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Random numbers are arranged in a circle. At each time step, the
lowest number, and the numbers at its two neighbors, are each
replaced by new random numbers. That’s all! This step is repeated
again and again. What could be simpler than replacing some ran-
dom numbers with some other random numbers? Who says that
complexity cannot be simple? This simple scheme leads to rich be-
havior beyond what we could imagine. (Per Bak, 1996, p. 138 [1].)

An abstract model of fitness evolution is presented which works on the
basis of a form of selection called ranking based elimination (RBE). N
refers to the size of a population and Q defines the quota of less fit
individuals that are replaced by new ones in each generation. The K
parameter makes it possible to take into account dependencies that may
lead to the replacement of individuals regardless of their fitness. Unlike
the evolution model initially studied by Sneppen et al. in [2], our focus
here is not on the asymptotic dynamics of critical fitness values, but
rather on how the described parameters affect the average fitness dynamics
in a short-range perspective, when there is a limit on the length of the
evolutionary time range in question (i.e., the number of generations that
can be calculated). The main results are that for every maximum number
of generations there is a Q value which yields, on average, a maximum for
the average fitness and that even low values of K (1 and 2) have a disruptive
effect on the average fitness. Q and K may be used as externally tunable
control parameters, but they also can be made to depend on the fitness
value of individuals, and thus become internal parameters of the model.
An analytical model for the dynamics is given, as well, to complement
the experimental results. We also discuss possible applications and argue
that, in contrast to Q, K is not scale- and domain-independent.

1. A fundamental evolutionary algorithm

The evolution of natural populations of organisms is an immensely com-
plex, multidimensional, and dynamic process. Genetic algorithms used
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in an attempt to imitate evolution are models with a rather low number
of dimensions. Their properties are analyzed with respect to a few op-
erators such as various selection schemes, different representations of
individuals (binary or not, of fixed or variable length), different syntactic
manipulators of such representations (particular forms of mutation and
recombination), different degrees of interaction between (more or less
spatially distributed) individuals of the same or different populations,
and different application domains (e.g., [3] or an introductory textbook
like [4]). What we are talking about here is a very simple evolutionary
algorithm which is minimal in the sense that it works without specific
reference to operators other than selection. The representation of indi-
viduals is completely abstracted away and we only focus on their (total)
fitness value. In the context of genetic algorithms research one needs
to exercise caution in the use of biological concepts (for a criticism of
“simple” models of evolution see [5]). Because of the extreme level of
abstraction in our model we prefer the term “agent” over “individual”
to designate the “objects” of selection. Biologists still disagree about
the units of selection: for most of them, it is individual organisms that
undergo selection, for some (e.g., R. Dawkins in [6]) it is genes, and
for still others it is species or even ecosystems that are selected. Thus,
our choice of terminology makes sense, and may even be an advantage
because it stresses the potential “universality” of the model allowing
consideration of its meaning with respect to different levels or scales of
evolution. We have consciously applied the galilean method, eliminat-
ing in computer-based gedanken experiments factors that could never
be eliminated in reality. Needless to say, we are aware that in our
abstract notions of fitness and agents we have eliminated considerably
more factors than just “air resistance and friction.”

Our research concerns the dynamics of the average fitness of popula-
tions where successive generations evolve in accordance with a form of
selection we call ranking based elimination (RBE), which operates on
the basis of two parameters, Q and K, to be explained later.

Experiments are carried out, using a uniform random number gen-
erator as an agent (or fitness) constructor. Choosing a random fitness
value, which we assume to be in the interval [0, 1], is equivalent to gen-
erating a new individual or agent. Indeed, because no other structure
or information for agents is given, a population can be simply repre-
sented as a vector of numbers. The length of the vector is the number
of agents, the number at position i in the vector is the fitness of agent i
in the population.

In the following we have chosen an incremental presentation of our
results for the sake of clarity. We start by discussing the Q parameter
and introduce the K parameter later.

The first question is: Given a random initial population of N agents,
how does the average fitness of the population evolve from one genera-
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tion to the next, as a result of the effects of the following update rule?

The population at time t � 1 is obtained from the population at
time t replacing a certain number of less fit agents (a given part or
quota Q of the population, Q � N) with new random agents.

(See the appendix for more formal definitions of the RBE procedure
given in pseudocode.)

The basic idea is, in other words, to sort a population from worst to
best and to replace the first few least fit agents Q with new randomly
generated ones.

Consider a population consisting of 10 agents. Let its initial repre-
sentation be the vector: (.45, .65, .89, .79, .93, .24, .56, .22, .08, .67),
where the fitness values are rounded to two places for the sake of sim-
plicity. To find the least fit individuals, the vector is sorted in ascending
order: (.08, .22, .24, .45, .56, .65, .67, .79, .89, .93). Now, if Q (the
portion of individuals to be replaced) is, for instance, 2 then the first
two individuals (with respective fitness values .08 and .22) are replaced
by two new agents, that is, two random numbers in [0, 1], to get the
next population. The update procedure is then repeated.

