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The use of subsurface temperature data to estimate an unknown tran-
sient surface-heating event is a classic, and practical, inverse problem in
engineering. This paper describes a new inverse heat-transfer estimation
procedure that is formulated using a cellular automaton model of energy
transport into the medium. The quantitative heat-flux estimates generated
by this new scheme appear to have accuracies comparable to conventional
inverse procedures; consequently, this new method may prove a useful al-
ternative and/or confirmational strategy in measurement situations where
the data is noise-ridden or the heating event is sporadic.

1. Introduction

1.1 The model problem

To estimate an object’s heat-flux absorption engineers utilize subsurface
medium-embedded sensors such as thermocouples to measure the corre-
sponding transient temperatures. The schematic of the model problem
shown in Figure 1 employs notation that is commonly used in heat
transfer texts (e.g., [1]).

In the model problem, the transient heat-flux event q��(t) [W/m2] is
indirectly detected with temperature data Ti taken within the medium,
a distance r from the surface, at regular sampling intervals �t. The
experiment is generally designed with a substrate medium of sufficient
thermal capacity and thickness L that the “back” side of the object,
at x � L, remains effectively at the substrate initial temperature T0
throughout the transient event. In this application the substrate medium
serves as a so-called “heat sink” that absorbs heat in a unidirectional
fashion, and thus the one-dimensional idealization depicted in Figure 1
is a satisfactory approximation to the physical process.

1.2 The corresponding direct and inverse mathematical problems

The mathematical problem statement which governs the model prob-
lem of Figure 1 is the one-dimensional unsteady thermal diffusion equa-
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140 V. J. Peridier

Figure 1. Schematic of the one-dimensional model problem. The unknown
surface heating q��(t) has dimensions [W/m2]. The thermocouple that records
temperature data Ti is located a distance r from the heated front surface. The
medium has a characteristic thickness L > r, and material properties thermal
conductivity k [W/m�C] and thermal diffusivity Α [m2/s]. The entire substrate
medium is initially at temperature T0, and the back (unheated) surface of the
substrate effectively remains at temperature T0 throughout the transient.

tion [1]:

Α
�2T

�x2 �
�T
�t

, 0 � t, 0 � x � L�

T����t�0 � T����x�L � T0�

q��(t) � �k
�T
�x

��������x�0
. (1)

If the heat flux q��(t) were known, these equations constitute the direct
problem for T(x, t) and the solution is unique.

However, in this application all that is known is Ti, the temperature
data at a single location x � r, and the objective is to deduce q��(ti).
Deducing an initiating configuration (here, q��(ti)) from an observed re-
sult (here, Ti) is called an “inverse problem” and often the solution
is not unique.1 Inverse problems are common in engineering, and al-
though they have nonunique solutions, analysis can nevertheless yield
relevant engineering-design information. For example, in this model
problem, knowledge of the exact temporal shape of q��(t) is not really
necessary if the objective is to estimate limiting-behavior parameters

1Note for example, in the model problem of Figure 1, that various forms of surface
heating q��(t) would yield effectively the same temperature data at x � r.
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such as the peak heat-flux value q��max, or the approximate duration of
the transient.

On the other hand, the lack of unique solutions for inverse problems
does of course pose computational difficulties, and the conventional
tactic is to devise a problem-specific optimized-search strategy. For ex-
ample, say in the model problem that the temperature data Ti has N
points: the corresponding iterative optimization strategy would entail
searching for N total free parameters, say q��i , each representing the
average q�� in the “ith” time step. Such an iterative procedure would
involve doing a complete solution of equation (1) with a progressively-
optimized guess for q��i in each iteration. The ultimate objective, then,
would be an optimized set of q��i parameters that produces the best fit of
the calculated values T����x�r (ti) as compared to the measured temperature
time-series data Ti.

2 Thus, even for very basic arrangements such as Fig-
ure 1 the conventional strategy for obtaining inverse-problem parameter
estimates is hardly trivial.

