
Repeated Sequences in Linear
Genetic Programming Genomes

William B. Langdon

Computer Science,
University College, London,
Gower Street, London, UK

Wolfgang Banzhaf

Computer Science,
Memorial University of Newfoundland,
St. John’s, A1B 3X5, Canada

Biological chromosomes are replete with repetitive sequences, microsatel-
lites, SSR tracts, ALU, and so on, in their DNA base sequences. We started
looking for similar phenomena in evolutionary computation. First studies
find copious repeated sequences, which can be hierarchically decomposed
into shorter sequences, in programs evolved using both homologous and
two-point crossover but not with headless chicken crossover or other
mutations. In bloated programs the small number of effective or expressed
instructions appear in both repeated and nonrepeated code. Hinting that
building-blocks or code reuse may evolve in unplanned ways.

Mackey–Glass chaotic time series prediction and eukaryotic protein
localization (both previously used as artificial intelligence machine learn-
ing benchmarks) demonstrate the evolution of Shannon information (en-
tropy) and lead to models capable of lossy Kolmogorov compression. Our
findings with diverse benchmarks and genetic programming (GP) systems
suggest this emergent phenomenon may be widespread in genetic systems.

“DNA whose sequence is not maintained by selection will develop
periodicities as a result of random crossover.”
George P. Smith [17].

1. Introduction

It has been long noticed that there are emergent phenomena in genetic
programming (GP) runs unintended by the human designer of the al-
gorithm. Early on it was observed that code which does not change
the output of the program (i.e., noneffective code) appears in many GP
runs [1, 2, 3]. It was also noted that bloat affects many GP systems.
Reasons for bloat and noneffective code have been examined in years
past [4, 5, 6] and remedies have been developed that are more or less
effective under particular circumstances (e.g., [7, 8, 9, 10]).

Complex Systems, 15 (2005) 285–306; ! 2005 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.15.4.285

286 W. B. Langdon and W. Banzhaf

Here we would like to argue that noneffective code and bloat are only
the tip of an iceberg and that there is more to be discovered about “emer-
gent phenomena” in GP runs. Particularly, we would like to study the
repetition of patterns in GP-evolved programs. These are instructions,
or more interestingly, groups of instructions, that occur several times in
a program. In fact long sequences of instructions which are repeated
can sometimes be decomposed into shorter repeated sequences. This
is interesting in itself and it parallels what has been found in natural
genomes. Biologists have long noticed the curious existence of repeated
sequences in genomic DNA.

Perhaps the reasons for emergence of repeated sequences is similar
in biological and artificial evolutionary systems? What could we learn
from biological explanations, and can we transfer understanding from
evolutionary algorithms back into biology? What instruments are avail-
able for observing and examining repetitive sequences? Are there new
representations of GP that might be more conducive to evolution once
the reason for emergence of repeated sequences has been understood?
Are we on the way to discover that evolution reuses code in a very inter-
esting, yet hardly intelligible way? Are building blocks involved in the
formation of repeated sequences? These and more questions are raised
by our observations.

We first discuss the biological background to repeated sequences.
Section 3 describes the two linear GP systems used for our experiments
and the time series prediction and bioinformatics protein classification
tasks they were applied to. Section 4 presents results of our experiments.
Section 5 concludes.

2. Biological background

Biologists have discovered that there is a vast amount of repetition
in the DNA of microbes, plants, and animals [11]. Less than 3%
of a human genome consists of protein-coding genes but about 50%
of it consists of repetitive sequences, many of viral origin [12, 13].
Initially biologists concentrated upon understanding the protein-coding
part of genomes. However with whole genome analysis becoming more
common, repetitive DNA is a lively subject of research [14, 15, 16].

There are many forms of repeated DNA. This multitude confirms
that it is a complex phenomenon. There are satellites, minisatellites, and
microsatellites. Repeats of different sizes are located next to each other
along the genome. There are ALU repeats and interspersed repetitive
sequences. Repeating sequences are found in coding, noncoding, and
intercistronic areas. Repeats are distributed over genomes and species
and constitute a considerable fraction of all DNA in many organisms.

The search for causes began some time ago. Smith, in 1976, did
numerical experiments in order to explain the evolution of repeated

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 287

DNA sequences [17]. His conclusion was that homologous crossover is
a major factor in the emergence of repeated sequences. In more recent
work, crossover and DNA duplication have been identified to play an
important role. Driven by the inaccuracy of the DNA replication ma-
chinery, repeated sequences are both a consequence of misalignments
and a cause for crossover [18]. Hsieh and Lee considered a model of
bacterial genome growth working with a mechanism called “random
segmental self-copying” [19]. This model was able to explain, at a sta-
tistical level, the distribution of patterns found in bacterial genomes.
They concluded, since the statistical traces are still visible in the distri-
bution of DNA patterns, that growth processes of genomes must have
taken place.

In recent years, quantitative analysis tools have become available
in molecular biology that allow a closer look at these phenomena
[20, 21, 22]. These will provide the opportunity to observe even more
closely how different repetitive patterns emerged during evolution. Ap-
plications of repetitive sequences are also starting to appear [23].

3. The linear genetic programming system

Genetic programming (GP) has been described many times [24, 25, 26].
Essentially GP applies the well-known genetic algorithm (GA) to the
task of searching for a program which does what is needed. Unlike
the typical GA, GP evolves both the numeric values and the form of
the solution. This additional freedom allows trial solutions of changing
complexity and opens up evolutionary computation to new, unexpected
and emergent effects.