We carried out systematic simulation experiments with various pop-
ulation sizes, varying Q values, and different limits to the number of
generations. The parameter K, which makes it possible for us to take
into account interdependencies between agents and will be discussed
later, is related to the work of S. Kauffman [7] on NK-fitness land-
scapes. The intention there was to model the complexity of (epistatic)
coupling effects between traits or genes (N being their number) within
one organism. The idea to consider only fitness values for the represen-
tation of individuals was inspired by the work of Bak in [1]. Having
decided not to keep track of the underlying “genetic code,” he thought
of agents primarily as species and not as single organisms, and the in-
vestigation of what we call parameters Q and K was limited to a few
specific values and their asymptotic dynamics. We based the name of
our model, NQK, on this previous work. In our context, a population
consists of agents of any sort, without reference to their specific type
(e.g., genes, organisms, species, etc.).

2. Effects of the Q parameter

For the sake of greater clarity, we start by examining a more compre-
hensive, concrete example. We take a population of size N � 100
and choose as the quota Q � 6. A run of the RBE-procedure for 200
generations is shown in Figure 1.

The y coordinate is the average fitness expressed as a part of 1000;
thus 700 corresponds, for instance, to 0.7. The result of the procedure
is a vector equal in length to the number of generations, containing
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Figure 1. Curve of average fitness: population size N � 100 with Q � 6 over
200 generations.

in each position the average fitness reached by the population in that
generation. The average of the result vector (i.e., of average fitness
values) can be used for rough comparisons between different runs of the
procedure. The main focus, however, is on the increments in average
fitness from generation to generation. This characterizes our approach.
In [1] Bak was primarily interested in the so-called critical or threshold
value, that is, the highest level of low fitness reached by the entire
population. A procedure is defined to keep track of the lowest fitness
value of the population for every generation, and if this happens to
be higher than the lowest fitness value of the previous generation, the
threshold is set to the new value. While the fitness of an agent can fall
below the threshold, the threshold itself can only go up. Bak studied the
distribution of “avalanche” sizes and their movement in the population
(or ecosystem). An avalanche is defined as a series of fitness changes
starting when the fitness of an agent falls below the threshold value. It is
over when the lowest fitness agent rises above the (old) threshold. Our
intention is to study the behavior of average fitness (not lowest fitness),
and how fast certain (averages of) fitness averages are reached.

In the example shown in Figure 1 (notice that the curve looks con-
tinuous, but it is not: the dynamic is step-like), average fitness increases
rapidly at first (up to generation 50), then slowly, until it finally stabi-
lizes at a mean value of about 0.9. The rate of improvement appears
to slow exponentially. Taking a closer look at the relative increments in
average fitness from one generation to the next (Figure 2), one sees that
they are positive for the first few generations, and that they then tend to
fluctuate between positive and negative values.

The fluctuations clearly depend on the fact that the higher the average
fitness is, the lower the probability is of increasing it by replacing agents.
The variance of the fluctuations also depends on the quota. In the
example shown in Figure 1, the variance is approximately 110. If
Q is doubled to 12, the variance becomes approximately 220. The
variance (which obviously also depends on the size of the population)
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Figure 2. Increments of average fitness for the run shown in Figure 1.
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Figure 3. Variance values for increments of average fitness for Q from 1 to 80.

reaches a maximum for values of Q around 50, then starts decreasing
again. Figure 3 shows values of variance (averaged over 100 runs) for
population size N � 100, 200 generations, and Q values from 1 to 80.

In general, relative increments of average fitness from one generation
to the next (starting at generation 0) are positive more often at low
values of Q than at high ones. Otherwise they tend to oscillate between
positive and negative values.

The main result can be formulated in qualitative terms as follows.
The parameter Q (when K � 0, meaning the absence of interdepen-
dencies) is the only parameter that determines the dynamics of average
fitness.

1. For every maximum number of generations there is a Q value which
yields, on average, a maximum for average fitness.

2. The higher the number of generations, the lower Q must be in order to
get a comparatively high level of average fitness.

Concerning the first point, the two extreme cases are relatively easy
to understand. Given, for instance, a population of size N � 100,
its average fitness in generation 0 will be approximately 0.5, given the
random makeup of the initial population. If, for each of the next
generations, only one agent (the least fit) is replaced by a new random
agent (Q � 1), the average fitness will at first increase rapidly until
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Figure 4. Curves of average fitness for Q � 1, 6, and 12 over 1000 generations.

about 50% of the agents have a fitness value below 0.5 and then more
slowly. Given enough time, it will reach an arbitrary value near the
maximum but not stay there. In the other extreme case, if all 100
agents are replaced in each step (Q � 100), the average fitness will, in
all probability, stay the same at approximately 0.5.

The asymptotic effect of Q on average fitness can be calculated an-
alytically. When the number of generations can grow without limit,
average fitness (fmax) will, on average, be:

fmax � 1 �
0.5Q

N
. (1)

The formula can be derived as follows. In the (very) long run N �Q
agents will reach the maximum fitness value 1. In each generation the
remaining Q will contribute an average quantity of 0.5Q to the total
fitness. Average fitness will therefore be (1(N � Q) � 0.5Q)/N, which
can be reduced to equation (1). With this formula, a value of Q � 1
yields the best asymptotic result. A value of Q � 0 means that there is
no evolutionary activity.

