the detailed state behavior, of M1. The same principle
holds with the CA and corresponding quotient automata constructed
previously. When we mod out the system by the states that eventually
die, we obtain a reversible automaton that simulates the original system
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(imperfectly) in the sense that the quotient describes the block behavior
of the original automaton.

Example 1. Consider a two-dimensional system generated over !p,
where p > 2 is prime, using the 4-rule at$1

i, j & at
i, j'1$at

i'1, j$at
i$1, j$at

i, j$1
mod p with periodic boundary conditions. Note that with periodic
boundary conditions, the grid is identified with the surface of a torus.
As a small example, apply this to a 2( 2 lattice. For an arbitrary initial
state using a, b, c, d % !p we have

" a b
c d #0 " 2(b $ c) 2(a $ d)

2(a $ d) 2(b $ c) # .
Let

H & $" Α Β
Β Α # * Α, Β % !p% .

Any state evolves to a state in H after one time step, so Tf 3 T1 3
H. To compute the kernel of the evolution map we simply solve the
equations a$ d & 0 and b$ c & 0 over !p. This system has p2 solutions
corresponding to states of the form

" a b
p ' b p ' a # .

We know ,H, & p2 and ,T0, & p4. Since , ker/, & p2, we have ,Tf , & p2.
Hence H & Tf & T1.

Now we construct the transition diagram and the corresponding quo-
tient for p & 5. There are 625 states. Consider the evolution of an
arbitrary initial state:

" a b
c d #0 " 2(b $ c) 2(a $ d)

2(a $ d) 2(b $ c) #0 " 3(a $ d) 3(b $ c)
3(b $ c) 3(a $ d) #

0 " 2(b $ c) 2(a $ d)
2(a $ d) 2(b $ c) # .

So all cycles in this system have length at most two. The length one
cycles, that is, the fixed points of the system, are the five states of the
form " a 5 ' a

5 ' a a # .
This leaves 20 final states which must pair off into 10 2-cycles. Hence
H & Tf , the reversible portion of the system, is as shown in Figure 1.
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!

"

10 copies

"

5 copies

Figure 1. The final states of the 2 ( 2 cellular automaton generated over !5.
The attractor portion of the system consists of 10 2-cycles and five fixed points.
This figure also gives the block decomposition diagram of the original system
modulo the 25 states that die.

#$
%

&
24 states

"'
(

)
24 states

!

"

10 copies

"

*+ ,-

. . . .

24 states

5 copies

Figure 2. The transition diagram for the 2 ( 2 cellular automaton over !5. The
graph has 15 connected components.

Now, we know from above that T0/ ker/ 4 H. So the block de-
composition of the transition diagram must look like the diagram in
Figure 1. There is one element of H in each coset of T0/ ker/. Further-
more, elements in the same coset must evolve to the same element of
H. Hence the state transition diagram of the original automaton is as
shown in Figure 2.

The one major difference between the p & 5 case and the arbitrary
prime p > 2 case is the length of the oriented cycles. Consider the
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evolution of an arbitrary initial state:

" a b
c d #0 " 2(b $ c) 2(a $ d)

2(a $ d) 2(b $ c) #0 " 23(a $ d) 23(b $ c)
23(b $ c) 23(a $ d) #

0!0 " 25(b $ c) 25(a $ d)
25(a $ d) 25(b $ c) #

0 " 27(a $ d) 27(b $ c)
27(b $ c) 27(a $ d) #0

where each entry is reduced mod p. Since the t & 1 state in the sequence
above lies along a cycle, eventually the sequence must return to this
state. For an arbitrary initial state that does not depend on a particular
choice of a, b, c, and d, this must occur at an odd time step. At the times
t & 2n$1 for n > 0, the power of 2 appearing in each cell is 24n$1. If the
t & 1 final state is not a fixed point, the cycle returns to this state at time
t & 2n $ 1, where n > 1 is the smallest value such that 24n$1 5 2 mod
p. This is equivalent to 24n 5 1 mod p. We see then that the maximal
cycle length is 2n. This leads us to Proposition 3.