1.3 Specific objectives of this study

This study was undertaken as a preliminary investigation of cellular
automaton modeling procedures within the larger context of inverse
problems in engineering. While engineering practice is riddled with
both measurement and design problems of the inverse type, the model
problem of Figure 1 is a particularly attractive candidate for preliminary
study because of the following.

It is one of the simplest inverse problems, yet it has features representative
of more complex situations.

Test data for evaluating the method can be readily generated from the
direct problem statement of equation (1).

Thus, here are the two specific objectives of this study.

1. To devise an inverse procedure for estimating heat flux, based on a cellular
automaton energy-transport model.

2. To determine whether, using a cellular automaton inverse method, it
is possible to obtain quantitative estimates of comparable accuracy to
conventional inverse schemes which, in turn, are based on the exact
solution of equation (1).

2The large number of free unconstrained parameters q��i , the requirement that equa-
tion (1) be solved at all spatial and temporal locations at each iteration, and the sensitivity
of this method to data error and noise, especially at small times, are difficulties encoun-
tered in practice. See Beck et al. [2] for specifics.
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2. Analysis

2.1 Time discretization notation

The sampling time step �t of the embedded temperature sensor effec-
tively discretizes the problem in time. Since q��(t) cannot be determined
to a finer time granularity than is present in the data Ti, we therefore
seek:

q��(ti), ti 	 �t(i � 1), 1 � i � N. (2)

2.2 Dimensionless variables

1. Heat flux.

Let:

q��(ti) � q��max 
 f (ti), (3)

here f (t) is taken without approximation to be a dimensionless scaled
quantity so that 0 � f (t) � 1.

Now, in view of the cellular automaton approach, the continuous
function f is approximated by a boolean vector {qi}, that is,

q��(ti) � q��max 
 �qi� � q��max 
 �qi, q2, . . . , qi, . . . , qN�, (4)

where the qi are dimensionless and have value either {0,1}.
In this study the “solution,” for a given input time-series Ti, entails

finding both: (i) the magnitude of the surface heat flux q��max, and (ii) its
approximate temporal distribution vector {qi}.

2. Space and temporal scales.

The temperature-sensor depth r of Figure 1 and the thermophysical
properties of the substrate provide the temporal and spatial scales, viz:

Ξ �
x
r

,

Τ � t
Α

r 2 . (5)

Here, Α is the thermal diffusivity3 [m2/s], and the characteristic length-
scale r is the distance of the thermocouple from the surface.

Note that in the dimensionless variables so defined the temperature
sensor is located at Ξ � 1.

3Thermal diffusivity is defined as Α � k/Ρc, where k [W/m�C] is the thermal conductiv-
ity, Ρ [kg/m3] is the mass density, and c [J/kg�C] is the material heat capacity.
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3. Temperature scale.

Let Θ be a scaled dimensionless temperature variable given by

Θ �
T � T0

Tscale
. (6)

Using the derivative boundary condition at x � 0 in the direct problem
statement of equation (1), and the fact that Ξ, Τ have been scaled O(1)
in equation (5), the characteristic temperature scale Tscale is seen to be

Tscale � q��max
r
k

. (7)

Because of the nature of the model problem (heating, not cooling) and
due to the form of equations (6) and (7), the quantity Θ is bounded by
0 � Θ < 1.

2.3 The test data

The exact solution of equation (1) was used in this study to generate
test data for the inverse heat-flux estimation procedure. By using the
scaled variables defined in section 2.2, the direct problem statement of
equation (1) in dimensionless form is:

�2Θ

�Ξ2
�
�Θ
�Τ

, 0 � Τ, 0 � Ξ �
L
r
�

Θ�Τ�0 � Θ�Ξ�L/r � 0�

f (Τ) � �q��(Τ)
q��max
� � � �Θ

�Ξ

��������Ξ�0
. (8)

An implicit second-order-accurate finite difference scheme (the Crank–
Nicholson method4) was used to integrate equation (8) forward in time,
and thus the test data for the inverse procedure was generated as follows.

1. A dimensionless “heat flux” function fi � f (Τi), is posed where

Τi � (i � 1)�Τ.