The interesting cases, however, are the intermediate ones, that is, if
it is assumed that the number of generations, or the time for producing
them, is limited. For the same population and a maximum of 250 gen-
erations, the best average fitness is reached, for instance, if six least fit
individuals are replaced in each update step. Thus, the parameter Q af-
fects the speed at which a certain value for average fitness is reached. To
illustrate this, Figure 4 shows the curves of average fitness for popula-
tion size N � 100, 1000 generations, and different Q values of 1, 6, and
12. The data is the average of 20 runs. Clearly, if the time (the number
of generations) is limited, for instance to 250, then Q � 6 will give the
best result. Q � 12 is better when fewer generations are involved, and
Q � 1 is even better than Q � 6, if more than 8000 generations (not
shown in Figure 4) are calculated.

Note that if the population size and the Q parameter are changed in
the same proportion, the average fitness dynamics stay the same. This
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Figure 5. Three-dimensional plot of the dynamics of average fitness for a popu-
lation of size N � 100, for values of Q from 1 to 80, for generations 0 to 200.
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Figure 6. Maximum average fitness for Q from 1 to 80 but only for generations
1, 50, 100, 150, and 200.

obviously means that if Q is not or cannot be changed, then changing
N can serve as a fitness control parameter.

Figure 5 is a comprehensive three-dimensional plot of the dynamics
of average fitness (z-axis) for a population of 100 agents, for values of
Q from 1 to 80 (y-axis), for generations 0 to 200 (x-axis). The average
fitness for a given Q and a given maximum number of generations is
averaged over 20 different runs with the same parameters. The data is
viewed from the right-hand corner, which allows us to see the difference
between the values of average fitness for low generation numbers and
different Q values.

To stress the second point, Figure 6 shows the average fitness for
Q from 1 to 80, but only for generations 1, 50, 100, 150, and 200.
The tendency for average fitness to become larger with smaller values
of Q, depending on the generation number, is clear. Equally evident
is the tendency of average fitness values to become quite similar for
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Figure 7. Curves of the average fitness for Q � 6 and N � 100 over 400
generations and for the adaptive Q starting with 40, and then decreasing by 1
every second generation.

increasing Q values and generations, which means that high Q values
do not produce significantly different rates of average fitness increase.

2.1 Adapting the Q parameter

Given that different Q values allow us to obtain different average fitness
values at different times, it seems obvious to try to have the parameter
change from generation to generation in a manner that will achieve
generally better results. Figure 7 shows the curve of an “adaptive” run.
Population size N � 100 and the number of generations is 400. The
plain curve serves as a reference (with Q fixed at 6). The other curve
(triangles) is obtained by starting with Q � 40 and decreasing Q by one
every second generation, until it remains fixed at 1 in generation 80.

As can be seen, this strategy results in a better performance for every
generation. To obtain an optimum adaptation strategy, however, it
would be necessary to know what value of Q—for a given population
length and average fitness—yields the best increment of fitness gain.
It is possible to derive this information analytically (section 4). Our
experiments confirm that there are significant differences. Figure 8
shows for a population of size N � 100 how the increment of fitness
varies for values of Q from 1 to 80 for five different average fitness
values (.5, .6, .7, .8, and .9). The increments (y-axis) are in parts of
1000. The data is the average of 50 runs. Each curve has a maximum
that could serve as a parameter value for an adaptive control rule.

2.2 Making the Q parameter internal to the model

A changing Q parameter is not unnatural. The size of biological popu-
lations is, for instance, not fixed, and the rate at which unfit organisms
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Figure 8. Variation of fitness increment (in parts of 1000) for Q from 1 to 80,
when average fitness of a population of size 100 is .5, .6, .7, .8, and .9.

are eliminated is constantly changing. In this sense the Q parameter in
our model is an expression of the probability for agents to be eliminated.
The RBE procedure can be changed to incorporate the parameter as an
endogenous quantity that is calculated for each generation depending
on the elimination probability for every single agent.

This probability Pe can be plausibly expressed as an exponential of
the fitness value of an agent:

Pe(f ) � e�fc (2)

where f is the fitness value (varying between 0 and 1) and c is a constant
stretching factor allowing us to get a probability near 0 for fitness values
near 1. The graph of such a probability function is shown in Figure 9.

The result of an experiment for population size N � 100, 1000
generations, and an adaptive Q parameter calculated with c � 10 is
shown in Figure 10.

Figure 11 shows the evolution of the Q parameter over the genera-
tions in question. After an initial value of 8 it drops considerably, and
after generation 50 it varies between 0, 1, and 2 most of the time, where
0 is obviously the absence of evolutionary activity.
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Figure 9. Graph of elimination probability based on equation (2) with c � 10,
and f varying from 0 to 1.
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Figure 10. Curve of average fitness for population size N � 100, 1000 gener-
ations, and an endogenous adaptive Q based on equation (2) with stretching
factor c � 10.
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Figure 11. Evolution of Q for the experiment shown in Figure 10.

Other definitions of the elimination probability function are possible.
One based on the sigmoid function seems to be better with regard to the
average of the fitness averages of all generations. For the sigmoid

S(x) �
1

1 � e�x (3)

a stretching factor is also needed. A fitness value that varies between
0 and 1 must first be mapped into the interval [�c, c]. The probability
is then the complement of the result of the sigmoid S applied to the
mapping result. Given the map function M

M(x, c) � c(2x � 1) (4)

the new probability function Ps is:

Ps(f ) � 1 � S(M(f , c)). (5)

The graph of a probability function of this kind with c � 10 is shown
in Figure 12.

