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This paper demonstrates that the probability of the occurrence of uphill
moves in temperature parallel simulated annealing is so small that the
effects of parallelization might be lost when the number of processing
nodes is small. A modification in the probability of solution exchange
between the processes is one tactic to recover the parallelization effects.
This method is evaluated by a traveling salesman problem with 33 cities
in China. The results of the experiments show that, although it violates
the detailed balance condition, the modification can improve the quality
of the solutions.

1. Introduction

In many fields of industry and technology, solving combinatorial opti-
mization problems is an important process to increase productivity and
product quality. The objective of solving such problems is to search for
the optimal solution, that is, the solution with the lowest cost or the
highest profit out of many feasible solutions. Usually, it is impossible to
find the global optimal or a near-optimal solution in practical time by
checking all the feasible solutions because the combinatorial optimiza-
tion problems tend to belong to NP-hard or NP-complete problems,
which have solution spaces growing exponentially with the size of the
problem. Therefore, metaheuristic approaches, which can deliver a
highly effective solution in polynomial execution time, are usually used
to solve combinatorial optimization problems although it is not guar-
anteed that the available solution is the global optimal.

One of those algorithms is simulated annealing (SA) [1], in which a
Monte Carlo (MC) simulation is performed while a control parameter
called temperature is gradually being changed. However, the execution
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time required to get a solution with good quality is still long in practice.
One approach to reduce the execution time is by using probability dis-
tributions other than the conventional Boltzmann distribution [2, 3] to
control the appearance of states. Parallel implementation of SA (PSA)
is another trend that is being investigated energetically in these days
because high-performance PC clusters are getting more available.

PSAs are classified into two categories: problem-dependent and prob-
lem-independent approaches. In the former, parallelism is achieved
according to the features of the search space or the objective function.
This approach is, therefore, suitable for some special problems. In the
latter, on the other hand, parallelism is achieved by decomposing the
algorithms and employing parallel moves. Because the method in this
approach parallelizes SA itself, it can be applied to any optimization
problem, and much research for methods based on this approach has
been carried out [4, 5, 6].

Temperature parallel simulated annealing (TPSA) [7, 8] is one of the
problem-independent approaches, in which MC simulations are exe-
cuted on multiple processors independently at the individually assigned
different temperatures. It is distinguished from other PSAs on the point
that each MC simulation is performed at the fixed temperature. Strictly
speaking, therefore, it is not an annealing, but as a new paradigm of
PSA it bas been studied by several researchers. For instance, Miki et al.
introduced the adaptive neighborhood into TPSA [9] and investigated
the important temperature in TPSA [10].

In this paper, we introduce another method to improve TPSA, which
is thought to be easily implemented. The remaining portion of this
paper is organized as follows. In section 2, SA and TPSA are briefly
reviewed. In section 3, an uphill move in TPSA is defined and analyzed
in detail. Moreover, a modification in the solution exchange probability
is introduced. The procedure of the experiments and their results are
illustrated in section 4. Then, summary and discussion are included in
section 5.

2. SA and TPSA

In this section, we briefly review SA and TPSA.
SA [1] is a randomized local search method based on the simulation of

annealing a metal. The procedure is represented in pseudocode format
in Figure 1.

The acceptance probability of a trial solution is given by

pac (T,"E) # ! 1 if "E < 0
exp "$"E

T # otherwise, (1)

where T is the temperature of the system, and "E is the difference
of the costs between the trial and the current solutions, E% and E, re-
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Begin
choose the initial solution;
calculate the cost;
Repeat ... outer loop

Repeat ... inner loop
perturb the current solution;
calculate the cost;
accept the trial solution as a new solution by acceptance probability;

Until iteration limit is reached;
temperature is lowered according to the cooling schedule;
Until termination condition is satisfied;
End

Figure 1. Pseudocode representation of SA.

spectively ("E & E% $ E). Equation (1) means that the trial solution is
accepted by a nonzero probability exp ($"E/T) even though the solution
deteriorates. In this case, because the cost of the solution increases, we
call this update on the solution an uphill move.

Uphill moves enable the system to escape from the local minima;
without them, the system would be trapped into a local minimum. Too
high of a probability for the occurrence of uphill moves, however, pre-
vents the system from converging. In SA, the probability is controlled by
temperature in such a manner that at the beginning of the procedure the
temperature is sufficiently high, in which a high probability is available,
and as the calculation proceeds the temperature is gradually decreased,
lowering the probability.

