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We propose the application of information content to analyze the time
and space evolution of some boolean networks, and to give a classification
of their state as either solid, jelly, liquid, or gaseous, following the ideas
of Kauffman. To these aims both individual nodes and the global net-
work are studied by means of data compression. Some experiments are
presented using the compression algorithm CASToRe, developed along
Lempel–Ziv algorithms.

1. Introduction

In [1], Stuart Kauffman thinks of a metabolic network as a boolean
network: each node of the network has an internal state (0 or 1). At
every time step, the node changes its state according to boolean functions
depending on the states of some randomly chosen nodes of the network
(called neighbors). The boolean function and the neighbors, in principle,
are different for each node. A system well fitted by this model is given
by the network of genes, where each gene is either active or inactive
(state 0 or 1) and its state depends on the state of other different genes,
that can be close or not.

Kauffman also presented a classification of these networks, based
on the length of their periodic orbits. Using extensive experimental
simulations, he divided the networks into three different regimes: or-
dered, chaotic, and transition-to-chaos regime. The motivations for a
network to be in one of the regimes are to be found in two features: the
number of neighbors and the driving rules, that is, the connections and
the boolean function. Few connections guarantee a strong order, while
a highly connected network is usually chaotic. Moreover, simulations
suggest that some boolean functions lead to order, while with other rules
chaotic dynamics prevail.

Denoting the number of nodes in the network by n and the number
of neighbors chosen for each node by k (a fixed value, equal for all
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nodes), Kauffman exploited computer simulations of several different
such (n, k)-networks and observed the results. For k � 2, the state
cycles are approximately as long as the square root of n. These net-
works tend to rapidly become ordered. On the other hand, if k � n,
the state cycles have length of the order of the square root of the num-
ber of states, that is, the square root of 2n. These networks are ex-
tremely chaotic. Nevertheless, it is also possible to obtain chaotic net-
works for k � n, such as k � 4 or k � 5. A sort of “tuning” from
chaos to order is also observed when the boolean function is modified.
With this in mind, Kauffman introduced a parameter p measuring the
probability of having 1 and 0 as outputs of the boolean functions. If
the two states are balanced, namely p � 0.5, the network is chaotic,
but when p decreases to 0 the behavior of the network becomes or-
dered.

Whereas the research of Kauffman has given rise to a huge amount of
experimental investigations, to our knowledge a theoretical analysis of
Kauffman networks has been carried out only to some extent, and only
in some cases, namely for k � 1 in [2] and k � n in [3]. Moreover, in
[4] and [5], a theoretical analysis is accomplished about the transitions
from order to chaos depending on k (at k � 2) and on p.

In this paper, we consider a class of boolean networks that are very
similar to Kauffman networks, but preserve the spatial closeness be-
tween nodes. In this sense, the networks we analyze are also similar to
cellular automata [6], another field well-studied from the experimental
point of view. We use the tools of algorithmic information theory, and
in particular compression algorithms, to give a local and global classifi-
cation of the networks in terms of the entropy of the nodes. That is, we
first analyze the orbit of each node (the sequence in time of its states),
and then compare the behavior of the different nodes to determine the
“global” characteristics of the network. In particular, we consider the
number of neighbors fixed and equal for all nodes, and the feature of the
networks that we study is the distribution of 1 and 0 as outputs of the
boolean functions. Varying the distribution, we obtain a classification
of the networks similar to Kauffman’s method. However, the main aim
of this paper is to introduce the method and not to present extensive
experimental simulations.

An application of algorithmic information theory to cellular au-
tomata can also be found in [7], where the authors introduce a classifica-
tion parameter based on the local rules of the automata. The difference
with our approach is that we are interested in the “phenomenological”
aspect, that is, we want to study the effects of the local rule only looking
for some distinguishing feature of the rule, in particular the probabil-
ity parameter p introduced earlier. Some ideas of the application of
compression algorithms to cellular automata are also introduced in [8],
chapter 10.
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In section 2, we introduce the class of boolean networks studied and
the definitions and tools from algorithmic information theory. In sec-
tion 3, we perform the local analysis of some different networks. These
results are used in section 4 to obtain a classification of the networks
in different regimes. We shall distinguish two distinct regular regimes,
where the “less complex” may be associated to Kauffman’s idea of an
ordered network, and two “chaotic” ones. Conclusions can be found
in section 5.