The result of an experiment for population size N � 100, 1000
generations, and an adaptive Q parameter calculated with c � 10 is
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Figure 12. Graph of equation (5) with c � 10, and f varying from 0 to 1.

200 400 600 800 1000
generation

650

700

750

800

850

900

AF

Figure 13. Curve of average fitness for population size N � 100, 1000 genera-
tions, and an endogenous adaptive Q (the sigmoid-based probability function
of equation (5)) with stretching factor c � 10.

shown in Figure 13. The average of the fitness averages is 0.89. With
the probability function in Figure 9 it was 0.79.

Figure 14 shows the corresponding evolution of the Q parameter
over the generations. After an initial value of 46 it drops considerably,
and after generation 100 it varies between 0, 1, and 2.

Note that unlike the case in common genetic algorithms (GA), where
the probability of an individual being copied into the next generation
(i.e., not being eliminated) normally depends on the ratio of its fitness to
the fitness of the total population (sum of all individual fitness values),
in our model there is no need for such a global value. Finally, con-
sider the difference with regard to the generation of new agents. In GA
recombination (crossover) plays the major role, and mutation a rather
minor one. In our model, mutation (the rate of which depends on elim-
ination probability) is the only innovation factor. However, mutation
probability is not the probability of a mutation at a given position in
the representation of an individual (e.g., a bit position in a bit string),
as in GA. In our model, the whole representation (i.e., every bit posi-
tion) could be changed, meaning that every agent could be replaced by
a completely different one.
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Figure 14. Evolution of the endogenous adaptive Q for the experiment shown
in Figure 13.

3. Effects of the K parameter

We now introduce the second parameter K that will allow us to take into
account possible dependencies between agents. K is an integer varying
from 0 to N � 1, with N being the size of the population, indicating the
number of agents an agent is connected to. The idea is that when an
agent i is eliminated, K other agents, chosen at random and therefore not
necessarily among the least Q fit ones, are also eliminated and replaced
by new random agents. This can be interpreted in the sense that the
fitness of one agent influences the fitness of other agents, producing a
subcritical chain reaction of fitness changes. K could be different from
agent to agent. In the next experiments we choose a unique K which is
valid globally, that is, for all agents, and is to be considered an average
length of the chain reaction. The global K parameter can be, as an
average, any real number �0, provided that the quantity expressing
the total number of random replacements, which always equals Q �
K, is rounded off. This can be a sensible choice, for instance, when
different values of Q are used in the same run of the RBE procedure,
as is the case when the Q parameter is made internal to the model
(section 2.2). In all the previous examples the parameter K was tacitly
assumed to be 0. Note that in the Kauffman model K defines the number
of genes that affect the fitness contribution of another gene, and thus,
as it were, the “inputs” of that gene. In our model the converse applies:
K represents the number of agents an agent is able to affect, that is, its
“outputs.”

Figure 15 shows, for a population of size N � 100 and a fixed
Q parameter of 6, how average fitness varies in the course of 100
generations for K from 0 to 20.

An increase in K results in a strong decrease in average fitness, as
illustrated by the curves shown in Figure 16.
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Figure 15. Curves of average fitness for population of size N � 100, 100 gener-
ations, fixed Q � 6, for K from 0 to 20.
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Figure 16. Curves of average fitness for K � 0, K � 2, K � 4, and K � 6.
N � 100, Q � 6, over 100 generations.

The striking thing is that with respect to K � 0, even for a value of K �
2 there is a considerable drop of average fitness after a few generations.
Figure 17 (viewed from above) shows the average fitness landscape for
values of Q from 1 to 30, and K from 0 to 19. The population size N
was set at 100. The average fitness given for generation 100 is the result
of a single run.

The ruggedness of the average fitness “landscape” for increasing val-
ues of K is evident. Increasing values of Q are not decisive in this respect,
that is, average fitness is low and subject to fluctuations for high values
of K, even if the values of Q are low. These results are hardly surprising
because even a low value of K (multiplied by the value of Q) might
result in a high number of replacements for a given population. For
instance, if the population size N � 100 and Q � 20, setting K � 5 may
mean that more than 60 individuals will be replaced in each generation
randomly, that is, without regard to their fitness level (section 4). A run
with parameters of this kind (Figure 18) leads, as expected, to a curve
of very low average fitness oscillating around the value of 0.54.
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Figure 17. Curves of average fitness for values of Q from 1 to 30, and K from 0
to 19.
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Figure 18. Average fitness for N � 100, Q � 20, and K � 5.

The effect of the K parameter does not depend on the population
size in the following sense. If, for a given K, the Q and N parameters
are, for instance, doubled, then the proportion of random replacements
per generation (KQ/N) does not change and the curve of average fitness
remains (approximately) the same. Figure 19 shows the curves for
200 generations where the plain curve plots the average fitness for a
population of 100 agents (with Q � 6 and K � 2) and the triangles plot
the average fitness for a population of 200 agents (with Q � 12 and
K � 2). The data is the average of 50 runs for each population size, and
they almost overlap.