Proposition 3. The maximal cycle length for any initial state is bounded
above by p ' 1.

Proof. Note that a cycle of length p ' 1 corresponds to n & (p ' 1)/2.
Furthermore, 24n & 4p'1 5 1 mod p by Fermat’s Little Theorem since
p > 2.

Corollary 1. The maximal cycle length in the automaton is a divisor of
p ' 1.

Example 2. Consider the system generated over !4 using a 3(3 grid
and the 4-rule from Example 1. There are 218 states in the system.
64 of these states die after the first time step and, by the second time
step, a total of 1024 have died. After this no more states die and time
evolution becomes one-to-one, that is, the system stabilizes into the
reversible portion T2 & Ti for all i - 2:

T0
Φ10 T1

Φ20 T2.

Let / & Φ2 # Φ1. Since ,T2, & ,T0/ ker/, & 256, there are 256 cosets in
the quotient, one for each final state. Also note that ,T1, & ,T0/ kerΦ1, &
212. So , kerΦ2, & ,T1,/,T2, & 16. There are 1024 ' 64 & 15(64) states
that die after two time steps, but not one. In addition, the in-degree of
each vertex at time t & 1 must be , kerΦ1, & 64 since T0/ kerΦ1 . T1.
Hence there must be 64 ' 16 & 48 Garden of Eden states that die at
time t & 1. From this information we conclude that ker/ is as shown
in Figure 3.
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Figure 3. The states that die in the 3 ( 3 system generated over !4. The 15
circles at the top each represent a subgraph of the transition diagram containing
64 Garden of Eden states, each of which evolves to the state directly below the
circle. The null state is identified as the only vertex with a loop. At the bottom
of the figure are the 48 Garden of Eden states that die at time t & 1.

Figure 3 contains the states in the zero coset from the quotient
T0/ ker/. Using the argument just outlined the other cosets will have
exactly the same graph, except possibly for their final states. In general,
final states can sometimes be linked together by oriented cycles of length
greater than one. However, for this example it is easily checked that
each of the 256 final states are fixed points of the system. It follows
that the state transition diagram consists of 256 copies of the diagram
in Figure 3. The quotient diagram (or equivalently the diagram of T2)
consists of 256 vertices, each containing a loop.

3. Reversible and irreversible systems

In this section we give necessary and sufficient conditions for a finite
one-dimensional cellular automaton with periodic boundary conditions
generated by a 2-rule over a finite cyclic group to be reversible. Note
that the evolution map Φ * T0 # T1 tells us when a cellular automaton
of this type is reversible. If kerΦ consists of only the null state 0, then
evolution is one-to-one and the automaton is reversible. In this case, all
of the states of the system lie on oriented cycles. There are no Garden
of Eden states nor any other kind of transient behavior.

In [4], finite one-dimensional CA with m cells over!n using the 2-rule
at$1

i & at
i'1 $ at

i$1 mod n with periodic boundary conditions, are shown
to be reversible if and only if n is odd and m 6 4q for any positive integer
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q. In this section we solve the more general problem of reversibility for
any 2-rule. First we introduce some new terminology. The rule distance
d of a 2-rule is the number of cells properly between the two cells being
added for the local update rule. Observe that we can choose d so that
d < m. For example, the one-dimensional automata with update rules
at$1

i & at
i$at

i$1, at$1
i & at

i'1$at
i$1, and at$1

i & at
i$1$at

i$5 have rule distances
0, 1, and 3, respectively. We have the following.

Theorem 1. Let A be a finite one-dimensional cellular automaton with
m cells generated over !n using periodic boundary conditions and a
2-rule with rule distance d. Then A is reversible if and only if both n
and m/gcd(d $ 1, m) are odd.