2. Definitions and tools

2.1 Networks

We define a network to be a square lattice of side N, hence with N �N
nodes, and assume periodic boundary conditions. Each node may be
either in state 0 or 1. At the beginning, a boolean function is assigned at
random to each node and each function is chosen such that the neighbors
of each node are the eight closest ones. A parameter p measures the
probability of a node to turn into the state 1; that is, a fixed number
of randomly chosen inputs (among the 28 possible inputs) have 1 as
output. At every time step, the states of the nodes are simultaneously
updated following these rules. Hence, for every fixed simulation time
T, a symbolic binary sequence ΩT

1 � �0, 1�T is associated to each node.
We shall call this the orbit of the node, and it describes all the states of
the node from the beginning up to the simulation time. We have chosen
to fix only the parameter p and do not control the boolean functions
assigned to the nodes. Hence our results should be intended to hold for
“almost all” networks with a fixed p.

Next, we define the notion of entropy of a symbolic string, which will
be used to classify the orbits of a network. We study the entropies of
the orbits when p varies in (0, 0.5], for different size N and simulation
times T.

2.2 Compression entropy

Let us consider a finite alphabet� and the set �	 of finite strings on �,
that is, �	 � 


�
n�1�

n. Denote by �� the set of infinite strings whose
symbols belong to�. A stochastic process with realizations in the space
�
� is called an information source. If Σ � ��, then the first n symbols

in Σ are denoted by Σn
1 � �

n.
One of the most intriguing problems about symbolic strings is the

notion of randomness of a string. Whereas Shannon entropy [9] gives
a notion of chaoticity for information sources, it is interesting to have
a notion of randomness of a string, independent of the properties of its
information source. A way to introduce such a notion is to calculate the
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amount of information necessary to exactly reproduce the string, that
is, the so-called information content of the string.

The most intuitive definition of information content was introduced
independently by Chaitin [10] and Kolmogorov [11]. Given a universal
Turing machine U, which can be considered as a personal computer, we
say that a binary string P is a program for a given symbolic string s � �	

if U(P) � s. The algorithmic information content (AIC) of a string s is
defined as the length of the shortest binary program P that gives s as its
output, namely

AIC(s, U) � min�P � U(P) � s�.

We have the following theorem due to Kolmogorov.

Theorem 1 ([11]). If U and U� are universal Turing machines then
����AIC(s, U) � AIC(s, U�)���� � K �U, U��

where K �U, U�� is a constant that depends only on U and U� but not
on s.

Theorem 1 implies that the AIC of s with respect to U depends only
on s up to a fixed constant, then its asymptotic behavior does not depend
on the choice of U. For this reason we will not specify the choice of the
machine in the notation, but assuming a fixed machine U we will write
AIC(s) � AIC(s, U). For further properties and applications of the AIC
see [12].

The shortest program that gives a string as its output is a sort of
encoding of the string. The information that is necessary to reconstruct
the string is contained in the program. Unfortunately, a very deep
statement, in some sense equivalent to the Turing halting problem or to
the Gödel incompleteness theorem, states that the AIC is not computable
by any algorithm.

For simulations it is then necessary to introduce a notion of com-
putable information content (CIC). Let us suppose to have some recur-
sive lossless (i.e., reversible) coding procedure C � �	 � �0, 1�	 (e.g.,
the data compression algorithms that are in any personal computer).
Since the coded string contains all the information that is necessary to
reconstruct the original string, we can consider the length of the coded
string as an approximate measure of the quantity of information that is
contained in the original string.

Definition 1 (CIC). The computable information content of a string s � �	,
relative to a given reversible recursive coding procedure C, is IC(s) �
C(s), that is, the binary length of the encoded string C(s).

