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We investigate dynamics of the cellular automaton Rule 142. This rule
possesses additive invariant of the second order, namely it conserves the
number of blocks “10”. Rule 142 can be alternatively described as an
operation on a binary string in which we simultaneously flip all symbols
which have dissenting right neighbors. We show that the probability
of having a dissenting neighbor can be computed exactly using the fact
that the surjective Rule 60 transforms Rule 142 into Rule 226. We also
demonstrate that the conservation of the number of 10 blocks implies that
these blocks move with speed �1 or stay in the same place, depending on
the state of the preceding site. At the density of blocks 10 equal to
0.25, Rule 142 exhibits a phenomenon similar to the jamming transitions
occurring in discrete models of traffic flow.

1. Introduction

Let s be a binary string of L symbols, that is, s � s0s1 . . . sL�1, where
si � �0, 1� for 0 � i � L, L � �. We will say that the symbol si has a
dissenting right neighbor if si�1 � si � si	1. By flipping a given symbol
si we will mean replacing it by 1 � si.

Consider now the following problem. Suppose that we simultane-
ously flip all symbols which have dissenting right neighbors as follows:

� 0 0 1 0 0 1 1 1 0 1 0 1 �





�






�






�

� 0 1 1 0 1 1 1 0 0 1 0 1 �

(1)

Assuming that the initial string is randomly generated, what is the proba-
bility that a given symbol has a dissenting right neighbor after t iterations
of the procedure?

In order to answer this question, we will take advantage of the fact
that the process described in the previous paragraph is actually cellular
automaton Rule 142. It has a property which turns out to be crucial
to the solution. If one counts the number of pairs “10” in equation (1)
before and after the bit-flipping operation, it is easy to see that this
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number remains constant. We show that this is true for an arbitrary
string, and take advantage of this fact to compute the probability of
having a dissenting neighbor.

2. Definitions

Before proceeding, we will introduce several concepts of cellular au-
tomata theory. Let � � �0, 1� be called a symbol set, and � � �0, 1��

be called the configuration space. A block of radius r is an ordered set
b�rb�r	1 . . . br where r � � and bi � �. Let r � � and let �r denote
the set of all blocks of radius r over �. The number of elements of �r
(denoted by card�r) equals 22r	1.

A mapping f � �0, 1�2r	1 � �0, 1� will be called a cellular automa-
ton rule of radius r. Alternatively, the function f can be considered a
mapping of �r into �0 � � � �0, 1�.

Corresponding to f (also called a local mapping), we define a global
mapping F � S 
 S such that (F(s))i � f (si�r, . . . , si, . . . , si	r) for any s � S.
The composition of two rules f , g � � can now be defined in terms of
their corresponding global mappings F and G as (F � G)(s) � F(G(s)),
where s � S. We note that if f � �p and g � �q, then f � g � �p	q.
For example, the composition of two radius-1 mappings is a radius-2
mapping:

(f � g)(s�2, s�1, s0, s1, s2) �

f (g(s�2, s�1, s0), g(s�1, s0, s1), g(s0, s1, s2)). (2)

Multiple composition will be denoted by

f n � f � f �� � f
�����������������������

n times

. (3)

A block evolution operator corresponding to f is a mapping f �
� � � defined as follows. Let r � p > 0, a � �r, f � �p, and let
bi � f (ai�p, ai�p	1, . . . , ai	p) for �r 	 p � i � r � p. Then we define
f (a) � b, where b � �r�p. Note that if b � B1 then f (b) � f (b).

In this paper, we are concerned with trajectories of a given configura-
tion under consecutive iterations of F. Denoting the initial configuration
by s(0), the image of s(0) after t iterations of F will be denoted by s(t),
that is,

s(t) � Ft(s(0)), (4)

which implies that

s(t 	 1) � F(s(t)), (5)

and hence

si(t 	 1) � f (si�r(t), si�r	1(t), . . . , si	r(t)). (6)
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Cellular automaton Rule 142, which is the subject of this paper, has
the following local function

f (0, 0, 0) � 0, f (0, 0, 1) � 1, f (0, 1, 0) � 1, f (0, 1, 1) � 1,

f (1, 0, 0) � 0, f (1, 0, 1) � 0, f (1, 1, 0) � 0, f (1, 1, 1) � 1, (7)

which can also be written in an algebraic form

f (x0, x1, x2) � x1 	 (1 � x0)(1 � x1)x2 � x0x1(1 � x2). (8)

