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In order to study complex networks like the Internet, the World Wide
Web, social networks, or biological networks, one first has to explore
them. This gives a partial and biased view of the real object, which is
generally assumed to be representative of the whole. However, until now
nobody knows how and how much the measure influences the results.

Using the example of the Internet and a rough model of its exploration
process, we show that the way a given complex network is explored may
strongly influence the observed properties. This leads us to argue for the
necessity of developing a science of metrology of complex networks. Its
aim would be to study how the partial and biased view of a network
relates to the properties of the whole network.

1. Introduction

Some complex networks of high interest can only be known after an
exploration process. This is in particular true for the Internet (inter-
connection of computers), the World Wide Web (links between pages),
social networks (acquaintance relations), and biological networks (brain
topology or protein interactions). There have been many studies pub-
lished on these objects, see for instance [1–11]. Most of them rely on
partial views obtained using various, and often intricate, exploration
methods. Until now, the approach generally used is to obtain views
as large as possible and then assume that they are representative of
the whole, see for instance [12–15]. However, except in a few limited
cases [12, 16, 17], nobody understood the bias introduced by the partial
exploration methods and the influence it may have on the results.

We show here that this bias may be very important, even under some
very optimistic assumptions. Using the representative example of the
Internet topology, we show how some natural models of the exploration
process yield very different views of a given network, which proves that
the way one explores a complex network has a strong influence on the
properties of the obtained view. We therefore insist on the necessity of

�Electronic mail address: guillaume@liafa.jussieu.fr.
�Electronic mail address: latapy@liafa.jussieu.fr.

Complex Systems, 16 (2005) 83–94; � 2005 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.16.1.83



84 Complex Network Metrology

developing a theory of complex network metrology. Its aim would be
to study how the partial and biased view of a network relates to the
properties of the whole network.

Our global approach is the following: we consider a (known) net-
work G, simulate an exploration of this network to obtain a view G� of
it, and then compare the two objects. The final aim is to deduce prop-
erties of G from properties of G�. In this paper, we only make a first
step in the direction of this ambitious objective, but we show that it is
enough to prove its validity and relevance, which is our aim. In order to
do this, we first present the way the Internet topology is explored, then
introduce very simple and natural models to simulate this, and finally
discuss the obtained results. Let us insist on the fact that this global ap-
proach is absolutely general, and may be applied to other cases (like the
World Wide Web, social networks, or biological networks) with benefit.

2. Exploring the Internet

Many operators and administrators act on the Internet topology in a
totally distributed way. There is no central decision on what is done
on the Internet, and no central knowledge of its topology. And yet,
it plays an important role in many contexts like the robustness of the
network [18].

There are various ways to retrieve some data on the Internet topology
from publicly available sources. They give a partial view of the global
topology. Moreover, the available information is influenced by many
parameters (e.g., economical, technical, or political) which may intro-
duce a bias in the sample we get. This is however the unique method
available to know this topology and what we call exploring the Internet.

There exist various methods and many heuristics to extensively ex-
plore the Internet. We do not enter into the details of these techniques,
but will concentrate on one of the main methods. This restriction is
motivated both by the fact that very large explorations of the Internet
have indeed been conducted using this method (e.g., [4, 12–15]), and
that it is quite easy to model, whereas other methods are much less
precisely defined.

We concentrate on the exploration of the Internet using the tool
traceroute. It is a simple program which, used from a source com-
puter, gives the path followed by messages from this source to a desti-
nation computer on the Internet. This path is a set of nodes and links
of the network, which can be seen as a small part of the Internet topol-
ogy. Using this tool extensively, one can obtain large parts of the whole
topology.

Note that, in order to use traceroute, one has to run the program
on the source computer. On the contrary, nothing specific is needed at
the destination and so one can choose any destination. Therefore, if one
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uses traceroute to explore the Internet, the number of sources used
is generally very limited (typically a few dozens) whereas the number
of destinations may be huge (typically several hundreds of thousands)
(e.g., [12, 13, 15]). Note also that, if one explores the Internet from
one source, one cannot obtain a perfect view of the whole, even if
traceroute is used to every possible destination. Indeed, there are
some links which will never be crossed by any message from the source.
Moreover, due to bandwidth, knowledge, and time limitations, one
can never use traceroute to every possible destination. How many
destinations should one consider? How many sources are needed? Until
now, no one has any idea of the answers to these questions, but we
propose a step towards them.