Of course not all the coding procedures are equivalent and give the
same performances, so some care is necessary in the definition of CIC.
For this reason we introduce the notion of optimality.
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Definition 2 (Optimality). A reversible coding algorithm C is optimal if for
almost all1 infinite strings Σ � ��

lim
n���

IC(Σn
1 )

n
� H (1)

where H is the Shannon entropy of the information source.

An example of optimal codings are the well-known Lempel–Ziv com-
pression schemes [13].

For finite symbolic strings, we simply consider the compression ratio
of the whole string as a measure of chaoticity of the string.

Definition 3 (C-entropy). Given an optimal coding C, we call compression
entropy KC(s) (C-entropy) of a string s � �n the ratio

KC(s) ��
IC(s)

n
.

If a symbolic string Σ � �� is constant or periodic, then the infor-
mation content of the substrings Σn

1 is expected to be of the order of
the logarithm of the length n, hence the C-entropy KC(Σn

1 ) is expected
to be very small for n big enough. Conversely, if an infinite string is
patternless, then the information content of its substrings is expected
to grow linearly with their length n, and their C-entropy is, for n big
enough, strictly positive and close to the logarithm of the cardinality of
the alphabet (for binary strings, such a limit is 1).

When applying this notion to the symbolic orbits of the nodes, we
assume that the simulation time T is big enough so that the C-entropy
of the orbits KC(ΩT

1 ) is close to its “asymptotic” value.

2.2.1 The algorithm CASToRe

We have created and implemented a particular compression algorithm
called CASToRe, which is a modification of the well-known LZ78 al-
gorithm. Its theoretical advantages with respect to LZ78 are shown in
[14] and [15]: it is a sensitive measure of the information content of low
entropy sequences. That is why we called it CASToRe: Compression
Algorithm, Sensitive To Regularity.

As proved in Theorem 4.1 in [15], the information IC of a constant
sequence s � �0, 1�n is 4�2 log(n�1)[log(log(n�1))�1], if the algorithm
C is CASToRe. The theory predicts that the best possible information
for a constant sequence of length n is AIC(s) � log(n)�const. In [14],
it is shown that the LZ78 encodes a constant n-digits long sequence to
a string with length about const � n1/2 bits; so, we cannot expect that
LZ78 is able to distinguish a sequence whose information grows like nΑ

1With respect to a probability measure on ��.
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(Α < 1/2) from a constant or periodic one. This motivates the choice of
using CASToRe. Moreover, even if not formally proved, the optimality
of CASToRe has been tested with success on some chaotic dynamical
systems in [16]. After writing this paper, we have found that a slight
modification of CASToRe has been proved to be optimal [17].

Now we briefly describe the internal running of CASToRe.
Similar to the algorithm LZ77, CASToRe is based on an adaptive

dictionary. One of the basic differences in the coding procedure is that
LZ77 splits the input strings into overlapping words, while CASToRe
(as does LZ78) parses the input string into nonoverlapping words.

At the beginning of the encoding procedure, the dictionary contains
only the alphabet. In order to explain the principle of encoding, let
us consider a step h within the encoding process, when the dictionary
already contains h words �e1, . . . , eh�.

The new word is defined as a pair (prefix pointer,suffix pointer). The
two pointers refer to two (not necessarily different) words Ρp and Ρs

chosen among the ones contained in the current dictionary as follows.
First, the algorithm reads the input stream starting from the current
position, looking for the longest word Ρp matching the stream. Then,
we look for the longest word Ρs such that the joint word ΡpΡs matches
the stream. The new word eh�1 that will be added to the dictionary is
then eh�1 � ΡpΡs. The “new” current position is at the end of the word
Ρs in the input stream.

The output file contains an ordered sequence of the binary encoding
of the pairs (ip, is) such that ip and is are the dictionary index numbers
corresponding to the prefix word Ρp and to the suffix word Ρs, respec-
tively. The pair (ip, is) is referred to the new encoded word eh�1 and has
its own index number ih�1.