2. The dimensionless temperature field Θ(Ξ, Τi) for all values 0 � Ξ � L/r was
systematically integrated forward in time using equation (8), with fi the
derivative boundary condition at Ξ � 0 in time step i.

4The Crank–Nicholson method is a standard approach for the numerical solution of
one-dimensional diffusion-type PDEs. For representative algorithms, see Press et al. [3]
who describe an implementation in the c programming language. However, note that the
specific implementation differs here because Mathematica was used throughout in this
study.

Complex Systems, 16 (2005) 139–153

https://doi.org/10.25088/ComplexSystems.16.2.139



144 V. J. Peridier

3. The “temperature-sensor data,” devised as input for the cellular automa-
ton inverse procedure described below, was generated from the computed
Θ�Ξ�1 (Τi) values by:

Ti � (150�) Θ�Ξ�1 (Τi).

where 150� is an arbitrary temperature scale selected to illustrate the
procedure.

Having described the procedure for generating test “thermocouple
data” from the exact solution of equation (8), let us now consider an
entirely different, cellular automaton, model for thermal-energy trans-
port into the medium.

2.4 The cellular automaton energy transport model

A one-dimensional cellular automaton5 evolution is the core modeling
construct for this inverse heat-flux estimation scheme. In this model
each row of a conventional cellular automaton array represents a suc-
cessive time step, and each column represents a spatial position deeper
into the medium, with the leftmost column (the first cell of each row)
corresponding to the surface position at Ξ � 0. In this cellular automa-
ton model, the leftmost column of cells are prescribed to correspond to
a boolean heat flux at the surface; see Figure 2.

Energy transport (rather than, say, temperature) is modeled as a
cellular automaton evolution because energy has several unambiguous
modeling criteria.

We require that the model represent the timewise introduction of new
energy at the surface.

We require that the model conserves energy (i.e., the sum of black cells in
the first column is equal to the sum of black cells in the last row).

We require that the model emulate the heat-sink characteristic of the
medium.

Rule 226 with a right-shift6 was ultimately selected because it sat-
isfies all of the above energy-modeling criteria. Furthermore, by using
Rule 226 (with right-shift) temporal spans of intense surface flux ap-
pear to propagate aggressively into the medium (see Figure 2), a model-
specific feature that is consistent with physical intuition.

5See Wolfram [4], the encyclopedic discourse on cellular automaton modeling and its
wide-ranging implications for scientific investigation.

6The cellular automaton rule-numbering convention used here follows Wolfram [4].
Note that both Rules 98 and 226 (each with a right-shift and the first cell prescribed)
satisfied the energy-transport modeling criterion cited above and that the ultimate selection
of Rule 226, over Rule 98, was arbitrary.
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Cellular automaton

energy transport model
qi

Figure 2. Schematic of the cellular automaton energy-transport idealization of
the model problem depicted in Figure 1. The �Ξ,�Τ array of cells represent the
transport of energy into the substrate medium of Figure 1, with time progressing
down (top to bottom), and the physical penetration depth of thermal energy
from left to right. The cells in the leftmost column of the array correspond to
the heated surface of Figure 1, and are prescribed to be a boolean heat flux {qi}.
The right side of the schematic depicts this same boolean heat-flux vector qi on
an enlarged scale. In this schematic “1” cells are black, and “0” cells white. This
cellular automaton model is Rule 226 with a right-shift at each successive time
step and the cells of the first column prescribed. The right-shift emulates the
heat-sink characteristics of the physical medium of the model problem depicted
in Figure 1.

The estimation of temperature time-series data, using this cellular
automaton energy-transport model, will now be considered.

2.5 Calculating dimensionless temperature Θ from the cellular

automaton array

Because the objective data are thermocouple-temperature measurements,
use of this cellular automaton model in an inverse heat-transfer estima-
tion procedure necessitates the capability to calculate the temperature
Θ at the thermocouple position Ξ � 1. Recall that, in this study, the
energy penetration into the medium is represented by a cellular automa-
ton array (see Figure 2) in which time progresses down the rows (in
�Τ steps), and the spatial depth corresponds to the number of columns
from the left (in, say, steps of �Ξ). This section explains how to calculate
Θ�Ξ�1 (Τi) from the cellular automaton array, for a particular experimen-
tal arrangement.
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Figure 3. The exact (solid) and cellular-automaton-model estimated (dashed)
calculations for Θ�Ξ�1 for the boolean flux {qi} depicted in Figure 2. In calculating
both curves �Τ � Π/50; for the exact solution of equation (8) the medium
thickness was taken to be L/r � 10.