3. Conservation

As shown in [1], Rule 142 is one of the few nontrivial elementary
rules which posses the second order additive invariant. It conserves the
number of blocks 10, and this fact can be formally described as follows.
Let us first define a function Ξ(x0, x1) � x0(1 � x1), which takes value 1
on block 10 and value 0 on all other blocks of length 2. We will call Ξ
the density of blocks 10. We will say that Ξ is a density function of an
additive invariant of f if

L�1

�
i�0

Ξ(f (si, si	1, si	2), f (si	1, si	2, si	3)) �
L�1

�
i�0

Ξ(si, si	1) (9)

for every positive integer L and for all s0, s1, . . . , sL�1 � �0, 1�. In equa-
tion (9), and in all subsequent considerations, we assume that addition
of all spatial indices is performed modulo L. That is, we will be con-
cerned with periodic configurations, or, in other words, configurations
with periodic boundary conditions where s(i	L) � s(i) for all integers i.

The right-hand side of equation (9) simply denotes the number of
blocks 10 in the configuration s � (s0, s1, . . . , sL�1), and the left-hand
side denotes the number of these blocks in the image of s under f .
Figure 1 shows an example of a configuration s consisting of 11 sites,
and its two consecutive images under Rule 142, that is, F142(s) and
F2

142(s), where F142 denotes the global function of Rule 142. Periodic
boundary conditions are assumed. The initial configuration s contains
three blocks 10 labeled a, b, and c, and one can clearly see that the
number of blocks 10 remains constant after each application of F142.
Moreover, since the number of blocks 10 remains constant, we can label
them with distinctive labels, allowing us to keep track of individual
blocks. For example, looking again at Figure 1, we could say that block
a remains in the same position after the first iteration, but moves to the
left by one site in the second iteration. Similarly, block b moves by one
site to the left in both iterations shown in Figure 1.

To formalize the concept of the motion of blocks, we will first prove
that Rule 142 conserves the number of blocks 10 in an arbitrary periodic
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0 0 1 0 0 1 1 0 1 0 0

0 1 1 0 1 1 0 0 1 0 0

0 1 0 0 1 0 0 1 1 0 0

a b c

a b c

a b c

F142

F142

Figure 1. Two consecutive images of a sample configuration under Rule 142,
assuming periodic boundary conditions. Blocks 10 are labeled with letters a, b,
and c.

configuration. Let us note that

Ξ(f (si, si	1, si	2), f (si	1, si	2, si	3)) �

f (si, si	1, si	2)(1 � f (si	1, si	2, si	3)). (10)

Using equation (8), the right-hand side of equation (10) becomes some-
what complicated, but it drastically simplifies if one notes that all vari-
ables si in this equation are boolean, and xn � x for all positive n if
x � �0, 1�. After this simplification, one obtains

Ξ(f (si, si	1, si	2), f (si	1, si	2, si	3)) �

� sisi	1 	 si	1 	 sisi	1si	2 � si	1si	2si	3. (11)

We now regroup terms on the right-hand side

Ξ(f (si, si	1, si	2), f (si	1, si	2, si	3)) �

si	1(1 � si	2) 	 si	1si	2(1 � si	3) � sisi	1(1 � si	2), (12)

and finally write the last equation as

Ξ(f (si, si	1, si	2), f (si	1, si	2, si	3)) �

Ξ(si	1, si	2) � J(si	1, si	2, si	3) 	 J(si, si	1, si	2), (13)

where

J(x0, x1, x2) � x0x1(x2 � 1). (14)

Complex Systems, 16 (2005) 123–138
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This leads to
L�1

�
i�0

Ξ(f (si, si	1, si	2), f (si	1, si	2, si	3)) �

L�1

�
i�0

Ξ(si	1, si	2) �
L�1

�
i�0

J(si	1, si	2, si	3) 	
L�1

�
i�0

J(si, si	1, si	2), (15)

and, since �L�1
i�0 J(si	1, si	2, si	3) � �L�1

i�0 J(si, si	1, si	2), the conservation
condition of equation (9) follows.