2.3 Remarks

Being deterministic and with a finite number of configuration states,
all the networks generate periodic orbits. Nevertheless, the periodic
patterns of the orbits may be as long as the maximum number of con-
figurations, that is, 2N 2

. Hence, if N � 5, the extent of the period may
be of the order of hundreds of millions of symbols. An orbit may be
considered chaotic as far as the simulation time T is shorter than its
period.

In this sense, we may exploit a finer analysis than Kauffman’s, who
used the length of periodic orbits to classify the networks. Indeed,
by means of the compression algorithm, we can easily identify periodic
orbits with increasing period length and differently complicated periodic
patterns by varying the simulation time and comparing the results, and
we can use this analysis to give a definition of the state of the network,
as shown in section 4. Moreover, further details on the disorder of the
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periodic orbits may be inferred from the analysis of the parsing of the
symbolic string generated by the compression (see section 3).

3. Dynamics of individual nodes

The first part of the analysis on the defined networks concerns the
behavior of the symbolic orbits of single nodes with increasing values
of the parameter p. As a N �N network evolved for T time steps, we
stored the N2 symbolic orbits and compressed them using CASToRe. In
the following, we simply write I(s) to denote the CIC IC(s) of a finite
string s with compression algorithm C � CASToRe.

The first approach is to evaluate the C-entropy I(ΩT
1 )/T of the orbits

and to make a distinction among nodes according to this value. We
picture the results on a grayscale network (C-entropy map), where each
pixel corresponds to a node; and, with increasing C-entropy from 0 to
1, the node becomes lighter.

An important feature of the C-entropy map of Figure 1 is the color
variability that underlines the differences in the chaoticity of the nodes.
This feature depends on the dimension N of the network and on the
value of p, which, as stated previously, tunes the disorder in the network.

Figure 1. An example of a C-entropy map of a network with N � 20, evolution
time T � 106, and p � 0.14.
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We analyzed networks of dimension N � 10, 15, and 20, and the
variability feature is evident for N � 20 but almost absent for N � 10.

We performed a two-fold analysis of the C-entropy maps. First, we
studied the evolution of the C-entropy of the nodes with time. Second,
we considered the variability of the C-entropy map as the parameter p
increases. The latter point is part of section 4.

Given a network N�N, for small values of the parameter p the orbits
of the nodes are regular and their C-entropy is already low for a short
simulation time T. Hence the C-entropy map is homogeneously colored
with all nodes almost black. As p increases to 0.5, the C-entropy of
the nodes remains high for bigger and bigger simulation times and in
the C-entropy maps light nodes frequently arise. In particular, when
p approaches 0.5 all nodes are light up to the maximum simulation
time TM of our experimental simulations (e.g., for N � 10 we have
TM � 3 � 106, for N � 15 we found light nodes up to TM � 3 � 107).

We fixed the dimension N of the networks and studied how the
maximum, minimum, and mean values of the C-entropy of the nodes
change when p varies from 0 to 0.5. In Figures 2(a) and 2(b) the results
are shown for N � 10 with T � 106 and T � 3 � 106, respectively.
We remark that these results have to be considered as “statistical,”
indeed given the side N and the parameter p we randomly generated
a network with those characteristics. The figures show the results for
these randomly generated networks. From the figures one can infer that
there is a first transition from homogeneous regular to arising irregular
dynamics of the nodes around some p	 (p	 � 0.2 for N � 10). Indeed
for p bigger than p	, after some fluctuations, all nodes have positive C-
entropy, the maximum values are insensitive on p and almost equal to 1,
whereas the minimum values monotonically increase to 1. Concerning
the mean values, it is noticeable that after p	 they are close to the
Shannon entropy function relative to uncorrelated events; that is, H(p) �
�p log2(p) � (1 � p) log2(1 � p) (see Figure 2(b)). We could say that “on
average” the orbits of the nodes are as chaotic as a binary symbolic string
generated by a stochastic process of independent random variables,
distributed on �0, 1� with P1 � p and P0 � 1 � p. Further investigations
in this direction are shown in the final part of this section.

