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We study an extension of cellular automata to arbitrary interconnection
topologies for the majority and the synchronization problems. By us-
ing an evolutionary algorithm, we show that small-world type network
topologies consistently evolve from regular and random structures with-
out being designed beforehand. These topologies have better performance
than regular lattice structures and are easier to evolve, which could ex-
plain in part their ubiquity. Moreover, we show experimentally that
general graph topologies are much more robust in the face of random
faults than lattice structures for these problems.

1. Introduction

Networks, which can be formally described by the tools of graph the-
ory, are a central model for the description of many phenomena of
scientific, social, and technological interest. Typical examples include
the Internet, the World Wide Web, social acquaintances, electric power
networks, neural networks, and many others [1]. In recent years there
has been substantial research activity in the science of networks, moti-
vated by a number of new results, both theoretical and applied. The
pioneering studies of Watts and Strogatz [2, 3] have been instrumental
in initiating the movement, and they have been followed by many oth-
ers in the subsequent years. Their key observation was that most real
networks, both in the biological world as well as man-made structures,
have mathematical properties that set them apart from regular lattices
and from random graphs, which were the two main topologies that had
been studied until then. In particular, they introduced the concept of
small-world networks, in which most pairs of vertices are connected by
a short path through the network. The existence of short paths between
any pair of nodes has been found in networks as diverse as the Inter-
net, airline routes, neural networks, metabolic networks, among others.
The presence of short paths is also a characteristic of random graphs,
but what sets these real networks apart is a larger clustering coefficient
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than that of random graphs having a comparable number of nodes and
links. The clustering coefficient roughly represents the probability that
two nodes that are neighbors of a third one, are also neighbors of each
other, which means that there is more local structure in these networks
than in plain random graphs. In section 2 we offer a brief introduction
to relevant graph concepts that are used in this work. An excellent
recent review of the field is to be found in [1].

The topological structure of a network has a marked influence on the
processes that may take place on it. Regular and random networks have
been thoroughly studied from this point of view in many disciplines. In
computer science, for instance, variously connected networks of pro-
cessors have been used in parallel and distributed computing [4], while
lattices and random networks of simple automata have also received a
great deal of attention [5, 6]. On the other hand, due to their novelty,
there are very few studies of the computational properties of small-world
networks. One notable exception is Watts’ book [3] in which cellular
automata (CAs) computation on small-world networks is examined for
some representative network structures. However, there is no hint in
these works as to how such automata networks could arise in the first
place, without being designed by a prescribed algorithm. Many man-
made networks have grown, and are still growing incrementally and
explanations have been proposed for their actual shape. The Internet
is a case in point, for which a preferential attachment growth rule has
given good results [7]. This rule simply prescribes that the likelihood for
a new node of connecting to an existing one depends on the node’s de-
gree: high-degree nodes are more likely to attract other nodes. Indeed,
many actual networks seem to have undergone some kind of Darwinian
variation and selection process.

Thus, how these automata networks might have come to be selected
is an interesting yet unanswered question. In this work, we let a simple
artificial evolutionary process find “good” network structures accord-
ing to a predefined fitness measure, without prescribing the fine details
of the wiring. We take as prototypical problems the majority classifi-
cation problem and the synchronization tasks, which are the same that
Watts discusses in [3] as a useful first step. This will also allow us to
compare the products of artificial evolution with Watts’ results. We
then investigate the effect of some structural constraints on the evolu-
tionary process. Another aspect of interest is how evolved networks
compare with known lattice-CA solutions in terms of robustness in the
presence of noise. This point will be explored in some detail. A prelim-
inary investigation of the density task without noise only has appeared
in [8].

In the next section some background material on graphs is briefly
discussed. Section 3 describes the CA problems and previous results.
Section 4 presents our evolutionary search for efficient networks. In
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section 6 the fault-tolerance properties of the evolved networks are
studied. Section 7 gives our conclusions and ideas for future work.

2. Useful definitions for graphs

For ease of reference, here we collect a few definitions and some nomen-
clature for graphs that are used throughout this work. The treatment is
necessarily brief: a more detailed account can be found, for example, in
[1, 3].

Let V be a nonempty set called the set of vertices or nodes, and let
E be a symmetric binary relation on V, that is, a set of unordered pairs
of vertices. G " (E, V) is called an undirected graph and E is the set of
edges or links of G. In directed graphs edges have a direction, that is,
they go from one vertex to another and the pairs of vertices are ordered
pairs. Here we only deal with undirected graphs.

When vertices (u, v) of an undirected graph form an edge they are
said to be adjacent or neighbors. The degree k of a vertex is the number
of edges impinging on it (or, equivalently, the number of neighbors).
The average degree !k" is the average of all the vertex degrees in G.