A dependency of K on N would be given, if N varied independently
of Q, but we prefer to take the other point of view, with N being fixed
and Q variable. Clearly, Q/N, that is, the ratio of population change
at each iteration, is important and not the absolute values of Q and
N. From our perspective the absolute value of N determines how many
different types of dynamics can be investigated. The larger the N, the
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Figure 19. Curves of average fitness for population size N � 100 and Q � 6,
K � 2, and population size N � 200 and Q � 12, K � 2.

greater the number of Q values that can be studied.
Note finally that K can be interpreted as a form of systematic noise

parameter, that is, as a regular and not casual form of eliminating agents
without regard to their fitness, which would be the case for random
influences due to “catastrophes” or other external events. While a
major (and hopefully rare) catastrophe may, in individual instances,
force down the average fitness of a population, K does so continuously,
depending, as we have shown, to a small extent on Q.

3.1 Adapting the usage of the K parameter

Even a small value of K has a disruptive effect on the average fitness of
a population after just a few generations. Thus, interactions between
agents are detrimental in this model. Is there a way to interpret the pa-
rameter differently and modify its use in order to gain benefit from these
interactions? This is, indeed, possible. Consider the following. If the se-
lection strategy in RBE were, for some reason, inverted, (i.e., in the first
Q the most and not the least fit agents were eliminated), the K parameter
would have a beneficial effect on average fitness. K would counteract
the effects of Q toward smaller fitness values. This insight suggests also
making the use of K dependent on the elimination probability. The basic
idea is to use K (i.e., to start the chain reaction of agent replacements)
only if the most fit agents are eliminated on the basis of the Q parameter.
The K usage probability can be simply made to be the complement of
the elimination probability. This strategy means that the usage of K is
low during the first few generations and may increase with passing gen-
erations, as the agents become fitter and fitter. But as more and more
generations pass an adaptive Q also decreases, and so the combined
effect Q �K (the sum of the average length of the chain reactions) is low.

Figure 20 shows a run of the RBE procedure with population size
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Figure 20. Curves of average fitness for population size N � 100 with fixed Q �
6, K � 2, and adaptive Q and adaptive usage of K � 2 based on equation (5).

N � 100, 1000 generations with fixed Q � 6 and K � 2 (lower curve,
as a reference), and an adaptive run for Q and the adaptive usage of
K � 2. The probability functions are sigmoid-based (equation (5)) for
both Q and K usage. Adaptivity clearly yields a better performance.

4. Derivation of functions for Q and K

In this section we show how to construct functions that for a given Q,
f (average fitness), K, and N, compute a new average fitness after Q
least fit replacements and Q � K random replacements.

The derivation of the functions is based on the following assumptions.
If the population vector is sorted (e.g., in ascending order), the total fit-
ness of a population of size N will ideally (and on average) obey a regular
geometrical distribution. This distribution is right triangular when the
value of average fitness f � 0.5 and rectangular for average fitness f � 1.
When f is between 0.5 and 1 the distribution shows a combination of
both. We call this combination quadrilateral or, more specifically, recto-
right-triangular because the quadrangle consists of a rectangle and two
right triangles. Figures 21, 22, and 23 show three different examples.

The right triangular distribution for average fitness f � 0.5 is the
result of sorting (and perhaps adding) vectors of uniformly distributed
random numbers. Take a vector of n random numbers uniformly dis-
tributed over [0, 1]: (r1, r2, r3, . . . , rn); sort it, for instance, in ascending
order. Build another vector of the same form, sort it, and add it to the
first one. Repeat this procedure m times, and then divide each site of
the vector by m. If n (the length of the vector) and m (the number of
iterations) is big enough, a plot of the resulting vector will be an almost
perfect straight line with a slope of 1/n (Figure 24).

The right triangular distribution is typical at the start of the RBE
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Figure 21. Sorted regular right triangular distribution of fitness for a population
of size N � 10, average fitness f � 0.5, and total fitness of N � F/2. The value of
F, representing maximum possible fitness, is necessarily 1.
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Figure 22. Regular rectangular distribution of fitness for a population of size
N � 10, average fitness is 1, and total fitness of N � F.
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Figure 23. Sorted regular recto-right-triangular distribution of fitness for a pop-
ulation of size N � 10; total fitness for the population N � f (f being the average
fitness) equals the sum of the area of the quadrangle. In this case average fitness
f � 0.65.
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Figure 24. Right triangular distribution of 100 sorted averaged random numbers
uniformly distributed over [0, 1] with 100 iterations.

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

N

F�1

Q

z

Figure 25. Right triangular distribution of fitness for a population of size N � 10,
average fitness is 0.5, total fitness is N � F/2, and Q � 3.

procedure. What is then the effect of the first Q replacements? See
Figure 25 where, for the sake of clarity regarding geometrical relation-
ships, N � 10 and Q � 2. Remember, however, that the average fitness
dynamics do not change if Q and N are multiplied by the same factor,
which means that the ratio of Q to N is important and not their absolute
values (section 3).