Proof. Without loss of generality we will assume that at
i depends upon

at'1
i and at'1

i$d$1, that is, at
i & at'1

i $ at'1
i$d$1 mod n. This is not restrictive

since the updates are computed in parallel and all the other 2-rules with
distance d yield the same set of equations, in a permuted order, as the
supposed case. The m cells of the automaton at time t are updated as
follows:

t a1 a2 ! am'1 am
t $ 1 a1 $ ad$2 a2 $ ad$3 ! ad $ am'1 a1$d $ am. (1)

Here 0 7 ai 7 n ' 1 for i & 1, . . . , m and we have dropped the
time superscript since it is clear from context. Assume that the state
(a1, a2, . . . , am) # (0, 0, . . . , 0). This produces the following system of m
equations over !n:

a1 $ad$2 & 0
a2 $ad$3 & 0

a3 $ad$4 & 0
" " "

am'd'1 $am & 0
a1 $am'd & 0

" " "
a1$d $am & 0.

(2)

Each cell value ai appears twice in the systems of equation (2). Let
Γ & gcd(d $ 1, m) and u denote u mod m. Note that i $ (m/Γ)(d $ 1) 5 i
mod m for 1 7 i 7 m. For a given i, consider the variables ai, ai$(d$1), . . .,
ai$((m/Γ)'1)(d$1) , ai$(m/Γ)(d$1) & ai. These variables are linked by one of the
subsystems in equation (2). So there are Γ independent subsystems, each
of which contains m/Γ linked variables.
9* If n is even, then the m-tuple (n/2, . . . , n/2) defines a nonnull state

that evolves to the null state. If m/Γ is even, then for the subsystem
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containing ai, assign cell values as follows:

ai & 1
ai$(d$1) & n ' 1
" " "
ai$((m/Γ)'2)(d$1) & 1
ai$((m/Γ)'1)(d$1) & n ' 1.

(3)

Repeat this for each of the Γ subsystems until a complete state Α is
constructed. Then Α is a nonnull state that evolves to the null state.
:* Now suppose both n and m/Γ are odd. Since each successive pair

of variables in the ai subsystem must add to zero, we have ai$(d$1) & n'ai,
ai$2(d$1) & ai, and so on. Continuing in this fashion and using the fact
that m/Γ is odd, we arrive at ai & n ' ai. Since n is odd, it follows that
ai & 0 for i & 1, . . . , m and kerΦ & ;0<. Hence A is reversible.

Corollary 2 shows that the test for reversibility is even simpler when
the rule distance d is even.

Corollary 2. Let A be a one-dimensional cellular automaton with m
cells generated over !n using periodic boundary conditions and a 2-rule
with rule distance d. Then if d is even, A is reversible if and only if both
m and n are odd.

Proof. By Theorem 1 it suffices to show that m is odd if and only if

m
gcd(d $ 1, m)

&
m
Γ

is odd. Clearly if m is odd, then m/Γ is odd. To prove the other direction,
assume that m is even. Since d $ 1 is odd, we know 2 does not divide
Γ. Hence m & 2qΓ for some integer q - 1. It follows that m/Γ & 2q is
even.

For the rest of this section, let A be a one-dimensional finite cellular
automaton with m cells generated over !2 using a 2-rule with periodic
boundary conditions. When d & 1 we have Rule 90, which is treated
extensively in the literature. Our Theorem 2 generalizes Theorem 3.1
regarding Garden of Eden states from [1].

Theorem 2. Let A be a cellular automaton as defined previously. The
fraction of the total number of states which can occur only as initial
states, and cannot be reached by evolution, is 1 ' (1/2Γ), where Γ &
gcd(d $ 1, m).

Proof. Consider kerΦ using the system of equations given in the proof
of Theorem 1. Recall that this system has Γ independent subsystems,
each of which contain m/Γ linked variables. Now, since the update is
performed using addition mod 2, all m/Γ variables of the subsystem
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must be 0 or all must be 1. Hence there are 2Γ solutions to the entire
system and , kerΦ, & 2Γ. Since T0/ kerΦ " T1 we have ,T1, & 2m'Γ. It
follows that the fraction of all initial states which can only occur as
initial states is

1 '
,T1,
,T0,
& 1 '

2m'Γ

2m & 1 '
1
2Γ

.