The procedure of SA consists of two nested loops: an outer loop
and an inner one (see Figure 1), where the cooling and the equilibrating
processes are performed, respectively. TPSA [7, 8] is a parallel measure
of the outer loop, in which multiple processes independently perform the
equilibrating loop at each temperature chosen by a rule corresponding
to the cooling schedule for the sequential counterpart. At a certain
interval of the execution, the processes having adjacent temperatures
exchange their current solutions by the following exchange probability,

pex (Ti, Ti'1,"Ei) #
())*))
+

1 if "Ei , "Ti < 0
exp $$"Ei ,"Ti

Ti,Ti'1
% otherwise, (2)

where Ti is the temperature of process i, and "Ti is the difference be-
tween the adjacent temperatures, Ti and Ti'1 ("Ti & Ti $ Ti'1); "Ei is
the difference of the costs between processes i and (i ' 1), Ei and Ei'1,
respectively ("Ei & Ei $ Ei'1).

Figure 2 depicts the behavior of TPSA in the case of four processes,
where the vertical dotted arrows show the points of solution exchanges.
After enough iterations, the solution on the process having the lowest
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Figure 2. Behavior of TPSA in the case of four processes. The vertical dotted
arrows and the meandering thick line indicate the solution exchanges and the
flow of the finally accepted solution, respectively.

temperature is expected to converge to the global optimal. The mean-
dering thick line in Figure 2 shows the flow of the solution that is finally
accepted.

Note that the exchange probability of equation (2) satisfies the de-
tailed balance condition,

e$Ei/Ti , e$Ei'1/Ti'1 , pex (Ti, Ti'1,"Ei)

# e$Ei'1/Ti , e$Ei/Ti'1 , pex (Ti, Ti'1,$"Ei). (3)

3. Detailed analysis of uphill moves in TPSA

Uphill moves are considered to play a significant role in searching for
the global optimal in TPSA as well as in conventional SA. Therefore, the
efficiency of uphill move operations affects the performance of TPSA.
Here, we first define uphill moves in TPSA and analyze them in detail.
Next, we introduce a modification in the solution exchange probability
in order to make the uphill moves in TPSA more effective.

There are two kinds of uphill moves in TPSA, intra- and interprocess.
The intraprocess uphill moves arise within the equilibrating loop on each
process and have the same effects as those in SA. On the other hand,
the interprocess uphill moves are peculiar to TPSA and arise through
the solution exchange processes. Here, we concentrate our discussion
on interprocess uphill moves.

Usually, the relationship between the adjacent two temperatures is
chosen as

Ti'1 # ΑTi, 0 < Α < 1. (4)

Here, we define an uphill move in TPSA as the exchange of the current
solutions satisfying Ei > Ei'1 because the cost of the solution on the
process with the lower temperature Ti'1 increases from Ei'1 to Ei after
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the solution exchange. The probability of the occurrence of the uphill
move is calculated from equations (2) and (4) as

pup # exp &$"Ei , "Ti

Ti , Ti'1
' # exp ($ "Ei

Ti'1
, (1 $ Α)) . (5)

On an equilibrium state, the cost typically has the order of magnitude
of the system’s temperature. Thus, we can roughly estimate the costs
of the solutions on processes i and (i ' 1) as Ei . Ti and Ei'1 . Ti'1,
respectively. From equation (4), we can get

"Ei . Ti $ Ti'1 # (1 $ Α)Ti #
(1 $ Α)
Α

Ti'1, (6)

and equation (5) becomes

pup # exp ($ (1 $ Α)2

Α
) . (7)

Next, let us estimate Α. From equation (4), we can derive Α #
(TN$1/T0)1/(N$1), where N is the number of the available processes. The
highest and lowest temperatures, T0 and TN$1, respectively, are usually
fixed according to the problem dealt with. We treat, therefore, t &
TN$1/T0 as a constant. Substituting these formulas into equation (7),
we can express pup as a function of N:

pup # exp "$t1/(N$1) $ t$1/(N$1) ' 2# . (8)

Figure 3 shows pup calculated by equation (8) for t # 10$2, 10$3,
10$4, and 10$5. Generally speaking, if the lowest temperature is not
sufficiently low, the system does not converge. On the other hand, if the
highest temperature is not sufficiently high, the system tends to fall into
a local minimum. Therefore, t must be sufficiently small; for example,
t # 10$5.

Notice in Figure 3 that pup is nearly zero when the processes are
fewer than eight in the case of t # 10$5. In that case, uphill moves
almost never occur, and the system is apt to be trapped into a local
minimum. One of the tactics to avoid this difficulty is assigning multiple
processes to each processing node, where we can totally execute many
processes even if enough nodes are not available. However, because
the processes assigned to each single node are executed sequentially,
the additional overhead, such as interprocess communications, may
make the TPSA worse than the conventional annealing counterpart.
Alternatively, we modify the exchange probability (equation (2)) so that
it becomes adequately large for small N.