The area of the right triangle is NF/2 � Nf , where f � 0.5 is the (ideal)
average fitness of the population at the outset. Eliminating the least Q
fit agents means subtracting from this area the area of the small right
triangle with base Q and height z. Replacing the Q agents with new
random ones amounts to adding to this result the quantity 0.5Q (which
is the area of the right triangle with base Q and height F � 1). Thus
the new area is: Nf �Qz/2 � 0.5Q. The value of z is simply calculated
from the similarity of the two right triangles with short sides of length
Q and z, and N and F, respectively, stating that z 	 Q � F 	 N. The new
average fitness is obtained by dividing the new area by N. So, this is
the average effect of the first Q replacements. For successive iterations
(generations), the sorted distribution will be recto-right-triangular (or
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Figure 26. Sorted recto-right-triangular distribution of fitness for a population
of size N � 10, average fitness of 0.65, and Q � 3.
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Figure 27. Curve (boxes) of the fitness distribution for a population of size
N � 100 after four iterations of the RBE procedure with Q � 20, shown
together with the corresponding theoretical recto-right-triangular distribution.
The data is the average of 50 different runs. The average fitness is 0.7.

at least this is our assumption). See the example given in Figure 26.
Figure 26 consists of a rectangle with base N � x and height y, and

two right triangles with short sides of length x and y, and N�x and F�y.
As before, the area of the figure equals N �f , where f is the average fitness
of the population. We assume that the effect of Q in each iteration is to
increase the value of y pushing up, as it were, the upper-left edge of the
quadrangle along the hypotenuse of the right triangle with short sides
of length Q and F. This central assumption is confirmed by empirical
data. The example given in Figure 27 shows the curve (boxes) of the
sorted fitness distribution for a population of size N � 100 after four
iterations of the RBE procedure with Q � 20. The data is the average
of 50 different runs.

To determine the effect of Q in each case we need to know the values
of x, y, and z to be able to calculate the area to be subtracted from the
total area of the quadrangle, which, by definition, equals N � f . Thus we
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have (see Figure 26):

Nf �
xy
2
� y(N � x) �

1
2

(N � x)(F � y). (6)

Because of the similarity of the two right triangles with short sides of
length x and y, and Q and F, x and y are further related in the following
way:

x 	 y � Q 	 F . (7)

Substituting 1 for F and solving equations (6) and (7) we get the
general formulas for x and y:

x �
(2f � 1)NQ

N �Q
(8)

y �
(2f � 1)N

N �Q
. (9)

Given x and y, the value of z is simply calculated from the similarity
of the two right triangles with short sides of length Q � x and z, and
N � x and F � y:

z 	 (Q � x) � (F � y) 	 (N � x), (10)

then, substituting 1 for F we get:

z �
(Q � x)(1 � y)

N � x
. (11)

When f � 0.5, the sorted distribution is right triangular (see Fig-
ure 25), x and y are zero, and equation (11) for z simply reduces to
z � Q/N, the formula that we found previously. Now, to find the new
average fitness when the Q least fit agents have been replaced, the fol-
lowing area (see Figure 26) must be subtracted from the original area:
S � xy/2 � y(Q � x) � z(Q � x)/2. The new area A is then:

A � Nf � S � 0.5Q

and the new average fitness is A/N.
We can now define a function, TEQ (for theoretical effect of Q),

which takes three arguments, Q, N, and f (current average fitness), and
calculates the new (theoretical) average fitness in one iteration.

TEQ(Q,N,f) :=
x = (2 f - 1)N Q/(N - Q);
y = (2 f - 1)N/(N - Q);
z = (Q - x)(1 - y)/(N - x);
S = x y/2 + y(Q - x) + z (Q - x)/2;
A = N f - S + 0.5 Q;
RETURN A/N

Note that Q must be less than N in order to avoid an infinite ex-
pression in the calculation of x. If Q � 0 then x, z, and S are also
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zero, and the value returned by TEQ is simply f . Note also that the
argument f is assumed to be in [0.5, 1], but even if this constraint is
made explicit, TEQ is not yet complete. To understand why, note first
that when x � Q, then y � 1, and the area of the quadrangle repre-
sents (as a fixed point of TEQ) the maximum possible (average) fitness
that can be reached with the given value of Q (section 2, equation (1)).
Now, what happens when x is greater than Q? To understand this, we
have to consider the fixed points of TEQ, which depend on Q and N.
As explained in section 2, the maximum possible average (fmax) fitness
equals 1 � 0.5Q/N. In keeping with the equation for x, the value of
x will always be greater then Q if f (the argument of TEQ) is greater
than fmax. Take, for instance, Q � 25, f � 0.9, and N � 100. The
value of fmax � 0.875, and x � 80/3 > 25. If the expression for fmax is
substituted for f in the equation for x, the equation simplifies to x � Q,
and this means that x > Q if f > fmax. The problem with using the value
of x is that it is difficult to understand what has to be done in the case
that the test x > Q is positive. This difficulty can be worked around as
follows. Given N and f we assume that f is a fixed point and calculate
the corresponding value of Q. If f is a fixed point, then f � 1�0.5Q/N,
and solving for Q we get: Q � 2(1 � f )N. Let us call this Qfix (for
fixed point value of Q) in order to distinguish it from the Q given as an
argument of TEQ. If Q > Qfix, then we have, for instance, the situation
shown in Figure 28 for the fitness distribution.

The area to be subtracted in this case is S � Qfix/2 �Q �Qfix. The
interesting point is now that if equation (12) for the new average fitness
is simplified, we get exactly the fixed point corresponding to Q and N:

fnew �
1
N
�Nf � �Qfix

2
�Q �Qfix� � 0.5Q� . (12)

Substituting Qfix � 2(1 � f )N into equation (12) for fnew and simpli-
fying we get fnew � 1�0.5Q/N, which is the same as equation (1). Here
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Figure 28. Situation for Q � 40 and fixed point value Qfix � 2(1� f )N. N � 100
and f � 0.9.