3. Modeling

We want to simulate an exploration process. In order to do this, we
first need a network to explore. There are several natural choices for
this. One can, for instance, obtain the real topology of a large computer
network provided by a firm. One can also use one of the various
models proposed to generate random networks (e.g., [19–26]). It has
been shown recently that the Internet topology, like many other complex
networks, has specific statistical properties [4]. However, in this paper
we are mostly concerned with the exploration process. Therefore, we
choose the most simple and well-known model of random networks
[27, 28] to generate the topology that is explored: the Erdös and Rényi
random graph model. This model has two parameters: the number of
nodes n, and the probability of the existence of any link p. A network
is then generated by considering that each possible pair of nodes is
linked with probability p. This gives an expected number of links
m � p � n � (n � 1)/2. Note that this model is not very realistic, but it is
sufficient for the purpose of this paper.

The traceroute tool gives the path followed by messages from a
source to a destination. Until now, very little is known about the prop-
erties of such paths, see [29] and the references therein. For instance,
one may suppose that the aim of network protocols is to deliver infor-
mation efficiently, and so that the paths followed are the shortest paths
(paths of minimal length). It is however known that this is not always
the case, but no precise information is currently available on how they
differ from shortest paths [29]. Moreover, there exist in general many
shortest paths for a given pair of computers, and there is no a priori
reason for traceroute to give one of them rather than another. Fi-
nally, the paths change during time but again very little is known on
their dynamics.

With the current state of our knowledge, designing a realistic model
of traceroute is therefore impossible. The assumption usually made
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is that traceroute always gives a shortest path, which is actually suffi-
cient for our current aim. We also consider that, during the exploration
process, one may use traceroute many times, which leads to the dis-
covery of all the shortest paths between given sources and destinations.

We have a model to generate the network to explore, and some
models for the traceroute tool. We now need a model for the ex-
ploration process itself. As already noted, we suppose that it only relies
on traceroute. But this is not sufficient: we must say how we will
choose sources and destinations, and how many of them will be con-
sidered. With our aim being to show that the exploration method may
influence the obtained view of the actual network, we consider several
realistic models of the exploration. Again, we only consider the simplest
ones, which are sufficient for our purpose. Since it is the case in prac-
tice, we suppose that the exploration process is based on one or a few
sources, and uses many or all of the possible destinations. Moreover, we
suppose that the sources and destinations are chosen randomly, which
makes sense since the networks explored are totally random and so all
the nodes play similar roles.

Let us insist on the fact that, to make a complete study of the influence
of the exploration process on the view we obtain, one would actually
have to consider many models, both for the network to explore, for the
traceroute behavior, and for the exploration method. Therefore, one
obtains several dozens of triples of models to consider, and for which
experiments and comparisons should be conducted. However, this is
not our aim here. We only want to show that the exploration method
indeed influences the results. To achieve this, as shown in the following,
it is sufficient to consider a few simple cases.

Finally, the models we use are very simple. The network to explore is
produced by the classical random network model, which gives a network
of n nodes where each link exists with probability p. We always suppose
that traceroute gives shortest paths, but consider both the case where
it gives one shortest path and the case where it gives all of them. Finally,
we consider a varying number of sources and destinations from one to
a few sources and many to all destinations, which reflects the values
used in practice. We explained why all these choices are reasonable
considering our aim, but clearly many others would be relevant too.

All of the values plotted were averaged over 1000 instances. The
variance is in general negligible, as shown later in Figure 2. The shortest
path computations are done using breadthfirst search.

4. How much do we see?

We now consider a random network G in which each link exists with
probability p. We make explorations of G using various models. We
first consider only one source, chosen at random, and then consider the
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Figure 1. Ratio of the total number of nodes and links discovered during an
exploration, as a function of the number of destinations. These plots correspond
to a random network with n � 10, 000 and p � 0.005, which gives an average
degree in accordance with what is generally assumed for the Internet topology.

case with several sources. All the experiments are conducted with two
models of traceroute, the USP model (where we discover a unique
shortest path between each pair of source and destination), and the ASP
model (where we discover all the shortest paths for each pair). The plots
are averaged over 1000 runs.