When comparing the two pictures of Figure 2, notice that the values
of the C-entropy of the nodes decrease as simulation time increases. This
feature is evident in the figure for values of p lower than 0.3, since for
bigger values of p the same feature would appear for bigger simulation
times. This remark points out the fact that all nodes are eventually
periodic and this regularity becomes evident for a simulation time that
depends on the parameter p.

The same behavior of the values of the C-entropy can be found
varying the parameter p for networks with N � 20. In Figure 3 we
show the analog of Figure 2(b) with simulation time T � 106. Again we
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(a)

(b)

Figure 2. Behavior of maximum, minimum, and mean values of the C-entropy
for networks with N � 10 for p � (0, 0.5]: (a) the results on C-entropy maps
with T � 106; (b) for T � 3 � 106 together with the function H(p) (see text).

can identify a first transition from homogenous regularity to variable
irregularity around p	 � 0.14, with a small hole immediately after.
Then, again, there is a slow increase in the minimum values and a jump
to 1 for the maximum values. The mean C-entropy, where nontrivial,
again increases close to the function H(p). The decrease of the value
of p	 with the dimension of the network increasing is intuitively clear.
Indeed bigger networks are expected to have a greater variability, hence
irregular dynamics for the nodes are expected to appear already for
relatively small values of the probability parameter p.
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Figure 3. Behavior of maximum, minimum, and mean values of the C-entropy
for networks with N � 20 for p � (0, 0.5] and simulation time T � 106, together
with the function H(p).

The difference between the minimum and the maximum values of
the C-entropy in Figures 2 and 3 is an indication of the variability
in the chaoticity of the nodes of a given network. It is evident that
networks with N � 20 display a higher variability. However this feature
is analyzed in more detail in section 4, where further transitions can be
identified in the behavior of the C-entropy maps by varying p.

We finish the local analysis of the networks with an interesting remark
about the individual symbolic orbits of the nodes. When compressing a
symbolic orbit, CASToRe creates an adaptive dictionary of the words it
uses for the compression. Hence it is possible to analyze the statistical
features of this dictionary. Although features like the number of words
in the dictionary and their frequency in the symbolic orbit are usually
studied, here we concentrate only on the length of the words along the
symbolic orbit. In particular, for a T-symbols long orbit we plot the
length of the new word created by CASToRe versus the initial position
of this word in the symbolic orbit. Due to the internal structure of
CASToRe, the length of the new words is given by the sum of the
lengths of two already known words; hence, for instance, in the case
of a constant symbolic orbit, the length of a new word is always twice
the length of the last word. A doubling in the length of new words
is eventually found also for periodic symbolic orbits with nontrivial
periodic patterns.

Now, recalling that the orbits of the nodes in any N � N network
are eventually periodic, the length of the words in the dictionary is an
indicator either of the length of the period (for orbits with a period much
shorter than the simulation time) or of the “complexity” of the periodic
pattern (for orbits with a period of the order of the simulation time).
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Figure 4. (a) and (b) show two word length plots, the length of the new words
created by CASToRe versus their initial position in the symbolic orbit. The
plots refer to two nodes from networks with N � 10, simulation time T � 106,
and parameters p � 0.2 and p � 0.245, respectively. (c) and (d) show the
distribution of the length of the words for cases in (a) and (b), respectively. In
(c) the distribution is shown only for small lengths, where the periodic behavior
is not already evident. For bigger lengths the doubling starts.