In order to increase the probability for small N, we introduce a
parameter n into equation (2) for the case of "Ei , "Ti / 0 as

exp &$"Ei , "Ti

Ti , Ti'1
Αn' , (9)
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Figure 3. Probability of the occurrence of uphill moves in TPSA using equa-
tion (8). t is defined as t & TN$1/T0, the ratio of the lowest temperature to the
highest one.
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Figure 4. Modified probability of the occurrence of uphill moves (t # 10$5).

which modifies equation (8) to

pup # exp "$t(n'1)/(N$1) $ t(n$1)/(N$1) ' 2tn/(N$1)# . (10)

Note that this modification shows its effects only for small N and that
the original formula recovers for n # 0.

Figure 4 shows pup (equation (10)) versus the number of processes
for n # 0, 2, and 5 (t is fixed to 10$5). Note that the probability remains
large even in the small N region.
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4. Experiments and the results

We evaluated the effects of the modified probability (equation (9)) by
applying it to solve a traveling salesman problem (TSP). We chose 33
cities that have the province governments in China. Figure 5 shows their
locations and the global optimal tour calculated by Concorde [11] (the
length of the optimal tour is 16,706 km).

The highest temperature T0 is set to 2164 so that the acceptance
probability (equation (1)) becomes 0.5 for "E # 1500, and the lowest
temperature TN$1 is chosen as 0.1, which yields t . 4.6010$5 (Α . 0.19).
A trial solution is generated by exchanging the visiting order of two cities
randomly chosen in the current solution.

The experiments are performed on a PC cluster consisting of seven
nodes, the number of iterations in the equilibrating loop being changed.
Each node has a Pentium III CPU of 600MHz and 256MB RAM, and
the nodes are interconnected by a 100Mbps Ethernet LAN through a
switching hub. The programs are coded in the C language with LAM-
6.5.6 MPI library.

Figure 6 shows the results of the experiments for n # 0 (no modifi-
cation), 2, and 5. The horizontal axis is the number of iterations in the
equilibrating loop, and the vertical one is the resultant tour length. The
averages of 20 runs and the standard deviations are shown. The num-
ber of solution exchanges is set to 100, which means that, for example,
the maximum number of iterations is 6 0 106 per process. Because we
fixed both the number of solution exchanges and that of iterations in
the equilibrating loop for all the processes for each run, the execution
time is independent of the number of processes. Therefore, speedup is
meaningless here. Actually, the execution time is roughly proportional
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Figure 5. Locations of the cities in China and the optimal tour.
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Figure 6. Results of experiments. The averages of 20 runs and the standard
deviations are shown.

to the number of iterations in the equilibrating loop; for instance, it
is about 10 seconds for 6 0 104. Instead of speedup, we consider the
quality of the solutions as the measure of improvement. We can notice
in Figure 6 that the solutions are improved by the modification in almost
the whole range of the horizontal axis.

In order to investigate the influence of the number of processes, which
are equal to the number of processing nodes in this study, on our algo-
rithm, we also performed experiments with four and 14 processes. The
results are shown in Figure 7. The effects of the enhancement of the
exchange probability are strongly noticed for the case of four processes,
although the resultant tour length is far from the optimal because of the
lack of processes. On the other hand, little effect is available for the
case of 14 processes. These results are consistent with the argument in
the previous sections.

5. Summary and discussion

In this paper, we pointed out that the probability of the occurrence of
uphill moves in temperature parallel simulated annealing (TPSA) is so
small that the effects of the parallelization might be lost when only a
few processing nodes are available. In order to overcome the prob-
lem, we introduced an enhancement factor into the solution exchange
probability.
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Figure 7. Results of experiments with the different number of processors: the left
for 4 and the right for 14. The averages of 20 runs and the standard deviations
are shown.

We evaluated the effects of the modification by a traveling salesman
problem with 33 cities in China and showed that the modification im-
proved the quality of the resultant solution compared to the unmodified
case.

Here, we should mention the detailed balance condition of equa-
tion (3). In general, the solution exchange probability is defined so that
it satisfies the detailed balance condition. Even though it is one of the
sufficient conditions for the system to reach the equilibrium state, it is
not necessarily required for getting the optimal or a near-optimal so-
lution with respect to practical cases. In fact, we often choose a rapid
cooling schedule in executing the conventional simulated annealing (SA)
such as T 1 s$k, where s is the number of steps and k is a positive con-
stant, although the convergence to the global optimal is guaranteed only
for cooling schedules slower than T 1 1/ log s [12].

The modified probability (equation (9)) indeed violates the detailed
balance condition (equation (3)). Therefore, an equilibrium state
achieved on a process is destroyed when a solution exchange occurs
on that process. However, because our aim is not to perform the sim-
ulation itself exactly but to get the optimal solution in a practical way,
this violation is thought to be forgivable as far as it has good effects on
the calculation.
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