Corollary 3 (see [1]) The fraction of the 2m possible states of a size m one-
dimensional cellular automaton using Rule 90 which can occur only as
initial states, and cannot be reached by evolution, is 1/2 for m odd and
3/4 for m even.

Proof. For Rule 90 d & 1 and Γ & gcd(2, m). If m is odd, then Γ & 1. If
m is even, then Γ & 2.

Since a 2-rule with distance d & 0 corresponds to combining adjacent
cells, we immediately have Corollary 4.

Corollary 4. If adjacent cells are added, then the fraction of possible
states which cannot be reached by time evolution is 1/2.

Finally, we recall Theorem 3.2 from [1]. This theorem says that if
a state in a Rule 90 cellular automaton (finite one-dimensional with
periodic boundary conditions) has at least one predecessor, then it has
exactly two predecessors when m is odd and exactly four when m is
even. The next corollary to Theorem 2 generalizes this result.

Corollary 5. Configurations in the cellular automaton which have at
least one predecessor have exactly 2Γ predecessors.

Proof. Let s % T1. Then ,Φ'1(s), & , kerΦ, & 2Γ.

4. Commuting with permutations

Additive CA are systems where time evolution commutes with the binary
operation defined on the set of all states. The symmetry of the 4-rule
used in section 2 allows time evolution to commute with rotations of
the states of Α radians, where Α is a multiple of Π/2. So if s # t, then
Α(s) # Α(t). In this section we introduce the notion of time evolution
commuting with permutations of the generating alphabet.

Consider a cellular automaton A over a finite group alphabet whose
elements are labeled 1, 2, . . . , n. Let Sn denote the symmetric group on
n letters. Then Sn acts on T0 as follows: given Σ % Sn and s % T0,
if a % ;1, 2, . . . , n< is the contents of the ith cell of s, then Σ(a) is the
contents of the ith cell of Σ(s).

Definition 1. Let A be a cellular automaton over an alphabet labeled
;1, 2, . . . , n< with time evolution Φ * T0 # T0. We say A respects permu-
tations if Φ(Σ(s)) & Σ(Φ(s)) for all Σ % Sn and s % T0.
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In other words, A respects permutations if time evolution commutes
with the Sn group action for each permutation of ;1, 2, . . . , n<. In this
case, if s % T0 is a fixed point of the system, then so is Σ(s) for each
Σ % Sn. Furthermore, q-cycles of final states in the state transition
diagram are permuted to q-cycles of final states under this group action.
Note that a group alphabet is not required for Definition 1, however,
it is assumed throughout this section. Now let us examine cases where
systems respect, or do not respect, permutations.

Proposition 4. A cellular automaton, finite or infinite of any dimension,
with entries from the group !3 using any 4-rule, respects permutations.

Proof. LetΣ % Sn and s % T0. Consider the ith cell of s and suppose that
the four neighboring cells used to update the cell contain a1, a2, a3, a4 %
!3. The ith cell of Σ(Φ(s)) is Σ(a1 $ a2 $ a3 $ a4) and the ith cell of
Φ(Σ(s)) is Σ(a1) $ Σ(a2) $ Σ(a3) $ Σ(a4). There are four cases to be
checked. First, suppose a1 & a2 & a3 & a4. Then Σ(a1 $ a2 $ a3 $ a4) &
Σ(4a1) & Σ(a1) & 4Σ(a1) & Σ(a1)$Σ(a2)$Σ(a3)$Σ(a4). The case where
a1 & a2 & a3 but a4 is different, is similar to the first case. The case
where a1 & a2 and a3 & a4 but a2 6 a3 is easy to check by hand. Finally
suppose that a1 6 a2 6 a3. Then a4 is necessarily equal to one of the first
three values. Without loss of generality, we will let a1 & a4. Observe
that ;a1, a2, a3< & ;Σ(a1),Σ(a2),Σ(a3)< & ;0, 1, 2<. Hence a1 $ a2 $ a3 &
Σ(a1) $ Σ(a2) $ Σ(a3) & 0. It follows that Σ(a1 $ a2 $ a3 $ a4) & Σ(a4) &
Σ(a1) $ Σ(a2) $ Σ(a3) $ Σ(a4), as desired.