In Figure 4, we show the behavior for two nodes chosen from net-
works with N � 10. In 4(a) and 4(b) we show the word length plots of
the two nodes. In case 4(a), the chosen node has a small period with
respect to the simulation time T � 106, indeed the doubling in the word
lengths is evident in the picture after CASToRe has compressed the first
105 symbols. At most the period length (simply obtained by the length
L of the word when doubling first happens) is L � 10800, moreover it
is a divisor of L. The distribution of the lengths of the words for this
node is shown in 4(c), only for small lengths, since for bigger lengths
the doubling starts and hence the statistics are trivial. The analysis of
4(c) already reveals the internal rules of the compression algorithm: the
pairing of words groups them into “clouds” of doubling mean length.
Furthermore, as the algorithm proceeds in the compression of the sym-
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Figure 5. (a) and (b) show two word length plots, the length of the new words
created by CASToRe versus their initial position in the symbolic orbit. On the
left ((a) and (c)) is node 13 and on the right ((b) and (d)) node 11 of a network
with N � 20, simulation time T � 106, and p � 0.14. (c) and (d) show the
distribution of the length of the words for cases in (a) and (b), respectively.

bolic orbit, the words in the clouds decrease until there is one single
word, when the periodic pattern is found.

The grouping feature is more evident in cases 4(b) and 4(d), where the
chosen node has a period still smaller than the simulation time. In 4(b),
the grouping occurring in case 4(a) at the beginning of the compression
is enlarged to the whole picture, and big steps in the word lengths occur.
However in this case there is no doubling, and the period can only be
estimated using the grouping in the words by 3 � 105, the width of the
steps. The distribution of the lengths in 4(d) follows the shape of case
4(c) in all the lengths.

In Figure 5 examples of chaotic nodes from a network with N � 20,
p � 0.14, and simulation time T � 106 are shown (see also Figure 1).
The enumeration of the nodes begins from 0 in the upper left corner
and proceeds horizontally downwards. Nodes 13 and 11 are shown
in Figure 5, on the left and on the right, respectively. Looking at the
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Figure 6. (a) and (b) show two word length plots for randomly generated binary
symbolic orbits. Orbit Σ (on the left) is generated with P0 � 0.02 and P1 � 0.98.
Orbit Τ (on the right) with P0 � P1 � 0.5. (c) and (d) show the distribution of
the length of the words for cases in (a) and (b), respectively.

C-entropy map of Figure 1, node 11 is light and node 13 is dark, hence
they have very different C-entropy values. This difference is evident in
the word length plots 5(a) and 5(b). In 5(b), for node 11, we find small
words with very similar lengths, whereas in 5(a) we find longer words
with different lengths. Looking at the distributions, 5(c) and 5(d), this
difference is even more recognizable.

Again, we remark that the statistics of the lengths strongly depend
on the internal rules of the compression algorithm; Figures 5(a) and
5(b) should be viewed with this in mind. Figure 6 shows the analogs of
Figure 5 for two random binary symbolic orbits Σ and Τ, generated with
probabilities P0 � 0.02 and P1 � 0.98 on the left, and P0 � P1 � 0.5
on the right. The Shannon entropy for orbit Σ is H(0.02) � 0.141441,
while for orbit Τ it is H(0.5) � 1; hence, orbit Σ may be read as “less
random” than orbit Τ. A perfect analogy may be established between
node 11 and orbit Τ, and between node 13 and orbitΣ. From this it turns
out that the difference between nodes 11 and 13 is in the “complexity”
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of the periodic pattern of the corresponding symbolic orbits. Again,
this result enhances the similarities between the orbits of the nodes and
the symbolic orbits generated by stochastic processes of independent
random variables.

4. Global dynamics and classification of networks

In section 3 we studied the values of the C-entropy of the nodes of a
given network varying the parameter p (the probability of transition to
state 1, see section 2) and used this analysis to experimentally establish
the presence of a first transition from homogeneously regular networks
to irregular ones. We can call this first approach “local” since we
did not pay attention to the relative behavior of the nodes, but simply
looked at the presence of chaotic nodes. We now turn to the “global”
analysis of the network, studying by means of algorithmic information
theory the variability of the C-entropy in a given network. The aim
is to obtain an experimental classification of networks similar to that
considered by Kauffman. Analyzing the dynamical behavior of the
networks, Kauffman concentrated his attention on the lengths of the
periods of the orbits of the nodes. In particular, he defined a network
to be: in a solid state if all the nodes are fixed or have very small
periods (on the order of five time steps); in a liquid state if there are
nodes with a longer period (on the order of hundreds of time steps) on
a background of fixed nodes; or in a gaseous state if all nodes have
long periods. Using the techniques of algorithmic information theory,
we give a similar classification of nodes, choosing the C-entropy of the
orbits as our indicator.

