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This paper compares computational evolution using local and global eval-
uation functions in the context of solving two classical combinatorial
problems on graphs: the k-coloring and minimum coloring problems. It
is shown that the essential difference between traditional algorithms us-
ing local search (such as simulated annealing) and distributed algorithms
(such as the Alife&AER model) lies in the evaluation function. Sim-
ulated annealing uses global information to evaluate the whole system
state, which is called the global evaluation function (GEF) method. The
Alife&AER model uses local information to evaluate the state of a single
agent, which is called the local evaluation function (LEF) method. Com-
puter experiment results show that the LEF methods are comparable to
GEF methods (simulated annealing and greedy), and in some problem in-
stances the LEF beats GEF methods. We present the consistency theorem
which shows that a Nash equilibrium of an LEF is identical to a local
optimum of a GEF when they are “consistent.” This theorem explains
why some LEFs can lead the system to a global goal. Some rules for
constructing a consistent LEF are proposed.

1. Introduction

The process of solving a combinatorial problem is often like an evolution
of a system which is guided by evaluation functions. The purpose of
this paper is to explore some of the differences between local and global
evaluation functions in the context of graph coloring problems. We
limit our discussion to the evolution of systems that are composed of
homogeneous agents in limited state space. Note that these agents do
not evolve their strategies during evolution.

Evolution is not pure random processing. There always exists an
explicit or implicit evaluation function which directs the evolution. In
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different contexts, the evaluation function is also called the objective
function, penalty function, fitness function, cost function, or energy E.
It has the form f # S $ % & !, where % is the state (configuration)
space. The evaluation function calculates how good a state of the whole
system (or a single agent) is, then selection for the next step is based on
its value. The evaluation function plays a key role in evolution and is
one of the fundamental problems of evolution.

Generally speaking, the system state (configuration) related to the
minimal evaluation value is the optimum of the system. For example, the
Hamiltonian is used to evaluate the energy of a configuration of the spin
glass system in statistical physics. So in this case the Hamiltonian is the
evaluation function and the ground-state is related to the minimum of
the Hamiltonian. In combinatorial problems, such as the SAT problem
[1], the evaluation function is the total number of unsatisfied clauses
of the current configuration. So the evaluation value for a solution
of the SAT problem is zero. In artificial molecular evolution systems,
the evaluation function is the fitness function, and evolution favors
configurations that are related to the maximal fitness value.

A system may evolve in different paths if it is guided by different
evaluation functions. But there always exists pairs of different evolution
functions that lead to the same final state although the paths may be
different. Therefore, for a specified system, people are able to construct
different evaluation functions to reach the same goal state. As the main
theme of this paper, we investigate the following two ways to construct
evaluation functions.

1. Global evaluation function (GEF). GEF methods use global information
to evaluate the whole system state. This is the traditional way of con-
structing the evaluation function and is widely used in many systems. The
GEF embodies the idea of centralized control.

2. Local evaluation function (LEF). LEF methods use local (limited) infor-
mation to evaluate a single agent’s state and guide its evolution.

The idea of using local rules based on local information is one of the
features of complex systems such as cellular automata [2], Boid [3],
game of life [4], escape panic model [5], and sandpile model [6]. The
private utility function in game theory [7] and the multiagent learning
system COIN [8] are very close to the LEF idea except that the utility
function is allowed to use global information.

It is a simple and natural idea to use a GEF to guide the evolution of
a whole system to a global goal. But can we use an LEF to guide each
agent so that the whole system attains the global goal in the end? In
other words, if each agent makes its own decisions according to local
information, can the agents get to the same system state reached by evo-
lution guided by a GEF? Some emergent global complex behaviors from

Complex Systems, 15 (2005) 307–347



Local and Global Evaluation Functions for Computational Evolution 309

local interactions have been found in natural and man-made systems
[3–5, 9].

Most traditional algorithms used for solving combinatorial problems
use a GEF, such as simulated annealing [10], and some new ones use an
LEF, such as extremal optimization [11] and the Alife&AER model [12,
13]. Our earlier paper [14] investigated emergent intelligence in solving
constraint satisfaction problems (CSPs, also called decision problems)
[15] by modeling a CSP as a multiagent system and then using LEF
methods to find the solution.

This paper studies the relationship and essential differences between
local and global evaluation functions for the evolution of combinatorial
problems, including decision and optimization problems. We use the
coloring problem to demonstrate our ideas because it has two forms:
the k-coloring problem, which is a decision problem; and the minimum
coloring problem, which is an optimization problem. We found that
some LEFs are consistent with some GEFs while some are not. So LEF
and GEF methods differ in two layers: consistency and exploration. We
also compare the performance of LEF and GEF methods using com-
puter experiments on 36 benchmarks for the k-coloring and minimum
coloring problems.

This paper is organized as follows. In section 2, computer algorithms
for solving coloring problems are reviewed, and then a way to model
a coloring problem as a multiagent system is described. Section 3 is
about GEFs and LEFs. We first show how to construct a GEF and an
LEF for solving the coloring problem (section 3.1), and then show their
differences from aspects of consistency (section 3.2.1) and exploration
heuristics (section 3.2.2). Computer experiments (section 3.3) show
that the LEF (Alife&AER model) and GEF (simulated annealing and
greedy) are good at solving different instances of the coloring problem.
Conclusions are presented in section 4.

2. Coloring problems

The coloring problem is an important combinatorial problem. It is NP-
complete and is useful in a variety of applications, such as time-tabling
and scheduling, frequency assignment, and register allocation [15]. It is
simple and can be mapped directly onto a model of an antiferromagnetic
system [16]. Moreover, it has obvious network structure, making it
a good example for studying network dynamics [17]. The coloring
problem can be treated in either decision problem (CSPs) or optimization
problem form.

Definition 1 (k-coloring problem) Given a graph G ' (V, e), where V is the
set of n vertices and e is the set of edges, we need to color each vertex
using a color from a set of k colors. A “conflict” occurs if a pair of
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Figure 1. A solution for a 3-coloring problem.

linked vertices has the same color. The objective of the problem is
either to find a coloring configuration with no conflicts for all vertices,
or to prove that it is impossible to color the graph without any conflict
using k colors. Therefore, the k-coloring problem is a decision problem.
There are n variables for the n vertices where each variable is one of
k colors. For each pair of nodes linked by an edge, there is a binary
constraint between the corresponding variables that disallows identical
assignments. Figure 1 is an example:

Variable set X ' (X1, X2, X3, X4),
Variable domain D1 ' D2 ' D3 ' D4 ' (green, red, blue),

Constraint set R ' (X1 * X2, X1 * X3, X1 * X4, X2 * X3).

The k-coloring problem (k + 3) is NP-complete. It might be impossi-
ble to find an algorithm to solve the k-coloring problem in polynomial
time.

Definition 2 (Minimum coloring problem) This definition is almost the same
as the k-coloring problem except that k is unknown. It requires finding
the minimum number of colors that can color the graph without any
conflict. The minimum possible number of colors of G is called the
chromatic number and denoted by Χ(G). So the domain size of each
variable is unknown. For the graph shown in Figure 1, Χ(G) ' 3.

The minimum coloring problem is also NP-complete.

2.1 Algorithms

There are several basic general algorithms for solving combinatorial
problems. Of course they can also be used to solve the coloring problem.
Although we focus on the coloring problem, the purpose of this paper is
to demonstrate the ideas of LEF and GEF methods for all combinatorial
problems. What follows is a brief review of all general algorithms used
for combinatorial problems, even though some of them might not have
been applied to the coloring problem. The focus is only on the basic
ones, so variants of the basic algorithms will not be discussed.
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Figure 2. Classifications of basic algorithms for combinatorial problems. This
paper focuses on GT-SS algorithms, the intersection of single-solution and
generate-test (the gray area).

Figure 2 is our classification of current algorithms. According to how
many (approximate) solutions the system is seeking concurrently, they
can be divided into single-solution and multiple-solution algorithms.
There are two styles of search: systematic search and generate-test.
This paper will focus on GT-SS algorithms: the intersection of single-
solution and the generate-test algorithms (the gray area in Figure 2),
because the process of finding a solution using GT-SS algorithms can be
regarded as the evolution of a multiagent system.

Single-solution algorithms (SS). The system is searching for only one con-
figuration at a time. Some examples are backtracking [18], local search
[10, 19–26], extremal optimization (EO) [18], and the Alife&AER
model [12, 13].

Multiple-solution algorithms (MS). The system is concurrently searching
for several configurations, which means that there are several copies of
the system. Examples of this are genetic algorithms [27], ant colony
optimization [9], and particle swarm optimization [28]. They are all
population-based optimization paradigms. The system is initialized
with a population of random configuration and searches for optima by
updating generations based on the interaction between configurations.

Backtracking. The system assigns colors to vertices sequentially and then
checks for conflicts in each colored vertex. If conflicts exist, it will go
back to the most recently colored vertex and perform the process again.
Many heuristics have been developed to improve performance. For the
coloring problem, several important algorithms are SEQ [29], RLF [29],
and DSATUR [30].