A path from vertex u to vertex v in a graph G is a sequence of edges
that are traversed when going from u to v with no edge traversed more
than once. The length of a path is the number of edges in it. The
shortest path between two vertices u and v is the path with the smallest
length joining u to v.

A graph is connected if there is a path between any two vertices. A
completely connected undirected graph G with #V # " N vertices has an
edge between any two vertices. The total number of edges is N(N$1)/2.

A random graph is a graph in which pairs of nodes are connected
with a given probability p. Consequentely, the total number of edges
in a random graph is a random variable whose expectation value is
p[N(N $ 1)/2]. Several useful results on random graphs are described
in [7].

Four statistics are particularly useful for small-world and random
graphs: the average degree described above, the clustering coefficient,
the characteristic path length, and the degree distribution. They are
briefly described below and in more detail in [7].

Let us take a particular node j in a graph, and assume that it has
k edges connecting it to its k neighboring nodes. If all k vertices in
the neighborhood were completely connected then the number of edges
would be equal to k(k $ 1)/2. The clustering coefficient C is defined as
the ratio between the E edges that actually exist between the k neighbors
and the number of possible edges between these nodes:

C "
2E

k(k $ 1)
.
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The clustering coefficient of a random graph is simply !k"/N " p,
where N is the total number of vertices. For a regular lattice, C is
given by:

3(k $ 2)
4(k $ 1)

,

where k is the (constant) number of nodes that are connected to a given
node. C is thus independent of N for a regular lattice, and approaches
3/4 as k increases.

The characteristic path length L is defined in [3] as the median of the
means of the shortest path lengths connecting each vertex v % G to all
other vertices.

The degree distribution P(k) of a graph G is a function that gives
the probability that a randomly selected vertex has k edges incident on
it. For a random graph P(k) is a binomial peaked at P(!k"). But most
real networks do not show this kind of behavior. In particular, in scale-
free graphs which seem to be common in real life [7], P(k) follows a
power-law distribution: P(k) " c k$Γ, with c and Γ positive constants.

According to Watts and Strogatz [2, 3], a small-world graph can be
constructed starting from a regular ring of nodes in which each node has
k neighbors (k' N) by simply systematically going through successive
nodes and “rewiring” a link with a certain probability p. When the edge
is deleted, it is replaced with an edge to a randomly chosen node. Two
vertices are not allowed to be connected by more than one edge. This
procedure will create a number of shortcuts that join distant parts of the
lattice. Shortcuts are defined to be edges that join vertices that would
be more than two edges apart if they were not connected directly. These
shortcuts are the hallmark of small worlds and, while L scales loga-
rithmically in the number of nodes for a random graph, in small-world
graphs it scales approximately linearly for low rewiring probability and
tends to the random graph limit as the probability increases. This is due
to the appearance of shortcut edges between distant parts of the graph,
which obviously contract the path lengths between many vertices. How-
ever, small worlds typically have a higher clustering coefficient than ran-
dom graphs. Small-world networks have a degree distribution P(k) that
is close to binomial for intermediate and large values of the rewiring
probability p, while P(k) tends to a delta function for p ( 0 (see [7]).

Following Watts [3], we will show our results as a function of the
parameter ), which is the fraction of edges in a graph that are shortcuts.
The range of ) is [0, 1], where a value of 0 (no shortcuts) corresponds
to a perfect regular lattice, and 1 corresponds to the random graph limit
(every link is a shortcut on the average). In between lies the small-world
range, with the typical small-world behavior already present for low )
values (around 0.01 to 0.1). For higher ) values, the graphs tend to be
more random-like.
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Small-world graphs as defined by Watts and Strogatz are not really
structurally representative of networks found in the real world, which
are often, but not always, of the scale-free type, if anything [9]. How-
ever, they are easy to construct and measure and, for the purpose of the
artificial CA problems with which we are concerned, they are a perfectly
legitimate choice for studying the influence of network structure on the
dynamics.

3. The cellular automata problems

CAs are dynamical systems in which space and time are discrete. A
standard CA consists of an array of cells, each of which can be in one
of a finite number of possible states. Here we only consider boolean
automata for which the cellular state s % *0, 1+. The regular cellular
array (lattice) is d-dimensional, where d " 1, 2, 3 is used in practice. In
one-dimensional lattices, the topology used here, a cell is connected to r
local neighbors (cells) on either side, where r is referred to as the radius
(thus, each cell has 2r , 1 neighbors, including itself).