Complex Systems, 16 (2005) 55–82

https://doi.org/10.25088/ComplexSystems.16.1.55



76 F. di Primio

is the complete the definition of TEQ.

TEQ(Q,N,f) :=
Qfix = 2 (1-f) N;
If[Q > Qfix, RETURN 1 - 0.5 Q/N];
x = (2 f - 1)N Q/(N - Q);
y = (2 f - 1)N/(N - Q);
z = (Q - x)(1 - y)/(N - x);
S = x y/2 + y(Q - x) + z (Q - x)/2;
A = N f - S + 0.5 Q;
RETURN A/N

The conditional form IF[test, iftrue] used in the definition returns
iftrue if the test is true (otherwise iffalse, when this is given, as in IF[test,
iftrue, iffalse]). This is necessary in order to handle the situation when
Q > Qfix, in which case TEQ returns the fixed point value corresponding
to Q and N.

Given TEQ, another function can be defined for the calculation of
the (theoretical) effect of K. We call the function TEQK (for theoretical
effect of Q and K). It takes four arguments, Q, K, N, and f (current
average fitness), and calculates the new (theoretical) average fitness in
one iteration.

TEQK(Q,K,N,f) :=
g = TEQ(Q,N,f);
r = NDR(QK,N);
S = gr;
A = Ng - S + 0.5r;
RETURN A/N

TEQK first calculates the new average fitness g using TEQ. Then Q �K
replacements take place. At this point, the RBE procedure is defined to
choose the agents to be replaced at random (Appendix B). Thus there
might be overlapping choices. The procedure NDR (for number of dif-
ferent results) is assumed to compute the expected or average number
of genuinely different replacements r given Q � K and N. As an exam-
ple: NDR(40,100) equals approximately 33, which means that, for a
(population) vector of length 100, the expected number of replacements
that take place when Q � K � 40 is about 33. NDR(100,100) yields 63
(result used in section 3, Figure 18).

The next steps are simple. The quantity S to be subtracted from the
new area equals g � r (i.e., r times the new average fitness before K is
used), the quantity to be added equals 0.5 � r.

As for NDR, we cannot give an exact analytical definition here (its
combinatorial mathematics seems to be formidable), but we claim (with-
out proof) that its value obeys an exponential distribution. If r is the
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number of different results for a given Q, K, and N, then (with x � Q�K)
the following holds:

r
N
� 1 � e�x/N. (13)

Thus NDR can be defined as:

NDR(x,N) :=
N(1 - exp(-x/N))

The greater N is, the better the values returned by NDR in this form
approximate the exact values (which we have computed for small Q and
K values). For values of x > 4, we have checked the approximation using
an iterative stochastic definition of NDR, which is extremely simple to
program.

On the basis of these functions, it is now easy to define a function
that for a given average fitness f and population size N yields the Q
value which is best in the sense that TEQ(Q�1, N, f ) < TEQ(Q, N, f ) >
TEQ(Q� 1, N, f ). The function, which we call BestQ, may be based on
the first derivative of TEQ, or simply iterate TEQ for values of Q from
1 to N to find the maximum. A plot of such a function is shown in
Figure 29. The straight dashed line is shown to compare deviations of
the curve from linearity.

The definition of BestQ using the partial derivative of TEQ with
respect to Q (leaving aside the use of Qfix) can be given as follows.

The derivative t
 is:

t
 �
4(f � 1)2N3 � 8(f � 1)N2Q � (3 � 8f � 8f 2)NQ2 � 4fQ3

2N2(N � 2fQ)2 . (14)
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Figure 29. Plot of the function BestQ(f , N) for a given f (average fitness), varying
from 0.5 to 1, and a fixed N (100, in this case) that provides a value of Q that
will give us the best increment of fitness. The straight dashed line is shown for
comparison.
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Equating t
 to zero and solving for Q we get the following three
solutions for Q:

Q1 � 2(1 � f )N (15)

Q2 �
�3N �

�
9 � 32f � 32f 2N

8f
(16)

Q3 �
3N �

�
9 � 32f � 32f 2N

8f
. (17)

To find the right one, we use the additional knowledge that when
f � 0.5, Q must be less than N. Otherwise the new average fitness
would be 0.5 and the increment of fitness would be zero. Now, the first
formula (which, incidentally, is the equation for the fixed point value of
Q) and the second formula give Q1 � Q2 � N for f � 0.5, while the
third one yields N/2.

Here is the complete definition of BestQ.

BestQ(f, N):=
(3N - sqrt(9 - 32f + 32f^2)N)/8f

The form sqrt(...) in the definition stands for
�

. . . and f^2

means f 2. For BestQ to produce a correct result, f must be �0.5. If
f � 1, then Q � 0. Note that Q does not necessarily have to be an
integer.