Equation (13) resembles the continuity equation, with J playing
a role of current, or flow of blocks 10. To see this, let us note
that J(si(t), si	1(t), si	2(t)) takes a nonzero value only when si(t),si	1(t),
si	2(t) � 1, 1, 0. Consider now a configuration containing block 110,
surrounded by sites of undetermined state. Using equation (7) to define
the local function for Rule 142, we can construct a partial state of the
configuration at the next time step. Denoting by � an arbitrary value
in the set �0, 1�, we have f (�, 1, 1) � 1, f (1, 1, 0) � 0, and f (1, 0, �) � 0,
hence

s(t) � . . . 110 . . .

s(t 	 1) � . . . 100 . . . (16)

We can clearly see that the block 10, when preceded by 1, moves by one
site to the left in a single iteration. Similar arguments could be used to
demonstrate that the block 10 preceded by 0 does not move:

s(t) � . . . 010 . . .

s(t 	 1) � . . . ?10 . . . (17)

where “?” denotes an undetermined value. We can see that indeed
only blocks 110 can contribute to the current, in agreement with equa-
tion (14).

4. Initial distribution

Let us now go back to the problem stated in the introduction. In
order to make the problem well posed, we need to define the probability
distribution Μ from which the initial string is drawn. Since we know that
Rule 142 conserves the number of blocks 10, it is natural to consider
an initial distribution parameterized by the density of blocks 10. Let us
define the expected value of Ξ at site i as

Ρ(i, t) � EΜ �Ξ(si(t), si	1(t))� � EΜ �si(t)(1 � si	1(t))� . (18)

Assuming that the initial distribution Μ is translation-invariant, Ρ(i, t)
will not depend on i, and we will therefore define Ρ(t) � Ρ(i, t). Fur-
thermore, since Ξ is the density function of a conserved quantity, Ρ(t) is
t-independent, so we define Ρ � Ρ(t).

Complex Systems, 16 (2005) 123–138

https://doi.org/10.25088/ComplexSystems.16.2.123



128 H. Fukś

The desired distribution parameterized by Ρ can be obtained as fol-
lows. Let Ρ � [0, 1/2] be the target density of blocks 10, and let �Xi�

L�1
i�0

be a collection of independently and identically distributed Bernoulli
random variables such that

Pr(Xi � 1) � 2Ρ, (19)

Pr(Xi � 0) � 1 � 2Ρ, (20)

for all i � �0, 1�. The initial configuration will be given by

si(0) �
�������
�

i

�
j�0

Xj

�������
�

mod 2. (21)

Let Pt(b) denote the probability for the occurrence of block b in
configuration s(t). If the density of blocks 10 in the initial configuration
is Ρ, then the probability of having a dissenting neighbor at time t will
be denoted by Pdis(Ρ, t). A site si has a dissenting right neighbor if
si�1sisi	1 � 110 or si�1sisi	1 � 001. Pdis(Ρ, t) is therefore given by

Pdis(Ρ, t) � Pt(110) 	 Pt(001). (22)

Although two block probabilities appear on the right-hand side of equa-
tion (22), we will show that Pdis(Ρ, t) can be expressed in terms of a single
block probability.

As a first step, we note that the following properties are direct con-
sequences of equation (21).

Proposition 1. Let Po(b) denote the probability for the occurrence of
block b in the configuration drawn from the distribution given by equa-
tion (21). Then we have:

(i) P0(1) � P0(1) � 1/2.

(ii) P0(10) � P(01) � Ρ.

(iii) P0(b) � P0(b̄), where b̄ denotes boolean conjugation of block b, that is,
b̄i � 1 � bi.

Rule 142 exhibits boolean self-conjugacy, that is, replacing all zeros
by ones and vice versa in equation (7) does not change the definition.
This fact together with Proposition 1(iii) implies that Pt(110) � Pt(001),
hence

Pdis(Ρ, t) � 2Pt(110). (23)

Kolgomorov consistency conditions for block probabilities require that

Pt(110) 	 Pt(111) � Pt(11),

Pt(10) 	 Pt(11) � Pt(1),
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hence

Pt(110) � Pt(1) � Pt(10) � Pt(111). (24)

Using the fact that Pt(10) � Ρ, we obtain

Pdis(Ρ, t) � 2Pt(1) � 2Ρ � 2Pt(111). (25)

Proposition 2 will lead to the elimination of Pt(1) from equation (25).