4.1 Unique source

Let us denote by Gu(x) the view of G obtained from a given source if we
consider x random destinations, with the USP model for traceroute.
Let nu(x) be the number of nodes of this view, and mu(x) its number of
links. Similarly, we introduce Ga(x), na(x), and ma(x), which are the
results obtained with the ASP model for traceroute. The plots of
these functions given in Figure 1 show how much of the network we
obtain, both in terms of nodes and links, as a function of the number of
destinations.

At various points, these plots fit well with our intuition. First, when
we consider very few destinations, we obtain a very small part of the
network. Then, if the number of destinations grows, we see more and
more. Finally, we can see all of the nodes when we consider each of
them as a destination.

There are however a few remarkable facts. Both nu(x) and na(x)
grow rapidly and reach a critical point where they start a linear growth,
but the initial growth of na(x) is much more rapid than that of nu(x).
On the contrary, mu(x) and ma(x) grow linearly from the beginning, but
the maximal values they reach, mu(n) and ma(n), remain surprisingly
low. This means that the exploration misses many links, even if we
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consider all possible destinations, which indicates that the obtained
view is very incomplete. This is even more surprising when we consider
the optimistic case where all of the shortest paths are discovered, and
all of the nodes are used as destinations.

These behaviors are similar for any values of n and p (the plots pre-
sented in Figure 1 always have the same shape). However, the maximal
value reached by mu(x) and ma(x), that is, the maximal proportion of
discovered links, varies with the probability p for the existence of any
link. To know how p influences these values, let us study the proportion
of links discovered using one source and all possible destinations, as
a function of p. They are plotted in Figure 2 for the two models of
traceroute considered.

The two plots have some properties in common which can be easily
explained. First notice that below a certain value of p, the network is
not connected (it is composed of many independent parts) [28]. There-
fore, below this threshold, any exploration using a small number of
sources will give a very small part of the whole. When the network
becomes connected, it is almost a tree, in which there is a unique path
from the source to each node. Therefore, the two exploration methods
we consider discover almost all of the links, which corresponds to the
maximal values reached by the plots in Figure 2. On the other hand,
when p is almost 1, then almost every possible link exists, and so almost
every node is at distance 1 from the source. Therefore, the obtained
view, with both the USP and ASP models, is almost a star. It therefore
contains almost n � 1 links, which when compared to the total number
of links, almost n � (n � 1)/2, is negligible.

The plot for the USP model is easy to understand. Indeed, the ex-
ploration using this model gives a tree (it has no cycle), and therefore it
contains exactly n � 1 links if p is above log(n)/n since in this case the
network is almost surely connected. The expected total number of links
being itself m � p � n � (n � 1)/2, the ratio between the number of links
discovered during the exploration and the total number of links is then
(n � 1)/m � 2/p � n. When p grows, this ratio decays as 1/p, which is
confirmed by the simulation.

On the contrary, the irregular shape of the plot for the ASP model
(which we name the camel plot) is very surprising: it has many peaks
and valleys of high amplitude, which have no obvious interpretation.
There is however a natural explanation of this shape, which comes from
specific properties of the exploration.

4.2 The camel plot

Let us first characterize the links missed during the exploration. If
a link is on a shortest path from the source to any other node then
it is discovered, since all shortest paths to all nodes are discovered.
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Figure 2. Proportion of discovered links (one source, all destinations) as a func-
tion of p for random graphs with n � 1000. (a): ASP; (b): USP. The plots are
the average over 1000 instances, and the variance is displayed (it is negligible
everywhere except at the connectivity threshold). The plot obtained in the ASP

case has a surprising shape, leading to the name camel plot.

Conversely, if a link is discovered during the exploration, it has to be on
a shortest path. Therefore, we miss the links that are not on a shortest
path from the source to any other node. These links are exactly the ones
between nodes at equal distance from the source. In other words, the
function plotted in Figure 2 is nothing but m minus the number of links
between nodes equidistant from the source, over m.