Say, for example, that an experimental setup has a sampling rate
�t � 1/50[sec], a substrate thickness L � 10[cm] , a substrate thermal
diffusivity Α � Π(10�4)[m2/sec], and that the thermocouple is located a
distance r � 1[cm] from the surface. Assume further that the dimen-
sionless surface heating is the specific boolean �qi� sequence shown in
Figure 2. Given this sequence as the surface heating transient, then
exact solution (using equation (8)) for the dimensionless temperature
at the thermocouple Θ�Ξ�1 (Τi) is shown as a solid line in Figure 3; it was
computed using the finite-difference Crank–Nicholson method with di-
mensionless time step �Τ � Π/50, and L/r � 10. The dashed line on
this same graph is the temperature curve as calculated from the cellular
automaton array, computed (as described next) for these same parame-
ters. The good agreement evident in this particular case turns out to be
representative of the agreement obtained for a variety of input heat-flux
distributions {qi}.

The cellular-automaton-array temperature-computation algorithm
employed in this study assumes that a specific array column—let us
call it column “j”—corresponds to the thermocouple position Ξ � 1,
and “integrates” the temporal energy contributions qi,j down this col-
umn to generate a temperature time series Θj(Τi). The algorithm7 used to
estimate this unsteady dimensionless temperature at cell position j is:

Θj(Τi) � Θj(Τi�1)e��Ξ�Τ � Κqi,j�Ξ�Τ, (9)

7The form of this expression draws upon “lumped capacitance” approximations uti-
lized in conventional heat-transfer analysis [1].
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with initial condition Θj(0) � 0. In equation (9) the numerical value for
�Τ is fixed (from the experimental sampling rate), and the values qi,j

are determined from the cellular automaton array evolution. However,
use of equation (9) also requires quantitative estimates for �Ξ, j, and Κ,
which are now considered in turn.

An order-of-magnitude estimate can be made for �Ξ using the fol-
lowing two observations.

The cellular automaton energy-transport model is contrived so that energy
propagates one cell (�Ξ) to the right each time step (�Τ).

For diffusion phenomena in a semi-infinite medium, the signal scales as
(x2/Αt) � constant, and thus (�Ξ2/�Τ) � O(1).

So if we assume that (�Ξ2/�Τ) � 1 this leads to a rough estimate for
�Ξ:

�Ξ � (�Τ)1/2. (10)

Furthermore, we need to determine which column j corresponds to the
thermocouple depth in the medium Ξ � 1. Since Ξ � j(�Ξ) we get:

j �
1

(�Τ)1/2 . (11)

It is obvious that the result of equation (11), which computes the column
number corresponding to the thermocouple depth, must be rounded to
the nearest integer. Consequently, were this scheme to be used in con-
junction with a particular experiment, the accuracy would be enhanced
if the data-sampling rate �t was adjusted so that equation (11) evaluates
to a nearly integer value. In this example, for �Τ � Π/50, we get j � 4.

Finally, the parameter Κ accounts for the fact that the O(1) propa-
gation of the (�Ξ2/�Τ) signal is not identically 1, but an O(1) constant.
This parameter Κwas estimated by visually fitting the cellular-automaton
array-derived temperature series equation (9) with the exact solution cal-
culated from equation (8). For the case plotted in Figure 3 (�Τ � Π/50,
L/r � 10) the value Κ � 2 evidently gave good agreement with the exact
solution.