We decided to start with linear GP [27, 28, 29, 30] in which the
evolved data or chromosome is a linear program. Such a linear structure
is analogous to the DNA molecule in biological genomes. This makes
linear GP a good place to start looking. A linear structure is also
intrinsically easier to search for repeated substructures.

In order to show the wide-spread nature of repeated sequences, we
used two radically different linear GP systems. GPengine, a stan-
dard academic C++ system, and a commercial machine code GP sys-
tem, Discipulus. To allow repeatability, sections 3.1 to 3.7 describe
GPengine and Discipulus in detail, while sections 3.8 and 3.9 describe
the two benchmarks used. Sections 4.1 and 4.2 describe the results ob-
tained, while the remainder of section 4 describes the repeated sequences
evolved by crossover.

3.1 Tournament selection and steady state population

GPengine and Discipulus both use a steady state population and tour-
nament selection. In a steady state population individuals are steadily

Complex Systems, 15 (2005) 285–306

https://doi.org/10.25088/ComplexSystems.15.4.285

288 W. B. Langdon and W. Banzhaf

added and removed from the population [31]. In contrast, in a gen-
erational system, at the end of each generation, the whole population
is replaced by the next. In steady state systems there are no distinct
generations. In terms of measuring evolutionary time in a population
of M individuals, a generation equivalent is the time taken to create and
kill M individuals.

GPengine and Discipulus tournament selection are similar. Four dis-
tinct individuals are chosen at random1 from the population. The fitness
of the first two are compared, giving a winner and a loser. In the event
that they have identical fitness (e.g., root mean squared [RMS] error)
the tie is broken arbitrarily. The second pair are compared in the same
way to give a second winner and loser.

The offspring produced from the two winners (by crossover, mu-
tation, or copying [cloning]) replace the two losers. Note, that each
tournament always produces exactly two children and the same method
is used to produce both children.

Using this form of tournament selection in a steady state population
means the best in the population cannot get worse. The best individual,
however, is not immortal. If more than one individual has the smallest
RMS error, the best individual may by chance be deleted (and replaced
by the offspring of one of the other individuals which also had the
smallest error).

Discipulus differs only in details. Discipulus saves the best program
found so far as it runs. At the end of a run, we analyze the best of these.
Note that this program may have been found hundreds of generations
before the end of the run. While in GPengine runs, when we say “the
best program,” we will mean the best program in the population at the
end of the run.

3.2 Linear genetic programming representation and program evaluation

In GPengine each individual consists of a linear sequence of instructions.
After input to the program is provided by initializing certain registers,
the sequence is executed and register values are changed accordingly. By
convention, the output of a GP program resides in the first register (R0).

Each instruction takes two inputs, performs its (integer) calculation,
and writes the output to a register. The first input is always a register.
The second can either be a constant (0..127) or a register. Figure 1 de-
scribes a single instruction. We use eight 8-bit read-write registers. As
mentioned, before the individual is executed, all the registers are initial-
ized with data for the current fitness case. The sequence of instructions
is obeyed from the start of the individual to its end. The final value in
register R0 is the GP’s output, that is, its prediction.

1GPengine uses the C rand function.

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 289

Arg 1
R0..R7

Output
R0..R7

Arg 2
Opcode 0...127

R0..R7
or+ ! * /

Figure 1. Format of a GPengine instruction.

Again, Discipulus is slightly different. It does not interpret the in-
structions, it executes them directly. To allow this they are Intel 486
machine code instructions, packed into 4-byte words (padded with nops
where needed to fill four bytes). Inputs and constants are held in sepa-
rate registers from the read/write floating point arithmetic registers.

3.3 GPengine crossover (XOA and 2XO)

90% of tournaments are followed immediately by crossover of the two
winners, yielding two children which overwrite the two losers. In the
other 10% of cases, the losers are overwritten by copies of the winners.
Two-point crossover is used (see Figure 2) however, GPengine appends
to the end of the first parent if the code to be copied from the second does
not overlap with the first. For this to happen the second parent must be
longer than the first (see Figure 3). In a second set of experiments this
append variation was disabled and insertion was used in all cases. If the
chosen crossover points result in potential offspring that would exceed
the maximum size (500 instructions) then the crossover is aborted and
the loser is not overwritten. Note that the length checks are made
independently, so the other crossover may proceed. Even if the loser is
not replaced by crossover, it may still be changed by mutation.

Note that in GP we take it for granted that the parent programs are
aligned at their starts. This provides a huge degree of both syntactic
and semantic homology for free. This is similar to Nature, where chro-
mosomes are crossed on a like-for-like basis. But at the detailed level
where natural crossover occurs, Nature has to work to find matching
DNA sequences to establish crossover points.

3.4 Discipulus crossover (2XO and HXO)

Discipulus provides two crossover operators. The first, two-point, is
essentially the same as GPengine’s two-point crossover. The second is
called “homologous” crossover (HXO) (see Figure 4). Here the same
two crossover points are used in both parents. So while HXO exchanges
code, the offspring are the same length as their parents [32].