Note, finally, that the K parameter is not considered at all in the
definition. A consideration of K is easily possible if BestQ is based on
iterating TEQK for different values of Q from 1 to N. For the moment
there is no simple analytical solution we can propose. From experiments
with TEQK it is evident that with increasing K the value of Q which
yields the best increment of fitness must be increasingly smaller than
the value given by BestQ for the corresponding fitness. Consider, for
instance, the case that the population size N is fixed at 100. The values
of BestQ for f � 0.5 equals 50, but even for K � 1 this is not the best
Q (the best Q, calculated iterating TEQK, is 38). For K � 2 and K � 3
the best Q values are 29 and 23 respectively.

To conclude this section, we want to mention that the RBE proce-
dure is robust with respect to the type of distribution from which fitness
values are drawn. We have experimented with runs of RBE working
on the basis of normal distributions. Not surprisingly, increase in av-
erage fitness is lower if compared with runs of RBE working on the
basis of a uniform distribution, but the relative effects of the Q and K
parameters are comparable. The long-term dynamic shows, however,
that for relatively large values of Q, the greater the evolution time,
the more significant the advantage of the normal distribution of fitness.
This guarantees the validity of our general qualitative results (section 2)

Complex Systems, 16 (2005) 55–82



The NQK Model of Fitness Dynamics 79

and is what we understand by robustness. A comprehensive analysis of
other types of distributions will be given elsewhere.

5. Applications

Our results could be important for application problems where an exter-
nal source of agents (with known distribution) is available and a desired
solution cannot be found on the basis of a single agent but only on the
basis of the whole population. An optimization could then be carried
out simply by replacing “apparently bad” agents (e.g., items in a range
of products or people in an organization) with “randomly chosen” new
agents, where the choice is not made (and, indeed, cannot be made)
on the basis of knowing if the new agents are “really good.” Per Bak
somehow recognized this ([1], p. 138) when, on the basis of his model,
where only the next two neighbors of an agent in a ring population were
considered for dependencies, he suggested that in a business context his
selection process would correspond to a manager firing the least effi-
cient worker plus two coworkers and then replacing them with three
new people taken in off the street.

With our model, only the right choice of the elimination factor Q
guarantees that we will reach a maximum average quality, depending
on the amount of time at our disposal. The lesson to be drawn from the
parameter K is the need to minimize, or possibly eliminate, interdepen-
dencies. If this is not possible, then the usage of K random eliminations
should be limited to the case when relatively fit agents are eliminated
for specific reasons. While the choice of Q is independent of scale and
domain, this recommendation (certainly not the only possible one) is
not.

Consider the following example, but without forgetting that in real
life much more is involved than mere statistical averages. Assume it is
your task, in some leading capacity, to optimize the average “fitness”
or productivity of a group of N people. Suppose that you cannot vary
N. (A trivial way to increment average fitness is to fire less efficient
or “bad” people without replacing them with new ones, the optimum
perhaps being attained when you are the only one left. Another trivial
approach would be to hire many more than N new people, and, after
a while, to fire most of them and keep the N best ones.) If you fire
bad people, the probability that there will be a chain reaction (i.e.,
other people leaving out of sympathy with those who were fired) is low.
Needless to say, other people should not be fired at random, as Bak
suggests. That would be silly. If, however, a “good” member of the
group quits or is erroneously fired or is enticed away, the probability for
a chain reaction is higher. Good people often exert a positive influence
on the fitness of other people. In any case, the conclusion of our model
for this particular domain is that you should expect a chain reaction
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and compensate for it by hiring new people (choosing them at random
if necessary). This interpretation of K clearly depends on the domain
application, but also on the scale or level of evolution. If the agents are
“species” it might, for instance, be plausible to view the K parameter
as (almost) independent of “fitness,” as Bak did in the exemplification
of his model as an ecosystem with neighboring relationships forming
consecutive links in a food chain of prey and predator species.
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Appendix

Here we provide more formal definitions of the RBE procedure in pseu-
docode to make it easier for others to check our results. In the list of
formal parameters, G is the number of generations and N is the size of
the population.

A. Definition of RBE that only uses parameter Q

RBE(G,N,Q) :=

1. result = empty vector of length G;

2. pop = vector of N number drawn at random from the uniform
distribution;
FOR i = 1 to G DO
BEGIN

(a) sort pop in ascending order;

(b) replace the first Q positions in the pop vector with random numbers;

(c) save average of pop into position i of result vector;

END;

3. RETURN result vector
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B. Definition of RBE using parameters Q and K

RBE(G,N,Q,K) :=

1. result = empty vector of length G;

2. pop = vector of N number drawn at random from the uniform
distribution;
FOR i = 1 to G DO
BEGIN

(a) sort pop in ascending order;

(b) replace the first Q positions in the pop vector with random numbers;

(c) S = round(Q � K); replace S random positions in the pop vector with
random numbers;

(d) save average of pop into position i of result vector;

END;

3. RETURN result vector

C. Definition of RBE based on adaptive Q and adaptive usage of K

RBE(G,N,K) :=

1. result = empty vector of length G;

2. pop = vector of N number drawn at random from the uniform
distribution;
FOR i = 1 to G DO
BEGIN

(a) C = 0;

(b) calculate Q according to the given elimination probability function
to mark the positions to change in the pop vector;

(c) replace the calculated positions in the pop vector with random num-
bers, increasing C by 1 according to the complement of the elimi-
nation probability of each number to be replaced;

(d) S = round(C � K); replace S random positions in the pop vector with
random numbers;

(e) save average of pop into position i of result vector;

END;

3. RETURN result vector
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