Generate-test (GT). This is a much bigger and more popular family than
the backtracking paradigm. GT generates a possible configuration (col-
ors all vertices) and then checks for conflicts (i.e., checks if it is a so-
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lution). If it is not a solution, it will modify the current configuration
and check it again until a solution is found. The simplest but inef-
ficient way to generate a configuration is to select a value for each
variable randomly. Smarter configuration generators have been pro-
posed, such as hill climbing [25] or min-conflict [20]. They move to
a new configuration with a better evaluation value chosen from the
current configuration’s neighborhood (see details in section 3.1) until
a solution is found. This style of searching is called local (or neigh-
borhood) search. For many large-scale combinatorial problems, lo-
cal search always gives better results than the systematic backtracking
paradigm. To avoid being trapped in the local-optima, it sometimes per-
forms stop-and-restart, random walk [26], and Tabu search [23, 24, 31].
Simulated annealing [10] is a famous heuristic of local search inspired
by the roughly analogous physical process of heating and then slowly
cooling a substance to obtain a strong crystalline structure. People pro-
posed simulated annealing schedules to solve the coloring problem and
showed that it can dominate backtracking diagrams on certain types of
graphs [29].

Some algorithms that use the complex systems ideas are genetic al-
gorithms, particle swarm optimization, extremal optimization, and the
Alife&AER model.

Extremal optimization and the Alife&AER model also generate a
random initial configuration, and then change one variable’s value in
each improvement until a solution is found or the maximum number of
trials is reached. Note that extremal optimization and the Alife&AER
model improve the variable assignment based on LEFs, which is the
main difference from simulated annealing.

Both genetic algorithms and particle swarm optimization have many
different configurations at a time. Each configuration can be regarded
as an agent (called a “chromosome” in genetic algorithms). The fit-
ness function for each agent evaluates how good the configuration rep-
resented by the agent is, so the evolution of the system is based on
a GEF.1

All of the given algorithms have their advantages and drawbacks,
and no algorithm can beat all other algorithms on all combinatorial
problems. Although GT algorithms always beat backtracking on large-
scale problems, they are not complete algorithms. They cannot prove
there is no solution for decision problems and sometimes miss solutions
that do exist.

1Some implementations of particle swarm optimization can use either a GEF or an LEF.
Since particle swarm optimization is not a single-solution algorithm, it is not discussed in
this paper.
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2.2 Multiagent modeling

We proposed modeling a CSP in the multiagent framework in [14].
Here we translate the coloring problem into the language of multiagent
systems.

The concept of agent (denoted by a) is a computational entity. It
is autonomous. It is able to act with other agents and get information
from the system. It is driven by some objectives and has some behavioral
strategies based on information it collects.

A multiagent system (MAS) is a computational system that consists
of a set of agents A ' (a1, a2, . . . , an), in which agents interact or work
together to reach goals [32]. Agents in these systems may be homo-
geneous or heterogeneous, and may have common or different goals.
MAS focus on the complexity of a group of agents, especially the local
interactions among them (Figure 3).

It is straightforward to construct a MAS for a coloring problem:

n vertices (V1, V2, . . . , Vn) & n agents (a1, a2, . . . , an)

Possible colors of Vi & possible states of agent ai

Color of Vi is red - Xi ' red & state of agent ai is ai.state ' red

Link between two vertices & interaction between two agents

Graph & interaction network in MAS

Configuration S ' !X1, X2, . . . , Xn" & a system state

Solution Ssol & goal system state

Process of finding a solution by GT-SS algorithms & evolution of MAS

Evaluation function & evolution direction of MAS

G

BR

V3V2

BV4

V1

Agent Interaction

R G B

R G B

R G B R G B

a1

a3

a4

a2

(a) (b)

Figure 3. A MAS (right) for a 3-coloring problem (left). The table with three
lattices beside each agent represents all possible states (R-red, G-green, B-blue),
and the circle indicates the current agent state (color). The current configuration
S ' !G, R, B, B" is a solution.

Complex Systems, 15 (2005) 307–347

https://doi.org/10.25088/ComplexSystems.15.4.307



314 J. Han

G

BR

V3V2

GV4

V1

An initialization (a)   

R G B
a1

a2

a3

a4

G

BR

V3
V2

BV4

V1

(b)  A solution state

R G B
a1
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Figure 4. The MAS representation for a 3-coloring problem.

3. Global and local evaluation functions

3.1 Evolution

We now need to design a set of rules (or algorithm) to evolve configu-
rations of the coloring problems. The core of the algorithm is how the
whole system (configuration) changes from one state to another state,
that is, how variables change their assigned values.

For example, if the system is initialized as shown in Figure 4, S '!G, R, B, G" is obviously not a solution. There is a conflict between
V1 and V4 which are linked to each other and have the same color.
Thus, the system needs to evolve to reach a solution state, for example,
S ' !G, R, B, B" (see Figure 4(b)).

How does the system evolve to the solution state? As mentioned ear-
lier, GT-SS algorithms (e.g., simulated annealing, extremal optimization,
and the Alife&AER model) are schedules for evolution of the MAS. In
the language of MAS, those algorithms all share the same following
framework.

1. Initialization (t ' 0): each agent picks a random state, get S(0).

2. For each time step (t): according to some schedule and heuristics, one
or several agents change their state, so that S(t . 1) ' Evolution(S(t));
t / t . 1.

3. Repeat step 2 until a solution is found or the maximum number of trials
is reached.

4. Output the current state S(t) as the (approximate) solution.

The essential difference between the local and global functions lies
in the process of Evolution(S) in step 2. GEF methods are described in
section 3.1.1 and LEF methods follow in section 3.1.2.
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3.1.1 Traditional methods: Global evaluation functions
Evolution(S) of step 2 for GEF methods can be described as:

Compute the GEF values of all (or some, or one) neighbors of the current
system state S(t), and then select and return a neighboring state S(t)0 to
update the system.

A neighborhood in GEF methods is the search scope for the current
system state. For example, we can define the neighborhood structure of
a configuration S $ % based on the concept of Hamming distance:

Nd
S ' (S0 1 Hamming-distance(S, S0) ' d),

where

Hamming-distance(S, S0) '#
i

(1 2 ∆(Xi, X0
i)),

with ∆ denoting the Kronecker function ∆(x, y) ' 1 if x ' y and otherwise
∆(x, y) ' 0.

For example, if d ' 1 in the k-coloring problem, the GEF search space
is N1

S and there are n(k 2 1) neighbors of each system state. Figure 4(b)
is a neighbor of Figure 4(a). In Figure 6, (b) and (c) are neighbors of
(a). If d is larger, the neighborhood size is bigger. This will enlarge the
search scope and increase the cost of searching the neighborhood. But
there will probably be greater improvement in each time step. So the
neighborhood structure will affect the efficiency of the algorithm [33]. In
the following discussions, we always use the neighborhood structure N1

S
since the neighborhood structure is not in the scope of this paper. Note
that simulated annealing just randomly generates a neighbor and accepts
it if it is a better state, or with a specified probability to accept a worse
state. Here “better” and “worse” are defined by the evaluation value.

A GEF evaluates how good the current system state S is. In simulated
annealing, the GEF is the energy or cost function of the current system
state and guides the search. There are a variety of evaluation functions
for a specified problem, and a suitable choice can get good performance.

A GEF for the k-coloring problem. One naïve GEF for the k-coloring prob-
lem is to count the number of conflicts in the current configuration. For
simplicity, equation (1) counts twice the number of conflicts:

EGEF-k(S) '
n#

i'1

#
Xj$S2i

∆(Xi, Xj) (1)

where S2i ' !Xj 1 !i, j" $ e" denotes the set of variables that link to Vi.
Equation (1) is a GEF because it considers the whole system includ-

ing all agents. For the system state shown in Figure 4(a), the evaluation
value is 1 4 2 ' 2. Figure 4(b) shows a solution state, so EGEF(Ssol) ' 0.
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Minimizing the evaluation value is the goal of the solving process, al-
though a state with a better evaluation value does not always mean that
it is closer to the solution state.

A GEF for the minimum coloring problem. There are several evaluation
functions [29, 34, 35] for finding the chromatic number Χ(G). We
modified the version given by Johnson [29] to be:

EGEF-O(S) ' 2
m#

i'1

1Ci1
2

!""""""""#""""""""$
(a)

.n
n#

i'1

#
Xj$S2i

∆(Xi, Xj)

!""""""""""""""""#""""""""""""""""$
(b)

(2)

where m is the current total number of colors being used. The set Ci
includes variables that are colored by the i-th color. We assign each color
s an index number Index(s). Say red is the first color, Index(red) ' 1;
green is the second color, Index(green) ' 2; blue is the third color,
Index(blue) ' 3; and so on. So

Ci ' (Xj 1 Index(Xj) ' i, j $ 1 . . .n).

