n-Skip Turing Machines

Wiktor K. Macura*

Department of Mathematics and Statistics,
University of Maryland, Baltimore County,
Baltimore, Maryland, 21228

A Turing Machine’s head is limited to moving one cell in either direction
on the tape for a given iteration. We investigate a form of Turing Machine
where the head is allowed to move 7 cells in either direction. We find that
such Turing Machines, named 7-Skip Turing Machines, are capable of
exhibiting complex behavior for simple initial conditions with two states
and two colors.

| 1. Introduction

The Turing Machine was designed by Alan Turing to serve as a general
computational model. The machine has a tape to which data can be
written by a head. A tape consists of cells where each cell has a value
(similar to a cell on a hard-drive, albeit the cells of a Turing Machine’s
tape can have more than two states) and that value can be changed by
the head. The head can also be in multiple states and it may move.
What the head writes to the tape for a given iteration is determined
by the value (color) of the cell and the state of the head. For a given
case, the cell’s color, the head’s state, as well as the head’s position may
change. Of particular note, however, is that the head may only move
by one cell in either direction [1].

A Turing Machine can be made to exhibit complex behavior for sim-
ple initial conditions by adding states, colors, or both. In [2] Wolfram
shows that the simplest Turing Machine with complex behavior with an
empty tape as input has four states and two colors. What we consider
is whether one can create a Turing Machine which exhibits complex be-
havior by letting the head move by more than one cell in either direction
(we assume a one-dimensional tape).

We define such a machine to be a n-Skip Turing Machine, where the
n refers to the maximum number of cells a head can skip for a given
iteration. Notice that we do not impose the limitation that the head
must move 7 cells.

We define the rule of a #-Skip Turing Machine as follows (with two
states and two colors):

*Electronic mail address: wmacurl@umbc.edu.

Complex Systems, 15 (2005) 237-244; © 2005 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.15.3.237

238 W. Macura

{T15X1} - {THX K {T13X2} = {1, X, K}
{TZ, Xl} - {13, X3, K3} {TZ, Xz} = {T4s X4 K4}

Where T is the state and X the color of the cell at which the head
is positioned. Similarly, 7 is the state and y the color of the new cell,
and « is the new position of the head. Note that the number of cases
is independent of the size of the skip, in particular, there are ¢ x k cases
with ¢ states and & colors.

Obviously, one cannot have a #-Skip Turing Machine with a nega-
tive 7.

1 Generalizations

One can write a rule for a particular #-Skip Turing Machine (with #
states and k colors) as:

{Tlsxl}f){Ts/\/aK} {TlsX]g}._){TsXsK}
{Ttaxl} - {T,XaK} B {Ttaxk} - {Ta/\/,K}'
1 Notation

We use notation of the form {36023551, 12} to mean rule number
36023551 with a skip size of 12 (we only use two states and two colors,
throughout). See section 5 for the function nRule which creates the
rule from the number and skip size.

I 2. Rule count per skip size

There exists (4 x (272 + 1))* rules for a skip size of # (note that we count
cases which result in a skip size of 0). More generally, for ¢ states and &
colors we have w rules where

w = (th(2n + 1)),
If we do not include cases with a skip size of 0 we have w, rules where
w, = (2tkn)*.

This gives the following small table of rule counts for skip sizes
ranging from 0 to 50 (note that ¢ = k = 2 in the table).

n|w W,
0| 256 0
1| 20,736 4096
2 | 160,000 65,536
3| 614,656 331,776
411,679,616 1,048,576
S | 3,748,096 2,560,000

10 | 49,787,136 40,960,000

50 | 26,639,462,656 25,600,000,000

Complex Systems, 15 (2005) 237-244

n-Skip Turing Machines 239

I 3. Typical behavior

We are interested in whether adding a “skip” to the head of a Turing
Machine can create complex behavior in itself. As such, we only look at
n-Skip Turing Machines where there are two colors and two states, the
simplest example of a Turing Machine that can generate complex be-
havior (albeit only with complex input). Similarly, our initial condition
is very simple: an empty tape.

A sample output from a 5-Skip Turing Machine is provided in Fig-
ure 1.

One generally finds four types of output when increasing the skip
size.

* Qutput that can be created with a machine of lesser skip size. This
results from the rules of a #-Skip machine being a subset of the rules of a
(n + 1)-Skip machine.

®* In a variation of the above, one can find rules that “stretch” the output.

* One can find output that is slightly different, but has the same general
look.

* Finally, one can find totally new output.

|
i

Figure 1. An example of a n-Skip Turing Machine. This one does not show

complex behavior, but notice that it is showing behavior that is somewhat
complex but then repeating it, a trait that is very common in #-Skip Turing
Machines {161073, 5}.

Complex Systems, 15 (2005) 237-244

https://doi.org/10.25088/ComplexSystems.15.3.237

240 W. Macura

)

.

}

Figure 2. A gallery of various n-Skip Turing Machines. All output is shown after

100 iterations.

The machines’ outputs were evaluated by finding their evolution
through 50 iterations, and then running a Union on the output to re-
move machines with the same output. Finally, the output was checked
for complexity manually.

I 0-Skip Turing Machines

We add these only for completeness. There are 256 of these machines,
16 generate unique output.