Proposition 2. Let the initial configuration s(0) be drawn from the dis-
tribution given by equation (21), and let s(t) be obtained from s(0) by
iterating Rule 142 t times, so that s(t) � Ft

142(s(0)). Then we have

Pt(1) � Pt(0) � 1/2. (26)

Proof. We will prove by induction. Obviously, P0(1) � P0(0) � 1/2 by
Proposition 1. Let us assume that Pt(1) � 1/2 for some t. Block 1 has
four preimages under f142: 001, 010, 011, and 111. This leads to

Pt	1(1) � Pt(001) 	 Pt(010) 	 Pt(011) 	 Pt(111). (27)

Kolgomorov consistency conditions require that Pt(011) 	 Pt(111) �
Pt(11), and, as remarked before, boolean self-conjugacy of Rule 142
implies Pt(001) � Pt(110). This yields

Pt	1(1) � Pt(110) 	 Pt(010) 	 Pt(11). (28)

Using consistency conditions again we get

Pt	1(1) � Pt(10) 	 Pt(11) � Pt(1), (29)

and this, by the induction hypothesis, yields Pt	1(1) � 1/2, concluding
the proof. �

Proposition 2 simplifies equation (25) to

Pdis(Ρ, t) � 1 � 2Ρ � 2Pt(111). (30)

Now the only thing left is to compute the probability for the occurrence
of block 111 in configuration s(t).

5. Preimages

In order to compute Pt(111), we will use some properties of preimages
of the block 111. Let f�1

142(111) be a set of preimages of 111 under f142.
Then we have

Pt(111) � �
b� f�1

142(111)

Pt�1(b), (31)
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generalizing, we can write

Pt(111) � �
b� f

�t
142(111)

P0(b), (32)

where again f�t
142(111) is a set of preimages of 111 under f t

142, that is,
under t iterations of f142. To find Pt(111) using this property, two steps
are needed: first, we have to find the set of preimages of 111, and then
find probabilities of their occurrences in the initial distribution. Figure 2
shows three levels of preimages of 111. Upon inspection of this figure,
two properties become apparent.

Proposition 3. Let b be a t-step preimage of 111, that is, b � f�t
142(111).

Then we have that

(i) the length of b is 3 	 2t, and

(ii) b ends with 111.

The first property is an obvious consequence of the definition of f t
142,

and the second one can be easily proved by induction (omitted here).
Further inspection of Figure 2 leads to the necessary and sufficient

condition for a block b to be a t-step preimage of 111. Before stating
this condition formally, we will explain it using an example. Con-
sider the block b � 011100111, which is a preimage of 111 in three
steps since f142(011100111) � 1100111, f142(1100111) � 00111, and
f142(00111) � 111. Let us now assume that we start with “capital” of
1. We move along the string b � b0b1 . . . b8 starting from i � 6 in the
direction of decreasing i. Every time we see that bi�1 is different from
bi, we decrease our capital by 1. If bi�1 � bi, we increase our capital
by 1. We stop at i � 1.

Clearly, it is possible to traverse b � 011100111 following this pro-
cedure without making the capital negative. It turns out that this is a
general property of preimages of 111. If b is a preimage of 111, then
it is possible to traverse it keeping the capital nonnegative. If b is not
a preimage of 111, the capital will become negative at some point. A
more formal statement of this property follows.

Proposition 4. Let t be a nonnegative integer, and let b � b0b1 . . . b2t	2
be a binary string of length 3 	 2t ending with 111. Define Χ to be a
function of two variables such that Χ(u, v) � 1 if u � v, and Χ(u, v) � �1
otherwise. The string b is a preimage of 111 under f t

142 if and only if
the inequality

1 	
k

�
i�0

Χ(b2t�i�1, b2t�i) � 0 (33)

is satisfied for all k � 0, 1, . . . , 2t � 1.
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111

00111

0000111

000000111

100000111

110000111

1000111

010000111

011000111

111000111

1100111

001000111

001100111

001101111

011100111

011101111

111100111

111101111

1101111

001001111

001011111

01111

0001111

000001111

100001111

110001111

1001111

010001111

011001111

011011111

111001111

111011111

1011111

010011111

010111111

11111

0011111

000011111

100011111

110011111

110111111

0111111

000111111

100111111

101111111

1111111

001111111

011111111

111111111

Figure 2. Tree of preimages of the block 111 under Rule 142.
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Instead of proving this proposition directly, we will show that it can
be derived from a similar result previously obtained for a related cellular
automaton rule.