Part (b) of equation (2) counts twice the number of conflicts in the
current configuration. Part (a) favors using fewer colors. n in part (b)
is a weight value to balance parts (a) and (b), which makes all the local
optima in equation (2) correspond to a nonconflicting solution, that is,
a feasible solution.

For example, using equation (2) again, in Figure 5(a): C1 ' (X2, X4),
C2 ' (5), and C3 ' (X1, X3), so EGEF-O(Sa) ' 2(22 . 22) . 4 4 1 4 2 ' 0.
We can get the evaluation value of its two neighbors: EGEF-O(Sb) ' 2
and EGEF-O(Sc) ' 26. EGEF-O(Sb) > EGEF-O(Sa) shows that Sb is a worse

B

V3V2

V4

V1

R

R

B

(a) Sa

B

V3V2

V4

V1

R

G

B

(b) Sb

G

V3V2

V4

V1

R

R

B

(c) Sc

Figure 5. An example of using GEFs for a coloring problem. Sa is the initial
state. Sb and Sc are two neighbors of Sa. As a 3-coloring problem, based on
equation (1), EGEF-k(Sa) ' 2, EGEF-k(Sb) ' 2, EGEF-k(Sc) ' 0. So Sc is the
solution. As a minimum coloring problem based on equation (2), EGEF-O(Sa) '
0, EGEF-O(Sb) ' 2, EGEF-O(Sc) ' 26, so Sc is the best one (also an optimal
solution).
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state than Sa, because it uses one more color, but it still has one conflict
as does Sa. For EGEF-O(Sc) < EGEF-O(Sa), Sc is a better state because it
can remove the conflict in Sa although it uses one more color. Actually
Sc is an optimal solution.

So we can see that the GEF methods have two main features: (1) they
evaluate the whole system state, not a single agent’s state; (2) they
use all information of the system, equations (1) and (2) consider all
agents’ states. Therefore, centralized control in GEF methods is obvious:
in each step, the system checks all (or one) neighbors and selects the
one that has the best evaluation value as the new system state. No
agents here are autonomous. They all obey the choice of the centralized
controller.

3.1.2 Local evaluation function methods
Evolution(S) of step 2 using LEF methods can be described as:

For each agent ai, do the following sequentially:2 Compute the evaluation
values of all/some states by ai’s LEF, and then select a state for ai to update
itself.

After obtaining the evaluation values for all states of an agent, it will
update its state using some strategies, such as least-move, better-move,
and random-move (random walk). Least-move means the agent will
select the best state and change to that state, and random-move means
the agent will change its state randomly (for details, see [13]). These
strategies are part of the exploration heuristics (see section 3.2.2).

An LEF for the k-coloring problem. Like the GEF, there are a variety of
functions which can serve as the LEF for a problem. Equation (3) is
one possible LEF for each agent ai in the k-coloring problem [13]. It
calculates how many conflicts each state (s) of agent ai receives based
on the current assignments of ai’s linked agents. Note that if for all
i $ 1 . . .n we have Ei

LEF-k(S2i, Xi) ' 0, then S is a solution (Figure 6(c)):

Ei
LEF-k(S2i, s) ' #

Xj$S2i

∆(Xj, s). (3)

For example, in Figure 5(a), agent a1 links to a2, a3, and a4, so we
get:

E1
LEF-k(Sa,21, R) ' (∆(X2, R) . ∆(X3, R) . ∆(X4, R)) ' 2

E1
LEF-k(Sa,21, G) ' (∆(X2, G) . ∆(X3, G) . ∆(X4, G)) ' 0

E1
LEF-k(Sa,21, B) ' (∆(X2, B) . ∆(X3, B) . ∆(X4, B)) ' 1.

2Or simultaneously in some cases, as in cellular automata. This is one of our future
projects.
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  Evaluation values in(a)  Sa

R G B
a1 2 0 1
a2 0 0 2
a3 1 0 1
a4 0 0 1

R G B
a1 1 1 1
a2 0 0 2
a3 1 0 1
a4 0 0 1

R G B
a1 2 0 1
a2 0 1 1
a3 1 1 0
a4 0 1 0

(b)  Sb  Evaluation values in (c)  S c  Evaluation values in

Figure 6. An example of using an LEF for the 3-coloring problem shown in
Figure 5. Numbers on each row of the lattices represent the evaluation values
based on equation (3) for an agent’s three possible states (colors): R, G, or B.
Circles refer to the current state of the agent. (c) shows that Sc is a solution state
because all agents are in nonconflicting states. From Sa, if a1 moves first, it will
most probably change its state from B to G and get to Sc. If a4 moves first, it
will stay, or with small probability, it will change to G and get to Sb.

Since the evaluation value of the current state (X1 ' B) is higher than
state G, a1 will most probably change to state G.

Agent a4 only links to a1, so it only considers a1’s state:

E4
LEF-k(Sa,24, R) ' ∆(X1, R) ' 0

E4
LEF-k(Sa,24, G) ' ∆(X1, G) ' 0

E4
LEF-k(Sa,24, B) ' ∆(X1, B) ' 1.

Similarly, E2
LEF-k for agent a2 only considers a1 and a3. E3

LEF-k for
agent a3 only considers a1 and a2. Continuing this way, we can get
evaluation values (Figure 6) for all states of each agent.

An LEF for the minimum coloring problem. If each agent only knows its
linked agents, how can they use their limited knowledge to find the
minimal colors for a graph? Each agent has to make an approximation
of the global requirement. Let us try the following LEF for each agent ai:

Ei
LEF-O(S2i, s) ' Index(s)!""""""#""""""$

(a)

.n #
Xj$S2i

∆(Xj, s)

!""""""""""""#""""""""""""$
(b)

(4)

where Index(s) is described in section 3.1.1 and returns the index number
of color s.

Part (b) of equation (4) counts how many conflicts ai will receive
from its linked agents if ai takes the color s. Part (a) of equation (4)
favors using fewer colors by putting pressure on each agent to try to
get a color with a smaller index number. n in part (b) is a weight
value to balance parts (a) and (b), which makes all the local optima
in equation (4) correspond to a nonconflicting state. Note that if for
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R G B Y
a1 9 2 7 4
a2 1 2 11 4
a3 5 2 7 4
a4 1 2 7 4

(a)  Evaluation values 
in Sa

R G B Y
a1 5 6 7 4
a2 1 2 11 4
a3 5 2 7 4
a4 1 2 7 4

(b) 
in Sb

  Evaluation values 

R G B Y
a1 9 2 7 4
a2 1 6 7 4
a3 5 6 3 4
a4 1 6 3 4

(c)  Evaluation values 
 Scin

Figure 7. An example of using an LEF for the minimum coloring problem shown
in Figure 5. Numbers on each row of the lattices represent the evaluation values
based on equation (4) for all possible states (colors) of an agent. Circles refer
to the current state of the agent. (c) shows that Sc is a feasible solution state
because all agents are in nonconflicting states and it is also an optimal solution.
From Sa, if a1 moves first, it will most probably change its state from B to G and
get to Sc; if a4 moves first, it will stay, or with small probability it will change
to G and get to Sb.

all i $ n we have Ei
LEF-O(S2i, Xi) 6 n, S ' !X1, X2, . . . , Xn" is a feasible

solution, but not always the optimal solution.
We can evaluate each state of a1 in Figure 7(a):

E1
LEF-O(Sa,21, R) ' Index(R) . n 4 (∆(X2, R) . ∆(X3, R) . ∆(X4, R))

' 1 . 4 4 2 ' 9
E1

LEF-O(Sa,21, G) ' Index(G) . n 4 (∆(X2, G) . ∆(X3, G) . ∆(X4, G))
' 2 . 4 4 0 ' 2

E1
LEF-O(Sa,21, B) ' Index(B) . n 4 (∆(X2, B) . ∆(X3, B) . ∆(X4, B))

' 3 . 4 4 1 ' 7.

Since the evaluation value of the current state (X1 ' B) is higher than
state G, a1 will most probably perform a least-move to change from B
to G, and get to an optimal solution Sc. Or, with lower probability a1
will perform a random-move to change to state Y and get to another
feasible solution (but not an optimal one, since it uses four colors).

So we can see that the LEF methods have two main features: (1) they
evaluate the state of a single agent, not the whole system; (2) they use
local information of the system. Equations (3) and (4) only consider
its linked agents’ states (i.e., only knows the information of its related
subgraph). Decentralized control in LEF methods is also obvious: in
each step, the system dispatches all agents sequentially (e.g., in the
extremal optimization algorithm, the system dispatches the agent who
is in the worst state according to the LEF). All agents are autonomous
and decide their behaviors based on the LEF that maximizes their own
profit. Therefore, if the whole system can achieve a global solution based
on all selfish agents which are using the LEF, we call this emergence and
the system self-organizes towards a global goal.
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3.2 Essential differences between local and global evaluation functions

3.2.1 Consistency and inconsistency

In section 3.1 we studied the local and global evaluation functions using
the coloring problem. Now we know the following two aspects should
be considered while constructing an evaluation function.