CAs are updated synchronously in discrete time steps, according to a
local, identical rule. The state of a cell at the next time step is determined
by the current states of a surrounding neighborhood of cells, including
the cell itself:

st,1
i " f (st

i$r . . . , st
i , . . . s

t
i,r), f - k2r,1 ( k

where st
i denotes the value of site i at time t, f (.) represents the local

transition rule, and r is the CA radius. The term configuration refers
to an assignment of ones and zeros to all the cells at a given time step.
It can be described by st " (st

0, st
1, . . . , st

N$1), where N is the lattice size.
Often CAs have periodic boundary conditions st

N,i " st
i . Configurations

evolve in time according to a global update rule ) which applies in
parallel to all the cells st,1 " )(st).

Here we consider an extension of the CA concept in which the rule
is the same on each node, but nodes can be connected in any way. That
is, the topological structures are general graphs, provided the graph is
connected and self and multiple links are disallowed.

3.1 The majority task

The majority (also called density) task is a prototypical distributed com-
putational task for CAs. For a finite CA of size N it is defined as follows.
Let Ρ0 be the fraction of ones in the initial configuration (IC) s0. The
task is to determine whether Ρ0 is greater or less than 1/2. If Ρ0 > 1/2
then the CA must relax to a fixed-point configuration of all ones; oth-
erwise it must relax to a fixed-point configuration of all zeros, after a
number of time steps of the order of the lattice size N (N is odd to avoid
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Figure 1. The operation of an evolved one-dimensional, radius three CA for the
density task. The CA cell states are represented horizontally (black stands for 1
and white is 0). Time increases down the page. The CA rule has been obtained
through artificial evolution by Mitchell et al. [13]. The density Ρ0 is 0.416 and
the lattice size N is 149.

the case Ρ0 " 0.5). This computation is trivial for a computer having
a central control. Indeed, just scanning the array and adding up the
number of, say, 1-bits will provide the answer in O(N) time. However,
it is nontrivial for a small radius-one-dimensional CA since such a CA
can only transfer information at finite speed relying on local informa-
tion exclusively, while density is a global property of the configuration
of states [10]. Figure 1 shows the operation of one of the best CAs
obtained through artificial evolution.

It has been shown that the density task cannot be solved perfectly
by a uniform, two-state CA with finite radius [11], although a slightly
modified version of the task can be shown to admit perfect solution by
such an automaton [12].

The performance P of a given rule on the majority task is defined
as the fraction of correct classifications over 104 randomly chosen ICs.
The ICs are sampled according to a binomial distribution (i.e., each bit
is independently drawn with probability 1/2 of being 0). Clearly, this
distribution is strongly peaked around Ρ0 " 1/2 and thus it makes a
difficult case for the CA to solve.

The lack of a perfect solution does not prevent one from searching
for imperfect solutions of as good a quality as possible. In general, given
a desired global behavior for a CA (e.g., the density task capability), it
is extremely difficult to infer the local CA rule that will give rise to the
emergence of a desired computation due to possible nonlinearities and
large-scale collective effects that cannot in general be predicted from the
sole local CA updating rule. Since exhaustive evaluation of all possible
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rules is computationally expensive except for elementary (d " 1, r " 1)
and other fairly simple automata, one possible solution of the problem
consists in using evolutionary algorithms, as first proposed by Mitchell
et al. [10, 13] for uniform CAs, and by Sipper for nonuniform ones
[14]. Mitchell et al. have shown empirically that homogeneous two-
state ring CAs of radius three can be evolved and are capable of reaching
a fairly high performance (see below). With d " 1 and r " 3 there are
2128 / 1036 possible rules that the evolutionary algorithm has to search
through.

Watts [3] studied a general graph version of the density task. Since a
CA rule table depends on the number of neighbors, given that a small-
world graph may have vertices with different degrees, he considered the
simpler problem of fixing the rule and evaluating the performance of
small-world graphs on the task. The chosen rule was a variation of the
majority rule (not to be confused with the majority problem). The rule
simply says that, at each time step, each node will assume the state of the
majority of its neighbors in the graph. If the number of neighbors having
state 0 is equal to the number of those at 1, then the next state is assigned
at random with equal probability. When used in a one-dimensional CA
this rule has performance P ! 0 since it gives rise to stripes of zeros and
ones that cannot mix at the borders. Watts, however, has shown that the
performance can be good on other network structures, where “long”
links somewhat compensate for the lack of information transmission of
the regular lattice case, in spite of the fact that the node degrees are
still low. Indeed, Watts built several networks with performance values
P > 0.8, while the best evolved lattices with the same average number
of neighbors had P around 0.77 [10, 13] and were difficult to obtain. In
fact, according to [15], high-performance strategies were obtained only
nine times in 300 runs.

In a remarkable paper [16], Sipper and Ruppin had already examined
the influence of different connectivity patterns on the density task. They
studied the coevolution of network architectures and CA rules, result-
ing in nonuniform, high-performance networks, while we are dealing
with uniform CAs here. Since those were pre-small world years, it is
difficult to state what kind of graphs were obtained. However, it was
correctly recognized that reducing the average cellular distance, that is,
the characteristic path length, has a positive effect on the performance.