3.5 Variable length mutation: Headless chicken crossover

Initial programs are quite short. In order to study if crossover was
uniquely responsible for repeating sequences we used a mutation opera-

Complex Systems, 15 (2005) 285–306

https://doi.org/10.25088/ComplexSystems.15.4.285

290 W. B. Langdon and W. Banzhaf

Figure 2. GPengine crossover. Two instructions are randomly chosen in each
parent (top two genomes) as cut points. If the code to be inserted from the
second parent at least partially overlaps the first, it is inserted in the normal
way to give the child (lower chromosome). With headless chicken crossover,
the inserted code is randomly generated.

Figure 3. XOA crossover. If there is no length overlap between code selected
in the second parent and the first parent (top), the selected code fragment is
appended to the whole of the code from the first parent. (That is, the middle
portion of the first parent is not removed.)

Figure 4. HXO crossover. As with the other crossover operations, two parents
(top two programs) crossover to yield two child programs (bottom). In HXO
the two crossover cut points are the same in both parents. Note that the code
does not change its position relative to the start of the program (left edge) and
the child programs are the same lengths as their parents.

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 291

tor that could change program lengths. We introduced headless chicken
crossover (HCX) to linear GP in [33]. Although described as a crossover
operation, only the length of the second parent has any influence on the
child. Initially HCX works in the same way as two-point crossover (see
Figure 2) except that, instead of inserting a code fragment taken from
the second parent, a randomly generated sequence of code of the same
length is inserted.

GPengine, unlike Discipulus, does not write-protect its inputs, this
means that a long sequence of random instructions will eventually over-
write all the registers. Since the instructions are not reversible, each
overwrite destroys information. If the random sequence is long enough
it is virtually guaranteed to destroy all information in the registers.
Once that happens a program’s initial conditions cannot affect its sub-
sequent behavior. Such programs are useless at predicting and so have
large RMS errors. Assuming each overwrite is 100% destructive, a ran-
dom sequence of about 8(log 8 " Γ) $ 21.3 instructions will render the
offspring useless [34]. The expected size of the crossover fragment is
1/l!l%1

i&0 1/2(l % i) & (l " 1)/4, where l is the number of instructions in the
second parent. Hence we anticipate that runs using only HCX will not
bloat much above 84 instructions.

When the second program is long enough, HCX becomes like a super-
sonic jet nozzle. Flow downstream of the nozzle is independent of that
upstream. Similarly, program outputs (which are downstream of the
random code) are independent of inputs. That is, they are disconnected
from upstream perturbations.

3.6 GPengine point mutation

After two children have been produced by crossover or by simply copy-
ing their parents (cloning), there is a 40% chance that they will be
mutated. Point mutation consists of choosing uniformly at random
exactly one instruction in the individual and changing it. Each of the
four fields in the chosen instruction (cf. Figure 1) is equally likely to
be changed. Apart from ensuring the new instruction is different, the
mechanism is the same as that used to create the initial population.
Note this means the second argument is approximately equally likely to
be a constant (0..127) or a register (R0..R7). The other three fields are
chosen uniformly from their legal values.

3.7 Discipulus mutation

Discipulus mutation is similar to GPengine’s point mutation. It, too, mu-
tates offspring whether they have been created by crossover or copied
(reproduced) directly from their parents. There are three types of Dis-
cipulus mutation. Each ensures that the offspring is still a valid ma-
chine code program. They do not change the program’s size. They

Complex Systems, 15 (2005) 285–306

https://doi.org/10.25088/ComplexSystems.15.4.285

292 W. B. Langdon and W. Banzhaf

32

48

64

80

96

112

128

144

160

176

0 200 400 600 800 1000 1200
Time steps

Figure 5. Discrete Mackey–Glass chaotic time series.

are (1) replace a 4-byte instruction block with another four bytes of
randomly generated machine code, (2) replace an instruction (op-code)
with another machine code instruction of the same length, (3) replace an
instruction’s operand (input, variable, or constant) with another input,
variable, or constant.

3.8 Mackey–Glass benchmark and GPengine

Since the goal is to study the long term behavior of an evolving popu-
lation of programs we need a moderately difficult task. The population
should continually improve and neither get stuck because the problem
is too hard nor quickly find the optimal solution. We chose the problem
of time series prediction as this is both hard and interesting. Indeed it
has applications in scientific, medical, and financial modeling [35]. We
used the IEEE benchmark Mackey–Glass chaotic time series.2 Mackey–
Glass is a continuous problem. The benchmark converts it to discrete
time and we digitized the continuous data to give byte-sized integers (by
multiplying by 128 and rounding to the nearest integer), see Figure 5.

The task for the GP is, given historical data, to predict the next value.
Since the series is chaotic this cannot be done exactly. GP is given eight
earlier values from the series. Arguably the most useful is that from
the previous time step (which is loaded into R7) but values 2 time steps

2http://neural.cs.nthu.edu.tw/jang/benchmark/, Τ & 17, 1201 data
points, sampled every 0.1).

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 293

ago, 4, 8, 16, 32, 64, and 128 time periods back are also available. As
with the benchmark, values before the start of the sequence are set to
zero. Note that the GP system only has 8-byte registers, and if it needs
scratch registers, it may have to sacrifice one or more inputs to store
intermediate results.