1. What object is being evaluated? With a GEF, the whole system is consid-
ered, while the LEF considers a single agent.

2. How much information is used in the evaluation? The GEF considers
the whole system state, while the LEF only considers the agent’s linked
agents.

This fits the concepts we mentioned in the Introduction. But what if
the evaluation functions consider the whole system and only use local
information? What is the relationship between the local and global
evaluation functions?

Consistency between LEF and GEF. In the following, we use

S0 ' replace(S, i, s, s0), s, s0 $ Di

to denote that S0 is achieved by replacing the state s of Xi in S to be s0.
So, all variables share the same state in S and S0 except Xi. So S0 belongs
to N1

S .

Definition 3. An LEF is consistent with a GEF if it is true for 7S $ %
and 7S0 $ N1

S (i.e., S0 ' replace(S, i, s, s0)) that

sgn(EGEF(S0) 2 EGEF(S)) ' sgn(Ei
LEF(S2i, s0) 2 Ei

LEF(S2i, s)), (5)

where sgn(x) is defined as: sgn(x) ' 1 when x > 0, sgn(x) ' 21 when
x < 0, and sgn(0) ' 0 when x ' 0.

For convenience, sometimes we just simply say sgn(8EGEF) ' sgn(8Ei
LEF)

for equation (5).

Definition 4. An LEF is restrict-consistent with a GEF if
(1) the LEF is consistent with the GEF and
(2) 9Α $ R. such that it is true for all S $ % that

EGEF(S) ' Α
n#

i'1

Di
LEF(S2i, Xi). (6)

So restrict-consistent is the subset concept of consistent.
It is easy to prove that LEF equation (3) is restrict-consistent with GEF

equation (1) in the k-coloring problem. For example, in the 3-coloring
problem shown in Figure 5, agent a1 uses LEF equation (3) to change
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to G which can decrease its valuation value from 1 to 0. This change
is also a good change for the whole system, because it decreases the
evaluation value of the whole system based on GEF equation (1) (from
EGEF-k(Sa) ' 2 to EGEF-k(Sc) ' 0). Suppose we use simulated annealing.
The current system state is S and we randomly generate a neighbor S0 '
replace(S, j, s, s0). Then we need to calculate 8 ' EGEF-k(S0) 2 EGEF-k(S)
to decide whether S0 is a better system state or not. In the consistent
case, it is not necessary to consider all of the agents’ states and 8EGEF-k
can be calculated by 8Ej

LEF-k:

EGEF-k(S0) 2 EGEF-k(S) ' 28E
j
LEF-k.

What does consistency mean? A good agent decision based on the
LEF that can decrease the value of Ej

LEF-k is also a good decision for the
whole system based on the GEF that can decrease the value of EGEF-k. In
the k-coloring problem, while all agents get to a state that is evaluated
by equation (3) of zero, the evaluation value of equation (1) for the
whole system is also zero, which means it is a solution. This makes it
easier for us to understand why the LEF can guide agents to a global
solution. When the LEF is consistent with the GEF, they both indicate
the same equilibrium points. For a certain configuration S, if it is the
local optimum of the GEF, then it is the Nash equilibrium [36] of the
LEF, and vice versa.

Definition 5. If EGEF(S0) + EGEF(S) is true for S $ % and 7S0 $ N1
S ,

then S is called the local optimum of the GEF using a N1
S neighborhood

structure in problem P.
The set of all local optima is denoted as L(P, EGEF).
Optimal solutions of optimization problems and feasible solutions

in decision problems belong to L(P) and have the smallest evaluation
value.

Definition 6. A Nash equilibrium of an LEF in a problem P is defined
as S ' !s1, s2, . . . , sn", S $ %, such that

Ei
LEF(S2i, si) 6 Ei

LEF(S2i, s0i ) for 7s0i $ Di

holds for all i ' 1, 2, . . . , n.
The set of all Nash equilibria of the P and the LEF is denoted as

N(P, ELEF).

Theorem 1 (Consistency) Given a problem P, a GEF, and an LEF: if the
LEF is consistent with the GEF (i.e., equation (5) holds between them)
then the following is true:

(7S $ %) S $ L(P, EGEF) - S $ N(P, ELEF). (7)

It follows that L(P, EGEF) ' N(P, ELEF).
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Proof. If S $ L(P, EGEF), S is a local optimum, that is, EGEF(S0) +
EGEF(S) is true for 7S0 $ N1

S

; 7i ' 1, 2, . . . , n,7x $ Di, EGEF(replace(S, i, si, x)) 2 EGEF(S) + 0.

Because sgn(EGEF(replace(S, i, si, x)) 2 EGEF(S)) ' sgn(Ei
LEF(S2i, x)2

Ei
LEF(S2i, s))

; 7i ' 1, 2, . . . , n,7x $ Di, Ei
LEF(S2i, x) 2 Ei

LEF(S2i, s) + 0

; 7i ' 1, 2, . . . , n,7x $ Di, Ei
LEF(S2i, x) + Ei

LEF(S2i, s)

; S is a Nash equilibrium, S $ N(P, ELEF).

If S $ N(P, ELEF) and S is a Nash equilibrium, then we have

7i ' 1, 2, . . . , n,7x $ Di, Ei
LEF(S2i, x) + Ei

LEF(S2i, s).

Because sgn(Ei
LEF(S2i, x) 2 Ei

LEF(S2i, s)) ' sgn(EGEF(replace(S, i, si, x)) 2
EGEF(S))

; 7i ' 1, 2, . . . , n,7x $ Di, EGEF(replace(S, i, s, x)) 2 EGEF(S) + 0
; 7S0 $ N1

S , EGEF(S0) + EGEF(S) & S is a local optimum,
S $ L(P, EGEF).

Inference 1. Given a problem P, a GEF, and an LEF: if the LEF is
consistent with the GEF, S is a solution and S is a local optimum of the
GEF, then S is also a Nash equilibrium of the LEF.

Inference 1 helps us to understand why some LEF can solve problems
that the GEF can solve: because their equilibrium points are the same!
They have the same phase transition, solution numbers, and structure
according to spin glass theory [37]. The main difference between a
consistent pair of LEF and GEF lies in their exploration heuristics, such
as dispatch methods and strategies of agents. We discuss this in sec-
tion 3.2.2.

So can we construct any other LEF or GEF that can make an essential
difference? Is there any case for an LEF that is not consistent with a
GEF?

Inconsistency between local and global evaluation functions. The LEF equa-
tion (4) is designed for minimum coloring problems, but it can also be
used to solve the k-coloring problem (the experimental result in sec-
tion 3.3.1 shows that equation (4) works for the k-coloring problem).
LEF equation (4) and GEF equation (1) are not consistent with each
other. Suppose the current configuration is S and its neighboring con-
figuration S0 ' replace(S, i, s, s0), then

8Ei
LEF-k '

n
2
8EGEF-k . Index(s0) 2 Index(s). (8)
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∆ELEF
∆EGEF

>0 =0 <0

>0 Y N N
=0 Y Y Y 
<0 N N Y 

∆ELEF

∆EGEF

>0 =0 <0

>0 Y Y N
=0 N Y N

<0 N Y Y 

(a) (b)

Table 1. Weak-inconsistency relations between LEF and GEF. (a) LEF is weak-
inconsistent with GEF and (b) GEF is weak-inconsistent with LEF. The tables
show all possible relation combinations of 8EGEF and 8ELEF for any S $ % and
any S0 $ N1

s . Y means allowed in the weak-inconsistency, N means not allowed.

If 8EGEF * 0: Because Index(s) 6 n for all s, so 1n/28EGEF1 >
1Index(s0) 2 Index(s)1 holds for all s0 and s, we will get sgn(8EGEF) '
sgn(8Ei

LEF-k).
If 8EGEF ' 0: 8Ei

LEF-k can be larger than, equal to, or smaller than
zero depending on Index(s0) 2 Index(s). There exists S and S0 $ N1

S such
that sgn(8EGEF) * sgn(8Ei

LEF-k).
So equation (5) is true only when 8EGEF * 0. LEF equation (4) is

inconsistent with GEF equation (1) in the k-coloring problem.

Definition 7. An LEF is inconsistent with a GEF if the LEF is not con-
sistent with the GEF.

Definition 8. An LEF is weak-inconsistent with a GEF if 7S $ % and
7S0 $ N1

S , equation (5) is not true only when 8EGEF * 0. A GEF is
weak-inconsistent with an LEF if 7S $ % and 7S0 $ N1

S , equation (5) is
not true only when 8Ei

LEF * 0 (see Table 1).

So weak-inconsistency is an asymmetrical relation and is a subset
concept of inconsistency. LEF equation (4) is weak-inconsistent with
GEF equation (1) in the k-coloring problem.