3.2 The synchronization task

The one-dimensional synchronization task was introduced in [17]. In
this task the CA, given an arbitrary IC, must reach a final configuration,
within M ! 2N time steps, that oscillates between all zeros and all ones
on successive time steps. Figure 2 depicts the space-time diagram of a
CA that solves the task.
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Figure 2. The operation of an evolved one-dimensional CA for synchronization
(source: [14]). The ring size N is 149.

As with the density task, synchronization also comprises a nontrivial
computation for a small-radius CA, and it is thus extremely difficult
to come up with CA rules that, when applied synchronously to the
whole lattice produce a stable attractor of oscillating all zeros and all
ones configurations. Das et al. were able to automatically evolve very
good ring CA rules of radius three for the task by using genetic al-
gorithms [17]. Sipper did the same for quasihomogeneous CAs, that
is, CAs with a few different rules instead of just one [14], attaining
excellent performance for radius-one CAs. The performance of a CA
on this task is evaluated by running it on randomly generated ICs,
uniformly distributed over densities in the range [0, 1], with the CA
being run for M ! 2N time steps. Figure 2 is an illustration of the
space-time operation of a typical evolved ring CA that solves the syn-
chronization task. Evolved CAs for this task have performance P close
to one.

Watts [3] also has a brief section about the synchronization task on
small worlds. He finds that a simple variant of the majority rule used
above for the density task, works also for the synchronization task. The
rule is called the “contrarian” rule, and it operates in the same way
as the majority rule, except that it gives the opposite state as output.
We adhered to this rule in order to be able to compare our results
with Watts’. The synchronization task is probably less interesting than
density in a small world because, while the ordinary lattice CA have less
than optimal performance on the density task, they are near-perfect for
synchronization. Nevertheless, the task is a difficult one as it requires
precise coordination among many elementary agents, and it is thus
representative of distributed cooperative problem solving and worth
studying.
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4. Artificial evolution of small worlds

Evolutionary algorithms (EAs) have been successfully used for more
than 10 years to evolve network topologies for artificial neural net-
works and several techniques are available [18]. As far as the network
topology is concerned, the present problem is similar, and we use an
unsophisticated structured EA with the aim of evolving small-world
networks for the density and synchronization tasks. Our EA is spa-
tially structured, as this permits a steady diffusion of good solutions in
the population due to a less intense selection pressure [19]. We have
chosen this setting which gave good results on other search problems
[20], but a simple panmictic EA would probably be equally effective.
The population is arranged on a 20 0 20 square grid for a total of 400
individuals. Each individual represents a network topology and it is
coded as an array of integers denoting vertices. Each vertex in the array
has a list of the vertices it is connected to. As the graph is undirected,
the information is redundant (e.g., if X is connected to Y, then both
have the other in their own connections list). The automaton rule is
the generalized majority rule in the case of the density task, and the
contrarian rule for synchronization as described previously. During the
evolution the network nodes are constrained to have a maximum degree
of 50. The termination condition is reached after computing exactly 100
generations of the EA.

4.1 Evolution of graphs for the density task

The fitness of a network of automata in the population is calculated by
randomly choosing 100 out of the 2N possible ICs with uniform density
(i.e., any initial density has the same probability of being selected) and
then iterating the automaton on each IC for M " 2N time steps, where
N " 149 is the automaton size. The network’s fitness is the fraction
of ICs for which the rule produced the correct fixed point, given the
known IC density. At each generation a different set of ICs is generated
for each individual. Selection is done locally using a central individual
and its north, east, south, and west first neighbors in the grid. Binary
tournament selection is used with this pool. The winner is then mutated
(see below) and evaluated. It replaces the central individual if it has a
better fitness.

Mutation is designed to operate on the network topology and works
as follows. Each node of an individual is mutated with probability
0.5. If chosen, a vertex (called the target vertex) will have an edge
either added or removed to a randomly chosen vertex (called the des-
tination vertex) with probability 0.5. This will only happen if all the
requirements are met (minimum and maximum degree are respected).
Mutation will not take place if the source vertex has already reached its
maximum degree and a vertex should be added. Analogously, mutation
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will not happen if an edge has to be removed from a vertex that has
minimum degree. If the same case happens with the target, another
vertex is randomly chosen. This version of the algorithm does not use
recombination operators.

4.1.1 Evolution from regular lattices

In this first series of experiments we started from regular rings, which
is the customary way for constructing small-world graphs [3]. The
initial population was composed by individuals that are regular rings
with node degree k " 4, that is, each vertex is connected to its four
nearest neighbors in the ring, instead of rings with k " 6, which is the
case treated by Watts. Moreover, to start with sufficient diversity in the
population, we slightly modify each of them by adding an edge with a
probability of 0.1 applied to each vertex.