3.9 Locating animal proteins with Discipulus

Once again we wanted a challenging problem but radically different
from predicting tomorrow’s share price from a time series. So we chose
a binary classification (rather than continuous regression) problem from
biology (rather than finance or engineering). It is possible to predict
the function of a protein from the fractions of each amino acid from
which it is made. This has the advantage that, in many cases, data
is readily available from Swissprot or can also be inferred from gene
DNA sequences. Naturally, with such a crude measure only limited
predictions can be made. Nevertheless Reinhardt and Hubbard [36]
showed amino acid composition can be used to predict the location
of the protein from which it may be possible to infer something of its
function. In [36] they used machine learning to differentiate between
seven cellular locations spread across both animals (eukaryotic, they
excluded plants) and microbes (prokaryotic).

We restrict ourselves to localizing animal proteins (one normally
knows if a protein is animal or bacterial). Since we are seeking a
binary classification problem, we evolve models which predict if an ani-
mal protein will be found in the cell nucleus or elsewhere (i.e., in the cell
cytoplasm, in the mitochondria, or outside the cell [36]). We used the
same Swissprot data for 2427 proteins as [36]. There are 1097 nuclear
(and 1330 nonnuclear) sequences of amino acids (see Figure 6).

We counted the number of each amino acid in each protein and
allocated nuclear proteins to class 1 and the others to class 0. This
gave 2427 records, each containing 20 integers and a class label (0/1).
Following [37] we split these evenly into a training and a test file.

4. Experimental results

4.1 Predicting the Mackey–Glass chaotic time series

Three pairs of two groups of 10 independent runs were made. In the
first pair GPengine’s default crossover (with append, XOA) was used. In
the second pair two-point crossover (without append, 2XO) was used.
Finally, the last pair used HCX. In the second of each pair, selection was
turned off by deciding which individuals win or lose each tournament
entirely at random. All runs use point mutation (cf. Table 1).

Complex Systems, 15 (2005) 285–306

https://doi.org/10.25088/ComplexSystems.15.4.285

294 W. B. Langdon and W. Banzhaf

1

10

100

1000

1 10 100 1000

Ph
en

yla
la

ni
ne

 +
 V

al
in

e+
0.

21
!V

al
in

e

Serine

Nuclear
Cytoplasm, Mitochondria, Extracellular

Figure 6. Number of amino acids in nuclear and nonnuclear proteins used with
Discipulus. To reduce clutter only 5% of the data are presented. The three (of
20) amino acids plotted were selected by Discipulus as being the best discrimi-
nators. The nonlinear function of number of Valines was also suggested by an
evolved model.

Objective: Evolve a prediction for a chaotic time series.

Function set: " % ()a (operating on unsigned bytes).

Terminal set: Eight read-write registers, constants 0..127. Registers are
initialized with historical values of time series. R0 128 time
steps ago, R1 64, R2 32, R3 16, R4 8, R5 4, R6 2, and
finally R7 with the previous value. Time points before the
start of the series are set to zero.

Fitness: Root mean error between GP prediction (final value in R0)
and actual (averaged over 1201 time points).

Selection: Steady state, tournament 2 by 2.

Initial
population: Random program’s length is uniformly chosen from 1..14.

Parameters: Population 500, max program size 500, 90% crossover,
40% mutation.

Termination: 125 500 individuals evaluated.

aIf the second argument of) is zero, it returns zero.

Table 1. GPengine parameters for Mackey–Glass time series prediction.

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 295

1

10

100

1000

0 50 100 150 200 250

RM
S

Er
ro

r

Generation equivalents

Median random 63.1035

Best random 10.1744

Quarter population

Third quarter

Worst

Median
First Quartile

Best

Figure 7. Evolution of Mackey–Glass prediction error (first of 10 runs). Note
that the population chases after the best (lowest) fitness. For many generations
at least 25% of the population has the same best fitness (sometimes more than
half).

RMS error Mean
XOA 2.85 2.30 3.56 3.34 3.68 4.30 2.24 5.37 2.38 4.40 3.44

29.40 6.26 30.20 30.17 30.18 8.03 30.07 30.17 19.17 30.22 24.39
2XO 3.53 3.47 1.60 4.27 5.37 2.43 3.81 5.37 5.37 2.72 3.79

8.60 12.59 7.66 33.32 14.40 19.62 6.23 17.37 29.85 23.63 17.33
HCX 4.03 4.04 3.64 4.06 3.93 3.61 3.73 3.20 3.78 3.94 3.80

9.95 6.32 9.95 11.71 16.59 15.83 7.92 7.37 10.71 8.60 10.49

Table 2. Best Mackey–Glass prediction error at the end of GPengine runs. Using
two-point crossover with append (XOA), without append (2XO), and headless
chicken crossover (HCX). The lower row of each pair refers to the runs without
fitness selection.

In all 3 (10 runs with selection, fitness improved and for many
generations large parts of the population had the same fitness. Figure 7
shows the evolution of prediction error for the first of 10 runs (the others
are similar, cf. Table 2).