I 1-Skip to 8-Skip Turing Machines

Skip sizes less than nine do not result in complex output. Although one
finds it gets increasingly complex before becoming repetitive or nested.
Figure 2 provides a gallery of various 7#-Skip Machines with 2 <z < 8.

Complex Systems, 15 (2005) 237-244

n-Skip Turing Machines 241

w l |

Figure 3. A nice example of a 9-Skip Turing Machine which exhibits complex

behavior. Each of the seven boxes shows 250 steps in the evolution of the rule
{{25 15 9}5 {2'7 07 _3}’ {15 07 _3}5 {15 15 _2}}

I 9-Skip Turing Machines

9-Skip Turing Machines are the first machines which exhibit complex
behavior. See Figure 3 for an example.

Why 9-Skip Turing Machines create complex output would require
more research. However, one can surmise that interference has a large
effect. In the first dozen iterations the machine is well-behaved. Yet
then the first case is triggered, which causes the head to jump to the
right by nine cells. At that point, the head starts processing the data
that was written beforehand, resulting in increasingly chaotic behavior.

Complex Systems, 15 (2005) 237244

https://doi.org/10.25088/ComplexSystems.15.3.237

242 W. Macura

Figure 4. The effect of changing the skip size of one case in
through to -9.

a rule from -1

I 4. Effects of changing the skip size

Not surprisingly, changing the size of a particular skip within a rule
generally stretches the rule in the respective direction (see Figure 4).

It is worth noting that complex behavior usually occurs when a single
case results in a relatively large skip size and the other cases have rela-
tively small skip sizes. The reason for this appears to be that complex
behavior occurs when there is large interference with the head, in other

words, when the head keeps going over nonempty cells. The need for a
large skip size is, however, puzzling.

| 5. Source code

The following Mathematica | 3] code generates the two-dimensional rep-
resentation of the tape.

Complex Systems, 15 (2005) 237-244

n-Skip Turing Machines 243

step[rl_, {s_, t_, p_}] :=
With[{u = {s, t[[p]]} /. rl}, {ul[l]1],
ReplacePart[t, u[[2]], pPl, P + ul[3]1]}]

stepres[{s_, t_, p_}] :=
If(p < 1, {s, Join[Array[0 &, 1 - p], t], 1},
If(p > Length[t], {s, Join[t, Array[0 &, p - Length[t]]], p},
{s, t, p}1]

evo[rl_, k_, n_] := NestList[stepres[step[rl, #]] &,
{1, Array[0 &, 2n + 1], n + 1}, k]

adjres[rl_, {s_, t_, p_}1] :=
With[{u = {s, t[[p]1]1} /. rl}, {Max[0, 1 - (p + ul[3]11)],
Max[0, p + u[[3]] - Length[t]]}]

adjevo[rl_, hist_] :=
MapThread|[Join[Array[0 &, #1], #2, Array[0 &, #2]] &,
{#[[-1, 1]] - First /@ #, #[[2]] & /@ hist, #[[-1, 2]]
- Last /@ #}, 1] &[Most[FoldList[Plus, {0, 0},
adjres[rl, #]& /@ hist]]]

evolution[rl_, k_, n_] := adjevo[rl, evo[rl, k, n]]

The proper usage is to call evolution with a rule (formatted as in
section 1), r1, the number of iterations k, and the largest skip size in the
rule n. Note that one can additionally use the following code to avoid
specifying the largest skip size.!

nskip[rl_, k_] :=
evolution[rl, k, Max[Abs[#2[[3]]] & @@@ rl]]

nRule takes a number and a skip size (and, optionally, the number
of colors and states) and generates the rules to be used with nskip or
evolution.

nRule[ruleNum , skip_ :9, colors_:2, states_:2] := (
rule = ruleNumxstates;
a = Table[{d, c} -> Reverse[{
(Mod[(rule = Floor[rule/states]), (2 skip+l)]-skip),
(Mod[(rule = Floor[rule/(2 skip + 1)]), colors]),
(Mod[(rule = Floor[rule/colors]), states] + 1)
H
, {d, states}, {c, 0, colors - 1}];
Flatten[a]
)

| 6. Future work

It would be interesting to find out why nine is the “magic” number for
getting complex 7-Skip Turing Machines as well as the possibilities of
n-Skip Turing Machines when given complex input. It would also be
nice to research why the pattern mentioned results in complex behavior,
specifically, why such a large skip is needed.

IThe largest skip size is necessary for the evolution code as it is used to create the
initial tape which must be long enough to not have to worry about overflows.

Complex Systems, 15 (2005) 237-244

https://doi.org/10.25088/ComplexSystems.15.3.237

244 W. Macura

I 7. Acknowledgments

I would like to thank Ed Pegg and Todd Rowland for providing invalu-
able assistance during the course of this project at the New Kind of
Science Summer School and also afterwards.

I would like to thank Stephen Wolfram for suggesting the idea of
research n-Skip Turing Machines.

In addition, I thank all of the students and staff at the New Kind
of Science Summer School for providing camaraderie and a productive
working environment.

| References

[1] Eric W. Weisstein. “Turing Machine.” From Math World—A Wolfram Web
Resource. http://mathworld.wolfram.com/TuringMachine.html

[2] S. Wolfram, A New Kind of Science (Wolfram Media, Inc., Champaign, IL,
2004)

[3] Wolfram Research, Inc., Mathematica, Version 5.1, Champaign, IL (2004).

Complex Systems, 15 (2005) 237-244