Figure 3 shows the genotypical population entropy, ) (see section 2),
fitness, and performance of the best individual (as defined in sections 3.1
and 4) as a function of the generation number. The curves represent data
from a typical run out of 50 independent runs of the EA. Recall that
performance is defined off-line as the fraction of correctly classified ICs
which are binomially distributed (see section 3.1), while fitness computes
the same fraction on a uniformly distributed sample over density, which
is an easier task (see section 4.1).

We see that fitness quickly reaches high levels, while performance,
which is a harder measure of the generalization capabilities of the
evolved networks on the density task, stays lower and then stabilizes
at a level greater than 0.8. The population entropy remains high dur-
ing all runs, meaning that there is little diversity loss during evolution.
Note that the entropy refers to the “genotype” and not to fitness. This
is unusual and probably due to the spatial structure of the evolution-
ary algorithm, which only allows slow diffusion of good individuals
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Figure 3. Density task. A typical evolutionary run starting from a perturbed ring
population.
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Figure 4. Density task. The ) versus performance values of the 50 best individ-
uals found in the 50 evolutionary runs starting from a population of perturbed
rings.

through the grid [19]. The ) curve is particularly interesting as it per-
mits a direct comparison with Watts’ hand-constructed graphs [3]. The
results fully confirm his measurements, with networks having best per-
formance clustering around ) values between 0.6 and 0.8 (see Figure 4).
The mean degree !k" of the evolved networks is around 7, which com-
pares well with the radius-three lattice CA case and Watts’ (see Figure 9
in section 4.1.2). Therefore, we see that even a simple EA is capable
of consistently evolving good performance networks in the small-world
range. This is not the case for the standard ring CAs for the majority
task, where good rules are notoriously difficult to evolve. In fact, while
we consistently obtain networks having performance around 0.8 in each
evolutionary run, Mitchell et al. [13] found that only a small fraction
of the runs lead to high-performance CAs. As well, our networks and
Watts’ reach higher performance: 0.82 against 0.77 for the lattice. Evi-
dently, the original fitness landscape corresponding to the 2128 possible
ring CAs with radius three is much more difficult to search than the
landscape corresponding to all possible graphs with N vertices. To this
we may add that the performance of the small-world solutions are better
than those of the original lattices as N increases, as was observed by
Watts and confirmed by our study (not shown here for lack of space).
Work is under way to study the basic statistics of the above landscapes
in order to obtain a better understanding of their structures.

The operation of a typical evolved small-world network can be seen
in the space-time diagram of Figure 5. Although a direct comparison
with the previous Figure 1 is difficult due to the very different network
connections, still, one can see that the information transfer is much
faster thanks to the distant connections, and the problem is thus solved
in fewer steps.
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(a) (b)

Figure 5. The operation of an evolved small-world CA for the density task. The
density Ρ0 is 0.470 in (a) and 0.523 in (b).
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Figure 6. Density task. A typical evolutionary run starting from a random graph
population.

4.1.2 Evolution from random graphs

Although the results of artificial evolution from rings are appreciable,
giving rise to networks of automata with small-world topology and
good performance, the way the initial population is generated might
nevertheless contain a bias towards such graphs. In order to really
assess the power of this artificial evolution, we designed a second series
of experiments in which all the parameters are the same except that the
initial population was formed by arbitrary random graphs. A random
graph having N vertices can be constructed by taking all possible pairs of
vertices and connecting each pair with probability p, or not connecting
it with probability 1 $ p. In the experiments p " 0.03 and there is no
constraint on the minimum node degree, which means that disconnected
graphs are also possible. However, we discarded such graphs ensuring
that all the networks in the initial population were connected with
average degree !k" " Np of 4.47.
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Figure 7. Density task. The ) versus performance values of the best individuals
found by evolution starting from rings and random graphs. For comparison,
Watts’ results are also plotted (redrawn from [3]).