Figure 8 shows the evolution of program size. Initially programs are
between one and 15 instructions long, with a mean of seven. However,
in runs with fitness selection and crossover (XOA and 2XO) length

Complex Systems, 15 (2005) 285–306

https://doi.org/10.25088/ComplexSystems.15.4.285

296 W. B. Langdon and W. Banzhaf

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250

M
ea

n
pr

og
ra

m
 le

ng
th

Generation equivalents

Mean ten XOA runs
XOA (no selection)

Mean ten 2XO runs
2XO (no selection)

Mean ten HCX runs
HCX (no selection)

Figure 8. Evolution of mean program size and variation between Mackey–Glass
prediction runs. (Variation between HCX and 2XO without selection, lowest
plot, is too small to show, and so is omitted.) Except for the two-point crossover
with append (XOA) runs, selection is required for bloat. With crossover (XOA
or 2XO) the mean population size appears to increase exponentially, until con-
strained by the maximum size limit of 500.

quickly increases and the longest program is either 500 or very near to
this limit. Such bloat was expected [4]. As predicted in section 3.5, in
mutation-only runs (HCX) with selection, the increase in size is less dra-
matic. However it was a surprise to see bloat in runs without selection
when using crossover with append (XOA) [38]. An initial thought was
that this was due to the asymmetric append variation of the crossover
operation. This appears to be correct, since when the variant is removed
and normal two-point crossover linear GP is used instead, bloat does
not appear without fitness selection. (See the lower lines in Figure 8.)

4.2 Predicting protein location

For each experiment on the Swissprot animal proteins (cf. section 3.9)
Discipulus was run 10 times, always in classification mode and with
identical parameters but with different initial random number seeds. As
far as possible we used Discipulus’ default configurations (actual values
are given in Table 3). In both experiments the maximum program size
was 2048 bytes. In the first experiment, “homologous crossover” was

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 297

Objective: Evolve a prediction of nuclear or nonnuclear location for
animal proteins based on their amino acid composition.

Terminal set: Two read-write FPU registers, 43 randomly chosen con-
stants. Number (integer) of each of the 20 amino acids in
the protein. (Codes B and Z are ambiguous. Counts for B
were split evenly between aspartic acid D and asparagine N.
Those for Z between glutamic acid E and glutamine Q.)

Fitness: DSS [37, 39]. Parsimony not used.

Selection: Steady state, tournament 2 by 2.

Initial
population: Each random program’s length is chosen uniformly at ran-

dom from the range 4 to 80 bytes.

Parameters: Population 500 (10 (50 demes), max program size
2048 (bytes), 95% crossover (either all 2XO or 95% HCX
and 5% 2XO), and 95% mutation (three types 30%, 30%,
40%).

Termination: 500 000 individuals evaluated.

Table 3. Discipulus parameters used in animal protein location prediction exper-
iments. Only the maximum program size and HCX were changed from factory
defaults.

Percent correct nuclear vs. nonnuclear prediction Mean
2XO 82 80 80 80 80 81 82 78 79 81 80.3
HXO 81 81 79 80 80 79 78 81 78 81 80.0

Table 4. Accuracy of best animal protein location predictors evolved using Dis-
cipulus two point (2XO) and HXO (homologous) crossover. Performance on
training and test datasets is always within a few percent of each other (indicating
little over fitting) therefore we report performance averaged across both.

disabled, whilst in the second it was left at its default rate (95%). Table 4
gives the accuracy of the best models found by each run.

As an aside, when Discipulus was allowed to run in its default
multiple-run mode, it evolved a team solution with an accuracy of
87.1%. Reinhardt and Hubbard [36] did not do a nuclear versus non-
nuclear classification. Instead they report results for the easier problem
of classifying animal nuclear proteins against each of their other classes
one at a time. Table 2 in [36] gives mean accuracies of 84.9%, 84.8%,
and 86.1% when classifying nuclear proteins against each of the three
locations individually. Given the variance of the neural network runs,
one cannot say that Discipulus did significantly better, but it is doing at
least as well on a harder version of the problem.

Complex Systems, 15 (2005) 285–306

https://doi.org/10.25088/ComplexSystems.15.4.285

298 W. B. Langdon and W. Banzhaf

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

Lo
ng

es
t R

ep
ea

tin
g

Se
qu

en
ce

Generation equivalents

Longest repeated sequence
Program length/10

Figure 9. Evolution of length of longest repeated sequence of instructions in the
best Mackey–Glass prediction program produced by the first run with two-point
crossover (2XO) and fitness selection. The length of the programs is also shown.

4.3 Repeated program instruction sequences

In the random initial GPengine programs there are no repeated se-
quences. They are overwelmingly unlikely to arrive by chance. How-
ever, as crossover, mutation, and selection get to work and programs
grow, instructions start to become repeated. Initially just single instruc-
tions are repeated but the length and number of repeats increases (see
Figure 9).

All the best programs of the 10 runs with the append crossover vari-
ant (XOA) contained repeated sequences (see Figure 10). The longest
sequences contained from 12 to 62 instructions. All of these occurred
twice, however the programs also contained other, distinct, shorter se-
quences which occurred multiple times. Again the XOA runs without
selection throw up a surprise: eight of the 10 best programs3 contain
sequences of instructions which are repeated. All 10 runs with two-
point crossover without the append variation (2XO), produce repeated
sequences, however none of the 10 2XO runs without fitness selection
produced repeated instructions.

Both the 10 2XO and 10 HXO Discipulus runs evolved binary
classification programs with repeated instructions like those found in

3Even in the absence of selection one can observe the quality of programs by evaluating
the fitness function.