6. Rule 226

In [2] it has been observed that

f60 � f142 � f226 � f60, (34)

where

f60(x0, x1, x2) � x0 	 x1 mod 2 (35)

f226(x0, x1, x2) � x0x1 � x1x2 	 x2. (36)

This means that there exists a local mapping (Rule 60) which transforms
Rule 142 into Rule 226. Rule 226 and its image under spatial reflection,
Rule 184, are the only nontrivial elementary number-conserving rules,
and many results regarding their dynamics have been established [3–10].
For our purpose, one such result will be particularly useful.

Proposition 5. Under Rule 226, t-step preimages of 00 have the follow-
ing properties.

(i) In each preimage, the number of zeros exceeds the number of ones.

(ii) The block a0a1 . . . a2t	1 is a t-step preimage of 00 if and only if it ends
with two zeros and

1 	
k

�
i�2

Ξ(s2t	1�i) � 0 (37)

for every 2 � k � 2t 	 1, where Ξ(0) � 1, Ξ(1) � �1.

(iii) The number of t-step preimages of 00 containing exactly n0 zeros and n1
ones is equal to

n0 � n1

n0 	 n1
�n0 	 n1

n1
�, (38)

where n0 	 n1 � 2t 	 2.

Proof of this result can be found in [11], with further generalization
in [8]. The proof is based on the fact that the enumeration of preim-
ages of 00 under Rule 226 (or 184) is equivalent to the problem of
enumerating planar lattice paths between two points, subject to some
constraining conditions. This path enumeration problem can then be
solved using combinatorial methods.

We now relate preimages of Rules 226 and 142.
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Proposition 6. The number of t-step preimages of 111 under Rule 142
is equal to the number of t-step preimages of 00 under Rule 226.

Proof. We will explicitly construct a bijection T between f�t
142(111) and

f�t
226(00). Let x be a block of length m, b0b1, . . . , bm�1. We define

[T(x)]i � xi 	 xi	1 mod 2 (39)

for i � 0, 1, . . . , m � 2. T(x) is therefore a block of length m � 1. Since
T is a block evolution operator of Rule 60, a relationship similar to
equation (34) must hold, that is,

T � f142 � f226 � T. (40)

Let us now assume that b is a t-step preimage of 111 under f142. This
means that f t

142(b) � 111. Since T(111) � 00, we have T(f t
142(b)) � 00.

Using equation (40) we obtain f t
226(T(b)) � 00. This means that if b is a

t-step preimage of 111 under f142, then T(b) is a t-step preimage of 00
under Rule 226.

Now let us consider a transformation inverse to T. In general, T is
not invertible, but if restricted to the set of preimages of 111 under f142,
it becomes invertible.

For an arbitrary block y, there exist two different blocks x such that
T(x) � y, and one can show that these two blocks are related by boolean
conjugacy. For example, we have T(111) � 00 and T(000) � 00. We
have to define T�1 such that this ambiguity is removed. This can be
done as follows. Let a be a t-step preimage of 00 under Rule 226,
a � a0a1 . . . a2t	1. We define

[T�1(a)]2t	2 � 1

[T�1(a)]2t	1 � 1 	 a2t	1 mod 2

[T�1(a)]2t � 1 	 a2t 	 a2t	1 mod 2

�

[T�1(a)]0 � 1 	 a0 	 a1 	� 	 a2t	1 mod 2,

or in a general form

[T�1(a)]i �

������������
�

1 	
2t	1

�
j�i

aj mod 2 if i � 0, 1, . . . , 2t 	 1,

1 if i � 2t 	 2.

(41)

One can easily show that the transformation of equation (41) is indeed
an inverse of T, and in addition we guarantee that when a ends with
two zeros, T�1(a) ends with three ones, as required for a t-step preimage
of 111 under Rule 142.