Inference 2. Given a problem P, a GEF, and an LEF we have N(P, ELEF) <
L(P, EGEF) if the LEF is weak-inconsistent with the GEF. We have
L(P, EGEF) < N(P, ELEF) if the GEF is weak-inconsistent with the LEF.

GEF equation (2) and LEF equation (4) in the minimum coloring
problem is an example of inconsistency but not weak-inconsistency. The
minimal number of colors Χ(G) is a global variable. We can see that the
linear relationship between equations (2) and (4) only exists between
part (b), not between part (a). It is easy to prove the inconsistency:
suppose a variable Xk changes from the l-th color to the h-th color. If
this does not cause a change in conflict numbers (i.e., conflicts between
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Xk and its linked vertices keep the same number, part (b) remains the
same), then

8EGEF-O ' 2(1Ch1 2 1Cl1 2 1) and 8Ei
LEF-O ' h 2 l.

If h > l and 1Cl1 > 1Ch1 . 1, we will get 8EGEF-O < 0 and 8Ei
LEF-O > 0. If

h < l and 1Cl1 < 1Ch1.1, we will get 8EGEF-O > 0 and 8Ei
LEF-O < 0. In the

LEF, it is more likely that h < l because the agent favors colors which
have smaller index numbers according to equation (4). So when h < l
and Ch has no fewer vertices than Cl, a good choice for an agent (from
color l to color h) based on the LEF will be a bad one for the whole
system based on the GEF. This occurs because part (a) of equation (2)
favors the unbalanced distribution of colors.

The minimum coloring problem example in Figure 8 shows that,
when using an LEF, a2 will not change from G to B, while if using a
GEF it will. This indicates that LEF equation (4) and GEF equation (2)
will lead the system to different states.

V1

V2

V4

V3

G

B

B

G V1

V2

V4

V3

B

B

B

G

R G B
a1 1 14 3
a2 1 8 9
a3 1 8 15
a4 1 8 3 

R G B
a1 1 8 9 
a2 1 8 9
a3 1 2 21
a4 1 8 3 

(a)  Sa (b)  Sb

(c) LEF values for Sa (d) LEF values for  Sb

GEF for (a) and (b): 
EGEF-O(Sa)=4 
EGEF-O(Sb)=2 
∆ EGEF-O = -2 <0 

(e) GEF values for Sa, Sb

Figure 8. Inconsistency between LEF equation (4) and GEF equation (2) in a
minimum coloring problem. (a) and (b) show two possible configurations which
are neighbors and differ only in agent a2. (c) and (d) separately show LEF values
for all states of each agent of Sa and Sb, so E2

LEF-O(Sb, G)2E2
LEF-O(Sa, B) ' 928 '

1 > 0. (e) shows the GEF values for Sa and Sb, EGEF-O(Sb)2EGEF-O(Sb) ' 224 '
22 < 0. So equations (4) and (2) are inconsistent with each other because the
LEF prefers Sa while the GEF prefers Sb.
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     Xj

Xi

sl sh

sl x
     x 

r
       r

sh z
      z 

y
      y 

Table 2. The symmetrical penalty of two linked nodes i and j for two colors sl

and sh. Upper values are of gij(Xi, Xj), and lower values are of gji(Xj, Xi). It has
the attribute of gij(Xi, Xj) ' gji(Xj, Xi).

Consistency between ELEF and EGEF ! !ELEF. Inconsistency means the
individual’s profit (defined by an LEF) will (sometimes) conflict with the
profit (defined by a GEF) of the whole system. Does this mean that
if an LEF is inconsistent with a GEF, the LEF is also inconsistent with
other GEFs? Actually, we can find a consistent GEF for equation (4) by
simply defining it as the sum of the entire formula:

EGEF-O(S) '
n#

i'1

Index(Xi) . n
n#

i'1

#
Xj$S2i

∆(Xi, Xj). (9)

It is easy to prove that LEF equation (4) is consistent with GEF
equation (9).3

Definition 9. If an LEF ELEF is consistent with the GEF EGEF ' $ELEF,
ELEF is called a consistent LEF, otherwise it is called an inconsistent LEF.

Is any LEF ELEF always consistent with EGEF ' $ELEF? Are all LEFs
consistent? Our answer to both is no. For example, in the 2-coloring
problem for a graph that only consists of two linked nodes i and j, we
have a total of four coloring configurations. If we define the evaluation
value of the LEF of each node in each configuration as in Table 2, we
will find an inconsistency between the LEF and GEF ' $ELEF.

We want to give some rules for constructing a consistent LEF under
the following limitations.

1. We limit our discussion to binary constraint problems with the same
domains for all variables. This means all constraints are only between
two variables, and D1 ' D2 ' % ' Dn ' D. The coloring problem is a
binary-constraint problem and all domains are the same.

3We can also say that GEF equation (9) is inconsistent with GEF equation (2) if we
extend the consistency concept to be: evaluation function E1 is consistent with evaluation
function E2 if for any two neighboring configurations S and S0, sgn(8E1) ' sgn(8E2).
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2. We only discuss LEFs which have the form

Ei
LEF(S2i, s) ' f (s) . Β #

Xj$S2i

gij(s, Xj),

Β > 0 and Β > max
s0 ,s

(1f (s0) 2 f (s)1). (10)

So the form of the GEF EGEF ' $ELEF is:

EGEF(S) '#
i

f (Xi) . Β#
i

#
Xj$S2i

gij(Xi, Xj). (11)

f (s) indicates the preference for color (value) s of the node (agent or vari-
able). The second part is about constraints between two linked nodes, so
gij(Xi, Xj): Di 4Dj & ! is the static penalty function of Xi incurred by the
constraint between Xi and Xj. Β balances these two parts. Equation (11)
has the same form as a Hamiltonian in spin glasses: the first part relates to
the external field, and the second part relates to the interaction between
two spins. Therefore, the form we defined here can cover a big class of
LEFs for combinatorial problems, and the related GEFs have the same
form as the Hamiltonian in spin glass models. Equations (3) and (4) are
of the form given by equation (10); equations (1) and (9) are of the form
of equation (11).

3. Only one form of static penalty function gij(Xi, Xj) is considered here
which satisfies gij(Xi, Xj) ' gji(Xj, Xi). We call this gij(Xi, Xj) a sym-
metrical penalty (see Table 2): in equations (1) through (4) and (9),
gij(Xi, Xj) ' ∆(Xi, Xj) which is a symmetrical penalty with x ' y ' 1 and
r ' z ' 0. Obviously, the penalty function shown in Figure 9(a) is not a
symmetrical penalty.

Given these limitations, an LEF can be consistent, as stated in Theo-
rem 2.

Theorem 2. If 7!i, j" $ e, gij(Xi, Xj) ' gji(Xj, Xi), then an ELEF which
has the same form as equation (10) is consistent with EGEF ' $ELEF.
That is, ELEF is a consistent LEF.

Proof. For 7S ' !X1, X2, . . . , Xn" $ % and 7S0 ' !X0
1, X0

2, . . . , X0
n" $ N1

S ,

sgn(EGEF(S0) 2 EGEF(S))

' sgn
>????????
@

#
k

f (X0
k) . Β#

k

#
X0

j$S0
2k

gkj(X
0
k, X0

j )

2
>???????
@
#

k

f (Xk) . Β#
k

#
Xj$S2k

gkj(Xk, Xj)
ABBBBBBB
C

ABBBBBBB
C
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 Green Red 

i -1 
     -5 

-2 
     -4 

j -3 
    -6 

-4 
     -4 

(b) i-Green, j-Red 

 Green Red 

i -3 
     -6 

-4 
     -4 

j -1 
    -5 

-2 
     -4 

(c) i-Red,    j-Green 

 Green Red 

i -1 
     -5 

-2 
     -4 

j -1 
    -5 

-2 
     -4 

(d) i-Red,    j-Red 

 Green Red 

i -3 
     -6 

-4 
     -5 

j -3 
    -6 

-4 
     -5 

(e) i-Green,  j-Green 

      j 
i

Green Red

Green -3 
      -3 

-1 
       -4 

Red -4 
         -1

-2 
       -2 

(a) 

Figure 9. The LEF is inconsistent with the GEF ' $ELEF in a 2-node-linked
graph of a 2-coloring problem. (a) LEF values for node i (upper) and j (lower).
For example, if i is Green and j is Red, the LEF value of i is 21, and the LEF
value of j is 24. (b) through (e) are LEF values (upper) and GEF values (lower)
of each configuration for nodes i and j. & is the tendency to change color given
the other node’s color according to the LEF judgment. D is the tendency to
change color given the other node’s color according to the GEF judgment. (d) is
the Nash equilibrium of the LEF methods, and (e) is the local optimum of the
GEF methods. In (b) and (c), the LEF and the GEF lead the system to evolve
to different configurations. So they are inconsistent even though the GEF is the
sum of the LEFs of all agents. If we see “Green” as “Cooperative” and “Red”
as “Defective” (a) is actually the payoff matrix of the prisoner dilemma problem
[7] which is one of the most interesting problems in game theory, and the LEF
of each agent is the utility function of each player.