We see again in Figure 6 that genotypic diversity is maintained
through evolution as the entropy is always high. Likewise, fitness rises
quickly and stays near the maximum. Performance has a different be-
havior initially. While it starts low and rapidly and steadily increases
in the previous case, here it has an approximate value of 0.4 at the
beginning. The difference is due to the fact that, in the perturbed ring
case, the initial population is still mainly constituted by regular rings,
which we know are incapable of performing the density task using the
majority rule as the CA rule. In the random graph case, a fraction of
the networks in the initial population does a better job on the task.
The same conclusion can be reached by looking at the ) curve. While
in the perturbed ring case ) starts low () is 0 for a lattice) and then
slowly increases toward values around 0.7, in the random graph case
the contrary happens: ) is rather high at the beginning because truly
random graphs predominate during the first part of the evolution, that
is, about 20 generations. After that, graphs are more of the small-world
type and converge toward the same ) region in both cases. This can
be clearly seen in Figure 7, where the best 50 individuals of all runs for
both initial rings and random graphs are plotted together. The figure
also reports the results of Watts for comparison and a couple of lattice
CAs that have been hand-designed or evolved with a genetic algorithm
[13]. Note that the best evolved ring CA for the task known to date has
been obtained by Juillé and Pollack and has performance about 0.86
[21]. It should be noted that in both Figures 3 and 6 performance does
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Figure 8. Degree distribution of best evolved networks for the density task.
Initial ring population (a); initial random graph population (b).

Ring-net !k" C L ) P
A 7.906 0.053 2.649 0.654 0.823
B 7.611 0.053 2.703 0.670 0.820
C 7.409 0.048 2.750 0.685 0.813
D 7.342 0.049 2.736 0.669 0.807
E 7.450 0.057 2.730 0.679 0.807

Figure 9. The five best evolved networks for ring-based initial populations. !k"
is the mean node degree, C is the clustering coefficient, L is the characteristic
path length, ) is the percentage of shortcuts, and P is the network performance
on the density task.

not stop improving even though fitness has reached its maximum value.
This is an indication of the good learning and generalization capabilities
of the evolved networks.

Figure 8 shows the degree distribution of the best networks found by
evolution in the ring case (a), and the random graph case (b). Although
the number of vertices is too small for a rigorous statistical treatment,
it is easily seen that the distribution is close to binomial in both cases,
which is what was expected.

Finally, Figures 9 and 10 summarize the graph-theoretical statistical
properties of the five best evolved individuals for the ring case, and for
the random graph case. It is interesting that, although no provision
was explicitly made for it, the average number of neighbors !k" ended
up being around seven, very close to six used by construction in Watts
[3] (remember that his construction for small-world graphs leaves the
initial !k" for a ring unchanged). Measured average path lengths L and
clustering coefficients C have expected values, given the corresponding
) values which, without being in the random graph regime, are never-
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Rand-net !k" C L ) P
A 7.798 – 2.695 0.664 0.821
B 7.543 – 2.736 0.585 0.812
C 7.355 – 2.729 0.686 0.800
D 7.422 0.062 2.736 0.631 0.798
E 6.778 – 2.858 0.748 0.797

Figure 10. The five best evolved networks for random-graph-based initial pop-
ulations. !k" is the mean node degree, C is the clustering coefficient, L is the
characteristic path length, ) is the percentage of shortcuts, and P is the network
performance on the density task (a “–” means that the clustering coefficient is
not computable since those graphs are allowed to have vertices with a degree
smaller than two).

theless not far from it for both initial rings and initial random graphs.
In other words, the networks with good performance constructed by
Watts as well as those artificially evolved have many links rewired. It
is worth noticing that, although the EA does not limit the node de-
gree other than establishing a maximum allowed value km " 50, all the
evolved networks have a much smaller !k". The operation of graph-CAs
evolved from random conditions is qualitatively indistinguishable from
those originated from rings (see Figure 5).

4.2 Evolution of automata graphs for the synchronization task

To artificially evolve automata networks for the synchronization task,
we have used exactly the same genetic algorithm setting as for the density
task in section 4.1, except for the fitness function, which is the same as
the one used by Das et al. [17]. We have again two starting points for
the initial population: either a population of slightly perturbed radius-
two rings, or arbitrary connected random graphs with the same number
of vertices.

The results, see Figure 11, are perfectly in line with those obtained
by Watts [3]. For reasons of space, we omit the curves representing
the evolution of ), fitness, and performance through generations, which
show behaviors very similar to those seen in the case of the density task
(section 4.1).

5. Limiting the number of shortcuts

The network evolutions described in the previous section lead to small-
world graphs with a comparatively high proportion of shortcuts, in
agreement with the automata built by Watts. Since our systems are just
a paradigm for coordinated distributed task solving by simple automata,
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Figure 11. The ) versus performance values of the 50 best individuals found in
the 50 evolutionary runs on the synchronization task. (a) starting from rings,
(b) starting from random graphs.

we do not take into account real-world constraints such as wire length
and other engineering considerations that would be essential for the
actual construction of the network. Nevertheless, it is still interesting to
study the evolution of the same graphs with the added requirement that
) is as low as possible. Notice, however, that this does not necessarily
imply a shorter wire length in a two-dimensional physical realization.