We shall make the following heuristic characterizations of networks.
Let us fix a simulation time T.

A network is in a solid state when the orbits of all the nodes are periodic
with very short periodic patterns; the network appears homogeneous in
the C-entropy map.

A network is in a jelly state when all the orbits of the nodes are periodic,
hence the C-entropy map is homogeneous, but periods are not very short.

A network is in a liquid state when its C-entropy map at time T is
heterogeneous.

A network is in a gaseous state when its C-entropy map at time T is
homogeneously chaotic.

This characterization needs two main ingredients: the definition of
homogeneity of a network and a classification of the periodic patterns.

In order to characterize the homogeneity of a network, we will refine
the analysis presented in Figure 2, where only the variation in the C-
entropy of the nodes of a network was considered. In particular we use
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algorithmic information theory to quantify the ratio of regular nodes in
a network. As an example, we expect networks whose C-entropy map
is such as in Figure 1 to be classified in the liquid state. Our approach
is to study the “chaoticity” of the C-entropy map of a network, using
a method to extract the C-entropy of a bidimensional lattice. Later on,
we apply this technique to a suitably defined “space-time cut” of the
complete time evolution of the network, in order to study the periodic
patterns.

For the sake of simplicity, assume the network has size N �N where
N � 2�. Following the results in [18], we preprocessed the lattice by
scanning it via the Peano–Hilbert plane-filling curve. For each � � 1, the
curve covers the network visiting each node; hence a symbolic string of
length N2 corresponds to the network. In [18] it is proved that the com-
pression ratio achieved by encoding the given symbolic string is lower
than the one obtained via any other two-dimensional compression on
the lattice, asymptotically when N tends to infinity. Therefore, we ex-
ploited this reliable bidimensional compression by means of CASToRe.

First, we applied this method to the two-dimensional color picture
representing the C-entropy map and obtained a symbolic string Ν. Then,
the C-entropy of Ν is the C-entropy of the C-entropy map obtained after
a simulation time T. We chose an eight-symbol alphabet to codify the C-
entropy values into symbols, then normalized to have C-entropy values
in [0, 1].

We show the results on 16 � 16 networks in Figure 7. Following the
qualitative variation identified by the maximum, minimum, and mean
C-entropy values, the C-entropy of Ν varies with parameter p. Starting

Figure 7. Behavior of maximum, minimum, and mean values of the C-entropy
for networks with N � 16 for p � (0, 0.5] and simulation time T � 5 � 105,
together with the corresponding C-entropy values of Ν (see text).
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from values very close to zero, it begins to oscillate when p � 0.15,
stabilizing around its maximum at p � 0.2. Later, it softly decreases to
zero, which is approximately reached around p � 0.4. This behavior
points out for the 16 � 16 network a transition to the liquid state at the
parameter value pJL � 0.15. The network remains in the liquid state
until p � 0.4. Around this latter value, denoted by pLG, another state
transition occurs and from this point the network is in a gaseous state.
Note that the transition to the liquid state corresponds to the transition
already found in section 3 occurring at the values called p	. Moreover,
we remark that this transition is much more visible for networks with
an increasing number of nodes (compare Figures 2 and 3), as one should
expect from statistical mechanics where transitions are observed in the
thermodynamic limit.

However, this first analysis is not sufficient to distinguish between the
solid and jelly states in the regime p < pJL. Indeed, the C-entropy map
denotes homogeneously periodic behavior of the orbits of the nodes,
but it does not contain information about the lengths of the periods.
The transition point pSJ from solid to jelly corresponds to the kind of
transitions identified by Kauffman.