' sgn
>???????
@

f (s0) 2 f (s) . Β #
Xj$S2i

(gij(s
0, Xj) 2 gij(s, Xj) . gji(Xj, s0) 2 gji(Xj, s))

ABBBBBBB
C
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' sgn
>???????
@

f (s0) 2 f (s) . Β #
Xj$S2i

(gij(s
0, Xj) 2 gij(s, Xj) . gij(s

0, Xj) 2 gij(s, Xj))
ABBBBBBB
C

' sgn
>???????
@

f (s0) 2 f (s) . 2Β #
Xj$S2i

(gij(s
0, Xj) 2 gij(s, Xj))

ABBBBBBB
C

.

And

sgn(Ei
LEF(S2i, s0) 2 Ei

LEF(S2i, s))

' sgn
>???????
@

f (s0) 2 f (s) . Β #
Xj$S2i

(gij(s
0, Xj) 2 gij(s, Xj))

ABBBBBBB
C

.

Because Β > maxs0,s(1f (s0) 2 f (s)1), we have

sgn
>???????
@

f (s0) 2 f (s) . 2Β #
Xj$S2i

(gij(s
0, Xj) 2 gij(s, Xj))

ABBBBBBB
C

' sgn
>???????
@

f (s0) 2 f (s) . Β #
Xj$S2i

(gij(s
0, Xj) 2 gij(s, Xj))

ABBBBBBB
C

& sgn(EGEF(S0) 2 EGEF(S)) ' sgn(Ei
LEF(S2i, s0) 2 Ei

LEF(S2i, s)).

Theorem 2 only gives a sufficient condition but not the necessary con-
dition for a consistent LEF. Finding theorems for the necessary condition
will be our future study because some asymmetrical penalties might be
good evaluation functions for efficient search.

So far, we know we can always find a GEF ' $ELEF for any LEF.
Not all GEFs constructed in this way are consistent with the LEF, which
means they will direct the system to evolve to different configurations.
However, on the other hand, not all GEFs can be decomposed to be n
LEFs, such as in minimum coloring problems. If we construct a GEF as:

EGEF-O(S) ' m . n
n#

i'1

#
Xj$S2i

∆(Xi, Xj) (12)

where m is the current number of colors, we get a naïve evaluation
function that reflects the nature of the minimum coloring problem. Since
the LEF is not allowed to use global information, an agent only knows its
linked agent and does not know the others, so it cannot know how many
colors have been used to color the graph. It seems difficult for a single
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agent to make a good decision for the whole system. One approximate
solution here is LEF equation (4). If we compare its consistent GEF
equation (9) with GEF equation (12), we will see equation (12) is more
“rational” (rationality is discussed in section 3.2.2) than equation (9)
because equation (12) gives a “fair” evaluation on all solution states
while equation (9) does not. We will discuss “rational” and “partial
rational” evaluation functions in our next paper. The experiments in
section 3.3.2 show that the rational GEF equation (12) works much
worse than the partial rational GEF equation (12).

3.2.2 Exploration of local and global evaluation functions

If an LEF is consistent with a GEF, what is the main difference between
them? Is there any picture that can help us understand how LEF and
GEF explore the state space?

To understand the behavior of the LEF and GEF, first of all we should
understand the role of an evaluation function in searching. An impor-
tant notion here is that the evaluation function is not a part of the
problem, it is a part of the algorithm:

GT-SS Algorithms ' Evaluation Function . Exploration Heuristics.

Therefore, the evaluation function values (EF values) are not built-in
attributes for configurations of a given combinatorial problem. In the
backtracking algorithm, there is no evaluation function and only two
possible judgments for current partial configurations: “no conflict” or
“conflict” (i.e., the evaluation function in backtracking has only two EF
values). In the GT paradigm, since the system needs to decide whether
it accepts a new state or not, it has to compare the new and current
states—which one might be better? Which one might be closer to the
solution state? For this purpose, the evaluation function is introduced to
make approximate evaluations for all possible states and lead the system
to evolve to a solution state. Except for solution states, it is always
difficult to compare which configuration is better than the other. So the
evaluation function is an internal “model” for the actual problem. As
we know, models do not always exactly reflect everything of the reality,
depending on their purpose. Therefore, different models can be built
for a problem. For example, there are several different GEFs for the
coloring problem.

A rational evaluation function satisfies: (1) all solution states should
have smaller EF values than all nonsolution states; (2) all solution states
should have the same EF value. A good evaluation function will lead the
system to evolve to a solution state more directly. For example, evalua-
tion Function 1 is more efficient than Evaluation Function 2 in Figure 10
because Evaluation Function 2 has many local optima that will trap the
evolution. However, it is still impossible to construct an evaluation
function that has no local optima for many combinatorial problems.
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EF value 

Configurations   

Solution

Local optima

—   Evaluation Function  1
---- Evaluation Function 2

Figure 10. Different evaluation functions for a problem.

This is why they are so difficult to solve and people have developed
so many heuristics to explore the configuration space. Otherwise, for
Evaluation Function 1, we can simply use the greedy heuristic.

Searching (as in the GT-SS style) for solutions is just like walking in
a dark night using a map. The map is the model for the configuration
space, so the evaluation function is the generator of the map. Heuristics
are for exploration in the space based on the map. So an algorithm
includes what map it uses and how it uses the map to explore.

It is impossible to compute evaluation values for all configurations at
a time. It is only possible to get evaluation values for a small part of the
configuration space at each time step. This is like using a flashlight to
look at a map on a dark night. But since the map is very big, only part
of the map can be seen unless the flashlight is very “powerful.”

Using the metaphors of “map” and “flashlight,” we now illustrate
the exploration of LEF and GEF.

GEF: One n-dimensional map and neighborhood flashlight. Traditional GEF
methods use only one map, which is n-dimensional for n-variable prob-
lems. For each time step, the system computes the evaluation values
of neighbors in N1

S , that is, it uses a flashlight to look at the neighbor-
hood of the current position on the map and make a decision about
where to go (see Figure 11). There are several strategies for making de-
cisions based on the highlighted part of the map: greedy, always selects
the best one (Figure 11); greedy-random, most of the time selects the
best, but with a small probability will go to a random place (GEF-GR,
see section 3.3); totally random, and others. In simulated annealing,
the flashlight only highlights one point (configuration) each time in the
neighborhood, and will move to that point if it is better than the cur-
rent one, or with a small probability (e28E/T) move to that point even
though it is worse. There can be many variations in types of flash-
light and strategies for selection on the highlighted part of the map. In
section 3.3, we show that both the evaluation function (map) and the
exploration methods will affect performance.
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a1

EF value

a2

1
2

3
4

0

Figure 11. The GEF methods for a system consisting of two agents (a1 and a2).
The evolution path is 0 & 1 & 2 & 3 & 4. The light circle around 1 is the part
highlighted by the flashlight when the system is in state 1. 2 is the best neighbor
inside this circle. So the system accepts 2, highlights its neighborhood, gets to
3, and so on.

LEF: n di-dimensional maps and slice flashlight. Using the distributive LEF
methods, agent ai has a di-dimensional map if ai has di constrained
agents (in the coloring problem, di is the degree of ai). In every time
step each agent uses its one-dimensional slice of its di-dimensional map
to guide its evolution.

Consistent LEF and inconsistent LEF are very different. For consis-
tent LEF a map of ai is actually a di-dimensional slice of the GEF map
of EGEF ' $ELEF. In other words, all LEF maps can make up a GEF
map. At every time step, each agent uses a one-dimensional slice of the
n-dimensional GEF map of EGEF ' $ELEF. Since the system dispatches
all agents sequentially, its exploration is from slice to slice. As Figure 12
shows, the two-agent system evolves as 0 & 1 & 2 using slices (b) and
(c) of the GEF map (a). The flashlight illuminates a one-dimensional
slice each time and the agent makes a decision according to its strategies:
least-move, always select the best one (Figure 12); better-move, select
a random one and accept it if it is better than the current assignment;
random-move, which is totally random selection, or others. So here the
LEF and GEF use the same map and the difference lies in how they use
the map: what flashlights and strategies are used for selecting from the
highlighted part of the map.

For inconsistent LEF a map of ai is no longer a di-dimensional slice
of the GEF map of EGEF ' $ELEF. Each agent uses its own map. So
here the differences between the LEF and GEF lie not only in how they
use the map, but also on which map they are using.

To conclude this section, we summarize the main differences between
global and local evaluation functions in Table 3 from two layers: eval-
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a1

EF value

1
2

a2

EF value

EF value

(b) A map slice for agent a2

(c) A map slice for agent a1

0

2

a1

a2

0

1

1

(a) The GEF map of a system consisting 
of agents a1 and a2

Figure 12. Consistent LEF: map slices of GEF and exploration. The system starts
from “0”. Suppose it is the turn of a2 to move, then a2 gets a slice (b) through
“0” and selects the best move “1”. Then it is the turn of a1 to move, a1 gets
a slice (c) through “1” and selects the best move “2” and then repeats. So the
exploration is from one slice (dimension) to another: 0 & 1 & 2.