Theorem 3. Any cellular automaton A, finite or infinite of any dimen-
sion, with entries from the group !n using an m-rule, where n - m > 1,
does not respect permutations.

Proof. Let
#
r denote the state where every cell contains r, for 0 7 r 7 n'1.

Let Σ & (01) % Sn. If m & n, then Φ(Σ(
#
0)) & Φ(

#
1) &

#
m &

#
0. So

Σ(Φ(
#
0)) & Σ(

#
0) &

#
1 6 Φ(Σ(

#
0)). If n > m, Φ(Σ(

#
0)) & Φ(

#
1) &

#
m, but

Σ(Φ(
#
0)) & Σ(

#
0) &

#
1.

By Theorem 3 it is clear that all of the Rule 90 CA and all the other
systems generated from a 2-rule over !2 do not respect permutations.
The reader can check that CA generated over !2 using a 3-rule respect
permutations. However, CA over !4 using a 5-rule and over !5 using
a 6-rule do not respect permutations. Theorem 4 shows that respecting
permutations induces a Σ-invariance on the subgroup of states Tn at
time t.

Theorem 4. If A respects permutations, then Σ(Ti) & Ti for all Σ % Sn
and i - 0.

Proof. The result is clear for i & 0. Now assume the result true for i.
Let r % Σ(Ti$1). Then r & Σ(s) for some s % Ti$1. Now, u # s for
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Figure 4. The states that die for a 2 ( 2 system over !3. Since there are nine of
these states, it follows that there must be exactly nine final states that lie along
oriented cycles.

some u % Ti. By the inductive hypothesis, Σ(u) % Ti. Since A respects
permutations, Σ(u) # r % Ti$1 and so Σ(Ti$1) 3 Ti$1.

If s % Ti$1, then Σ'1(s) % Σ'1(Ti$1) 3 Ti$1. Thus Σ(Σ'1(s)) & s %
Σ(Ti$1), as desired.

Example 3. Consider the cellular automaton A consisting of a 2 ( 2
grid generated over !3 using the 4-rule from Examples 1 and 2. There
are 81 initial states. Consider the evolution of an arbitrary initial state:

" a b
c d #0 " 2(b $ c) 2(a $ d)

2(a $ d) 2(b $ c) # .
From Example 1 we know that Ti & T1 for all i - 1 and there are
nine states that evolve to the null state. Thus, there must be nine final
states that lie along oriented cycles in the state transition diagram. By

inspection, we see that " 2 2
1 1 # evolves to the null state. Using the

symmetry of the 4-rule, we know that the rotates

R1 & $" 2 2
1 1 # , " 2 1

2 1 # , " 1 1
2 2 # , " 1 2

1 2 #%
must also evolve to the null state. Likewise, " 2 0

0 1 # and the three

corresponding rotates

R2 & $" 2 0
0 1 # , " 0 1

2 0 # , " 1 0
0 2 # , " 0 2

1 0 #%
must also evolve to the null state. So these states, plus the null state,
give the kernel of the system. The transition diagram of the kernel is
shown in Figure 4.

By Proposition 4 we know A respects permutations. In fact, the
action of S3 on T0 induces a well-defined action on T0/ ker/ given by
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Σ(s $ ker/) & Σ(s) $ ker/ for each s % T0. Letting K & ker/ we have
that

(01)K & " 2 1
1 0 # $ K (02)K & " 0 2

2 1 # $K.