In order to find the transition point pSJ, we have considered a “space-
time” approach to the orbits of the nodes. Given the picture of the net-
work at the simulation time T, that is, the bidimensional lattice of cells in
state 0 or 1, we have used the Peano–Hilbert curve to convert the picture
into a binary string sT � �0, 1�N

2
. Making the same for the picture of the

network at times T�1, T�2, . . . , T�d�1, we have constructed d binary
strings sT , sT�1, . . . , sT�d�1 each of length N2. By concatenating these d
strings, we obtain a binary string s � (sTsT�1 . . . sT�d�1) � �0, 1�dN2

.
The C-entropy of the string s gives an indication of the lengths of the

periodic patterns of the orbits of the nodes, indeed the higher or lower
regularity shown by this “space-time scan” of the network is a marker
for the global presence of periodic patterns with respectively low or high
complexity, in particular short or long patterns.

Figure 8 shows the C-entropy variation for string s as p varies in
(0, 0.5] and d � 100, compared with the C-entropy of the correspond-
ing strings Ν (dashed line), when the network is 16 � 16. We have
exploited simulations for 500 values of parameter p, with a simulation
time T � 5�105. To enhance the main trends, the plot shows smoothed
curves, where for each point a local weighted average is drawn. From
the picture, it is straightforward that the C-entropy of s adds further
knowledge about the state of the network only when p < 0.15, since
for larger values it nearly coincides with the Shannon entropy function
H(p) (dotted line).

Whereas the C-entropy of Ν is negligible for p � (0, 0.15], the C-
entropy of s shows an abrupt increase from 0.1 on (see Figure 9). This
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Figure 8. Networks with N � 16 and T � 5 � 105. C-entropy values for string s
(solid line) with d � 100 and string Ν (dashed line) for 500 values of parameter
p � (0, 0.5]. The dotted line is the Shannon entropy function H(p). See text for
details.

Figure 9. Networks with N � 16 and T � 5 � 105. C-entropy values for string s
(solid line) with d � 100 and string Ν (dashed line) for 500 values of parameter
p � (0, 0.2].

is a clear consequence of the presence of short periodic patterns with
nontrivial complexity. For lower values of p, the C-entropy of s is also
negligible. Hence, we can identify the transition point from solid to jelly
as pSJ � 0.1.
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5. Conclusions

In this paper we addressed the question of classifying boolean networks
into different classes, following the ideas of Kauffman. He looked at
the periods of orbit for a network as a distinguishing feature, and some
analytic results confirmed his experimental investigations. We studied
the problem by applying numerical tools from algorithmic information
theory, in particular a compression algorithm, identifying the classifica-
tion characteristic to look for in the information content of the orbits
of the nodes. Our approach led to a two-fold analysis.

First, we studied the single orbits of the nodes, showing that, as a
parameter p (representing the a priori probability of activating a node)
varies, the networks display a transition from a homogeneously regu-
lar behavior (the orbits of the nodes have small information content
with respect to their length) to an irregular behavior (large information
content for all orbits).

Second, we performed a “global” analysis of the network in order to
make a distinction between a liquid and a gaseous state in the irregular
regime and clarify what happens in the regular regime. To this end, we
switched to a space-time approach, looking at the information content
of some pictures suitably defined and associated to the network. On one
hand, we derived a transition from the liquid to the gaseous state from
the picture given by the entropy of the single nodes (C-entropy map).
On the other hand, two different regular states (solid and jelly) may be
defined by analyzing the information content of a space-time scan of the
evolution of the network. These transitions appear clearer as the number
of nodes increases, as one should expect from statistical mechanics.

In section 3, we studied the behavior of the compression algorithm
on the orbits of the nodes. The results show that the irregularity of the
periodic patterns of the orbits is very similar to that of the symbolic
sequences obtained as realizations of a (1�p, p) Bernoulli process. This
is also confirmed in section 4 by the fact that the C-entropy of the space-
time scan coincides with the Shannon entropy function for liquid and
gaseous networks.

Finally, we remark that in this paper we restricted our attention to
a “hybrid” class, namely Kauffman networks with local interactions,
with the aim of introducing the method rather than to present extensive
experimental simulations. However this approach can be repeated for
any class of networks, from cellular automata to neural networks.
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