LEF
GEF

Consistent Inconsistent

Generator EGEF ELEF Ei
LEF, (i = 1..n)

Dimension 
n

(number of 
nodes) 

di

(degree of each node Vi )

Nash equilibria N(ELEF)

Evaluation 
Function 

Equilibria Local optima 
L(EGEF) N(ELEF)=L( ELEF ) N(ELEF)≠≠≠≠L( ELEF)

Flashlight 
(search scope) Neighborhood one-dimensional slice 

Exploration
Heuristics

Strategies 

Greedy, 
Greedy-

random, SA, 
Random, …

Least-move, better-move, random, …

Table 3. Differences between the GEF and consistent/inconsistent LEF.

uation function (map) and exploration heuristics. This paper focuses
on the evaluation function layer. We believe that using a different eval-
uation function will result in different performance. The exploration
heuristics also affect performance. This is discussed in the next section.

3.3 Experimental results

In the previous sections we proposed LEF methods and compared them
to traditional GEF methods. We now ask the following questions about
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performance: Can the LEF work for coloring problems? Can an LEF
(GEF) solve problems that a GEF (LEF) can solve if they are inconsis-
tent? If an LEF and a GEF are consistent, is their performance similar?
In this section we present some preliminary experimental results on a
set of coloring-problem benchmarks from the Center for Discrete Math-
ematics and Theoretical Computer Science.4 Sections 3.3.1 and 3.3.2
separately show results on the k-coloring and minimum coloring prob-
lems. Some observations are given in section 3.3.3.

Note that comparisons between local and global evaluation func-
tions are difficult for two reasons. First, the LEF and GEF are concepts
for evaluation functions. One specified LEF/GEF includes several algo-
rithms according to their exploration heuristics and different parameter
settings. Second, it is difficult to avoid embodying some preliminary
knowledge in the algorithm. So the following experimental compar-
isons are limited to the specified settings of algorithms and problem
instances.

We now compare the performance of the following three algorithms
using different evaluation functions and specified parameters.

1. LEF method: Alife&AER [12, 13].

2. GEF method: Greedy-random (GEF-GR) always looks for the best config-
uration in a N1

S neighborhood and has a small random walk probability.

3. GEF method: Simulated annealing (GEF-SA) [29].

Here are details of the Evolution(S(t)) of the three algorithms in the
framework shown in section 3.1.

LEF

Evolution(S)

{
1. For each agent i ' 1 to n do

2. Choose a random number r in [0, 1]

3. If r < Pleast-move // perform least-move strategy

4. Find one color c that for all other possible colors b,
Ei

LEF(S2i, c) 6 Ei
LEF(S2i, b)

5. Else // perform random walk

6. c ' random-select (current possible colors)

7. S0 ' replace(S, i, Xi, c)

8. If S0 is a feasible solution, call ProcessSolution(S0)

9. Return S0

}

4Available at: http://mat.gsia.cmu.edu/COLOR/instances.html.
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GEF-GR

Evolution(S)

{
1. Choose a random number r in [0, 1]

2. If r < Pgreedy // perform greedy strategy

3. Find one neighbor S0 $ N1
S , that for all other

S00 $ N1
S , EGEF(S0) 6 EGEF(S00)

4. Else // perform random walk

5. S0 ' random-select(N1
S )

6. If S0 is a feasible solution, call ProcessSolution(S0)

7. Return S0

}

GEF-SA

Evolution(S)

{
1. Sr ' random-select(N1

S )

2. 8 ' EGEF(Sr) 2 EGEF(S)

3. If 8 6 0 // perform down-hill move

4. S0 ' Sr

5. Else 8 > 0

6. Choose a random number r in [0, 1]

7. If r 6 e28/T // perform up-hill move

8. S0 ' Sr

9. Else // do not accept the new state

10. return S

11. If S0 is a feasible solution, call ProcessSolution(S0)

12. Return S0

}

ProcessSolution(S)

{
#If it is a k-coloring problem:
Output the result S

#If it is a minimum coloring problem:
If S uses m colors and m is the chromatic number of the graph

Output the result S and m
Else if S uses m colors and m is less than the current number

of possible colors
Current Number of Possible Colors ' m

// reduce the number of possible colors, so N1
S is reduced

}
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Measurement
An agent move

Algorithm of ai A time step

LEF-Alife&AER O(21ei1 . m) O % n$
i'1

(21ei1 . m)& ' O(41e1 . nm)

GEF-GR O(21ei1 . nm . n) O(21ei1 . nm . n)
GEF-SA O(21ei1) O(21ei1)

Table 4. Complexity of an agent move and a time step of the LEF-Alife&AER,
GEF-GR, and GEF-SA algorithms.

The setting of Pleast-move in the LEF method is equal to 1.5n/(1.5n .
1), where n is the problem size. Pgreedy in GEF-GR is also simply set
to 1.5n/(1.5n . 1). Parameter settings in GEF-SA are the same as in
[29]: initialT ' 10, freezeLim ' 10, sizeFactor ' 2, cutoff ' 0.1,
tempFactor ' 0.95, and minPercent ' 0.02.

The following experiments examine the performance of finding a
solution. First, we give the CPU runtime on a PIII-1G PC WinXP for
finding a solution and then measure the runtime as operation counts
[38], which is the number of agent moves used in finding a solution.

The cost of an agent move in the LEF includes steps 2 through 8 in
Evolution(s), and a time step includes n agent moves. The cost of an
agent move in GEF-GR includes steps 1 through 6. The cost of an agent
move in GEF-SA includes steps 1 through 11. A time step in both GEF-
GR and GEF-SA only includes one agent move. The complexity mainly
relates to calculating conflicts and comparing EF values (the complexity
of picking up the smallest value from m values is O(m)). Table 4 lists
the complexities of the LEF, GEF-GR, and GEF-SA methods where 1e1 is
the number of edges in the graph, 1ei1 is the number of edges from node
Vi, and m is the current number of colors being used. So, in a k-coloring
problem m is constantly equal to k, and in a minimum coloring problem
m is a dynamic decreasing value but is always less than n.

So from Table 4 we can get this relationship of complexity for an
agent move:

GEF-SA < LEF < GEF-GR.

It is easy to think that the more complex an agent’s move is, the better
its performance will be. If so, the number of agent moves for finding a
solution would have the relation:

GEF-SA moves > LEF moves > GEF-GR moves.

Is this true? Let us look at the experimental results in sections 3.3.1
and 3.3.2 where some comparisons are given.

Complex Systems, 15 (2005) 307–347



336 J. Han

3.3.1 k-coloring problem

We compare the CPU runtime (Figure 13) and the number of moves
(Figure 14) for finding a solution for a given k colors using different
LEFs (equations (3) and (4)) and GEFs (equations (1), (2), and (9)). The
following comparisons are included:

a. Consistent cases: LEF equation (3) versus GEF equation (1), and LEF
equation (4) versus GEF equation (9).

b. Inconsistent cases: LEF equation (3) versus GEF equation (9), LEF equa-
tion (4) versus GEF equation (1), LEF equation (3) versus GEF equa-
tion (2), and LEF equation (4) versus GEF equation (2).

c. Different evaluation functions for LEF/GEF: LEF equations (3) versus (4),
GEF equations (1) versus (2) versus (9).

d. Different exploration heuristics for the same evaluation function: GEF-
GR equation (1) versus GEF-SA equation (1) versus LEF equation (3).

3.3.2 Minimum coloring problem

Finding the chromatic number of the graph in a minimum coloring
problem is a global goal. The LEF of each agent can only use local in-
formation to guide itself and sometimes there is not enough information
to make a good decision. We test the CPU runtime (Figure 15) and num-
ber of agent moves (Figure 16) for finding a Χ(G)-color solution when
Χ(G) is unknown. The system starts with a large number of colors m,
and decreases it if a feasible m-color solution is found, until m is equal
to Χ(G). The following comparisons are included:

a. Consistent case: LEF equation (4) versus GEF equation (9).

b. Inconsistent case: LEF equation (4) versus GEF equation (2) versus GEF
equation (12).

c. Different GEFs: GEF equations (2) versus (9) versus (12).

d. Different exploration heuristics for the same evaluation function: GEF-
GR equation (2) versus GEF-SA equation (2).