2.6 The search procedure for the unknown surface heat flux

The search algorithm for the unknown heat flux q��(ti), given the input
temperature data Ti, is described in this section. Recall that this cellu-
lar automaton inverse method represents surface heat flux as q��(ti) �
q��max�q1, q2, . . . , qi, . . . , qN�, where q��max is the dimensioned scaling quan-
tity and the boolean {qi} values idealize the temporal behavior. Con-
sequently, this inverse-search procedure needs to estimate both: (i) the
value of q��max, and (ii) the boolean vector {qi}. In our discussion the
following notation is used.
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The measured thermocouple data is designated Ti.

The notation ΘCA(Τi) represents the dimensionless temperature Θ(Τi), eval-
uated at the dimensionless thermocouple depth Ξ � 1 as calculated from
the cellular automaton (CA) energy-transport model.

The search procedure begins by constructing an initial guess for the
{qi} vector using the input Ti data. The method employed for construct-
ing the initial guess8 consistently and by design understates the total
number of ones in the solution vector {qi}. The search procedure then
iterates the following sequence of three steps.

1. The procedure systematically rearranges eight-cell subsequences of {qi},
starting at large times in the vector (i � N) and working its way back-
wards (to i � 1) in steps of four cells, so that the rearrangements overlap.
The objective here is to find the “optimal” overall arrangement of the (0,1)
values in {qi}, that is, the arrangement which yields a computed shape of
ΘCA(Τi) which most closely resembles Ti.

In this study, the “most closely resembles” criterion means minimiz-
ing the EstimatedVariance parameter of the (Mathematica 5.1)
Regress function for a linear least-squares fit of ΘCA(Τi), Ti.

2. A least-squares fit of ΘCA(Τi), with respect to the input data values Ti,
produces a dimensioned multiplicative factor (say, Tscale), that is:

Ti � Tscale 
 ΘCA(Τi) � T0.

3. The scheme notes at which temporal position Τi the difference (Ti �Tscale 

ΘCA(Τi)) is greatest, and replaces a “0” with a “1” at this (suitably time-
lagged) position in {qi}.

Steps 1 through 3 are repeated until {qi} does not change, or the
EstimatedVariance parameter ceases to decrease. Thus, at the con-
clusion of this search the procedure has identified both the {qi} vector and
the value Tscale, from which q��max can be calculated using equation (7).

3. Sample computed results

Three sets of computed results are reported in this section. In all three
sets, the “thermocouple time-series data” Ti was generated (as described

8In this study, the initial guess for {qi} was produced as follows.

(a) Take differences Ti�1 � Ti.

(b) Convolve (a) with {1/4, 1/2, 1/4} to smooth it.

(c) Normalize (b) to [0, 1] values.

(d) Create a boolean pulsed signal from (c) which conserves area under the curve.
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in section 2.3) by:

(i) prescribing a dimensionless heat-flux function f (Τi);

(ii) using this fi to calculate the solution Θ�Ξ�1 (Τi) from equation (8);

(iii) creating the thermocouple data by setting Ti � 150 
 Θ�Ξ�1 (Τi).

In each case considered the inverse solution procedure generates a
{qi} vector to approximate fi, and also reports a Tscale value for which,
in this set of calculations, 150 would be the “exact” answer.

3.1 Ti due to a smooth surface heating function

Figures 4 and 5 show the computed results due to input temperature
time-series data Ti that was generated using a smoothly varying input
dimensionless heat-flux function fi. Figure 4 shows the input Ti (as a
solid line) and the inverse-solver’s best-fit Tscale 
 ΘCA (the dashed line);
the temperature scaling Tscale was estimated to be 141.4 (150 would
have been exact). Figure 5 shows the originating fi function (smooth)
and the inferred boolean approximation {qi} on the same graph.