By applying the remaining three nonidentity permutations to K, the same
three cosets are obtained. Hence the action is not faithful. However,
since A respects permutations and the null state is a fixed point, so are
the states it permutes to. Hence the transition diagram for each of these
two new cosets is identical to the one in Figure 4.

To construct the rest of the state transition diagram, consider the orbit

of L & " 1 0
0 0 #$K under the permutation group action. Applying the

2-cycles produces the following:

(01)L & " 0 1
1 1 # $ K (02)L & " 1 2

2 2 # $ K (12)L & " 2 0
0 0 # $ K.

Next apply the 3-cycles:

(012)L & " 2 1
1 1 # $ K (021)L & " 0 2

2 2 # $ K.

It is easy to see that the orbit of L consists of the remaining states of
the system. Each of the six cosets in the orbit contains exactly one final
state. The cosets also separate into three pairs, where all the states in
one coset evolve to the final state of the partner coset. This means that
the two final states of the pair must evolve to each other. Hence the
remaining six final states separate into three 2-cycles. The reader can
check that the pairs are L with (02)L, (12)L with (012)L, and (01)L
with (021)L. It follows that the state transition diagram for the entire
system is as shown in Figure 5.

5. Conclusion

Algebraic techniques have been used in other contexts to study cellu-
lar automata (CA). For example, algebraic conditions under which two
one-dimensional systems commute are presented in [5]. Block algebras
are used in [6] to show that certain CA with radius r can be converted
into automata with a two-site neighborhood. Efficient time prediction
of CA over algebraic structures is examined in [7]. These papers con-
sider group, quasigroup, semigroup, and similar alphabets. Another
interesting algebraic approach is given in [8], where eventually periodic
behavior in these systems is related to varieties of groupoids.

In this paper abelian group alphabets are used to relate the kernels of
the evolution homomorphism to the reversible portion of the automata.
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Figure 5. The state transition diagram for the 2 ( 2 system generated over !3.
The left component of the diagram shows one of the coset pairs. The black
vertices denote one coset and the white vertices the other. Notice how time
evolution commuting with addition, rotations, and permutations is used in this
example to construct the entire transition diagram from just a few states (so it
is not necessary to perform the evolution computations on all initial states).

Like the approach in [3] and [9], the linearity of time evolution is used
to glean a tremendous amount of information about the automata.
Decomposing the systems into blocks modulo the states that die reveals
a strong symmetry in many of the global properties. Although the
permutation condition introduced in section 4 is a strong requirement,
it produces nice predictive power when it is present.

One extension of this work is the study of entropy as defined in
information theory. Consider a finite cellular automaton with m cells
generated over an alphabet with n elements. Assume at time t & 0
that all initial states are equiprobable. For a given time step t > 0
we can compute the probability pt

s of obtaining a given state s from an
arbitrary initial condition simply by counting the number of occurrences
of s at time t and then dividing by the number of states (including
multiplicities) at time t. These probabilities are easily recovered from
the state transition diagram. Let Nt(m) be the number of all states
generated with nonzero probability at time t. Then the set entropy (or
topological entropy) at time t (see [10]) is

Et
S(m) &

1
m

lognNt(m). (4)

Observe that the weight of a nonzero probability is not taken into
consideration for this definition. The weight can be factored in by using
a measure entropy (or metric entropy) at time t:

Et
M(m) & '

1
m&pt

s logn pt
s. (5)

Here the sum is taken over all states s % T0. The following holds:

0 7 Et
M(m) 7 Et

S(m) 7 1. (6)
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The middle inequality is called saturated if equality holds. This occurs
when all the probabilities pt

s at time t are equal. In the examples from
this paper, the inequality is saturated. This follows from the additivity of
the evolution map. All states at time t have the same number of arrows
from time t ' 1 states coming into them. Hence the set and measure
entropies coincide. Nonabelian groups tend to generate automata where
the measure entropy is strictly smaller than the set entropy.
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