3.3.3 Observations from the experiments

(1) LEFs work for the k-coloring and minimum coloring problems. The GEF
does not always lead the evolution more efficiently than the LEF al-
though it uses more information to make decisions and has centralized
control over the whole system. In the k-coloring problems, the LEF
(especially LEF equation (4)) beats the GEFs in CPU runtime in almost
all instances. In the minimum coloring problems, although the LEF
only knows local information and the purpose is global, it still beats the
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Figure 13. Average CPU runtime (second) of 100 runs for the k-coloring prob-
lems. Note that the y-axis is a log-plot, with the lowest value denoting zero
(less than 0.001 second) and the highest value denoting that the runtime is more
than 6000 seconds.
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Figure 14. Average number of agent moves of 100 runs for the k-coloring prob-
lems. Note that the y-axis is a log-plot, with the highest value “unknown”
denoting that we have not tested the number of agent moves because the run-
time is more than 6000 seconds.
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Figure 15. Average CPU runtime (second) of 100 runs for solving the minimum
coloring problems. Note that the y-axis is a log-plot, with the lowest value
denoting zero and the highest value denoting that the runtime is more than
6000 seconds.
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Figure 16. Average number of agent moves of 100 runs for solving the minimum
coloring problems. Note that the y-axis is a log-plot, with the highest value
“unknown” denoting that we have not tested the number for agent moves
because the runtime is more than 6000 seconds.
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GEFs for most instances except queen8_12 and queen9_9. The LEF is
much faster than the GEFs for homer, miles250, queen7_7, queen8_8,
fpsol2, inithx, mulsol, and zeroin. Although GEF equation (9) is con-
sistent with LEF equation (4) and GEF equation (2) works better than
GEF equation (9) in most instances, LEF equation (4) still beats GEF
equation (2). In addition to coloring problems, the LEF also works for
N-queen problems [12–14]. Using the LEF for the N-queen problem
can beat a lot of algorithms, but it is not as fast as one specified local
search heuristic [18]. One important reason is that the specified local
search heuristic embodies preliminary knowledge of the N-queen prob-
lem. For more experimental results, such as distributions and deviations
of runtime, and performance based on different parameter settings, see
[12–14].

(2) Evaluation function affects performance. As we know, the GEF selection
will affect performance when solving function optimization problems
[39]. This is also true for combinatorial problems. For the k-coloring
problem (a decision problem) the performance of LEF equations (3) and
(4) is very different. In fpsol2, inithx, mulsol, and zeroin, equation (4)
beats equation (3) strongly, while equation (3) slightly beats equation (4)
in miles and queen. GEF equation (2) can solve fpsol2, inithx, mulsol,
and zeroin within 2 seconds, while GEF equation (1) cannot solve it
within 6000 seconds. We guess that is because part (a) of equation (2)
puts pressure on each node to select a small index number color, which
helps to break the symmetry [40] in the coloring problems [41]. In the
minimum coloring problem (an optimization problem), the performance
difference is very clear. GEF equation (12) cannot solve more than half
of those instances, while the others can solve them. GEF equation (2)
works better than GEF equation (9) on average.

(3) Performance of an LEF and a GEF are more alike if they are consistent. In
the k-coloring problem, LEF equation (4) is consistent with GEF equa-
tion (9) while LEF equation (3) is consistent with GEF equation (1), so
performance between LEF equation (3) and GEF equation (1) is more
alike than that of LEF equation (4) and GEF equation (9). LEF equa-
tion (4) and GEF equation (9) can solve fpsol2, inithx, mulsol, and
zeroin quickly while LEF equation (3) and GEF equation (1) cannot.
LEF equation (3) and GEF equation (1) beat LEF equation (4) and GEF
equation (9) in miles1000 and queen8_12. In the minimum coloring
problem, for example, queen8_12 is difficult for LEF equation (4) and
GEF equation (9), but easy for GEF equation (2). These results tell us
that if the Nash equilibria of the LEF are identical to the local optima
of the GEF, they will behave more alike.

(4) Exploration heuristics affect performance. There are so many efforts
on exploration heuristics that we know they will affect performance.
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This is also true for the consistent LEF and GEF. Even though they
have the same evaluation function (map), they still work differently in
some instances. In the k-coloring problem, LEF equation (3) beats GEF
equation (1) in miles and queens while GEF-GR equation (1) beats LEF
equation (3) and GEF-SA equation (1) in mulsol and zeroin. LEF equa-
tion (4) and GEF-SA equation (9) are consistent but the LEF works faster
than GEF-SA. In the minimum coloring problems, LEF equation (4) and
GEF equation (9) are consistent but LEF equation (4) beats GEF equa-
tion (9) strongly. Both using GEF equation (2), GEF-SA and GEF-GR
perform differently, especially in queen7_7, queen8_8, and queen9_9.

(5) Larger complexity does not always mean better performance of an agent
movement. We have the ranking for complexities of an agent move
in different algorithms: GEF-GR > LEF > GEF-GR. However, GEF-
GR does not always use the fewest agent moves to reach the (optimal)
solution state in coloring problems, even in the consistent case. In both
the k-coloring and minimum coloring problems, the LEF uses fewer
moves than GEF-GR in some instances, such as queen5_5 and queen7_7.
So this suggests that in some instances using local information does not
always mean decreasing the quality of the decision. Even using the
same evaluation function, GEF-GR looks at n neighbors and selects one,
while GEF-SA only looks at one neighbor, we still see in some problem
instances, such as queen5_5, queen7_7, and queen9_9, that GEF-SA
uses fewer moves than GEF-GR when solving k-coloring problems.

(6) Performance of the LEF and GEF is dependent on the problem instance. The
LEF fits for most instances except queen8_12 in the minimum coloring
problem. GEF equation (1) and LEF equation (3) are not good for
fpsol2, inithx, mulsol, and zeroin. As in our other paper [14], the algo-
rithmic details will not change the performance for a problem instance
very much. We guess the graph structure (constraint network) will have
a big impact on the performance of the LEF and GEF. In other words,
the LEF might be good for some networks while the GEF might be
good for other networks. In the language of multiagent systems, some
interaction structures are more suitable for self-organization to reach
a global purpose, while some interaction structures favor centralized
control. Finding the “good” networks for the LEF and GEF is a very
important future topic.

4. Conclusions

This paper proposes a new look at evolving solutions for combinato-
rial problems, using NP-complete cases of the k-coloring problem (a
decision problem) and the minimum coloring problem (an optimization
problem). The new outlook suggests several insights and lines of future
work and applications.
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Finding solutions for a coloring problem by using generate-test-
single-solution (GT-SS) algorithms is like the evolution of a multiagent
system. The evaluation function of the GT-SS algorithms is the in-
ternal ranking of all configurations. There are two ways to construct
evaluation functions: the global evaluation function (GEF) uses global
information to evaluate a whole system state, and the local evaluation
function (LEF) uses local information to evaluate a single agent state.
We analyze the relationship between LEF and GEF in terms of consis-
tency and inconsistency. Table 3 summarizes the differences between
GEF and consistent/inconsistent LEF.

A consistency theorem is proposed (Theorem 1) which shows that
Nash equilibria (Definition 6) of an LEF are identical to the local op-
tima (Definition 5) of a GEF if the LEF is consistent with the GEF. In
spin glass theory, this theorem means that the LEF and GEF have the
same ground state structure and the same number of solutions, as well
as the same phase transitions [1]. So the LEF can be partly explained by
the current theoretical results on traditional GEF [16, 37, 42, 43]. This
helps us understand why the LEF can guide agents to evolve to a global
goal state, if the global goal can be expressed by a GEF that is consistent
with the LEF. When an LEF is inconsistent with a GEF, the LEF’s Nash
equilibria are not identical to the GEF’s local optima. Obviously, the
LEF evolution proceeds differently than the GEF evolution. Experimen-
tal results support this: performance of LEF and GEF are more alike if
they are consistent.

Since the way to construct a GEF is not unique for a problem, we
can always construct a GEF by summing up all of the agents’ LEFs as
EGEF ' $ELEF. $ELEF can be consistent or inconsistent with ELEF.
This paper gives a preliminary theorem for constructing consistent LEF
which have the form of the spin glass Hamiltonian (equation (11)): If the
penalty function gij(Xi, Xj) in an ELEF is a symmetrical penalty, the ELEF
is consistent with $ELEF. More study on consistent and inconsistent
LEFs should give more insights into computation and game theory.

Even though an LEF is consistent with a GEF, they still explore differ-
ently. The experimental results show that exploration heuristics affect
performance, so even though the LEF is consistent with a GEF, it still
behaves differently and works better in some instances.

The LEF and GEF concepts provide both a new view of algorithms
for combinatorial problems, and for the collective behavior of complex
systems. Using coloring problems clarifies the concepts of “local” and
“global.” These concepts are important distinguishing characteristics of
distributed and centralized systems. In addition to the research reported,
there is still a lot of future work. Some remaining questions are: What is
the condition for the existence of a consistent GEF for any LEF? What is
the condition for the existence of a consistent LEF for any GEF? How do
network properties relate to consistency of LEF and GEF in the coloring
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problems? How can we construct good LEFs and GEFs for a problem?
LEF is about individual and GEF is about the whole system, how about
the evaluation functions for compartments? Can we study consistent
and inconsistent LEFs in the context of game theory? These will be our
future study.
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