An easy way to implement this criterion is to include a term in the
fitness function which, for a given network fitness, favors networks
having a lower ) value. A similar approach was used by Sipper and
Ruppin [16] with the aim of minimizing the connections length of their
inhomogeneous CAs. Obviously, the most general way to solve the
problem would be to use multiobjective optimization. However, the
simpler technique will prove sufficient for our exploration. The new
fitness function is thus:

f
1
" f , (1 $ )) 0w,

where f is the usual CA fitness, w is an empirical weight factor with
w % [0, 1], and f 1 is the effective fitness. After experimenting with a few
different w values, we finally used w " 0.6 in the experiments described
here, although the precise w value only makes a small difference.

As depicted in Figures 12 and 13 for the density task, we see that
the introduction of a selection pressure favoring networks with smaller
) values is effective in evolving graph-CAs that keep high performance,
equal to or better than those previously found using unconstrained evo-
lution (see Figures 3, 4, 6, and 7 for comparison). Here also, starting
from a population of perturbed rings or random graphs does not make
a big difference although, as expected, starting from slightly perturbed
rings, which have low ), tends to favor slightly lower ) values of the
evolved networks. The ) values are around 0.3 (see Figures 12 and
13), while they are about 0.7 in the previous case (Figures 4 and 7).
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Figure 12. Density task results. ) and performance curves versus generation
number for an initial population of perturbed rings and a population of random
graphs.
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Figure 13. Density task. ) versus performance values of the 50 best individuals
found in the 50 evolutionary runs starting from rings and starting from random
graphs. Fitness function is f 1 . For comparison, Watts’ results are also reported.
They have been redrawn from [3]. Note that the ) axis range is 0 to 0.5.

The average degrees are somewhat higher however: 11.76 and 9.72
for ring-based and random-graph-based respectively. This compares
favorably with Watts’ hand-constructed networks (Figure 7.4, p. 192
in [3]), where one can see high-performance networks with ) around
0.3 but with average degree !k" equal to 12. It is clear thus that, to
some extent, having more neighbors on the average compensates for the
reduced number of shortcut links. The degree distribution for evolved
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Figure 14. Degree distribution of best evolved networks for the density task,
using f 1 as a fitness function. Initial ring population (a); initial random graph
population (b). Mean degrees !k" are 11.76 in (a) and 9.72 in (b).

networks is shown in Figure 14 and confirms that P(k) is approximately
binomial.

Experiments of the same type on the synchronization task (not shown
here for reasons of space), give similar results, in the sense that high-
performance graph-CAs are obtained easily by artificial evolution. The
average values of ) starting from perturbed rings and random graphs
are 0.19 and 0.34 respectively. The degree distribution is again approx-
imately binomial and the mean degrees !k" are 13.06 for ring-based
individuals, and 10.04 for random-based ones.

5.1 Task flexibility of the evolved networks

As we have seen, it is much easier to evolve small-world networks rather
than regular lattices for both tasks. This is also manifest in the fact
that networks evolved specifically for one task yield good performance
when used for the other one. As noted by Watts [3], the two tasks are
nearly identical and thus this finding is not surprising. Furthermore,
this remains true for the whole range of ) values for which automata
have been evolved or generated by hand.

For instance, Figures 15 and 16 show how networks evolved for
the density task using ) as a second objective (see previous section)
are also well-suited for synchronization (of course, upon changing the
rule). The opposite is also true: namely, that networks evolved for the
synchronization task can be used for solving the density problem.

6. Robustness in the presence of random faults

Noisy environments are the rule in the real world. Since these automata
networks are toy examples of distributed computing systems, it is inter-
esting and legitimate to ask questions about their fault-tolerance aspects.
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Figure 15. Performance versus ) of networks evolved for the density task on
both density and synchronization with ring-based networks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

"

pe
rfo

rm
an

ce

evaluated on Density problem
evaluated on Synchronization problem

Figure 16. Performance versus ) of networks evolved for the density task on
both density and synchronization with random-graph-based networks.

A network of automata may fail in various ways when random noise
is allowed. For instance, the cells may fail temporarily or they may
die altogether; links may be cut, or both things may happen. In this
section, we compare the robustness of standard lattice-CAs and small-
world CAs with respect to a specific kind of perturbation, which we call
probabilistic updating. It is defined as follows: the CA rule may yield
the incorrect output bit with probability pf , and thus the probability of
correct functioning will be (1 $ pf ). Futhermore, we assume that errors
are uncorrelated. This implies that, for a network with N vertices, the
probability P(N, m) that m cells (vertices) are faulty at any given time
step t is given by

P(N, m) " #N
m
$ pf

m (1 $ pf )
N$m
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Figure 17. Hamming distance (y-axis) versus fault probability (x-axis) for the
density problem (full line), and the synchronization problem (dashed line). The
curves are averages over 103 distinct ICs.

that is, it is binomially distributed. It should be noted that we do not
try to correct or compensate for the errors, which is important in an
engineered system but very complicated and outside our scope. Instead,
we focus on the “natural” fault-tolerance and self-recovering capabilities
of the systems under study.