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 299

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500

Se
qu

en
ce

 L
en

gt
h

Program Length

Protein Location 2XO
Protein Location HXO

Mackey-Glass XOA
M-G XOA (no select)

Mackey-Glass 2XO
M-G 2XO (no select)

Figure 10. Length of longest repeated sequence of instructions in the best predic-
tion programs. 2(10 Discipulus protien location runs and 4(10 Mackey–Glass
prediction runs. With fitness selection, all three types of crossover evolved re-
peating sequences, as do eight of the 10 XOA runs without fitness selection. No
2XO runs evolve repeated sequences when tournaments are random.

GPengine 2XO runs. In 19 cases the longest sequence was between six
and 64 instructions. (The remaining run found a short program con-
taining a few individual instructions repeated a small number of times,
but no repeated sequences.)

Figure 10 plots the variation of maximum length of repeated instruc-
tions in each of the 6(10 best of run programs against their size. As an
alternative to saying that repetitive sequences are due to the crossover
operator, Figure 10 suggests that the length of the programs (i.e., bloat)
is more important. To some extent this is borne out by the runs with
HCX. The 10 runs with selection produced the best predictors of be-
tween 18 and 76 instructions (those without selection contained between
2 and 21 instructions). None contained repeated instructions.

Figure 11 shows the location of repeated sequences in a single evolved
program stressing the shear number of repeated instructions. It also
shows some repeated instructions are part of long sequences (up to 10%
of program length) and that repeated instructions appear throughout the
program. (The tartan pattern in Figure 11 suggests there may be other
structures which have yet to be investigated.)

Our results strongly suggest that crossover is responsible for repeated
sequences. However we cannot rule out the possibility that bloated long

Complex Systems, 15 (2005) 285–306

https://doi.org/10.25088/ComplexSystems.15.4.285

300 W. B. Langdon and W. Banzhaf

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300 350 400 450

Po
sit

io
n

al
on

g
Pr

og
ra

m
 L

en
gt

h

Position along Program Length

Figure 11. Location of repeated instructions in the best Mackey–Glass prediction
program produced by the third run with two-point crossover (2XO) and fitness
selection. Instructions that are part of repeated sequences longer than 10 are
plotted with (, those less, with ". This run was chosen as it best highlights
the structure. Notice that almost every instruction is repeated, so the diagonal
is almost solid. (The figure is symmetric about the diagonal.) Each cross in a
vertical line, say x & 400, indicates an instruction which is identical (to that at
position 400).

programs produced by mutation might also contain repeated sequences,
although this does seem unlikely. As mentioned before, mutation is
unable to produce long programs, so we cannot test this.

4.4 Effective code

Rapid increase in length is a characteristic of bloat [4]. We used al-
gorithm 2 from [40] to analyze the best predictors of the GPengine
2XO and XOA runs. We also used Discipulus’ own intron removal
tool. These showed that the majority of instructions have no impact on

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 301

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

Lo
ng

es
t R

ep
ea

te
d

In
st

ru
ct

io
n

Position along Program Length

Length of repeat
Effective code (63 instructions)

Figure 12. Distribution of repeated sequences along the length of the best
Mackey–Glass predictor at end of first 2XO run. It achieves an RMS error
of 3.5 using only data from one and eight previous time steps. The solid line
highlights the location of its 63 effective instructions. An animation can be found
via http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2004lb/.

the output of the programs, that is, they are ineffective code (introns).
Figure 12 shows the distribution of instructions which could affect the
prediction along the length of one program. The other bloated best of
2XO GPengine runs are similar to that shown in Figure 12. However in
three runs there was less bloat. Their best predictors are much shorter,
containing only one effective instruction, which is near the end. There is
no obvious correlation between whether an instruction is effective and
how many times it is repeated.

As the fraction of ineffective code increases so mutation is more and
more unlikely to change a program’s performance. This is (part of)
the reason why Mackey–Glass populations converge towards a single
fitness, cf. Figure 7. Similarly as evolution increases the number of
repeated instructions, mutation increasingly often duplicates an existing
instruction. However, on average, 88% of point mutations to the best
Mackey–Glass programs evolved by 2XO produce a new instruction.

4.5 Entropy and information content

There are 8 (8 (4 ((128 " 8) & 34816 GPengine legal instructions
(cf. Figure 1) Since log2 34816 & 15.087463, a randomly chosen in-

Complex Systems, 15 (2005) 285–306

302 W. B. Langdon and W. Banzhaf

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250

In
fo

rm
at

io
n

co
nt

en
t (

by
te

s)

Generation equivalents

Best in population
Gzipped

Figure 13. Evolution of information content in the best Mackey–Glass prediction
program produced by the first run with two-point crossover (2XO) and fitness
selection (as measured by gzip). For comparison the length of the programs
are also plotted (but normalized so as to give their precompressed information
content).

struction contains slightly more than 15 bits of information. Using
this measure suggests that as the population bloats each predictor con-
tains more information. A crude way of estimating actual information
content is to compress the programs using gzip [26]. Figure 13 shows
that information content increases over time but as programs contain
more repeated sequences, gzip’s Lempel–Ziv algorithm is able to com-
press them. Smaller size gives a lower estimate of information content
of the programs. Figure 13 shows that gzip (with default parameters
and a simple ASCII text format) initially imposes an overhead of about
100 bytes. After about generation 150, gzip is able to recognize pat-
terns and use them to compress the programs. For comparison our
Mackey–Glass benchmark, without compression, contains 8576 bits
(1072 bytes) of information (1201(log2 141 & 8576). Lossy (program-
matic) Kolmogorov compression is possible and achieves 7.6 times more
compression than gzip’s lossless compression.