3.2 Ti due to a sporadic (random) surface heating function

Figures 6 and 7 show the computed results due to input temperature
time-series data Ti that was generated using the qi sequence of Figure 2,
in effect a random, sporadic heat-flux function fi. Figure 6 shows this
input Ti (as a solid line) and the inverse-solver’s best-fit Tscale 
 ΘCA (the

0.2 0.4 0.6 0.8 1
t

5

10

15

20

C Computed Temp Scaling:141.399 Hexact:150L

Figure 4. The input Ti (solid line) and the inverse-solver corresponding best-
fit (dashed line) temperature profiles for the case where the input Ti data was
generated from a smooth dimensionless heat-flux function fi (Figure 5).
The input Ti was created with a temperature-scaling factor Tscale � 150; the
inverse solver’s estimate of this value was 141.4.
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The objective q �smooth�
and the CA�inferred q

Figure 5. The dimensionless heat-flux function fi used to generate the Ti values
in Figure 4, and the inferred boolean approximation {qi} that the inverse-solver
developed from the input Ti time series.
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Figure 6. Input Ti (solid line) and inverse-solver best-fit (dashed line) temperature
profiles for the case where the input Ti data was generated by the random
boolean data of Figure 2 (also the fi shown in the top graph of Figure 7).

dashed line), and with the temperature scaling Tscale estimated to be
134.1 (150 would be exact).

Figure 7 shows the originating fi heat flux on the top graph, and
the inferred boolean approximation {qi} aligned on the lower graph.
Figure 7 demonstrates how the inverse solver failed to “see” the surface
heat flux for times Τ > 1.7. This is because the surface thermal energy
at these latter times had not yet propagated to the thermocouple depth
in the medium.
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Plot #1: the objective q

Plot #2: CA�inferred q
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Figure 7. The top graph is the dimensionless heat-flux function fi used to gen-
erate the Ti values in Figure 6, and the lower graph is the inferred boolean
approximation {qi} that the inverse-solver developed from the input Ti time
series.

It is worthwhile to note that sporadic heat-flux phenomena are diffi-
cult to estimate using conventional inverse heat-transfer procedures (see
Beck et al. [2]).

3.3 Where the Ti data is noise-ridden

Figures 8 and 9 show the computed results due to an input temperature
time-series data Ti (Figure 8) that, again, was generated using a smooth
input dimensionless heat-flux function fi (Figure 9). However, this time
the input temperature signal Ti was “randomized” at random locations
by as much as �10%. Figure 8 shows the input Ti (as a solid line)
and the inverse-solver’s best-fit Tscale 
 ΘCA (the dashed line), and with
the temperature scaling estimated to be 140.5 (150 would be exact).
Figure 9 shows the originating fi function (smooth) and the inferred
boolean approximation {qi} on the same graph.

Noise-ridden signals like the Ti of Figure 8 are not uncommon with
thermocouples, and present difficulties for the several conventional in-
verse heat-flux estimation strategies which utilize temporal derivatives
of the time-series data (see Beck et al. [2]).
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Figure 8. Input Ti (solid line) and inverse-solver best-fit (dashed line) temperature
profiles for the case where the input Ti data is noisy and generated from the
smooth dimensionless heat-flux function fi shown in Figure 9.
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Figure 9. The dimensionless heat-flux function fi used to generate the Ti values
in Figure 8, and the inferred boolean approximation {qi} that the inverse-solver
developed from the (noise-ridden) input Ti data.

4. Conclusions

This paper describes a new procedure for inverse transient heat-flux es-
timation which, remarkably, does not use the basic equations of heat
transfer as in equation (1). Instead, this method utilizes a basic cellu-
lar automaton energy-transport model that embodies core phenomena
attributes such as conservation of energy and heat-sink behavior. This
cellular automaton energy-transport model, together with a suitable
dimensionless-scales analysis, are the foundation of this inverse estima-

Complex Systems, 16 (2005) 139–153



Estimating Transient Surface Heating 153

tion procedure which appears to have quantitative accuracy comparable
to conventional inverse estimation procedures.

The approach described in this paper could be customized to a par-
ticular experimental investigation in several ways. First, the search pro-
cedure might be optimized to look for specific heat-flux distributions
anticipated in the individual application under study. Second, the data-
sampling rate should be fixed so that the cellular automaton column
corresponding to the thermocouple position equation (11) evaluates
to an integer value. Finally, while a number of procedural program-
ming languages could in principle be used to implement the method, it
emerged that Mathematica proved a particularly natural language for
both the search algorithm and for the cellular automaton computation
and thus it is recommended. All the numerical work in this study was
carried out in Mathematica 5.1.
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