Now, if a is a t-step preimage of 00 under Rule 226, we have
f t
226(a) � 00, hence f t

226(T(T�1(a))) � 00, and by equation (40) we obtain
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T(f t
142(T�1(a))) � 00. The last equation implies that f t

142(T�1(a)) � 111,
which means that T�1(a) is a t-step preimage of 111 under Rule 142, as
required. �

Proposition 4 follows from the above result and Proposition 5(ii).

7. Probability for the occurrence of 111

The bijective transformation T constructed in the proof of Proposition 6
has a property which will be useful in computing Pt(111). Let us call
the block x � x0x1 a matching pair if x0 � x1, and a mismatched pair
if x0 � x1. If a � T(b), then the number of matching pairs in b is
equal to the number of zeros in a, while the number of mismatched
pairs in b is equal to the number of ones in a. This fact, together with
Proposition 5 immediately leads to the conclusion that under Rule 142,
the number of t-step preimages of 111 with exactly n0 matching pairs
and n1 mismatched pairs is equal to

n0 � n1

n0 	 n1
�n0 	 n1

n1
�, (42)

where n0	n1 � 2t	2. The probability for the occurrence of a matching
pair in the initial configuration drawn from the initial distribution is
2Ρ, and the mismatched pair is 1 � 2Ρ. Therefore, the probability for
the occurrence of a block with a prescribed sequence of matching and
mismatched pairs such that it has exactly n0 matching pairs and n1
mismatched pairs is equal to (2Ρ)n1 (1 � 2Ρ)n0 . This implies that the
probability that a block of length 2t 	 3, randomly selected from the
distribution of equation (21), is a t-step preimage of 111 with exactly
n0 matching pairs is equal to

�1
2
� n0 � n1

n0 	 n1
�n0 	 n1

n1
�(2Ρ)n1 (1 � 2Ρ)n0 �

n0 � n1

4t 	 4
�2t 	 2

n1
�(2Ρ)n1 (1 � 2Ρ)n0 . (43)

The factor 1/2 in front comes from the fact that there are always two
strings with a given sequence of pairs (related by boolean conjugacy),
but only one of them is a preimage of 111.

The smallest possible number of matching pairs in a t-step preimage
of 111 is t	2 (recall that the number of matching pairs must exceed the
number of mismatched pairs), while the maximum possible number is
2t 	 2 (all zeros). Summing equation (43) over n0 we obtain

Pt(111) �
2t	2

�
n0�t	2

n0 � (2t 	 2 � n0)
4t 	 4

� 2t 	 2
2t 	 2 � n0

�(2Ρ)2t	2�n0 (1 � 2Ρ)n0 . (44)
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Introducing a new summation index j � n0 � (t 	 1) we get

Pt(111) �
t	1

�
j�1

j
2t 	 2

� 2t 	 2
t 	 1 � j

�(2Ρ)t	1�j(1 � 2Ρ)t	1	j, (45)

and as a result, equation (30) becomes

Pdis(Ρ, t) � 1 � 2Ρ �
t	1

�
j�1

j
t 	 1
� 2t 	 2
t 	 1 � j

�(2Ρ)t	1�j(1 � 2Ρ)t	1	j, (46)

where Ρ � [0, 1/2].

8. Equilibrium probability

We will now show how to obtain the equilibrium probability, that is,
limt
� Pdis(Ρ, t). In order to find the limit limt
� Pt(111) we can write
equation (45) in the form

Pt(111) �
t	1

�
j�1

j
2t 	 2

b(t 	 1 � j, 2(t 	 1), 2Ρ), (47)

where

b(k, n, p) � �n
k
�pk(1 � p)n�k (48)

is the binomial distribution function. Using the de Moivre–Laplace limit
theorem, binomial distribution for large n can be approximated by the
normal distribution

b(k, n, p) �
1�

2Πnp(1 � p)
exp
�(k � np)2

2np(1 � p)
. (49)

To simplify notation, let us define T � t 	 1. Now, using equation (49)
to approximate b(T� j, 2T, 2Ρ) in equation (47), and approximating the
sum by an integral, we obtain

Pt(111) � �
T

1

x
2T

1�
8ΠTΡ(1 � 2Ρ)

exp
�(T � x � 4TΡ)2

8TΡ(1 � 2Ρ)
dx. (50)