5. Conclusion

Approximately half of human DNA is composed of repeated sequences.
Initial experiments using two very different linear genetic programming

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 303

(GP) systems (one evolving Intel floating point machine code, one using a
C++ interpreter of integer arithmetic) on two different benchmarks (one
time series prediction, the other a bioinformatics binary classification)
suggest that where artificial genetic systems have the space to evolve
repeated patterns, they will emerge. In our runs, both the number of
repeated sequences and their length increase with time but so, too, does
the length of the programs. These bloated programs are not random.
Evidence suggests that crossover is responsible.

We have observed the evolution of long repeated sequences of in-
structions. The chances of them being found purely at random are in-
finitesimal. However, while we anticipate these sequences occur widely,
so far we have only observed them in linear GP. Of course it is interesting
to see whether the same, or other emergent phenomena, occur in tree
GP. Most importantly, can these observations be used to help us build
better systems in the future? Finally, could experiments of this type in
artificial evolution give insight for biologists? For example, are statisti-
cal distributions of repeated sequences comparable to what happens in
real genomes?

Acknowledgments

The linear genetic programming system, GPengine, was given by Pe-
ter Nordin. We would like to thank Paul Gillard, Marian Wissink,
Nolan White, Dick Furnstahl, Frank D. Francone, Markus Conrads,
and David H. Jones. Support was provided by a grant from the visitor
program of the Department of Computer Science, Memorial University
of Newfoundland.

References

[1] A. Singleton, Walter Tackett [2] citing private communication from Andy
Singleton as proposing the “intron” explanation for bloat in GP trees
(1994).

[2] W. A. Tackett, “Recombination, Selection, and the Genetic Construction
of Computer Programs,” Ph.D. Thesis, University of Southern California,
Department of Electrical Engineering Systems, USA, 1994.

[3] L. Altenberg, “Emergent Phenomena in Genetic Programming,” in Evo-
lutionary Programming: Proceedings of the Third Annual Conference,
San Diego, CA, USA, 24–26 February 1994, edited by A. V. Sebald and
L. J. Fogel (World Scientific Publishing, pp. 233–241).

[4] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster, “The Evolution of Size
and Shape,” in Advances in Genetic Programming 3 edited by L. Spector,
W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline (MIT Press, Cambridge,
MA, USA, June 1999, ch. 8, pp. 163–190).

Complex Systems, 15 (2005) 285–306

304 W. B. Langdon and W. Banzhaf

[5] P. J. Angeline, “Subtree Crossover Causes Bloat,” in Genetic Program-
ming 1998: Proceedings of the Third Annual Conference, University of
Wisconsin, Madison, WI, USA, 22–25 July 1998, edited by J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon,
D. E. Goldberg, H. Iba, and R. Riolo (Morgan Kaufmann, pp. 745–752).

[6] W. Banzhaf and W. B. Langdon, “Some Considerations on the Reason
for Bloat,” Genetic Programming and Evolvable Machines, 3(1) (2002)
81–91.

[7] P. Nordin, F. Francone, and W. Banzhaf, “Explicitly Defined Introns and
Destructive Crossover in Genetic Programming,” in Advances in Genetic
Programming 2, edited by P. J. Angeline and K. E. Kinnear, Jr. (MIT Press,
Cambridge, MA, USA, 1996, ch. 6, pp. 111–134).

[8] F. D. Francone, M. Conrads, W. Banzhaf, and P. Nordin, “Homolo-
gous Crossover in Genetic Programming,” in Proceedings of the Genetic
and Evolutionary Computation Conference, Orlando, FL, USA, 13–17
July 1999, edited by W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, volume 2 (Morgan Kaufmann,
pp. 1021–1026).

[9] W. B. Langdon, “Size Fair and Homologous Tree Genetic Program-
ming Crossovers,” Genetic Programming and Evolvable Machines, 1(1/2)
(2000) 95–119.

[10] J. V. Hansen, “Genetic Programming Experiments with Standard and
Homologous Crossover Methods,” Genetic Programming and Evolvable
Machines, 4(1) (2003) 53–66.

[11] R. J. Britten and D. E. Kohnen, “Repeated Sequences in DNA,” Science,
161 (1968) 529–540.

[12] A. F. A. Smit, “The Origin of Interspersed Repeats in the Human
Genome,” Current Opinions in Genetics and Development, 6 (1996)
743–748.

[13] C. Patience, D. A. Wilkinson, and R. A. Weiss, “Our Retroviral Heritage,”
Trends in Genetics, 13 (1997) 116–120.

[14] J. R. Lupski and G. M. Weinstock, “Short, Interspersed Repetitive DNA
Sequences in Prokaryotic Genomes,” Journal of Bacteriology, 174 (1992)
4525–4529.

[15] G. Toth, Z. Gaspari, and J. Jurka, “Microsatellites in Different Eukaryotic
Genomes: Survey and Analysis,” Genome Research, 10 (2000) 967–981.

[16] G. Achaz, E. P. C. Rocha, P. Netter, and E. Coissac, “Origin and Fate of
Repeats in Bacteria,” Nucleic Acids Research, 30 (2002) 2987–2994.