To observe the effects of probabilistic updating on the CA dynamics,
two initially identical copies of the system are maintained. One proceeds
undisturbed with pf " 0, while the second is submitted to a nonzero
probability of fault. We can then measure such things as Hamming
distances between unperturbed and faulty configurations, which give
information on the spreading of damage (e.g., [22] where the case of
synchronous, nonuniform CAs is examined). Figure 17 shows that, for
the density task, the amount of disorder is linearly related to the fault
probability. This is an excellent result when compared with ring CAs
where already at pf " 0.001 the average Hamming distance is about 20
[22], and tends to grow exponentially. At pf " 0.1 it saturates at about
95, while it is still only about 20 for the small-world CA.

This striking difference is perhaps more intuitively clear by looking at
Figures 18 and 19. The faulty CA depicted in Figure 19 is the best one
obtained by artificial evolution in [10, 13] and it is called EvCA here. It
is clear that even small amounts of noise are able to perturb the lattice
CA so much that either it classifies the configuration incorrectly (c),
or it cannot accomplish the task any longer (d) as pf increases further.
For the same amount of noise the behavior of the small-world CA is
much more robust and even for pf " 0.01 the fixed point configuration
is only slightly altered. Note also that the EvCA configuration has
Ρ0 " 0.416 whereas the one used in the small-world CA has Ρ0 " 0.490,
and it is thus more difficult to classify. For completeness, we note
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(a) (b)

(c) (d)

Figure 18. Typical behavior of a small-world CA for the density task under
probabilistic updating. The density Ρ0 is 0.490 and the probabilities of fault pf

in (a), (b), (c), and (d) are, respectively, 0, 0.0001, 0.001, and 0.01.

(a) (b)

(c) (d)

Figure 19. Typical behavior of EvCA [10] under probabilistic updating on the
density task. The density Ρ0 is 0.416 and the probabilities of fault pf in (a), (b),
(c), and (d) are, respectively, 0, 0.0001, 0.001, and 0.01.
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that in a previous study [23] we investigated the behavior of evolved
asynchronous lattice CAs for the density task under probabilistic noise.
We found that, while asynchronous CAs are much more fault-tolerant
than synchronous ones, their robustness is not as good as that of small-
world CAs and their performance is significantly lower.

Looking again at Figure 17 we see that the behavior of the syn-
chronization task (dashed line) under noise is poorer. In fact, it is not
possible to maintain strict synchronization in the presence of faults. The
system manages to limit the damage for low fault probabilities but it
goes completely out of phase over pf " 0.2. For higher probabilities
the distance stabilizes around 75 (i.e., half of the cells on average are
in the wrong state). In spite of this, the behavior is still much better
than the one observed for ring CAs, where at pf " 0.01 the Hamming
distance is already about 55 [22], while it is only about eight in the
small-world CA.

7. Conclusions

Starting from the work of Watts on small-world cellular automata (CAs),
we have used an evolutionary algorithm (EA) to evolve networks that
have similar computational capabilities. Without including any pre-
conceived design issue, the EA has been consistently able to find high-
performance automata networks in the same class of those constructed
by Watts. In addition, by giving some evolutionary advantage to low-)
networks, the evolutionary process has been able to find networks with
a low ) and excellent performance for both tasks.

These results have been easy to find even though the EA is unsophisti-
cated. This means that the space of small-world networks is “solutions
rich,” which is the contrary of what one observes in the rule space for
standard ring CA, where evolving good rules has proved difficult. The
power of artificial evolution is seen in the fact that, even starting from a
population of completely random graphs, the algorithm finds automata
in the same class. This result is an indication that small-world network
automata in this range have above average distributed computation ca-
pabilities, although we only studied two problems of this type and any
generalization would be unwarranted at this stage.

Not only are these networks extremely efficient, they also feature
above average robustness against transient probabilistic faults. A com-
parison with standard lattice CAs shows that small-world CAs are much
less affected by random noise. The difference is striking, and could be
one of the reasons that explain the ubiquity of irregular “natural” col-
lective computational systems with respect to regular structures.

It is also clear at this point that we have not used the power of
artificial evolution at its best. In particular, we adopted the fixed rules
of Watts and let the networks evolve. It would probably pay if we would
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let the rule evolve together with the network topology. This has been
suggested by Watts [3] and has previously been attempted by Sipper and
Ruppin with good results [16]. Further work along these lines is needed.
We also plan to study the collective computational capabilities and the
phase space structure of other small-world graph structures, especially
scale-free networks.
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