Integration yields

Pt(111) �	
Ρ(1 � 2Ρ)

2ΠT

exp ��(1 � T 	 4ΡT)2

8TΡ(1 � 2Ρ)
� � exp � �2ΡT

2(1 � 2Ρ)
��

	
1
4

(1 � 4Ρ)
erf � 4ΡT�
8Ρ(1 � 2Ρ)T

� � erf � 1 � T 	 4ΡT�
8Ρ(1 � 2Ρ)T

�� ,

Complex Systems, 16 (2005) 123–138

https://doi.org/10.25088/ComplexSystems.16.2.123



136 H. Fukś

where erf(x) denotes the error function

erf(x) �
2�
Π �

x

0
e�t2

dt. (51)

The first term (involving two exponentials) in equation (51) tends to 0
with T 
 �. Moreover, since limx
� erf(x) � 1, we obtain

lim
t
�

Pt(111) �
1
4

(1 � 4Ρ)
1 � lim
T
�

erf � 1 � T 	 4ΡT�
8Ρ(1 � 2Ρ)T

�� .

Now, noting that

lim
T
�

erf � 1 � T 	 4ΡT�
8Ρ(1 � 2Ρ)T

� � 
 1 if 4Ρ � 1,
�1 otherwise,

(52)

we obtain

lim
t
�

Pt(111) � 
 1/2 � 2Ρ if Ρ < 1/4,
0 otherwise.

(53)

The final expression for the equilibrium probability becomes

lim
t
�

Pdis(Ρ, t) � 
 2Ρ if Ρ < 1/4,
1 � 2Ρ otherwise.

(54)

9. Current

The equilibrium probability calculated in section 8 exhibits a singularity
at Ρ � 1/4. This singularity is of a similar nature as the jamming
transition observed in cellular automaton Rules 184, 226, and related
models.

Recall that in section 3 we defined the current J (equation (14)). The
expected value of the current is i-independent, so we can define the
expected current as

j(Ρ, t) � EΜ�J(si(t), si	1(t), si	2(t))�
� EΜ �si(t)si	1(t)(si	2(t) � 1)� . (55)

The graph of j(Ρ,�) as a function of Ρ is known as a fundamental
diagram. Using the notion of block probabilities we can rewrite equa-
tion (55) in an alternative form as

j(Ρ, t) � �Pt(110), (56)

and using equation (23)

j(Ρ, t) � �
1
2

Pdis(Ρ, t). (57)
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The probability of having a dissenting neighbor, as we can see, is pro-
portional to the expected current.

Since the current J represents the flow of blocks 10, the expected
current must be equal to

j(Ρ, t) � Ρv(Ρ, t), (58)

where v(Ρ, t) is the expected velocity of a block 10 at time t. Using
equation (54) this velocity is given by

lim
t
�

v(Ρ, t) � 
 �1 if Ρ < 1/4,
1 � (1/2Ρ) otherwise.

(59)

We can see that for densities of blocks 10 smaller than 1/4, the average
velocity remains constant and equal to �1, which means that all blocks
are moving to the left. At Ρ � 1/4 a jamming transition occurs, and
when Ρ increases beyond 1/4, more and more blocks are stopped. This
phenomenon is very similar to jamming transitions in discrete models
of traffic flow, which have been extensively studied in recent years (see
[12] and references therein).

10. Conclusions

We investigated dynamics of the cellular automaton Rule 142. It can be
transformed into Rule 226 by a surjective transformation, which turns
out to be invertible if restricted to preimages of 111. This transformation
allows computing the probability of having a dissenting neighbor, which,
in turn, allows computing the expected current of blocks 10. Rule 142
exhibits a jamming transition similar to transitions occurring in discrete
models of traffic flow.

It is worth mentioning that there are other cellular automaton rules
conserving the number of blocks 10 which also exhibit singularities of
fundamental diagrams; for example, Rules 35 and 14, as reported in
[1]. For these rules, however, no transformations exist relating them to
other rules with singularities, thus the method presented in this paper
cannot be easily applied. Nevertheless, the nature of singularities in
these rules appears to be the same, thus some relationship between
them and Rules 184/226 may exist. This problem is currently under
investigation and will be reported elsewhere.
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