[17] G. P. Smith, “Evolution of Repeated DNA Sequences by Unequal
Crossover,” Science, 191(4227) (1976) 528–535.

Complex Systems, 15 (2005) 285–306

Repeated Sequences in Linear GP 305

[18] O. Elemento, O. Gascuel, and M. P. Lefranc, “Reconstructing the Du-
plication History of Tandemly Repeated Genes,” Molecular Biology and
Evolution, 19 (2002) 278–288.

[19] L. C. Hsieh and H. C. Lee, “Model for the Growth of Bacterial Genomes,”
Modern Physics Letters, 16 (2002) 821–827.

[20] G. Benson, “Tandem Repeats Finder: A Program to Analyze DNA Se-
quences,” Nucleic Acids Research, 27 (1999) 573–580.

[21] J. W. Bizzaro and K. A. Marx, “Poly: A Quantitative Analysis Tool for
Simple Sequence Repeat (SSR) Tracts in DNA,” BMC Bioinformatics, 4
(2003) 22–28.

[22] A. Taneda, “Adplot: Detection and Visulization of Repetitive Patterns in
Complete Genomes,” Bioinformatics, 5 (2004) 701–708.

[23] Z. Izsvak, Z. Ivics, and P. B. Hackett, “Repetitive Elements and their
Applications in Zebrafish,” Biochemical Cell Biology, 75 (1997) 507–
523.

[24] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection (MIT Press, Cambridge, MA, USA, 1992).

[25] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic
Programming—An Introduction; On the Automatic Evolution of Com-
puter Programs and Its Applications (Morgan Kaufmann, dpunkt.verlag,
1998).

[26] W. B. Langdon, Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! volume 1 of
Genetic Programming (Kluwer, Boston, 1998).

[27] P. Nordin, “Evolutionary Program Induction of Binary Machine Code and
Its Applications,” Ph.D. Thesis, der Universitat Dortmund am Fachereich
Informatik, 1997.

[28] M. S. Atkin and P. R. Cohen, “Learning Monitoring Strategies: A Difficult
Genetic Programming Application,” in Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, Orlando, FL, USA, 27–
29 June 1994 (IEEE Press, pp. 328–332a).

[29] W. Banzhaf, “Genetic Programming for Pedestrians,” in Proceedings
of the Fifth International Conference on Genetic Algorithms, ICGA-93,
University of Illinois at Urbana-Champaign, 17–21 July 1993, edited by
S. Forrest (Morgan Kaufmann, p. 628).

[30] T. Perkis, “Stack-based Genetic Programming,” in Proceedings of the
1994 IEEE World Congress on Computational Intelligence, Orlando, FL,
USA, 27–29 June 1994, volume 1 (IEEE Press, pp. 148–153).

Complex Systems, 15 (2005) 285–306

306 W. B. Langdon and W. Banzhaf

[31] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in Proceed-
ings of the Third International Conference on Genetic Algorithms, George
Mason University, 4–7 June 1989, edited by J. D. Schaffer (Morgan Kauf-
mann, pp. 2–9).

[32] P. Nordin, W. Banzhaf, and F. D. Francone, “Efficient Evolution of Ma-
chine Code for CISC Architectures Using Instruction Blocks and Homol-
ogous Crossover,” in Advances in Genetic Programming 3 edited by
L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline (MIT Press,
Cambridge, MA, USA, June 1999, ch. 12, pp. 275–299).

[33] P. J. Angeline, “Subtree Crossover: Building Block Engine or Macromuta-
tion?” in Genetic Programming 1997: Proceedings of the Second Annual
Conference, Stanford University, CA, USA, 13–16 July 1997, edited by
J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and
R. L. Riolo (Morgan Kaufmann, pp. 9–17).

[34] W. B. Langdon, “Convergence Rates for the Distribution of Program
Outputs,” in GECCO 2002: Proceedings of the Genetic and Evolu-
tionary Computation Conference, New York, 9–13 July 2002, edited by
W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Pot-
ter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska (Morgan Kauf-
mann Publishers, pp. 812–819).

[35] H. Oakley, “Two Scientific Applications of Genetic Programming: Stack
Filters and Nonlinear Equation Fitting to Chaotic Data,” in Advances
in Genetic Programming, edited by K. E. Kinnear, Jr. (MIT Press, 1994,
ch. 17, pp. 369–389).

[36] A. Reinhardt and T. Hubbard, “Using Neural Networks for Prediction
of the Subcellular Location of Proteins,” Nucleic Acids Research, 26(9)
(1998) 2230–2236.

[37] F. D. Francone, Discipulus Owner’s Manual, version 3.0 draft edition,
11757 W. Ken Caryl Avenue F, PBM 512, Littleton, Colorado, 80127-
3719, USA, 2001.

[38] W. B. Langdon and R. Poli, Foundations of Genetic Programming
(Springer-Verlag, 2002).

[39] C. Gathercole, “An Investigation of Supervised Learning in Genetic Pro-
gramming,” Ph.D. Thesis, University of Edinburgh, 1998.

[40] M. Brameier and W. Banzhaf, “A Comparison of Linear Genetic Program-
ming and Neural Networks in Medical Data Mining,” IEEE Transactions
on Evolutionary Computation, 5(1) (2001) 17–26.

Complex Systems, 15 (2005) 285–306