Now let us consider the number of such links. To do this, we consider
the distribution of the distances from the source. As shown in Figure 3,
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Figure 3. Distance distribution from the source for random networks (n � 1000
nodes) with various links densities p. The distribution is centered around the
mean distance, which decays smoothly as p grows.

this distribution is centered around its mean value, which decays when
p grows. This is not surprising, and notice that it has the same global
shape independently of p. So, how can it help in understanding the camel
plot? The point is that we have to consider the discrete distribution of
the distances from the source, also displayed in Figure 3. Since distances
are integers, these discrete distributions are the actual distributions.
But when we consider a discrete distance distribution, two cases may
occur: the mean distance (or the distance for which the continuous
distribution is maximal) can be close to an integer or it can be well-
centered between two integers. In the first case, almost all of the nodes
will be at this distance from the source, while in the second case almost
half of them will be at some distance from the source and the other half
at this distance plus one. These two cases are illustrated in Figure 3
(near-integer with p � 0.0158 and p � 0.069, and well-centered for
p � 0.0263). Recall that we miss the links between nodes at the same
distance from the source. Therefore, when most nodes are at the same
distance from the source, we miss many links, much more than in the
other case. Since the average distance decays when p grows, there is
an alternate series of such phases, which correspond to the peaks and
valleys of the camel plot.1

1We checked this by computing the distance distributions of graphs and then the
number of links between two nodes at the same distance from the source. The obtained
results exactly fit the camel plot.
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Figure 4. Variation of the amount of discovered links as a function of the number
of sources, in two cases: if all the nodes are destinations, and if only a quarter
of them are. This plot corresponds to n � 2000 and p � 0.005, which leads to
the conclusion that 50 � 2.5% of the nodes should be used as sources. This is
much more than usually done for the Internet.

These first results clearly show that even very simple properties like
the ratio of discovered links cannot be easily derived from a partial view
of the network. Indeed, the efficiency of the exploration method varies a
lot with network properties like density of links, and, more surprisingly,
small variations in these properties may have a strong impact on the
exploration significance.

4.3 Several sources

Until now, we have restricted ourselves to explorations using only one
source. However, in practical cases, one generally uses a few sources.
We investigate here how this may influence the quality of the view
obtained. Again, we only concentrate on the ratio of the total number
of discovered links, which previous remarks have shown to be essential.

Figure 4 shows the evolution of this ratio when the number of sources
increases. We first consider the two uppermost plots, which correspond
to the cases where we use all of the possible destinations. As expected,
the quality of the view grows rapidly with the number of sources, and
one may even be surprised by the rapidity of this growth. Despite the
roughness of our model for Internet exploration, one may consider this
plot as good news since it indicates that many sources are not needed to
obtain accurate views of the network. This is important since it is very
difficult (and never done) to use many sources in practice.

However, the assumption that all the nodes of the network serve as
destinations is very rough. It is difficult to give an estimation of the
number of nodes which actually contribute as destinations, but we can,
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for instance, suppose that only a quarter of them do, which is already
huge. We then obtain the two lower plots in Figure 4. Whereas the upper
plots made us relatively optimistic, these show that a large number of
sources are necessary to obtain an accurate view of the whole.

All these experiments cannot lead to conclusions concerning the ex-
ploration of the Internet itself. They do show however, that a very
reasonable hypothesis (in the limited state of our current knowledge)
for the exploration process leads to qualitatively different results. This
is important evidence for taking the exploration process into account.

5. Conclusion

In this paper, we considered the simplest possible question concerning
the quality of a network view obtained by exploring a real network: the
total number of nodes and links obtained. Making natural variations on
the way we model the Internet exploration, we show that this amount
varies a lot and is difficult to estimate.

Other properties, like the degree distribution or the clustering, are
also biased by the exploration process. Moreover, as discussed, many
models are possible for the exploration process, and we presented only
a few simple ones here. However, the results we have presented are
representative of what happens in all other cases and are sufficient for
our purpose. This, added to their simplicity, is why we chose them to
illustrate our arguments.

Let us insist once more on the fact that the results presented here
do not provide any information on the Internet topology itself. They
do not even give any information on how much, and how, the known
results of the Internet topology are biased by the partial exploration
process. Instead, they give evidence for the fact that this bias exists and
may be very important. This fact is very general and can be shown
in a similar fashion for the World Wide Web graph, various social or
biological networks, and other complex networks.

We therefore argue that there is a need for the development of a
new area of scientific activity, focused on complex network metrology.
Results in this area are highly needed and would make it possible to
give rigorous results on a variety of complex networks that cannot
be studied directly. We suspect that this is actually the case for most
complex networks.
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